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Abstract

We use a 2-D finite difference method to numerically calculate the seismic response of a

single finite fracture in a homogeneous media. In our experiments, we use a point explosive

source and ignore the free surface effect, so the fracture scattering wave field contains two

parts: P-to-P scattering and P-to-S scattering. We vary the fracture compliance within a range

considered appropriate for field observations, 10-12 m/Pa to 10-9 m/Pa, and investigate the

variation of the scattering pattern of a single fracture as a function of normal and tangential

fracture compliance. We show that P-to-P and P-to-S fracture scattering patterns are sensitive

to the ratio of normal to tangential fracture compliance and different incident angle, while

radiation pattern amplitudes scale as the square of the compliance. We find that, for a vertical

fracture system, if the source is located at the surface, most of the energy scattered by a

fracture propagates downwards, specifically, the P-to-P scattering energy propagates down

and forward while the P-to-S scattering energy propagates down and backward. Therefore,
most of the fracture scattered waves observed on the surface are, first scattered by fractures,
and then reflected back to the surface by reflectors below the fracture zone, so the fracture

scattered waves have complex ray paths and are contaminated by the reflectivity of matrix

reflectors.

Thesis Supervisor: Michael Fehler
Title: Senior Research Scientist - Earth Resources Laboratory
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Chapter 1

Introduction

Fractures are common within the subsurface and play a critical role in the mechanical and

fluid flow properties of earth materials. In regions where the maximum compressive stress is

vertical, open fractures will tend to be vertical and oriented perpendicular to the minimum

horizontal stress direction. The ability to interpret properties such as fracture spacing,

orientation, compliance, and fluid content associated with such fracture systems is vital to the

effective extraction and management of reservoir resources, such as oil and gas and

geothermal reservoirs, and the monitoring of contaminant migration and CO 2 injection.

Therefore, it is critical to detect and characterize fracture networks for optimal development

and production of carbonate reservoirs.

The detection of reservoir fractures using seismic methods has been traditionally based on

effective medium theories that assume fractures in a rock mass are much smaller than the

wavelengths and are distributed throughout the rock. Fractures can also be modeled as

discrete inclusions in the medium. The linear slip deformation theory (Schoenberg, 1980) is

particularly fit to study the discrete effects of fractures as it expresses a single fracture as a

displacement discontinuity, the magnitude of the displacement jump being related to the

specific fracture compliance. This theory predicts a frequency dependent seismic response
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and agrees with experimental observations of wave propagation through fractured rocks

(Pyrak-Nolte et al., 1987).

Schoenberg's approach has also been used to model the complicated phenomena that occur in

the presence of multiple parallel fracture sets including seismic scattering and wave guiding

(e.g. Daley et al., 2002). By analyzing some of these types of fracture models, Willis et al.

(2006), developed a novel and practical technique to characterize fractures at the reservoir

level known as the Scattering Index Method.

When fractures are small relative to the seismic wavelength, waves will be weakly affected by

fractures, and in effective medium theory, this fracture zone is equivalent to a homogeneous

anisotropic zone without fracture (Hudson, 1991; Coates and Schoenberg, 1995; Schoenberg

and Sayers, 1995; Grechka and Kachanov, 2006; Grechka, 2007; Sayers, 2009). When

fractures are much larger than the seismic wavelength, then we can take fracture interfaces as

infinite planes and apply plane wave theory to calculate their reflection and transmission

coefficients and interface waves (Schoenberg, 1980; Pyrak-Nolte and Cook, 1987; Gu et al.,

1996). In field reservoirs, fractures always have finite length, and fractures with characteristic

lengths on the order of seismic wavelength are one of the important scattering sources that

generate seismic codas. Sanchez-Sesma and Iturraran-Viveros (2001) derived an approximate

analytical solution of scattering and diffraction of SH waves by a finite fracture, and Chen

(submitted to SEG 2010) derived an analytical solution for scattering from a 2D elliptical

crack in an isotropic acoustic medium. However, so far it is still too difficult to derive the
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analytical elastic solution of a finite fracture with a linear-slip boundary and characteristic

length on the order of the seismic wavelength. Although fractures are usually present as

fracture networks in reservoirs, and the interaction between fracture networks and seismic

waves is very complicated, single scattering can be considered as the 1s' order effect on the

scattered wave field. Therefore, to study the general elastic response of single finite fracture is

essential to reservoir fracture characterization, and this has been done numerically.
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Chapter 2

Finite-difference Modeling Method

In this Chapter, first we will give a brief introduction to Schoenberg's linear slip fracture

model, and then, by combining Schoenberg's model and the effective medium theory, we will

talk about some details of the finite-difference modeling method.

2.1 Linear Slip Fracture Model (Schoenberg, 1980)

Displacements are, generally, discontinuous across fracture surfaces Sq, the strains are

singular at Sq. Thus, the strain field in a solid with fractures is a sum of regular and singular

parts:

E i Sjk + >q([ui]nj + [uj]i) q6(Sq) (2.1.1)

where, in representing the regular part as s kik, the matrix material is assumed to be linear

elastic (with compliance tensor s,1 ,kl) and 6(Sq) is a delta function concentrated on Sq (it has

the dimension of length-'). Displacement discontinuity vector [U] = U - U- (crack opening

displacement) and unit normal K' are, generally, variable along fractures; their directions are

coordinated by defining the "+" side of S as corresponding to the positive sense of A (then

change of sign of A changes the sign of [V] and the products [u']ii, n'[u'] remain invariant).

The representation of the extra strain due to the cracks and fractures in the form of the second
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term in equation (2.1.1) directly follows from the general representation of average Eij in

terms of boundary displacements. Such representations have been used in the literature since

the early 1970s (for details and review, see Kachanov [1992]).

We assume the matrix material to be elastically homogeneous: sAk(x)=const-sOkL.

Averaging (2.1.1) over V and using the property of 8(S) that fv f(x) 8(S) dV reduces to

the surface integral fs f(x)dS yields the volume average of strain:

(e = S jkl(crkl) ± 1 Y Sq ([ui]nj j [ujni )dS

= (Stjk1 + ASijkl)(okl) Sijkl(kl) (2.1.2)

where Asijkl is the change in compliance due to fractures and Sijki is the effective

compliance. Linear dependence of [U1] on (Uki) assumes linear elasticity of the matrix and

absence of friction on the crack. Note that equation (2.1.2) is applicable to finite nonplanar

fractures in the long wavelength limit, i.e., the applied stress is assumed to be constant over

the representative volume V.

In the following, we omit the averaging signs ( ) for stresses and strains, assuming

Ei; - (Eij) and cij E (qij).

Assume fracture interactions may be neglected so that [U1] is determined by aij. This

assumption is exact for a set of infinite flat parallel fractures subject to a uniform stress field.

Note that this assumption of noninteraction does not imply that the excess compliance as a

result of the fractures is small relative to the unfractured background compliance.

When the fractures are approximately planar and parallel, and their unit normal is denoted by
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ni, a linearity assumption is conveniently introduced through a "fracture system compliance

tensor" Z with Z such that,

J [uj] dS = Zijjknk

(2.1.3)

where Z is symmetric and nonnegative definite.

Let the extra strain as a result of the fractures be s/k.cikl (stiki = ASIkL is the change in

compliance due to fractures), so that s. may be thought of as an excess compliance tensor

as a result of the presence of the parallel fractures. Substitution of equation (2.1.3) into

equation (2.1.2) yields,

St klak1 = (Ziroarsnsnj + Zirursusni)

= 1 (Zirfnsnj + Zjr nsni) ark8
sl+1

8
sk 7kL (2.1.4)

So one obtains,

Silki =f (Ziknlnl + Zjknini + ZIinnk + Zlnink) (2.1.5)

2.2 Effective Medium Theory

Rotationally Invariant Fracture Sets

The simplest assumption concerning Zj is to let the normal compliance of the fractures be

given by ZN and the tangential compliance by Zr. This causes the fracture behavior to be

invariant with respect to rotation about an axis normal to the fractures under this condition,

Zij= ZNninj + ZT(6ij - ninj)

= ZTSij + (ZN - ZT)ninj (2.2.1)
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So that the excess compliance tensor of a single rotationally invariant fracture set becomes,

SLki -= T(Siknjnl ± Sjkfinll + Oiljk + Ojinink) + (ZN - ZT)ninjnknl (2.2.2)

Consider a single set of rotationally invariant vertical fractures whose normal is parallel to the

xi-axis, i.e., nj=(l, 0, 0). In this case,

s 1 11 =ZN,

f f f f f f f f ZT
s212 =22m = s 21=1s 2 = s1313 =33m = 1 s =s 3 = 4 (2.2.3)

with all other compliance components equal to zero. In conventional (2-subscript) condensed

6 x 6 matrix notation, 11->l, 22->2, 33->3, 23->4, 13->5, 12->6, while factors 2 and 4 are

introduced as follows:

Sijkl ' Spq when both p, q and are 1, 2, or 3;

2 sijkl + Spq when one of p, q are 4, 5, or 6;

4 sijkl -+S when both p, q are 4, 5, or 6.

These factors of 2 or 4 are absent in the condensation of the stiffness tensor components. Thus

the excess compliance may be written in the following 6 x 6 matrix form:

ZN 0 0 0 0 0
0 0 0 0 0 0

Sf= 0 0 0 0 0 0 (2.2.4)0 0 0 0 0 0
0 0 0 0 ZT 0
0 0 0 0 0 ZT

For a single set of rotationally invariant fractures in an isotropic background, the medium is

transversely isotropic (TI) with its symmetry axis perpendicular to the fractures. This is,

however, a restricted subset of all possible TI media since it depends only on the two

background moduli, say Lame parameters p and ),, and two nonnegative fracture compliance
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ZN and ZT. The total 6 x 6 compliance matrix of this TI medium whose symmetry axis is

parallel to the x, direction is given by

S=S'+Sf

~A+p +Z -
u(3A+2p) + 2u(3 + 2,u) (32 + 4p)

A A+p A
2p(32 + 2) p(3A2 ) 2p(3A + 2p)

A A A+'u (2.2.5)

2p(3A + 2p) p(3A + 4) +(3 +2p)

1

+'Z1
-++Zr
p

1

In finite-difference modeling, the whole model is discretized into small grid cells, and each

grid cell is taken as a single effective unit, the effective fracture compliance for one cell is

given as

2j = (2.2.6)
- L '

where

1 = Aa (2.2.7)
L AV

Aa is the area of the fracture plane lying within the cell volume and AV is the volume of the

cell.

Thus, in numerical modeling, we only need to replace the fracture compliance with the

effective fracture compliance (2.2.6), for convenience, hereafter, Zij will represent the

effective fracture compliance.
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Inverting equation (2.2.5) yields the elastic stiffness matrix,

Mb (1 - SN) NO N f) A]-4

2(1 -SN ) Ms 0 -r ' N bAN

p(1-Sr)

p( 1 -9)- (2.2.8)

where

Mb - A + 21t, rb - -

Mb 1-V

0TA < 1, 0 SN- ZNMb <1.
0l! 8 +ZT11 l +ZNMb

If the fracture normal is not parallel to x1, then we need to rotate stiffness tensor (2.2.8) back

to the global coordinate.

Assume local and global Cartesian coordinates are (x, y, z) and (x', y', z'), rotation matrix is

i = cost'1 [x y Z]} (2.2.9)

then, the stress and stiffness tensor in global coordinate are

0' ; = fikfjiLukl (2.2.10)

C ijki - flip/;qflkr 3lsCpqrs (2.2.11)

If the stiffness and compliance tensors are expressed in 6 by 6 matrix notation, we can use

Bond transformation matrices for coordinate transformation, the global stiffness and

compliance tensors in condensed format can be expressed as

C' = M. C. MT (2.2.12)

S' =N-S-NT (2.2.13)

M and N are Bond transformation matrices. The elements of the 6x6 M and N matrices are
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given in terms of the direction cosines as follows:

O1i P12  Pu3  2p 2fl 3
f 2 fl3 2#l22l23P21  P22 ft23  2f 2 t 3

M - 1 P32  23 20 32P33

P21P31  P22P32 f 2333 fP 22P33 + P23P32
Pf3lfl P32P2 P33 13 P12P33 + P13P32

AP11 21 P12P22 13 23 P22P13 + f1223

05J2 

P2
2P$2

2p22P32
2#32p12
2p12p22

P2 3
P23
P$3
f23332fl23fP33

2033 P13

2p13P23

P12P13
P22fP23
P32fP33

P22P33 + P23P32
P12P33 + P13P32
P22P13 + P12P23

2#13p1n
2023P21
20 33#31

P21P33 + p23P31
llP33 + f$1 3f31
PlP 23 + f 13 21

P13n 
P23P21
P33 P31

P21P33 + P23P31
Plp#33 + Pl 3 3l
PlPl23 + 13021

2Pnunu~
2p 21f 22
2p 31p 32

P22P31 + P21P32
SlPS32 + f#1231
P2211 ± l1221.

(2.2.14)

Plp 1 2  -

P21 22
P31P32

P22P 31 + fl21f32

PlPl32 + f#123 1

P22P11 + f 12fi21

(2.2.15)

2.3 Discussion on the Fracture Compliance Value

There is still uncertainty about the appropriate value of fracture compliance of reservoir

fractures. Because fracture scattering is the second order effect on seismic data, and fracture

scattered waves that can be observed in the field are contaminated by the scattering of

background heterogeneities and the waves reflected from the structure, so it is very hard to

measure the compliance of fractures in reservoirs directly. Laboratory measurement of

fractured rock samples is an easier way to get some ideas on the value of fracture compliance.

Pyrak-Nolte and Morris (1999) measured values of 10-" - 10~13 m/Pa for a suite of granitic

samples with single fractures. Pyrak-Nolte et al. (1990) and Worthington et al. (2007) found

values of 10-12 - 10-14 m/Pa for single fractures in quartz monzonite and limestone,
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respectively. Measurements of fracture compliance in small-scale near surface experiments

using acoustic logs (Lubbe and Worthington, 2006), VSP (Hardin et al., 1987), and cross hole

measurements (Myer et al., 1997) found values of 10~11 - 10~13 m/Pa for single fractures.

Laboratory measurements of fractured rock samples suggest that the fracture compliance

values are small. Reservoir scale estimates of fracture compliance, however, suggest that

values could be up to 10~9 m/Pa for seismic scale fractures. One study (Worthington and

Hudson, 2000), based on the estimation of seismic attenuation from VSP data acquired

through a large fault/fracture zone in a North sea well, found that transmission losses through

a zone containing 5 fractures with compliance values of 10-9 m/Pa explained the data

extremely well.

Compliance measurements are summarized in Table 2.3.1 (Worthington, 2007) and in Figure

2.3.1. All of these data suggest that the range of fracture compliance is very large (10- " 10~

m/Pa), and the implication is that fracture compliance increases with increasing scale. In

numerical modeling of reservoir with layer structure and fractures, waves reflected from the

structure are usually stronger than the fracture scattered waves, and they make it difficult to

see the fracture scattered waves if we use a value of fracture compliance smaller than 1010

m/Pa. Thus, in order to obtain the scattered wave field that is comparable to the scattering of

reservoir scale fracture, we usually use fracture compliance values of 1010 -- 109 m/Pa for our

numerical simulations.
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The normal to tangential fracture compliance ratio is also a very important parameter for

fracture characterization, because this ratio is a strong function of the way the fracture

surfaces interact. This ratio contains the information about the material filling the fracture,

and determining it may be of use for fluid identification. Both numerical simulations (Sayers,

2009; Gurevich, 2009) and laboratory measurements (Lubbe, 2008; Gurevich, 2009) suggest

that the compliance ratio ZN/ZT should be less than 1. Based on laboratory experiment data,

Lubbe (2008) suggested that a ZN/ZT ratio of 0.5 is a representative value to use in modeling

studies of gas filled fractures, and the compliance ratio can be less than 0.1 for fluid saturated

fractures.

NO. Normal Compliance Tangential Compliance Measured Method Reference
Zn (m/Pa) Z, (rn/Pa)

I 10-12 - 10-14 10~" - 0-14 Laboratory Pyrak-Nolte et al (1990)

2 2*10-14 2*10-14 Laboratory Worthington et al (2007)

3 10-13 - 4x130- VSP Hardin et al (1987)

4 0.25*10-1 - 3.5*10-12 Sonic log Lubbe&Worthington (2006)

5 2*10-12 Cross hole Myer et al (1997)

6 10-9 VSP Worthington&Hudson (2000)

Table 2.3.1: Summary of fracture compliance values
from Worthington (2007)).

from lab and field measurements (taken

16/42



10

101

77

a

12

1012 j
0 4

2 31
810.1

z

11
10 -e -i-
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Figure 2.3.1: Summary of fracture compliance versus scale for the lab and field
measurements in Table 2.3.1. Taken from Worthington (2007).
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Chapter 3

Sensitivity Analysis of Fracture Scattering

In this Chapter, first we will discuss the methodology for calculating the seismic response of

scattering from a single fracture, and then we will show the scattering patterns and scattering

strength of a single fracture for many different models. Our modeling is all conducted limited

in 2D.

3.1 Methodology

fracture model (b) reference model

vp=4km/s vs=2.4km/s dens=2.3g/cm3

Figure 3.1.1: (a) is the fracture model and (b) is the reference model, these two models are

exactly the same except for the presence of a fracture in (a) indicated by the red line. Blue

triangles are receivers and they are equidistant from the fracture center, red asterisks indicate
sources at different angle of incidence to the fracture. Incident angles are measured from the

normal of the fracture (e.g. a source directly above the fracture is considered to have a 900
incident angle).

18/42
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We assume the whole wave field recorded at receivers in the fracture model (1 a) is

Urit, Oinc), and the corresponding wave field recorded in the reference model (lb) is

Uo (r-, t, Oin, then

*(--, t, Oinc) = -Uo(Cr t, Oinc) + *(-, t, Oinc)(31)

where s(r, t, Oinc) is the scattered wave field, Oine is the incident angle.

In the frequency domain, equation (3.1.1) can be written as

U(, Oine) = (0, inc) + $(0, inc) (3.1.2)

where U, Uo and S are the Fourier transformations of U, U0 and s, respectively, and 0o is

angular frequency.

Thus, the scattered wave field can be expressed as

( (, Oinc) = U(Y o, Oinc) - 0 (ro, c) (3.1.3)

We assume the source is a pressure point source and we ignore the Earth's free surface, so the

scattered wave field S( (0, Onc) includes two parts: P-to-P scattered wave field

$pp ( o, inc) and P-to-S scattered wave field ps ( o, Oinc).

In homogeneous isotropic media, the wave equation in the frequency domain can be

expressed as

U() = - ) v[v - (, ))] + V x [V x U(r, o)] (3.1.4)

where V and Vs are P- and S-wave velocity.

In homogeneous isotropic media, we can separate the P- and S-wave energy by simply

calculating the divergence and curl of the whole displacement field, thus, equation (3.1.4) can

be written as
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(0, Oi - p Oinc) -+ Us(, (0, (ine))

with

Up (CO, Oinc) = - V[V '(?, o, inc)] is the P-wave displacement, (3.1.5a)

Ts("', o, inc) ( V X [V x U(0, O, inc)] is the S-wave displacement. (3.1.5b)

therefore,

$(r, i = 0 (, o,inc) -+ Sps (r, o, nc) (3.1.6)

pp (, o, Oinc) = p (0, , inc) - o (f, o,inc) (3.1.7)

SPs~f , Oinc) = s(, Oinc) (3.1.8)

Note that Uo (r, o, inc) is the reference wave field, and it has no S-wave component.

pp (i, o,inc) and Sp, (0, Oine) are frequency dependent, and we wish to obtain the

fracture response function which is independent of the source pulse used in modeling.

Thus, we write

SPP(, o), ine)|= a F1, , (0,oO ic) I(o, Oine)| (3.1.9)

|s(o,Oine) a - (0(0, Oic) (o, Oine) (3.1.10)

with

a for 2D (3.1.11)
11/r for 3D

where Fpp(O, o, Oin) and Fy,(O, (o, Oinc) are P-to-P and P-to-S fracture response functions,

respectively, a is the geometrical spreading factor which is a function of the distance (r) from

the receiver to the fracture center, and I(o,0,c) is the incident wave field recorded at the

center of the fracture, 0 and Oine are scattering angle and incident angle. Since the wave

field is recorded at receivers that are equi-distance from the fracture center, and we only look

at the far field scattering, so we can replace i by 0 in Fpp and Fps. Because 1((o, Oine is the
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incident wave field recorded at the center of the fracture, while Spp(*, o) and SP(r, o) are

the scattered wave fields recorded at a certain distance away from the center of the fracture, as

shown in figure 3.1.1b, so we need to add the geometrical spreading factor a in equations

(3.1.9) and (3.1.10). Usually, we will fix Oise when we calculate Fpp and Fps for a given Ojin,

thus, for the sake of convenience, hereafter Fpp and Fps will only be expressed as functions of

O and o, but they depend on the incident angle.

In general, F,,(0, o) and Fps(0, (o) are 2nd rank tensors, but it is difficult to describe the

fracture response quantitatively by a 2"d rank tensor, because it contains 6 independent

components. Therefore, for the sake of convenience, we assume F,,(0, 0o) and Fps(0, (o) are

scalars, and they represent the frequency-dependent response of a finite fracture.

The fracture response function Fm,(0, o)) and Fys(O, o) can be expressed as

Fm (0, Co) = '''O"" ' ' " (3.1.12)
PPa|I(o,wOine)

F C (0, o) U (rOeine) (3.1.13)
a IT(o,Oine)I

Here, we emphasize that fracture response functions (3.1.12) and (3.1.13) are frequency

dependent but are source-wavelet independent, we can get the same answer even though we

use different source wavelets to calculate (3.1.12) and (3.1.13) numerically. Fpp(O, o) and

Fs (0, o) are functions of frequency, radiation angle, incident angle, matrix velocity, fracture

compliance and wave-length to fracture-length ratio, and we can get the scattering radiation

pattern by plotting them in polar coordinate.

21/42



3.2 Numerical Results & Discussions

From the comparison of many numerical results we find that, for a given incident angle, if we

only consider the fracture response function as a function of fracture compliances (keep other

conditions, such as background medium, fracture length, etc., unchanged), then the fracture

scattering pattern is dominated by the compliance ratio y (y-ZN/ZT), and the scattering

strength is affected by the magnitude of ZN and Z.

For demonstrating the source wavelet independence of the fracture response function, we use

two Ricker source wavelets with different central frequencies (20Hz and 40Hz) to calculate

the radiation pattern of a single fracture. As shown in figure 3.2.1, these four figures are the

radiation patterns of a fracture with normal and tangential compliance equal to 10-10m/Pa,

figures 3.2.1a and 3.2.1c show the same P-to-P fracture scattering pattern, but they are

obtained individually by using two Ricker sources with 20Hz and 40Hz central frequency,

respectively, figures 3.2.1b and 3.2.1d show the corresponding P-to-S fracture scattering

patterns. Although we only show the case of 500 incidence, based on many numerical

examples we can find that both P-to-P and P-to-S scattering patterns are independent of

source center frequency regardless the varying of incident angle and fracture compliances,

which proves the reliability of equations (3.1.12) and (3.1.13).
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P-to-P P-to-S

(a) (b)

20Hz

(c) (d)

40Hz

Figure 3.2.1: Fpp(0,o)) (a and c) and Fp,(0,o) (b and d) of a fracture with normal and tangential

compliance equal to 10-10m/Pa. The radial and angular coordinates are (0/(2n) and 0. The

source central frequency for figures 3.2.1 a and 3.2.1 b is 20Hz, while the source central

frequency for figures 3.2.1 c and 3.2.1 d is 40Hz. The red line indicates a finite fracture with

200m length, and the red asteroid indicates the source position, the incident angle is 500 to

the normal of the fracture. Here and after, the fracture response function is normalized in

plotting, and the number above the colorbar is the scaled factor.
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3.2.1 Fracture scattering pattern as a function of compliance.

Table 3.2.1 shows the P-to-P fracture response functions for fracture having ten different

compliance ratios at four different incident angles. We define back scattering and forward

scattering with respect to the fracture plane, in our numerical examples, the scattering at the

left side of the fracture plane, where the source is located, is defined as back scattering, and

the scattering at the opposite side of the fracture plane is defined as forward scattering. P-to-P

fracture scattering patterns are nearly independent of compliance ratios when the incident

angle is close to 00 or 900, while P-to-P back scattering changes significantly with

intermediate incidence angles. Table 3.2.2 shows the corresponding P-to-S fracture scattering

patterns. P-to-S scattering patterns do not vary too much except for small angles of incidence,

and in most cases P-to-S back scattering is much stronger than P-to-S forward scattering. For

both P-to-P and P-to-S scattering, the scattering strength increases with increasing compliance

magnitude, and the scattering pattern will not change if the compliance ratio does not change.

00 300 600 900

Y

0.1

2.82 3.89 3.37 0.335
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0.2 ,

5.4 5.74 4.08 0.654
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12.7 11.1 6.1 1.6

0.7

13.9 11.9 6.39 1.75

0.8

14.8 12.5 6.61 1.87

0.9

15.6 13 6.79 1.97

16.2 13.5 6.93 2.05

Colorbar: 0.0 0.2 0.4 0.6 0.8 1

Table 3.2.1: Fpp(0,o) for different compliance ratio y and different incident angles are plotted in
polar coordinates, the radial and angular coordinates are o/(2r) and 0. The range of (o/(2n) in
each panel is from 0Hz to 50Hz. Incident angles, which are shown on top of the figure, are 0",
304, 600 and 900 for each column. The compliance ratio for each row is shown at the left side

26/42

. ... ................



of each row. The number below each panel is the scaled factor in plotting and denotes the

maximum scattering strength. Tangential compliance is fixed to 10-9m/Pa, normal compliance

varies. Fracture length is 200m, matrix P-wave and S-wave velocities are 4 km/s and 2.4 km/s,

density is 2.3 g/cm 3.

inc

00 300 600 900

Y

0.1

1.29 7.28 5.81 1.02

0.2

1.69 8.81 7.22 2

0.3

wz
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0.4

0.4
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0.6
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0.7
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0.8
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0.9

3.86 14.7 12.8 6.2

1

3.98 15 13.1 6.48

Colorbar: 0.0 0.2 0.4 0.6 0.8 1

Table 3.2.2: Fps(Oo) for different compliance ratio y and different incident angles are plotted in
polar coordinates, the radial and angular coordinates are o/(2n) and 0.

From Tables 3.2.1 and 3.2.2, we can find that, when the incident angle is between 00 and 900,

for P-to-P scattering, forward scattering is much stronger than back scattering, however, for

P-to-S scattering, back scattering is much stronger than forward scattering. Moreover, most of

the scattering energy propagates downwards if the fracture is close to vertical and the source

is above the fracture. Specifically, the P-to-P scattering energy propagates down and forward

(away from the source) while the P-to-S scattering energy propagates down and backward

(towards the source). In the field, most fractures are close to vertical and the source is on the

surface. In this case, the seismic waves first will be diffracted by fracture tips, and then most

of the scattering energy will propagate downward, and then it will be reflected back to the

surface by reflectors below the fracture zone, as illustrated in figure 3.2.1.
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source

incident
P-wave

P-to-P scattering fracture
at fracture tips

S

layer interface below fracture

Figure 3.2.1: Cartoon showing how incident P-waves are scattered by a fracture. Scattering
energy includes three parts: (i) P-to-P scattering at fracture tips; (ii) P-to-P forward scattering;
(iii) P-to-S back scattering.

Figure 3.2.2 shows a numerical simulation of wave propagation in a uniform medium

containing 21 non-parallel fractures, 3.2.2a shows the geometry of the model, 3.2.2b and

3.2.2c show snapshots of the divergent field and curl field of the scattered wave field at 0.54s

(the scattered wave field is obtained by subtracting the whole wave field from the reference

wave field of the same model without fractures). We can see that most of the P-to-P scattered

energy is going down and forward and most of the P-to-S scattered energy is going down and

backward. Therefore, most scattered signals observed on the surface come from fracture tips

and reflectors below the fracture zone. We can only see fracture tips if we use traditional

migration methods to search for fractures. In order to image subsurface fractures, we need to

develop statistical methods to analyze the fracture scattered signals, and the scattering index

method (Willis, 2006) is one of these methods. Also, if we want to use both P-to-P and P-to-S

scattered waves to study fractures, we should search for P-to-P and P-to-S scattered waves at

'forward' and 'backward' receivers separately.
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(a) source model fractures
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(c) curl of displacement
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Figure 3.2.2: (a) is a homogeneous isotropic model with 21 non-parallel fractures, red lines
indicate fractures and asterisk is the source. Parameters for the background medium are
shown in (a) and fractures' normal and tangential compliances are 0.5xlO 9m/Pa and
10-9m/Pa, fracture length is 200m, the source wavelet is a Ricker wavelet with 40Hz central
frequency; (b) and (c) show snapshots of the divergence and curl of the scattered wave field
at 0.54s.

3.2.2 Scattering strength

For a given frequency, scattering strength is defined as the maximum of the fracture response

function over all radiation angles, so it is frequency dependent. Figure 3.2.3 shows the

scattering strength of P-to-P scattering for fractures having different tangential compliances
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and different compliance ratios. We find that usually P-to-P scattering is stronger at small

incident angle except for the case of a small compliance ratio (~0.1). Figure 3.2.4 shows the

corresponding P-to-S scattering strength where regardless of the variation of compliance ratio,

P-to-S scattering is always strongest near 400 incident angle.

By comparing P-to-P and P-to-S scattering strength in figures 3.2.3 and 3.2.4, we can find that,

for most cases, P-to-S scattering is stronger than P-to-P scattering when the compliance ratio

is smaller than 1. For both P-to-P and P-to-S scattering, the scattering strength will increase

about 2 orders when the compliance increases 1 order, and P-to-P scattering is more sensitive

to the change of normal compliance, while P-to-S scattering is more sensitive to the change of

tangential compliance.

If the compliance ratio ZN/ZT is <0.5 (as discussed in section 2.3), then, generally, P-to-S

scattering would be stronger than P-to-P scattering when the incident angle is larger than 200.

This implies that it might be easier to detect P-to-S scattered waves at the surface, although it

might be hard to analyze such waves because of their complex ray paths.
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Figure 3.2.3: P-to-P scattering strength for different tangential compliance and different

compliance ratio. Horizontal and vertical axes are angle of incidence and frequency.
Tangential compliances are 10-11m/Pa, 10-10m/Pa and 10~9m/Pa for the 1s', 2nd and 3rd column,

respectively. And the compliance ratios are 0.1, 0.5 and 1 for the 1 st, 2 nd and 3 rd row,
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respectively. The scattering strength for each panel is normalized to 1 in plotting, the number
above each panel is the scaled factor (maximum scattering strength).
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Figure 3.2.4: P-to-S scattering strength for different tangential compliance and different

compliance ratio. Horizontal and vertical axes are angle of incidence and frequency.
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3.2.3 The effect of matrix Poisson's ratio on fracture scattering pattern

Figure 3.2.5 shows P-to-P and P-to-S scattering patterns for different matrix Poisson's ratio

and different compliance magnitudes. When Poisson's ratio increases from 0.2 to 0.3, the

scattering patterns change, while scattering strength does not change too much, implying that

the scattering strength is less sensitive to the background matrix. Although we only show

cases of 500 incidence and compliance ratio equal to 0.5, we can get the same conclusion from

all other examples.

P-to-P scattering pattern

Zt=1 e-9m/Pa Zt=1 e-10m/Pa
b1 A

b2

P-to-S scattering pattern

c 1 Zt=1e-9m/Pa d Zt=le-10m/Pa

c2 d2

d3

Figure 3.2.5: P-to-P (a and b columns) and P-to-S (c and d columns) scattering patterns for

different matrix Poisson's ratio. Poisson's ratios are shown on left most of each row, and

tangential compliances are shown on top of each column. In these examples, matrix P-wave

velocity is fixed to 4km/s, while S-wave velocity is changed to get models with different matrix

Poisson's ratio. Incident angle is 500 and the compliance ratio is 0.5 for all examples.
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3.2.4 The effect of fracture length on fracture scattering

Table 3.2.3 shows the P-to-P and P-to-S scattering for models with two different fracture

lengths at different incident angles. The incident wavelength is the same for both fracture

models. From Table 3.2.3, we can see that the dominant scattering directions of the two

fracture models with different fracture lengths are very similar, but both the P-to-P and P-to-S

radiation patterns for the 100m long fracture has a broader distribution of high amplitude

regions. From this comparison, we see that the scattering of a fracture will approach that of

the scattering from a point scatter when the length of the fracture decreases. We also can find

that the scattering strength increases with the increasing fracture length.

P-to-P scattering P-to-S scattering

m100 200 m 100 m 200 m

00

1.56 2.76 0.572 0.683

300

1.23 2.23 1.46 2.37
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600

0.605 1.06 1.07 1.99

go -O z 41
900

0.224 0.335 0.54 1.02

0.0 0.2 0.4 0.6 0.8 1
Table 3.2.3: Fp(O,(o) and F,(O,o) of two fracture models with different fracture lengths. The

two left columns show Fpp(Oo) of different incident angles, and the fracture length is 1 00m

and 200m for the 1st column and 2nd column, respectively. The two right columns show the

corresponding Fps(O,o). The normal and tangential compliance of these models are 10-10 m/Pa,

matrix P-wave and S-wave velocities are 4 km/s and 2.4 km/s, density is 2.3 g/cm 3, and the

source wavelet is Ricker wavelet with 40 Hz central frequency

3.3 Suggestions on Field Data Processing

Based on our numerical study, we found that, if ZN/ZT is 50.5, then we will detect stronger

P-to-S fracture scattering energy in the field, and fractures would generate the strongest

P-to-S scattering when the incident wave is about 400 - 500 to the normal of fracture planes.

Most of the P-to-S fracture scattering is back in the direction towards the source but

downward. From both synthetic data and field data analysis, Willis (2006) found that stacking

of data collected in different azimuthal angles can significantly enhance the signal-to-noiseof

P-to-P fracture scattered waves. However, traditional stacking is not acceptable for P-to-S

fracture scattered waves, because, for a given source-receiver pair, the scattering point is not

located at the center of the raypath between the source and receiver, the ray paths for P-to-S
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scattered waves are much more complicated. So, if we want to use P-to-S fracture scattered

waves for fracture characterization, we can either use pre-stack data or develop a more

sophisticated P-to-S stacking scheme.

Fracture compliance value is important for estimating fluid flow properties. We can detect the

ratio of ZN/ZT from radiation pattern and absolute value of compliance from scattering

strength if radiation pattern and scattering strength could be measured. However, as we

discussed previously, fracture scattered waves are contaminated by the reflectivity of the

matrix reflectors below the fracture zone, so an accurate velocity model of the field is needed

to obtain the correct fracture compliance value.
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Chapter 4

Conclusions

We studied scattering from single fracture using numerical modeling and found the

characteristics of fracture P-to-P and P-to-S scattering, which will aid in fracture

characterization. Due to the gravity of overburden and regional stress field, fractures are

usually close to vertical in a fractured reservoir, and the source is normally located at the

surface, thus most of the fracture scattering energy will propagate downwards, specifically,

the P-to-P scattering energy propagates down and forward while the P-to-S scattering energy

propagates down and backward. Therefore, for a vertical fracture system, most of the fracture

scattered waves observed on the surface are, first scattered by fractures, and then reflected

back to the surface by reflectors below the fracture zone, so the fracture scattered waves have

complex ray paths and are contaminated by the reflectivity of structure's reflectors. Because

of the complexity of the recorded seismic signals, instead of using traditional migration or

inversion methods, we intend to develop a statistical method for fracture characterization.

In this paper, we only show the 2D study, but our work will move to 3D to see the

comprehensive seismic response of a finite fracture. The single fracture study will greatly

increase our knowledge of fracture scattering and help us to understand the complex response

of a fracture network.
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