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1Information Processing Center, Kitami Institute of Technology, Kitami 090-8507, Japan
2 Department of Physics, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
3The Institute of Physical and Chemical Research (RIKEN), Wako, 351-0198, Japan

Abstract
We develop an m-scheme approach of the cluster-orbital shell model (COSM).
By using the Gaussian as the radial part of the basis function, components of
the unbound states are correctly taken into account. We apply the m-scheme
COSM to oxygen isotopes and study the energies and r.m.s.radii.

1 Introduction

Innovation both on experimental techniques and theoretical approaches enables us to study nuclei for
wider area than ever. Now the front line of the research field has reached to the neutron and proton
drip-lines not only in light mass region but also in the middle mass region [1]. For example, the abrupt
increase of the r.m.s.radius at23O has been observed as one of the typical phenomena of nuclei in the
drip-line region [1].

For the theoretical study, however, it is not so straightforward to reproduce such the abrupt in-
crease [2–4]. In the drip-line regions, it is important to include the components of unbound states. The
continuum shell model [5] and the Gamow shell model [6] are one of the practical solutions to solve such
the problem for inclusion of the unbound states in the shell model picture.

The cluster-orbital shell model (COSM) approach has been developed to study light neutron rich
nuclei [7]. Using COSM with the Gaussian basis set, many-body resonant states can be exactly calculated
by making use of the complex scaling method [8]. As shown in Ref. [8], the COSM formalism with the
Gaussian basis can describe the halo structure, which is a typical property of the weakly bound system.
We propose an extension of the COSM approach to treat the dynamics of the core [9] and showed
the importance of the modification of the radius of the core nucleus. We also discussed the role of the
unbound states in the COSM approach [10]. In Ref. [10], we investigated the contribution of the continua
and resonant poles in the helium isotopes and compared thoseobtained by the GSM approaches.

In this paper, we propose an m-scheme approach of COSM to overcome the limitation on the
number of valence nucleons in the practical calculation. Asthe example of the neutron-rich nuclei, we
study oxygen isotopes and calculate binding energies and r.m.s.radii. In Sect. 2, we briefly show the
formalism of our m-scheme COSM and the model for interactionand wave functions. In Sect. 3, we
show the calculated results for oxygen isotopes. In Sect. 4,summary and discussion are given.

2 Formalism and interaction

2.1 Cluster-orbital shell model

We briefly explain the formalism of the cluster-orbital shell model (COSM) [7]. In COSM, the coordi-
nates of the valence nucleons are spanned from the center of mass of the core nucleus, and the kinetic
energy of the center of mass motion̂TG is subtracted from the totalA-body Hamiltonian. Hence, the the
total Hamiltonian of COSM is described as follows:

Ĥ =
A∑

i=1

t̂i − T̂G +
A∑

i<j

v̂ij



= ĤC +
∑

i∈V

(t̂′i + V̂ ′

i ) +
∑

i<j∈V

(T̂ij + v̂ij) . (1)

Here,t̂′i is a one-particle kinetic energy operator between the core and theith valence nucleon. The index
“V” in the sum in Eq.(1) stands for the nucleons in the valencenucleons part.̂HC is the Hamiltonian for
nucleons in the core, and̂Tij is the two-body kinetic operator,̂Tij = (~2/m)∇i · ∇j, which comes from
the subtraction of the center of mass motion. The potential between the core and theith valence nucleon
is defined by taking the sum for the nucleons in the core part asV̂ ′

i ≡ ∑
k∈C v̂ik.

The core and valence wave functions,|ΦC〉 and|ΦV 〉 are anti-symmetrized for nucleons in each
part. The total wave function|Ψ〉 is constructed by the core and valence parts as follows:

|Ψ〉 = A′

{
|ΦC〉 |ΦV 〉

}
, (2)

whereA′ stands for the anti-symmetrization between two nucleons; one nucleon in|ΦC〉 and other one
in |ΦV 〉. Therefore, the wave function|Ψ〉 is totally anti-symmetrized.

In the study of oxygen isotopes, we fix the lowest configuration of the harmonic oscillator wave
functions for the core part;|ΦC〉, and the size parameter of the harmonic oscillator is determined so as
to reproduce observed value of the r.m.s.radius of16O.

For the valence nucleons, on the other hand, the radial function is taken as the products of the
Gaussian functions as follows:

F (r1, · · · , rN ) ≡ g1(r1) · · · gN (rN ) , (3)

wheregi(ri) is the Gaussian function for theith valence nucleon with the normalizationNi and the width
parameterai asgi(ri) = Ni exp(−1

2
air

2
i ). In order to describe the correct property of the asymptotic

behavior of weakly bound systems, it is necessary to includethe components of the unbound states.
Therefore, the valence part is constructed by a superposition of the Gaussian functions,

ΦV =
∑

m

c(m)Φ
(m)

JMTMT

=
∑

m

c(m)A
{
F (m)(r1, · · · , rN ) · |JMTMT

(m)〉
}

. (4)

In the above equation,m stands for the index of the basis functions. In each basis function, the Gaussian
width parameterai, angular momentaji and li are the parameters in the calculation, and optimized in
a variational way [11, 12]. We discussed the advantages of the Gaussian basis functions [9]. It has
been shown that the superposition of the Gaussian correctlydescribes the halo structure [8] and includes
components of the unbound states [10].

2.2 M-scheme COSM

We employ the basis set so that thez-components of the total angular momentum and total isospinare
fixed: |MTz〉 = {φα1

φα2
· · · φαN

}M, MT
. Here,{· · · }MTz

indicates that thez-component of the total
spin and isospin;M andTz are fixed. αi are spin and isospin forith nucleon,ji, li, si, ti and their
z-components.

Hence, the wave function for the valence part becomes as follows:

ΦV =
∑

m

c(m)Φ
(m)

MMT

=
∑

m

c(m)A
{
F (m)(r1, · · · , rN ) · |MMT

(m)〉
}

. (5)
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If the basis size is sufficiently large, the eigen vectors have a good quantum number of the total
spin and isospin, and the coefficientsc(m) play the role of the Clebsh-Gordan coefficients. Furthermore,
the lowest eigen value becomes the lowest-energy state withthe possible spin and isospin, for having the
z-components ofM andMT .

2.3 Model and Interaction

We construct the interaction between the core and a valence nucleon, by taking into account the structure
of the core and the exchange effect with an approximated way.

V̂ ′

i |ΦV 〉 ≡
∑

k∈C

〈
ΦC

∣∣∣ v̂i k

∣∣∣A′

{
|ΦC〉 |ΦV 〉

}〉
≃ V̂ d

i + V̂ ex
i . (6)

The interaction is constructed by folding the nucleon-nucleon interaction with the core wave function.
The direct part of the folding procedure gives theV̂ d

i term. For taking the anti-symmetrization between
the nucleons in the core and valence parts, we introduce the approximation, which is proposed by Kaneko
et al. in Ref. [13], in which the recoil effect and other exchange kernels except for the knock-on exchange
term are omitted [13], which gives thêV ex

i term.

Due to the Pauli principle between the nucleons in the core and a valence nucleon, it is necessary to
eliminate the spurious states for the valence nucleon system. We use the orthogonality condition model
(OCM) [14] in order to treat the Pauli principle and eliminate the spurious states. As a conventional
method, we introduce a pseudo potentialλΛ̂i = λ|F.S.〉〈F.S.| to the Hamiltonian of the valence nucle-
ons. |F.S.〉 is the projection operator to the occupied states in the core, in other words, the forbidden
states. For the16O core wave function, these states are(0s1/2), (0p3/2) and(0p1/2). By takingλ → ∞
in the diagonalization of the matrix of the Hamiltonian, theforbidden states|F.S.〉 are effectively elim-
inated. Furthermore, we introduce an effectiveLS-potentialV̂ ls

i to reproduce the spin-orbit partners in
17O, 5/2+

1
and3/2+

1
. The strength parameter of theLS-potential is adjusted to reproduce the energies

of the above states.

To summarize, the Hamiltonian for theith valence nucleon,̂hi becomes as follows:

ĥi = t̂′i + V̂ d
i + V̂ ex

i + V̂ ls
i + λΛ̂i . (7)

And the parameters in the potentials are adjusted to reproduce three states,5/2+

1
, 1/2+

1
and3/2+

1
, as the

single-particle states of the16O+n system;0d5/2, 1s1/2 and0d3/2.

For the nucleon-nucleon interaction, we use the Volkov No.2[17] and Minnesota [18] interactions.

3 Results

In this section, we show calculated results for energies andr.m.s.radii of the oxygen isotopes from17O
to 26O. In the calculations, we take the maximum angular momentumfor each partial wave asLmax = 2.
Therefore,s1/2, p3/2,p1/2, d5/2 andd3/2 partial waves are included in the calculation. As shown in
the calculation of the single neutron separation energies,the binding energy becomes over-binding for
heavier oxygen isotopes, which is shown in Fig. 1. The calculated radii are almost on the empirical
A1/3-line and much smaller than the experimental values. Especially, for 23O and24O, the discrepancy
of calculated radii from the experiments is more than0.2 (fm).

We consider that the small r.m.s.radii in neutron-rich oxygen isotopes is caused by the strong
attraction of the nucleon-nucleon interaction near drip-line. Hence, we perform other calculations using
the Minnesota potential [18] (MN) with the exchange parameteru = 0.95, which has a weaker attraction
than that of VN2. Calculated energy of18O by using the Minnesota potential shows slightly under
binding,∼ 1.9 (MeV). Even though the attraction of the Minnesota potential is weaker than the Volkov
one,25O and26O are still bound nuclei, and the drip-line is not reproduced.
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Fig. 1: Calculated one neutron separation energies for oxygen isotopes. Solid circles, solid squares and open
circles are obtained by VN2, MN and VN2’, respectively. See text.

Therefore, we modify the potential parameter so as to reproduce the drip-line of the oxygen iso-
topes at24O. In order to make a weaker potential than VN2, we use the parametersM = 0.58 and
H = B = 0.25 in Volkov No.2 potential (VN2’). This potential parameter gives reasonable unbound
nature for25O and26O. However, due to the weakness of the attraction, the even-odd staggering in the
change of mass number becomes smaller than those obtained bythe original Volkov potential, VN2.

Using the potentials, VN2, MN and VN2’, we calculate the r.m.s.radii. Fig. 2 shows the calculated
results and the experimental values for r.m.s.radii of oxygen isotopes. For the original potential strength
cases, i.e. VN2 and MN, r.m.s.radii are not enhanced at23O. The small change occurring at23O is caused
by the presence of thes-wave component in the valence nucleons. For the VN2’ case, on the other hand,
the calculated r.m.s.radii are the same until22O, but show an enhancement at23O compared with the
results of the VN2 and MN cases.
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Fig. 2: Calculated and experimental r.m.s.radii for oxygen isotopes. Solid circles, solid squares and open circles
are obtained by VN2, MN and VN2’, respectively. Open squareswith error bars are experimental value [1].

We consider that one of the reason of this enhancement is the weakness of the nucleon-nucleon
interaction, which reproduce the drip-line at24O. And other reason is the presence of thes-wave com-
ponent in23O and heavier isotopes.

In order to confirm the mechanism of the enhancement at23O, we investigate the components of
the partial waves in the isotopes. Results are shown in Table1. The difference between the VN2 and
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Table 1: Calculated components of partial waves in the oxygen isotopes. For the definition of VN2 and VN2’, see
text.

Components VN2 (%) VN2’ (%)
22O (d5/2)

6 78.7 95.0
(s1/2)

2(d5/2)
4 15.9 3.1

(d5/2)
4(d3/2)

2 4.2 1.7
23O (s1/2)(d5/2)

6 91.2 97.0
(s1/2)(d5/2)

4(d3/2)
2 2.1 0.1

(s1/2)(d5/2)
5(d3/2) 5.6 2.1

24O (s1/2)
2(d5/2)

6 94.6 98.5
(s1/2)

2(d5/2)
4(d3/2)

2 4.3 1.2
(d5/2)

6(d3/2)
2 0.6 0.1

VN2’ cases is the Heisenberg and Bartret exchange parameters,H andB. For22O, in which the lowest
configuration for neutron is(0d5/2)

6 of the shell model picture, thed-wave component increases in the
VN2’ case. Therefore, even if the binding energy of the VN2’ case is smaller than that of VN2, the
r.m.s.radius does not become so large. On the other hand, in23O and24O, the0d5/2-orbit is almost
occupied. Hence, the change of the exchange parameters,H andB, affects mainly to the1s1/2-orbit. As
shown in Table 1, the dominance of the sum of thes-wave states for the VN2’ case is stronger than that
of the VN2 case. This makes the enhancement of the radius at23O. However, the effect is still too small
to reproduce the experimental value.

Even if the small binding energies of23O and24O and the drip-line of the oxygen isotopes are
reproduced by using VN2’, the abrupt increase of r.m.s.radii of 23O and24O are still smaller than that
of the experiments [1] as shown in Fig. 2. This result suggests that other mechanisms are necessary
to be introduced in order to make a consistent understandingfor the binding energies and r.m.s.radii,
simultaneously.

4 Summary and Discussions

We proposed an m-scheme approach of the cluster-orbital shell model (COSM). In our formalism, the
interaction between the core nucleus and a valence nucleon is constructed in the semi-microscopic way.
Hence, the structure of the core is considered in the calculation. Parameters are determined so as to
reproduce the17O and18O, in the VN2 case. However, both of the VN2 and MN cases do not describe
the correct neutron drip-line, in other words, the attraction of the interaction is too strong in the drip-line
region. Therefore, we modify the exchange parameters in Volkov potential (VN2’) in order to reproduce
the drip-line.

Even though we use a weaker potential, VN2’, the r.m.s.radiiof 23O and24O do not become so
large. We consider the abrupt increase of the r.m.s.radius of 23O and24O can not be explained by a
simple picture such that one or two neutron(s) are loosely bound around the core such as11Be, 6He,
11Li. Of course, thes-wave component would play an important role in the weakly bound systems.
Furthermore, not only the loosely bound picture, but also other mechanisms, such as a core-excitation
or modification due to the presence of many valence neutrons would be necessary to explain the very
large r.m.s.radii of23O and24O. Also, in order to reproduce the binding energies, the drip-line and
r.m.s.radii simultaneously, it might be necessary to introduce the potential which is based on the realistic
nucleon-nucleon force, and three-body interaction.
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