
EuCARD-CON-2010-011

European Coordination for Accelerator Research and Development

PUBLICATION

PCIExpress Communication Layer for
ATCA-based Linear Accelerator Control

System

Kucharski, T (Technical University of odz) et al

04 February 2010

The research leading to these results has received funding from the European Commission
under the FP7 Research Infrastructures project EuCARD, grant agreement no. 227579.

This work is part of EuCARD Work Package 10: SC RF technology for higher intensity
proton accelerators and higher energy electron linacs.

The electronic version of this EuCARD Publication is available via the EuCARD web site
<http://cern.ch/eucard> or on the CERN Document Server at the following URL :

<http://cdsweb.cern.ch/record/1237833

EuCARD-CON-2010-011

http://cern.ch/eucard
http://cdsweb.cern.ch/record/1237833

PCIExpress Communication Layer for ATCA-based
Linear Accelerator Control System

Tomasz Kucharski, Adam Piotrowski, Dariusz Makowski, Grzegorz Jabłoński
Department of Microelectronic and Computer Science

Technical University of Łódź
ul. Wólczańska 221/223

90-924 Łódź, Poland

Abstract—PCIExpress architecture is widely used communica-
tion bus designed, among other things, for industrial application.
Additionally, according to PICMG 3.4 specification it is part of
an ATCA architecture. For that reason PCIExpress was used as
communication interface for data transmission between ATCA
carrier boards and AMC modules for the new control system
for XFEL linear accelerator. In this paper authors present gen-
eral overview of this system, describe communication protocols
designed to exchange data with external user application and
show results of performance test.

Index Terms—PCIExpress Bus, Advanced Telecommunications
Computing Architecture, Advanced Mezzanine Card, TCP/IP
Server

I. INTRODUCTION

Digital LLRF (Low Level Radio Frequency) control system
for superconducting cavities requires information about large
number of signals and parameters which are either directly
measured or calculated based on physical input signals. The
cavity probe signal is converted from 1.3 GHz to the intermedi-
ate frequency. Signal is digitized and field vector is calculated.
The resulting field vector of each cavities is multiplied by a
rotation matrix to calibrate amplitude and phase. The vector
sum of 32 cavity fields is subtracted from the setpoint table
and the resulting error signal provides a feedback signal
to the vector modulator controlling the indicated wave. A
feedforward is used to correct repetitive errors. Beam current
information is utilized to modify feedforward table to correct
additional beam current varies. To reduce cavity detuning
errors the cavity detuning is calculated from forward power,
reflected power and the prob signal [1]. LLRF control system
is connected with other accelerator systems with significant
number of digital and analog signals [2]. Therefore, to enhance
the availability and reliability of new control system for
XFEL (X-ray Free-Electron Laser) linear accelerator, ATCA
(Advanced Telecommunications Computing Architecture) [3]
standard was chosen as a base for the entire device. Dis-
tributed version of LLRF control system currently developed
in DESY (Deutsches Elektronen-Synchrotron) is composed
of four custom-designed ATCA carrier boards with three
AMC (Advanced Mezzanine Card) slots and several addi-
tional components like Gigabit Ethernet Switch, CPU board
and external PCIExpress (PCIe) Root Complex Board. The
PCIe (Peripheral Component Interconnect-Express) available
on Fabric Interface is used for transmission of non time-critical

data between ATCA blade and AMC modules [4]. PCIe bus
is not accessible from outside of the ATCA crate, therefore
additional software communication system was created to
give access to PCIe from external applications. To control
behavior of PCIe devices system was supply with Ethernet-
based interface. To provide PCIe-to-Ethernet bridge service
there was a need to write PCIe driver for Linux kernel, socket-
based application in user space and external communication
library for end-user programs.

II. SYSTEM OVERVIEW

A. Communication Levels

A block diagram of PCIe-based communication subsys-
tem with emphasized hardware and software interactions is
presented in Fig. 1. The carrier board has high-performance
microprocessor with Linux operating system (OS) on board.
From software point of view each of the AMC module
connected to PCIe bus is mapped directly to the blade address
space, therefore it is accessible from the OS level. The PCIe-

Fig. 1. Overview of PCIe-based communication system

to-Gigabit Ethernet bridge is a server application, designed to
perform communication between external programs connected
to the network and PCIe devices transparent for users. Several
low-level drivers were designed to exchange data between the
bridge application and hardware components connected to the
PCIe bus. The drivers are responsible for data formatting,

interrupts handling and reading from or writing data to mem-
ory locations. An appropriate procedures were implemented
for various types of devices. The communication between
external client applications and the server bridge is performed
using a High Level Application PCIe library (libhlapcie).
The library is responsible for data encapsulation, device or
register addresses mapping and data format conversion. At
the beginning of data transmission, the client application sets
the address of the requested PCIe register and, if possible,
establishes communication. A transmission frame is sent to
the bridge application. An additional communication protocol
was introduced to unify data frame format and addressing
convention. The PCIe-to-Gigabit Ethernet bridge, based on the
contents of the received frame, exchanges information with an
appropriate device and sends answers back. The High Level
Application library together with the bridge server application
constitutes intermediate level of the PCIe communication
software subsystem, that can be used with applications like
DOOCS servers, Matlab scripts or C/C++ standalone programs
i.e. to visualize or control behavior of the hardware devices
connected to the PCIe bus. Following sections of this paper
presents detailed description of the components of communi-
cation subsystem.

B. Device Addressing

Communication system supports three-level addressing
mode. The correct address of register available in PCIe address
space contains three elements: name of the ATCA carrier
board, the name of the requested device and the name of the
register in the PCIe namespace. The communication library
converts the name of the ATCA carrier board to IP address and
the name of the register to the offset relative to the PCIe base
address. In the next step PCIe-to-Ethernet bridge, based on
the name of device, select appropriate driver and perform data
exchange with hardware. Complete address evaluation process
is presented in Fig. 2.

III. PCIEXPRESS DEVICE DRIVER

A. Recognizing Devices

Linux OS can handle any device provided that the manufac-
turer supplied right drivers. AMC modules were developed by
DMCS, so the driver had to be written from the scratch. Every
PCIe device introduces itself to the operating system with its
device and vendor identification numbers (ID). If we register
in the kernel driver that claims to work with a certain vendor
and device ID, when device is plugged in, kernel links the
device with that driver. Driver is written as a kernel module.
It can be easily added and removed at any time without the
need of recompiling the kernel or even restarting the system
(using insmod and rmmod shell commands). To link driver
with specific device or specific group of devices, pci device id
structure must be appropriately filled and registered in the
system. VENDOR ID and DEVICE ID are numbers that are
hard-coded in the PCIe device. PCI DEVICE is a macro
that creates architecture-independent data structure. When the

struct pci_device_id pci_ids[]={
{PCI_DEVICE(VENDOR_ID, DEVICE_ID)},
{0,}

};

handling list is ready, driver has to export it to the kernel
devices table.

MODULE_DEVICE_TABLE(pci, pci_ids);

PCIe device registers are seen in OS as memory areas mapped
to system addressing space starting from values written to
device configuration registers called Base Address Registers
(BARs). Number of available memory regions depends on the
device configuration. When device is installed the driver has to
map physical memory assigned to the device to logical address
accessible to driver. This operation is performed by execution
of request mem region and ioremap kernels functions. The
former allocates physical memory region and the latter maps
it to an appropriate virtual address.

B. Accessing Devices

To supply basic functionality, driver has to have imple-
mented appropriate functions to open and close device driver,
read and write data from/to hardware and move current
position of file pointer, respectively open, close, write, read
and seek. Reading and writing is simply reading and writing
data from the representing memory using low-level functions.
Additionally that functions must transfer data between user
space and kernel space. During read operation driver reads 32-
bit with ioread32 and copy it in a local buffer. When the buffer
is full, the data is moved to the user space with a copy to user
function. The procedure of writing is similar - data from user
space is copied to kernel space with copy from user function
and next it is written to device buffer with iowrite32. I/O
functions described above have to be registered in system,
therefore the driver has to fill structure file operations with
pointers to correct write/read/open/close/ioct/seek functions.

file_operations pcie_test_fops = {
.owner = THIS_MODULE,
.llseek = llseek_pcie,
.open = open_pcie,
.release = release_pcie,
.read = read_pcie,
.write = write_pcie,
.ioctl = ioctl_pcie,

};

The structure is linked to the kernel. When user wants to make
an action on the PCIe device, correct function is selected and
proceeded.

IV. PCIE-TO-ETHERNET BRIDGE

A. Introduction

PCIe-to-Ethernet bridge is an advanced TCP/IP server work-
ing as a daemon under control of Linux operating system

Fig. 2. Address evaluation in PCIe communication system

installed on carrier board. Application waits for requests from
external clients and based on contents of received frame,
it selects the correct device and establishes communication.
Response to command: data in the case of read, write confir-
mation in the case of write with acknowledge or error frame
is sent back to the client. It is worth to mention, that in the
server application there is a distinction between the real kernel
device name and a common name distributed on Ethernet.
Users do not have to bother if a physical device, they are
trying to access has changed its name. Server application
converts public names to correct linux devices, according to
the configuration files. There is a list of structures that stores
devices data e.g. local filename that represents the device,
name representing the device on the Ethernet, stream descrip-
tor etc. The application has a multi-threaded nature. Main
thread initializes all configuration, set up Ethernet features and
waits for connections. When a client establishes data transfer,
a new thread is created. That thread exists is the system until
the second side closes connection.

B. Communication Protocol

To ensure reliable functionality new high level communica-
tion protocol was developed. Data exchange between clients
and server is performed with the use of frame composed of two
elements: fixed-length header and variable-length payload with
contents depends on command type. Format of communication
frame is presented in Fig 3. Fixed-length part of the frame
contains general information about command, like:
• frame type - identify current type of the frame
• request identification number - number that combines

request with appropriate answer. Initialized by the random
value at the beginning of data transition

• device name - string that identifies target device. Maxi-
mum sixteen chars

• payload length - size of variable-length part of the frame
Protocol supports four type of commands:
• Read data from selected device

Fig. 3. Communication frames used during data exchange between libhlapcie
and PCIe-to-Ethernet server

• Write data to selected device with acknowledge
• Write data to selected device without acknowledge
• List available PCIe devices

Detailed information about structure of frames corresponding
to each of the available command are presented in Fig. 4.

Frame_Type Request_ID Device_Name Payload_Length Payload

Read_Req Request_ID Device_Name Payload_Length Req_Address Req_Count

Read_Resp Request_ID Device_Name Payload_Length Data

Write_Ack Request_ID Device_Name Payload_Length DataReq_Address

Write_RespAck Request_ID Device_Name Payload_Length Data

Lspci_Req Request_ID Device_Name Payload_Length

Lspci_ReqResp Request_ID Device_Name Payload_Length Device_Desc_1 Device_Desc_2 Device_Desc_n...

Write_NoAck Request_ID Device_Name Payload_Length DataReq_Address

Error Request_ID Device_Name Payload_Length Error_Code

4B4B4B 4B

4B 4B

4B

4B

4B

Fig. 4. Available communication frames

C. Configuration Files

The assumption was to create as universal application as it
is possible. The easiest way to make it fully customized is to
set a bunch of configuration files. The application uses two
input files one with basic settings regarding program itself
and the other describing devices that application operate on.
The aim of the server is to make every device mounted on
the machine available on the Ethernet for reading and writing.
It can be any PCIe device, but also fake-device like i.e. local
files. For each type of device there is a different driver. Far-
end user do not have to know what type of device he is

dealing with. The decision of choosing the right driver must
me made locally by the server application. For proper working,
aware user has to prepare configuration file that state the
device type. That function enables adding any device without
need of recompiling the whole program. When application
is starting, it looks for configuration files and parse them. If
some variables are not set by user, the default values, listed
in TABLE I, are used.

TABLE I
DEFAULT SERVER APPLICATION PARAMETERS

Parameter name Default value
SERVER PORT 8000

ERVER ERROR DIARY error diary.txt
SERVER DYNAMIC LIBRARY FOLDER ./dyn libs/

D. Dynamic Libraries

Another step to achieve universality is the usage of the
dynamic libraries for handling devices. Every type of device
may need a different way of treating. Writing and reading
data can be strictly imposed by the device driver. Application
does not have implemented read/write functions but loads
those from external libraries. Advantage of that solution is
the easiness for creation of the new devices simulated by a
software. That can be either perfect sinus wave generator or
application that connects to the network and returns wanted
data from external servers. The process of adding new func-
tionality consists of writing dedicated library and locating it in
the ”libs” folder. When starting, server application scans that
folder and dynamically loads new libraries. This action does
not require any extra activities from the user. Dynamic libraries
are loaded with dlopen function. The pointers to read/write
procedures are stored in the list of structures for describing
each device separately. When there is a need to work on a
device, correct structure is selected and used functions that
are defined to handle specific type of request.

E. Dynamic Configuration Reloading

Adding new devices to server does not enforce restarting it.
The application has the ability to reload configuration file on-
line. Normally, it would mean stopping all active threads, close
the established connections and then closing the application.
All currently handled users would be disconnected. That would
cause some problems in the client applications. Server has got
implemented mechanisms that allows to keep all connections
alive and reload all structures without restart of application.
To enforce server to perform reload, user has to send USR1
signal. Application run once can work forever without the need
of restarting and still serves the ability of adding new devices
to the system. Function responsible for reload is linked with
the SIGUSR1 callback procedure registered in the server. The
dev reload closes all devices and frees structures describing
them. The file parser is executed and new data is stored in the
configuration structures. Next, program searches for proper
libraries that can handle available devices and open them.

F. PCIExpress Self-test

The application is not only a bridge between PCIe and
Ethernet but has also some diagnosis interface. While working
on Linux with PCIe devices it is good to know what physical
buses and slots are currently in use. In regular Linux OS there
is the lspci command that lists all active cards. The server
application is equipped with in-built lspci program. Far-end
client can ask for that information at any time. Data containing
PCIe devices mounted on the local machine is sent during the
normal connection session. There is a dedicated frame with
a proper format that is understandable for the both transfer
sides.

V. HIGH LEVEL APPLICATION PCIEXPRESS LIBRARY

High Level Application PCIe Library (libhlapcie) is a library
designed to perform communication between end user applica-
tions like Matlab MEX, DOOCS servers or C/C++ standalone
application and external PCIe-to-Ethernet servers.

Two type of Application Programming Interface (API) was
created, the first one called Low Level API (LLAPI) is
designed for applications like DOOCS servers and C/C++
standalone programs and, the second one called High Level
API (HLAPI) is designed for Matlab MEX.

A. Low Level API

In LLAPI user is obligated to perform manual management
of library. He is responsible for such actions like:
• library initialization by execution of void lpcie::init func-

tion,
• creation and initialization of ConnectionSettingsHolder

object for each connection with server by execution of
void lpcie::openDevice function,

• closing connection by execution of void
lpcie::closeDevice function.

An example application that presets the use of LLAPI is shown
in Listing 1.

B. High Level API

In HLAPI library automatically create and manege Con-
nectionSettingsHolder object, open connection with external
server, read or write data and close connection at the end
of data transmission. In this approach it is easier to perform
communication with PCIe-to-Ethernet server, but efficiency of
data transfer will be less then in the case of LLAPI. HLAPI
was designed as interface for Matlab MEX extensions. An
example application that presets the use of HLAPI is shown
in Listing 2.

C. Library Configuration

To secure correct operation of communication library, two
configuration files must be delivered. The first one, presented
below, is PCIe-to-Ethernet server configuration file and con-
tains two types of information:
• mapping between the name of the carrier board and server

IP address and port name,

i n c l u d e ” l i b h l a p c i e . h ”
i n c l u d e ” l i b u s e r h l a p c i e . h ”

d e f i n e PDEV ”BOARD1/ DEV 1 / REG 1”

i n t main (i n t argc , char ∗ a rg v [])
{

i n t ∗ bf ;
i n t v a l = 1 ;
C o n n e c t i o n S e t t i n g s H o l d e r csh ;
s t r i n g dev = l p c i e : : g e t D e v i c e (PDEV) ;
s t r i n g c a r r i e r = l p c i e : : g e t C a r r i e r (PDEV) ;
s t r i n g r e g = l p c i e : : ge tReg (PDEV) ;
t r y {

l p c i e : : i n i t (” s e r v e r s . map”) ;
l p c i e : : openDevice (&csh , c a r r i e r) ;
l p c i e : : writeMem(&csh , dev , reg , &va l , 1) ;
b f = l p c i e : : readMem(&csh , dev , reg , 0 , 1) ;
d e l e t e [] b f ;
l p c i e : : c l o s e D e v i c e (& csh) ;

} catch (l p c i e : : e x c e p t i o n &e){
l p c i e : : c l o s e D e v i c e (& csh) ;
re turn (i n t) e . g e t E r r o r C o d e () ;

}
re turn 0 ;

}
Listing 1. Example of libhlapcie Low Level Application Programming
Interface

i n c l u d e ” l i b h l a p c i e . h ”
i n c l u d e ” l i b u s e r h l a p c i e . h ”

d e f i n e PDEV ”BOARD1/ DEV 1 / REG 1”

i n t main (i n t argc , char ∗ a rg v [])
{

i n t ∗ bf ;
i n t v a l = 1234 ;
t r y {

l p c i e : : writeMem (PDEV, &val , 1) ;
b f = l p c i e : : readMem (PDEV, 0 , 1) ;
d e l e t e [] t e s t B u f f e r ;
} ca tch (l p c i e : : e x c e p t i o n &e){

re turn (i n t) e . g e t E r r o r C o d e () ;
}
re turn 0 ;

}
Listing 2. Example of libhlapcie High Level Application Programming
Interface

• mapping between the name of the device and name of
the device map configuration file

BOARD1 131.169.132.130 8000
BOARD1/DEV_1 MPC8568MDS.map

The second one, presented below, is a device map con-
figuration file and contains detailed information about each
of available device registers. The meaning of columns is:
component name, number of elements, offset of address, size
of elements, access rights, effective bits, type of variable
respectively.

Generated by: iigen
Data bus width: 32

REG_1 1 16384 4 rw 32 u
REG_2 1 16388 4 rw 32 u
FREQ 1 16392 4 rw 32 u

VI. TESTS

A. Machine Test Stand

First test of PCIe Communication Layer was performed
in machine test stand located in Extension Hall in FLASH
accelerator in DESY. System was equipped with ADLINK
CPU-9600 with 2 AMC bays, and Linux operating system on
board. PCIe devices were mapped directly to blade address
space therefore there where accessible from operating system
level.

B. Piezo Control System

PCIe Communication Layer was used in system for com-
pensation of superconducting cavities detuning using piezo-
electric actuators, presented in details in [5].

VII. CONCLUSIONS

Developed PCIe-Ethernet layer is a comprehensive commu-
nication system with wide range of functionality. It can be
used either by advanced users using low-level functions or just
hardware developers to test their work using simple interface.
Matlab MEX files enable easy visualization of received data.
The system is extremely fast. 1G or even 10G Ethernet as
a long distance connection and PCIe x8 locally on machine
makes the communication very effective. TCP/IP protocol
ensures user that the data is reliable and no frame is lost.
The system is prepared for the future development. Adding
new functions is as easy as writing new libraries to the TCP
server. The system was tested and is ready to be implemented.

ACKNOWLEDGEMENT

The research leading to these results has received funding
from the European Commission under the EuCARD FP7
Research Infrastructures grant agreement no. 227579.

The author is a scholarship holder of project entitled ”In-
novative education ...” supported by European Social Fund.

REFERENCES

[1] http://mskpc14.desy.de/wiki/index.php/LLRF, “MSK LLRF Wiki - infor-
mation pages.”

[2] D. Makowski and W. Koprek and T. Jezynski and A. Piotrowski and G.
Jablonski and W. Jalmuzna and P. Pucyk and S. Simrock , “Interfaces
and communication protocols in ATCA-based LLRF control systems,”
Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)
2008, Dresden, Niemcy, ATCA Workshop, 2008.

[3] PICMG, “AdvancedTCA Base Specification. PICMG 3.0,” Tech. Rep.,
Jan. 2003.

[4] D. Makowski and A. Piotrowski and A. Napieralski , “Universal commu-
nication module based on AMC standard,” Mixed Design of Integrated
Circuits and Systems (MIXDES) 2008, Pozna, Polska, 2008.

[5] K. Przygoda and A. Piotrowski and G. Jablonski and D. Makowski
and T. Pozniak and A. Napieralski, “ATCA-based control system for
compensation of superconducting cavities detuning using piezoelectric
actuators,” Nuclear Science Symposium and Medical Imaging Conference
(NSS/MIC) 2008, Dresden, Niemcy, ATCA Workshop, 2008.

