
Evolution of HammerCloud to commission
CERN Compute resources

Jaroslava Schovancová1,*, Alessandro Di Girolamo1, Aristeidis Fkiaras1,
and Valentina Mancinelli1

1CERN, 1 Esplanade Des Particules, Geneva, Switzerland

 Abstract. HammerCloud is a testing service and framework to
commission, run continuous tests or on-demand large-scale stress tests, and
benchmark computing resources and components of various distributed
systems with realistic full-chain experiment workflows.
HammerCloud, used by the ATLAS and CMS experiments in production,
has been a useful service to commission both compute resources and
various components of the complex distributed systems of the LHC
experiments, as well as integral part of the monitoring suite that is
essential for the computing operations of the experiments and their
automation.
In this contribution we review recent developments of the HammerCloud
service that allow use of HammerCloud infrastructure to test Data Centre
resources in the early phases of the infrastructure and services
commissioning process. One of the benefits we believe HammerCloud can
provide is to be able to tune the commissioning of the new infrastructure,
functional and also stress testing, as well as benchmarking with "standard
candle" workflows, with experiment realistic workloads, that can be heavy
for CPU, or I/O, or IOPS, or everything together. This extension of
HammerCloud has been successfully used in CERN IT during the
prototype phase of the "BEER" Batch on EOS (Evaluation of Resources)
project, and is being integrated with the continuous integration/continuous
deployment suite for Batch service VMs.

1 Introduction

The HammerCloud service is at the core of automation of computing operations. In
WLCG [1] it is used by the ATLAS [2] and CMS [3] experiments, as well as CERN
Compute, in order to commission, test, and benchmark computing resources and
components of distributed systems with realistic full-chain experiment workflows. With
HammerCloud we can run either functional tests, where we test the resources with a steady
flow of test jobs, or stress tests, where we configure load intensity and observe behavior
and functionality of a resource or a service under the load.

A great benefit of HammerCloud is the capability to test with full-chain experiment
jobs, which perform the very same actions, utilize the very same environment, and access

* e-mail: jaroslava.schovancova@cern.ch
© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 214, 03033 (2019) https://doi.org/10.1051/epjconf/201921403033
CHEP 2018

the very same services as standard physics analysis jobs. Therefore we can develop and
configure tests in a way that points out infrastructure issues, avoiding transient issues with
the user payload.

In ATLAS the HammerCloud service is used mainly in automation of ATLAS
Distributed Computing operations, for functional testing and automatic exclusion and
recovery of resources (more details in Fig. 1). We also perform benchmarking performance
of resources with a standardized “standard candle” workflow. Another major contribution is
in commissioning and integration of new resources, and commissioning of new components
of distributed computing systems: e.g. pilot for ATLAS Workload Management System
(WMS) PanDA [4], ATLAS Distributed Data Management (DDM) System Rucio [5],
commissioning new data access protocols, etc. Lately, we introduced a new application that
leverages HammerCloud to test services, in particular to test ATLAS Object Stores [6]. In
order to successfully support the ATLAS testing needs, we collect static and dynamic
information about the resources topology from the ATLAS Grid Information System
(AGIS) [7].

In CMS the HammerCloud service is utilized to perform functional testing of resources,
and commissioning of new resources as well as commissioning of new components of
distributed computing systems. In order to configure CMS tests, we collect the topology
information about the resources from the Computing Resources Information Catalog
(CRIC) [8].

For the CERN batch system the HammerCloud service performs various tasks related to
commissioning and improving utilization of resources: HammerCloud helped in
commissioning of the BEER (Batch on Extra EOS Resources) project [9], and is at the core
of the Continuous Integration / Continuous Deployment (CI/CD) tool to build images of
virtual machines for the Batch service in CERN IT.

HammerCloud manages ca 80k jobs per day in ATLAS in ca 30 different tests per day,
in CMS we run ca 39k jobs per day in ca 40 different tests per day, and within CERN batch
testing we run between 150 and 750 jobs daily.

Fig. 1. ATLAS HammerCloud automatic exclusion and recovery actions. The plot shows number of
automatic actions taken monthly by HammerCloud. The exclusion actions are triggered by functional
test job failures, usually caused by an infrastructure issue. We aim to minimize exposure of ATLAS
physicists to the infrastructure issues. Upon addressing the issue, when the tests start succeeding
again, we automatically recover the resource, re-enabling the resource for physics analysis.

2

EPJ Web of Conferences 214, 03033 (2019) https://doi.org/10.1051/epjconf/201921403033
CHEP 2018

the very same services as standard physics analysis jobs. Therefore we can develop and
configure tests in a way that points out infrastructure issues, avoiding transient issues with
the user payload.

In ATLAS the HammerCloud service is used mainly in automation of ATLAS
Distributed Computing operations, for functional testing and automatic exclusion and
recovery of resources (more details in Fig. 1). We also perform benchmarking performance
of resources with a standardized “standard candle” workflow. Another major contribution is
in commissioning and integration of new resources, and commissioning of new components
of distributed computing systems: e.g. pilot for ATLAS Workload Management System
(WMS) PanDA [4], ATLAS Distributed Data Management (DDM) System Rucio [5],
commissioning new data access protocols, etc. Lately, we introduced a new application that
leverages HammerCloud to test services, in particular to test ATLAS Object Stores [6]. In
order to successfully support the ATLAS testing needs, we collect static and dynamic
information about the resources topology from the ATLAS Grid Information System
(AGIS) [7].

In CMS the HammerCloud service is utilized to perform functional testing of resources,
and commissioning of new resources as well as commissioning of new components of
distributed computing systems. In order to configure CMS tests, we collect the topology
information about the resources from the Computing Resources Information Catalog
(CRIC) [8].

For the CERN batch system the HammerCloud service performs various tasks related to
commissioning and improving utilization of resources: HammerCloud helped in
commissioning of the BEER (Batch on Extra EOS Resources) project [9], and is at the core
of the Continuous Integration / Continuous Deployment (CI/CD) tool to build images of
virtual machines for the Batch service in CERN IT.

HammerCloud manages ca 80k jobs per day in ATLAS in ca 30 different tests per day,
in CMS we run ca 39k jobs per day in ca 40 different tests per day, and within CERN batch
testing we run between 150 and 750 jobs daily.

Fig. 1. ATLAS HammerCloud automatic exclusion and recovery actions. The plot shows number of
automatic actions taken monthly by HammerCloud. The exclusion actions are triggered by functional
test job failures, usually caused by an infrastructure issue. We aim to minimize exposure of ATLAS
physicists to the infrastructure issues. Upon addressing the issue, when the tests start succeeding
again, we automatically recover the resource, re-enabling the resource for physics analysis.

1.1 HammerCloud architecture and evolution

In the past 3 years we evolved HammerCloud in order to keep up with developments in
the WMS and DDM systems of the experiments, to scale up for higher amounts of testing
activity, to enable testing of 3rd party services functionality, and to make commissioning of
resources even smoother. HammerCloud now supports a richer variety of workflows that
the experiments run: e.g. from supporting only purely CPU-bound workflows, we are now
able to support a variety of workflows with emphasis on different type of resource and
different level of CPU-, memory-, and I/O-intensity. We can leverage an enriched variety of
workflows to setup a testbed for WLCG Data Organization, Management, and Access [10]
performance studies, to test ideas for the HL-LHC [11].

We evolved the HammerCloud submission core to support all the current testing needs,
and it is flexible enough to adapt to future testing scenarios. We improved the resiliency of
the core automation application.

The HammerCloud service is a Django [12] web framework application backed by a
MySQL [13] database. We run HammerCloud infrastructure on CERN Agile Infrastructure
resources [14]. To scale up and utilize our testing infrastructure, we integrated Celery
cluster [15] backed by Redis [16] in our infrastructure. The HammerCloud schema is
described in Fig. 2.

Fig. 2. HammerCloud schema overview. HammerCloud is a Django application, running on top of a
MySQL database. The HammerCloud testing infrastructure runs on CERN Agile Infrastructure. The
HammerCloud submission backend benefits from a Celery cluster backed by a Redis key-value store
for the transport layer. The HammerCloud submission backend interacts with the submission
frontends, the experiment WMS (PanDA, CRAB3 [17]) or the computing element (HTCondor-CE).
The submission frontends interface to the resources where HammerCloud runs the tests.

3

EPJ Web of Conferences 214, 03033 (2019) https://doi.org/10.1051/epjconf/201921403033
CHEP 2018

2 HammerCloud for pre-commissioning of resources

While integrating new computing resources with our existing infrastructure, we often
face many challenges with spotting, debugging, and addressing infrastructure and other
issues. These can be categorized in a variety of ways, not limited only to networking (e.g.
DNS name resolution, firewall issues, sudden changes in network bandwidth), issues with
access to services and resources essential to run a job (database services and caches,
Frontier server), convoluted with a multitude of ways that jobs can suffer (without any
contribution from degraded infrastructure).

The goal we strive to achieve is to integrate heterogeneous resources transparently, in a
way that minimizes exposure of our end users to infrastructure issues. Sometimes there are
issues that go undetected, contributing to frustration among many teams. With over a
decade of experience with resources commissioning, we developed an idea of how to make
the commissioning process smoother: a standard HammerCloud job is a full-chain job that
interacts with the distributed data management and workload management systems of the
experiments, the resources/infrastructure, and a variety of services necessary for the
successful job run. We would like to be able to reproduce this kind of environment,
however, in a controlled way, where we can fail early, spot infrastructure issues and address
them before exposing the user community to these issues.

We approached this challenge by choosing to swap the submission backend to WMS
with a submission backend to the batch system (HTCondor cluster, or a HTCondor-CE, in
our case). In this way we can submit a generic payload that interacts with the infrastructure
in the same way as the standard HammerCloud job, uncovering issues in a controlled
environment, essentially pre-commissioning any resources for computing activities before
we sign-off and pass them to the Experiment as “ready”.

The pre-commissioning approach is not limited only to batch resources, there are many
entities with similar objectives with respect to commissioning:

● Batch resources: we can leverage the pre-commissioning approach for in-house
resources as well as to integration of public clouds. In addition, we can
pre-commission images of virtual machines (VMs; this use case is described in
further detail in the subsection 2.1), or explore and commission new ways to
improve utilization of resources (e.g. BEER project).

● Containers: we can commission container images and validate environment
configuration.

● Services functional testing: we can probe status and functionality of services, as
we did e.g. in the case of ATLAS Object Store testing.

● Issuing load of any kind: we can perform a front-end load testing, or a DB load
testing.

● Commission components of complex distributed systems: e.g. a DDM client
component commissioning, or validating releases of 3rd party packages and
dependencies.

2.1 CERN batch Continuous Integration / Continuous Deployment suite

The CERN batch resources are provisioned mostly as OpenStack [18] VMs, while we
are gaining experience with containerized deployment at scale. We operate resources with
300k+ CPU cores in 24k+ VMs organized in several HTCondor [19] clusters. The VMs are
configured with Puppet [20].

4

EPJ Web of Conferences 214, 03033 (2019) https://doi.org/10.1051/epjconf/201921403033
CHEP 2018

2 HammerCloud for pre-commissioning of resources

While integrating new computing resources with our existing infrastructure, we often
face many challenges with spotting, debugging, and addressing infrastructure and other
issues. These can be categorized in a variety of ways, not limited only to networking (e.g.
DNS name resolution, firewall issues, sudden changes in network bandwidth), issues with
access to services and resources essential to run a job (database services and caches,
Frontier server), convoluted with a multitude of ways that jobs can suffer (without any
contribution from degraded infrastructure).

The goal we strive to achieve is to integrate heterogeneous resources transparently, in a
way that minimizes exposure of our end users to infrastructure issues. Sometimes there are
issues that go undetected, contributing to frustration among many teams. With over a
decade of experience with resources commissioning, we developed an idea of how to make
the commissioning process smoother: a standard HammerCloud job is a full-chain job that
interacts with the distributed data management and workload management systems of the
experiments, the resources/infrastructure, and a variety of services necessary for the
successful job run. We would like to be able to reproduce this kind of environment,
however, in a controlled way, where we can fail early, spot infrastructure issues and address
them before exposing the user community to these issues.

We approached this challenge by choosing to swap the submission backend to WMS
with a submission backend to the batch system (HTCondor cluster, or a HTCondor-CE, in
our case). In this way we can submit a generic payload that interacts with the infrastructure
in the same way as the standard HammerCloud job, uncovering issues in a controlled
environment, essentially pre-commissioning any resources for computing activities before
we sign-off and pass them to the Experiment as “ready”.

The pre-commissioning approach is not limited only to batch resources, there are many
entities with similar objectives with respect to commissioning:

● Batch resources: we can leverage the pre-commissioning approach for in-house
resources as well as to integration of public clouds. In addition, we can
pre-commission images of virtual machines (VMs; this use case is described in
further detail in the subsection 2.1), or explore and commission new ways to
improve utilization of resources (e.g. BEER project).

● Containers: we can commission container images and validate environment
configuration.

● Services functional testing: we can probe status and functionality of services, as
we did e.g. in the case of ATLAS Object Store testing.

● Issuing load of any kind: we can perform a front-end load testing, or a DB load
testing.

● Commission components of complex distributed systems: e.g. a DDM client
component commissioning, or validating releases of 3rd party packages and
dependencies.

2.1 CERN batch Continuous Integration / Continuous Deployment suite

The CERN batch resources are provisioned mostly as OpenStack [18] VMs, while we
are gaining experience with containerized deployment at scale. We operate resources with
300k+ CPU cores in 24k+ VMs organized in several HTCondor [19] clusters. The VMs are
configured with Puppet [20].

The VM configuration starts with a base operating system (OS) image, which we enrich
and configure with Puppet. Full initial configuration of a batch VM usually takes around 3
hours. That is not a negligible amount of time and potentially wastes CPU cycles at the
scale we need, therefore we make VM snapshots as a batch VM image, and instantiate
batch VMs from the batch VM images, spending 3 hours only once to create the image, and
later much less time with the final configuration of all the freshly spawned VMs.

Further we describe a CI/CD suite that contributes to improving the utilization of
available compute resources at CERN. Its schema is shown in Fig. 3.

1. We use Packer [21] to build a batch VM image: from a base OS image we spawn a
VM, configure it with Puppet, and remove the part of the image that are specific
for the VM used for build (e.g. hostname, host certificates, etc.). Such a batch VM
image will be subjected to testing to probe its functionality in the subsequent steps,
to uncover possible issues with infrastructure due to configuration changes, or due
to changes in configuration dependencies.

2. We instantiate a few VMs in an OpenStack cluster based on the new batch VM
image, and plug them in a HTCondor cluster.

3. We start HammerCloud tests to pre-commission the fresh VMs. This gives us an
opportunity to test functionality and spot issues with infrastructure, VM
configuration, dependencies, and job environment, in a controlled way. When
issues show up, we can reject the batch VM image, address the issues or report to
the dependency maintainers, and restart the process later with a new VM image.

4. When our tests pass successfully, we can sign-off the VM image and use it at scale
in our environment.

The CERN batch CI/CD suite helps us to spot incompatible changes in the
dependencies, and our environment. The steps, as well as the whole chain, can be
automated, therefore we can perform them regularly, e.g. daily, limiting the amount of
changes being taken into consideration, and providing a very recent configuration of a batch
VM, further minimizing the time needed to finalize configuration of a new VM built from a
new batch VM. Consequently, we can use the spare CPU cycles that we didn’t spend on
VM configuration, to run jobs.

Fig. 3. Steps to create and validate a batch VM image, using the CERN batch CI/CD suite.

5

EPJ Web of Conferences 214, 03033 (2019) https://doi.org/10.1051/epjconf/201921403033
CHEP 2018

3 Conclusions
We have described the evolution of HammerCloud to accommodate a variety of

workflows, from the standard experiment full-chain jobs submitted via workload
management systems, through testing services, to submitting a generic payload to an
HTCondor cluster.

The HammerCloud extension that allows a generic payload submission is integrated
with the CERN batch CI/CD suite, and several other applications, such as commissioning
releases of container images, as well as the ATLAS SW installation system releases, which
can benefit from it.

To conclude, HammerCloud is a flexible service and a framework to provide means to
test, commission, and benchmark computing resources or components of the distributed
computing systems of today, as well as support studies to prepare for HL-LHC computing
challenges.

References

1. WLCG . http://wlcg.web.cern.ch/ Accessed 25th October 2018.
2. ATLAS Collaboration. The ATLAS Experiment at the CERN Large Hadron Collider.

JINST, 3:S08003 (2008)
3. CMS Collaboration. The CMS Experiment at the CERN Large Hadron Collider. JINST

3:S08004 (2008)
4. F. H. Barreiro Megino et al. PanDA for ATLAS Distributed Computing in the next

decade. Journal of Physics: Conference Series, 898(5):052002 (2017)
5. M. Barisits, T. Beermann, V. Garonne, T. Javurek, M. Lassnig, C. Serfon, The ATLAS

Data Management System Rucio: Supporting LHC Run-2 and beyond , ACAT, Seattle,
2017

6. P. Love, T. G. Hartland, B. Douglas, J. Schovancová, A. Dewhurst. Object store
characterisation for ATLAS distributed computing , The 23rd International Conference
on Computing in High Energy and Nuclear Physics, Sofia, 2018, these proceedings
(2019)

7. A. Anisenkov, A. Di Girolamo, M. Alandes Pradillo. AGIS: Integration of new
technologies used in ATLAS Distributed Computing. Journal of Physics: Conference
Series, 898(9):092023 (2017)

8. A. Anisenkov et al. Computing Resource Information Catalog: the ATLAS Grid
Information system evolution for other communities . The Nuclear Electronics and
Computing, Montenegro, 2017

9. D. Smith et al. Sharing server nodes for storage and compute , The 23rd International
Conference on Computing in High Energy and Nuclear Physics, Sofia, 2018, these
proceedings (2019)

10. I. Bird, S. Campana, M. Girone, X. Espinal Curull, G. McCance, J. Schovancová.
Architecture and prototype of a WLCG data lake for HL-LHC, The 23rd International
Conference on Computing in High Energy and Nuclear Physics, Sofia, 2018, these
proceedings (2019)

6

EPJ Web of Conferences 214, 03033 (2019) https://doi.org/10.1051/epjconf/201921403033
CHEP 2018

3 Conclusions
We have described the evolution of HammerCloud to accommodate a variety of

workflows, from the standard experiment full-chain jobs submitted via workload
management systems, through testing services, to submitting a generic payload to an
HTCondor cluster.

The HammerCloud extension that allows a generic payload submission is integrated
with the CERN batch CI/CD suite, and several other applications, such as commissioning
releases of container images, as well as the ATLAS SW installation system releases, which
can benefit from it.

To conclude, HammerCloud is a flexible service and a framework to provide means to
test, commission, and benchmark computing resources or components of the distributed
computing systems of today, as well as support studies to prepare for HL-LHC computing
challenges.

References

1. WLCG. http://wlcg.web.cern.ch/ Accessed 25th October 2018.
2. ATLAS Collaboration. The ATLAS Experiment at the CERN Large Hadron Collider .

JINST, 3:S08003 (2008)
3. CMS Collaboration. The CMS Experiment at the CERN Large Hadron Collider. JINST

3:S08004 (2008)
4. F. H. Barreiro Megino et al. PanDA for ATLAS Distributed Computing in the next

decade. Journal of Physics: Conference Series, 898(5):052002 (2017)
5. M. Barisits, T. Beermann, V. Garonne, T. Javurek, M. Lassnig, C. Serfon, The ATLAS

Data Management System Rucio: Supporting LHC Run-2 and beyond, ACAT, Seattle,
2017

6. P. Love, T. G. Hartland, B. Douglas, J. Schovancová, A. Dewhurst. Object store
characterisation for ATLAS distributed computing, The 23rd International Conference
on Computing in High Energy and Nuclear Physics, Sofia, 2018, these proceedings
(2019)

7. A. Anisenkov, A. Di Girolamo, M. Alandes Pradillo. AGIS: Integration of new
technologies used in ATLAS Distributed Computing . Journal of Physics: Conference
Series, 898(9):092023 (2017)

8. A. Anisenkov et al. Computing Resource Information Catalog: the ATLAS Grid
Information system evolution for other communities. The Nuclear Electronics and
Computing, Montenegro, 2017

9. D. Smith et al. Sharing server nodes for storage and compute , The 23rd International
Conference on Computing in High Energy and Nuclear Physics, Sofia, 2018, these
proceedings (2019)

10. I. Bird, S. Campana, M. Girone, X. Espinal Curull, G. McCance, J. Schovancová.
Architecture and prototype of a WLCG data lake for HL-LHC, The 23rd International
Conference on Computing in High Energy and Nuclear Physics, Sofia, 2018, these
proceedings (2019)

11. HEP Software Foundation. A Roadmap for HEP Software and Computing R&D for the
2020s . arXiv:1712.06982 (2017)

12. Django web framework. https://www.djangoproject.com/ Accessed 25th October 2018.
13. MySQL database. https://www.mysql.com/ Accessed 25th October 2018.
14. P. Andrade, T. Bell, J. van Eldik, G. McCance, B. Panzer-Steindel, M. Coelho dos

Santos, S. Traylen, U. Schwickerath. Review of CERN Data Centre Infrastructure.
Journal of Physics: Conference Series, 396(4):042002 (2012)

15. Celery: Distributed Task Queue . http://www.celeryproject.org/ Accessed 25th October
2018.

16. Redis. https://redis.io/ Accessed 25th October 2018.
17. M. Cinquilli et al. CRAB3: Establishing a new generation of services for distributed

analysis at CMS. Technical Report CMS-CR-2012-139, CERN (2012)
18. OpenStack. https://www.openstack.org/ Accessed 25th October 2018.
19. D. Thain, T. Tannenbaum, M. Livny. Distributed computing in practice: the Condor

experience. Concurrency - Practice and Experience, 17(2-4):323-356 (2005)
20. Puppet. https://puppet.com/ Accessed 25th October 2018.
21. Packer by Hashicorp. https://www.packer.io/ Accessed 25th October 2018.

7

EPJ Web of Conferences 214, 03033 (2019) https://doi.org/10.1051/epjconf/201921403033
CHEP 2018

