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Abstract

This thesis consists of two results.
The first result is a strong maximum principle for certain parabolic systems of

equations, which, for illustrative purposes, I consider as reaction-diffusion systems.
Using the theory of viscosity solutions, I give a proof which extends the previous
theorem to no longer require any regularity assumptions on the boundary of the
convex set in which the system takes its values.

The second result is an approximation scheme for reflected stochastic differential
equations (SDE) of the Stratonovich type. This is a joint result with Professor Daniel
W. Stroock. We show that the distribution of the solution to such a reflected SDE is
the weak limit of the distribution of the solutions of the reflected SDEs one gets by
replacing the driving Brownian motion by its N-dyadic linear interpolation. In par-
ticular, we can infer geometric properties of the solutions to a Stratonovich reflected
SDE from those of the solutions to the approximating reflected SDE.
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Chapter 1

First Result: Introduction

My first result consists of proving a version of the strong maximum principle for solu-

tions of vector valued diffusion equations. The classical version of the weak and strong

maximum principles can be summarized as follows: A solution u to an (unspecified)

partial differential equation is said to satisfy the weak maximum principle if it has the

property that the maximum value achieved by u is achieved on the boundary of the

domain of the PDE. u is said to satisfy the strong maximum principle if, in addition,

it has the property that if u achieves its maximum in the interior of its domain, it is

then the case that u is constant.

When u takes values in R , it no longer makes sense to talk about the "maximum of

u" and so we must modify the definitions of the weak and strong maximum principles

as follows: Given a convex set K C R k, a solution u to an (unspecified) partial

differential equation is said to satisfy the weak maximum principle with respect to K

if it has the property that when its boundary data takes values in K then u takes

values in K at all points in its domain. u is said to satisfy the strong maximum

principle with respect to K if, in addition, it has the property that if u takes a value

in OK at some point (xo, to) in the interior of its domain, it is then the case that

u E OK at all points in the closure of its domain such that t < to.

The main result of the first half of this thesis concerns the weak and strong



maximum principle for the following PDE:

Ut = D(x, t, u) Eg aij(x, t)uxexj + E Mi(x, t, u)uz, + #(x, t, u), in Q
= (1.1)

U =g, on OQ

where Q = X x (0, oo) for some open and connected X C R', the aij are real-

valued, # takes values in Rk, and D(x, t, z) and each of the Mi(x, t, z) take values

in the space of k x k matrices. We also assume that D and the matrix {aij} take

symmetric non-negative definite values. The system of PDEs (1.1) can be thought of

as a reaction-diffusion system, and I adopt this view in this thesis to aid in intuition.

Proving that solutions to (1.1) satisfy the weak and strong maximum principle is

not as simple as just applying the classical versions to the functions f(u) for supporting

hyperplanes f of K. An example which shows why this approach cannot work is the

following: Let X = R, let K be the unit circle in R 2 , let #(x, t, u) = #(u) = (-U 2 , Ui)

and let u(x, 0) = g(x) = (1, 0). Then it is clear that u(x, t) = (cos(t), sin(t)) is a

solution to (1.1) which visits and leaves every supporting hyperplane many times

(This example is fleshed out in Chapter 3).

In his 1975 paper [17], H. Weinberger considers the case where D = I and the

Mi are real-valued functions. In this case, he proves that, under mild regularity

assumptions, any solution to (1.1) satisfies the weak maximum principle with respect

to any set K for which the vector field # is "inward pointing" in the following sense:

At each v E OK, the inner product of #(x, t, v) with u - v is non-negative for all

u E K. Weinberger goes on to prove that any solution to (1.1) which satisfies the

weak maximum principle with respect to a convex set K satisfying the inward pointing

condition above also satisfies the strong maximum principle with respect to K under

the additional assumption that OK satisfies what Weinberger refers to as the "slab

condition".

In their 1977 paper [3], K. Chueh, C. Conley, and J. Smoller prove that, under mild

regularity assumptions, any solution to (1.1) satisfies the weak maximum principle

with respect to any set K for which the vector field # is inward pointing and such



that for every point v E &K, we have that every normal vector to the boundary

(there may be more than one where the boundary is not differentiable) at v is a left

eigenvector of each of D(x, t, v) and the Mi(x, t, v) for all x and t.

In his 1990 article [16], X. Wang extends Weinberger's proof of the strong max-

imum principle to the case of general D and Mi, under the eigenvector condition of

Chueh, Conley, and Smoller. For his proof, Wang also makes the additional assump-

tion that the boundary of K is C2 . Under this assumption, the distance function, d,

to the boundary of K is a C2 function near the boundary of K, and Wang's argument

is to show that d(u) satisfies the PDE:

-d(u(x, t)) ;> £d(u(x, t)) - C(x, t)d(u(x, t)) (1.2)at

(here C(x, t) depends on the Lipschitz constant of #) and apply the classical strong

maximum principle to this PDE.

In my paper [8], I have extended Wang's argument to apply to any convex set

K satisfying the inward pointing and eigenvector conditions. This is a tight result

as it is easy to provide counterexamples when the convexity of K or either condition

is relaxed. For my proof, I show that while, in general, d(u(x, t)) may not be twice

differentiable, d(u(x, t)) is still a super solution to a certain parabolic differential

equation in the viscosity sense. I then invoke a strong maximum principle for viscosity

solutions (provided by F. Da Lio in [6]) to achieve the desired result.

In Chapter 2, I give an overview of reaction diffusion systems. In particular I

introduce the "blob picture" way of viewing reaction-diffusion systems.

In Chapter 3, I give an overview of various maximum principles starting from the

classical ones and progressing to the maximum principles for systems. In particular I

give some examples which motivate the theorems for the various maximum principles.

In Chapter 4, I give an outline of my proof from[8] for the simple system of PDE

Ut = Au + #u. This system of PDE is simpler than the more general system (1.1)

but the key points of the proof remain the same. In particular, in this simple case it

is easy to see how the theory of viscosity solutions is used.



In Chapter 5, I present my proof from[8] in its entirety.

Finally, for completeness, in Chapter 6, I present DaLio's proof of the strong

maximum principle for viscosity solutions from [6], but in the simple case of the

linear PDE we are concerned with.

Also for completeness, I have included in Appendix A the basic theory and results

of viscosity solution theory that are needed in this thesis.



Chapter 2

Reaction-Diffusion Systems

As the main result of the first half of this thesis is a strong maximum principle

for reaction-diffusion systems, we will begin by giving a brief overview of reaction-

diffusion systems.

2.1 Diffusion Equations

We begin with the standard model for diffusion. Suppose we have a substance (e.g.

heat or some chemical) which diffuses within a connected open region X C Rd. We

let u(x, t) represent the density of the substance at position x and time t. Letting

Q = X x (0, oo) we have that u : Q -- R and we describe the diffusion via a PDE

which u solves. The most familiar diffusion PDE is the heat equation which models

the flow of heat:

auau= AUat (2.1)

More generally, a diffusion PDE is of the form

OnOU= LUat (2.2)



where

a2 9
L aij(x, t) - + bi(x, t) (2.3)

ij xiox . axi

where {ajj} is locally uniformly positive definite. For simplicity, we will consider the

case that L = A.

Suppose we have the following PDE which represents, say, the heat in a rod of

length L whose ends are held at a constant temperature 0: Let X be the interval

[0, L] and let u satisfy the diffusion PDE (with Dirichlet boundary conditions)

7t u,in Q

u(x, 0) = 1, x E X

u(Ot) =0t > 0

u(L,t) = 0,t> 0

There are two standard ways in which to present the solution u(x, t) graphically. The

first is a three dimensional graph with x, t, and u as axes (See Figure 2-1).

0.4--

0.2.

-

0 0.2 0.4 0 4 x
t 0.6 0

Figure 2- 1:

This presentation lets us see the evolution of the heat flow in the rod all at once.

The second is to give a series of snapshots of the heat in the rod at different times

(See Figure 2-2).

For the purposes of this thesis, it will be convenient to present the diffusion in a



t=0 t=1

Figure 2-2:

third way which I will henceforth call the "blob picture". This corresponds to a series

of snapshots at different times, but with the x axis removed (See Figure 2-3).

tL
t= 0 t=1

t-=
t= 2

Figure 2-3:

The obvious deficiency of this presentation is that for a given time t, we only see

the values that u takes and not where in X it takes those values. However the blob

picture will be ideal for the purposes of this thesis for two reasons: First, in a graph

we can have at most three axes and in the blob picture we can use every axis for

the components of u (We will see this when we look at systems of diffusions where u

is vector valued). Second, the blob picture is naturally connected to the maximum

principles we will see below.

t= 2



2.2 System of Diffusions

Now suppose instead of one diffusing substance we have n. We label their densities as

ui(x, t),..., u,(x, t). Suppose further that each substance diffuses in the same way, i.e.

at = Luk for some L of the form (2.3). Then letting u(x, t) = (u(x,t),.. . , un(X, t))

we can write this more compactly as

Ou = Lu (2.4)
at

For example, suppose that X = {(X1 , x2 ) :x + zj < 1} is the open unit disk in R2

and u = (ui, U2 ) satisfies the diffusion PDE with Neumann boundary condition:

= Au, in Q

ui(x,0) = x1 +10, x E X

u2 (x, 0) = X2 + 10, X E X

= 0, on aX (0, oo)

where v(x) represents the unit normal to the boundary for x E oX. We can view

ui(x, t) and u2 (x, t) as being the concentration of two different chemicals in an insu-

lated circular region, each of which diffusing as heat would. We present the dynamics

of this system with our blob picture (see Figure 2-4).

U2  U2  U2

10 10 10 S

10 U1  10 U1  10 U,
t=0 t=1 t=2

Figure 2-4:

In the blob picture, our blob contracts! This is not surprising since as each chemi-



cal diffuses its concentration averages out. (A note of caution is in order. You cannot

tell just by looking at the blob how it will contract... after all, the dynamics of the

diffusion depend on where in X the various values of u are coming from).

The fact that, for a system of diffusions with Neumann boundary condition, the

blob in its blob picture contracts is closely related to the weak and strong maximum

principles we will define in the next overview.

2.3 Reaction Systems

We will now let the substances we are modeling interact. The word "reaction" in

reaction-diffusion systems comes from the case in which we model the concentration

of different chemicals which react with one another. However, since I know very

little about chemistry, we shall instead focus on biological models of different animal

species which interact with each other.

A familiar model, often seen in an introductory ODE course, is the Lotka-Volterra

model for predator-prey interaction. Suppose ui(t) and n2 (t) represent the deer and

wolf populations in a given area over time. Suppose ui and u2 satisfy the reaction

system:

= aui + buiu2  (2.5)
dt

du2
dt = cuiu2 + du 2  (2.6)dt

where a, c > 0 and b, d < 0 (i.e. deer thrive in the absence of wolves and wolves starve

in the absence of deer). In general, we consider a reaction system modeling n species

of the form

du = #(u) (2.7)
dt

for some Lipschitz continuous vector field # (We take # be Lipschitz to ensure that

(2.7) has a unique solution, but we will see later that the Lipschitz continuity of #



also plays a strong role in proving various strong maximum principles). We can view

the dynamics of our reaction system as a dot flowing along the vector field #. For our

deer-wolf system we have the following picture (see Figure 2-5).

U
2 A

y
I

Figure 2-5:

2.4 Reaction-Diffusion Systems

Reaction-diffusion systems are a combination of our previous two models. That is, we

model the concentration of n substances ui(x, t),... , u (x, t) which not only diffuse

but also react. Mathematically, we consider the following reaction diffusion system:

=u -Lu + #(u)
at

(2.8)

for a diffusion operator L of the form (2.3) and a Lipschitz continuous vector field #.
As an example, we consider the dynamics of a deer and wolf population confined to

the disk(perhaps an island) X = {(Xi, x 2 ) : X2 + X2 < 1} and beginning with initial



population densities f(x) and g(x) respectively:

au - Aui + aui + buiU2,

= Au 2 + cu1u2 + du2,

ui(x, 0) = f(x),x CE X

u2(x, 0) = g(x), x E X

=v 0, on OX x (0, oo)

= 0, on OX x (0, oo)

where a, c > 0 and b, d < 0. We have the following blob picture for

of the deer-wolf system. We overlay the vector field #(u) = ( +
cui +d

the dynamics

M2
to get a

!U2)

better feel for what is going on (See Figure 2-6).

U2  U2  U2

u, U, U,

t=0 t= I t=2z

Figure 2-6:

Not only is the blob contracting, but it is being pushed by the vector field #! To

see this mathematically, note that each point (v1, v2) in the blob at time f corresponds

to at least one point t E X such that u1 (t, ) = vi and u2 (t, F) = v2 . How are the

densities ui and U2 instantaneously changing at the point (z, F)? We have

t (w ci F) = Au( , F) + #o(u(, f))

and we can think of the first term as the "contraction force" and the second term as

in Q

in Q

(2.9)



the "vector field force".

2.5 More Complex Reaction-Diffusion Systems

Up until now we have been assuming our different substances/species diffuse in the

same way. But we could, of course, have a reaction-diffusion system of the form:{ %f = ZSau 1+#1(u)

? = An2 + # 2(u)

where the diffusion coefficients ( and q differ. In the case that > q we have that the

first substance diffuses more quickly than the second (perhaps deer are faster than

wolves). But we will consider more complex models than this.

The most general model for reaction-diffusion systems we will consider is the

following:

= D(x, t, u) Z aij(x, t)0  + S Mi(x, t, u) + #(x, t, u), (2.10)
at ij xiix . axi

where D and the Mi are matrix valued, D and {aij} are locally uniformly positive

definite, and # is Lipschitz continuous. The case where D = I and the Mi are diagonal

reduces to the simpler reaction diffusion system (2.8). The case where D and the Mi

are diagonal corresponds to the system (2.8) with different diffusion rates.

I am sorry to say that I don't have a good idea for what (2.10) represents in

general. However, we can examine the dynamics of the simpler system of diffusions

= D(u)Au
at

to get a feel for what the matrix-valued D does in our blob picture.

First, let's recall how an n x n symmetric positive definite matrix A acts on a

vector v. We know that the eigenvalues of A are positive and real and that A has a

full set of n eigenvectors which are mutually orthogonal (see Figure 2-7).



.X= 3

Figure 2-7:

Suppose we graph v and Av for various choices of v (see Figure 2-8).

A,=

v2

~X=2

Figure 2-8:

Since all of its eigenvalues are positive and real, we see that A stretches or com-

presses v along each of its eigenvector axes. It is clear therefore that v and Av lie in

the same eigen-orthant.

So at each u, D(u) is a symmetric positive definite matrix which perturbs the

vector Au within its eigen-orthant. Graphically we overlay an "eigen-axes field" over

our blob picture (See Figure 2-9).

Then, at a given (x, t), we can draw the vectors Au(x, t) and D(u)Au(x, t) at the

point u(x, t) (see Figure 2-10).

Since 2U = D(u)Au, this latter vector shows how the value of u at (x, t) changes

instantaneously. In the blob picture, this vector shows where the image of the point

(x, t) moves in the blob. We see that our blob contracts as before, but now its



U2

Figure 2-9:

U2

Figure 2-10:



contraction at each point is perturbed by the eigenbasis at that point.
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Chapter 3

Maximum Principles

3.1 Diffusion Equations

In this section of the overview we will explain the various extensions of the classical

weak and strong maximum principles. As before, let X be a connected open subset

of Rd and let Q = X x (0, oo). We begin by recalling the classical weak and strong

maximum principles for a diffusion system of the form (2.2).

Definition 3.1.1. A function u : -+ R is said to satisfy the weak maximum

principle if it has the property that the maximum value of u in ( is achieved on the

boundary of its domain, 8Q.

A function u : Q - R is said to satisfy the strong maximum principle if, in

addition, it has the property that if the maximum value of u in 0 is achieved at an

interior point (xo, to) E Q, then u(x, t) = u(xo, to)(i.e. u is constant and equal to this

maximum value) for (x, t) E Q with t < to.

The weak and strong minimum principles are defined analogously.

Under mild regularity assumptions on the domain X, the operator L, and the solu-

tion u, we have that solutions of (2.2) satisfy the weak and strong maximum/minimum

principles.

A classic example where these principles can be seen is in the diffusion of heat

through a rod of length L whose ends are first held at a constant temperature 1 and



then at a constant temperature 0. Let X = [0, L], Q = X x [0, oc) and suppose u

satisfies the diffusion PDE

a= Au in QTt-

u(x,0)= 1, 0 < x < L

u(0,t)= 10 < t < 1

u(L,t) = 1, < t < 1

u(0,t) = 0,t > 1

u(L,t) = 0,t > 1

We graph the solution to this diffusion in Figure 3-1.

08 -

U06
04

02

00

05 02
15 2 0

Figure 3-1:

Notice that the weak maximum principle is satisfied: The maximum value u

attains is 1 and it does so on the boundary. Notice that the strong maximum principle

is also satisfied: Wherever u attains the value 1 in the interior, it is constant up until

that time.

Consider next the heat diffusion in a rod of length L whose ends are insulated:I = Au, in Q
u(x, 0) = f(x), on X x {0}

a = 0, on OX x (0, oo)



Notice that the weak maximum principle is satisfied: u attains its maximum value

on the boundary. Furthermore, as u never attains it maximum value in the interior,

the strong maximum principle holds by default.

Let's examine this diffusion via the blob picture (let a = infxE[O,L] f(x), b

supxz[O,L] f(x) (See Figure 3-2).

U U U

b b b

a a a

0 0 0
t=0 t=1 t=2

Figure 3-2:

Sure enough the blob contracts. In particular we see that the minimum value that

u achieves is a and the maximum value that u achieves is b. And so u achieves its

maximum and minimum on the boundary. This suggests a new formulation of the

weak maximum/minimum principle (we will henceforth drop the term "minimum"

and refer only to maximum principles):

Definition 3.1.2. We say that u satisfies the weak maximum principle (version 2)

if the following holds for each closed interval [a, b]: If u(x, t) E [a, b] at all boundary

points (x, t) E OQ, then u(x, t) E [a, b] for all points (x, t) G

And this can be further restated as

Definition 3.1.3. We say that u satisfies the weak maximum principle (version 3)

if the following holds for each closed convex set K:

If u(x, t) E K at all boundary points (x, t) E 8Q, then u(x, t) E K for all points

(x, t) E 0.

Some thought shows that the three versions of the weak maximum principle are



in fact the same. It is this third version which will extend to the case of systems of

PDE and so it is this third version that we will focus on.

What should the restatement in terms of closed convex sets K look like for the

strong maximum principle? In the case when K = [a, b] and u(x, t) E [a, b] for

(x, t) E Q, we want to say that if u(xo, to) = b for some (xo, to) E Q then u(x, t) = b

for t < to, and the same for a. We can think of a and b as either the boundary or

the extreme points of the closed convex set [a, b] (Recall that an extreme point of a

convex set is a point that cannot be expressed as a convex combination of two other

points in the set). These two interpretations yield the following two restatements of

the strong maximum principle:

Definition 3.1.4. We say that u which satisfies the weak maximum principle (version

3) also satisfies the strong maximum principle (boundary version) if the following holds

for each closed convex set K:

If u(xo, to) E aK at an interior point (xo, to) E Q, then u(x, t) E OK for all points

(x, t) E Q with t < to.

Definition 3.1.5. We say that u which satisfies the weak maximum principle (version

3) also satisfies the strong maximum principle (extreme point version) if the following

holds for each closed convex set K:

If for some extreme point v E K, u(xo, to) = v at an interior point (xo, to) C Q,

then u(x, t) = v for all points (x, t) E 0 with t < to.

3.2 System of Diffusions

We now consider the system of diffusions (2.4). How should we define the weak and

strong maximum principles for such a system? The classical formulation in terms

of maximum and minimum doesn't make sense when u is vector valued, but our

reformulation in terms of closed convex sets carries over to higher dimensions. And

so in the case where u is vector valued, we again define what it means for u to satisfy

the weak and strong maximum principles by Definitions 3.1.3, 3.1.4, and 3.1.5.



Again, under mild regularity assumptions on Q, C, and u, we have that solutions

to (2.4) satisfy these three maximum principles.

It is instructive to note the connection between the maximum principles and our

blob picture. In the blob picture, a system of diffusions (with Neumann boundary

conditions) can be viewed as a contracting blob. This insight makes it easy to find

examples which illustrate the importance of the convexity assumption for K in Defi-

nition 3.1.3. Indeed, if K were not convex, it is easy to construct examples where the

blob contracts outside of K (See Figure 3-3).

K K

Figure 3-3:

3.3 Reaction-Diffusion Systems

We first consider reaction-diffusion systems of the form (2.8). To make our analysis

simpler, we consider the specific reaction-diffusion system:

D9u =u Au + #(u)at

where, as usual, # is Lipschitz continuous.

Recall that in our blob picture, we can view the dynamics of this reaction-diffusion

system as a blob which is simultaneously contracting and being pushed by the vector

field #. What should the weak and strong maximum principles look like in this case?

Consider as an example the reaction-diffusion system (2.9) (Deer-Wolf Island).



Suppose we fix the following convex set K in our blob picture at time t = 0 (See

Figure 3-4).

U2

t=0e

t 0 L
t=1

Figure 3-4:

If the weak maximum principle stated in Definition 3.1.3 were to hold, the blob

should remain in K. However, at time t = 1, the blob will in fact have left K (See

Figure 3-4).

On the other hand, if we took K to be the circle seen below, the blob will stay in

K for all time (see Figure 3-5).

t=0

K

t=1

Figure 3-5:

So the weak maximum principle only holds for some K. We need that K be such

that the vector field 4 "points inward" on (including parallel to) the boundary of K.

Whether or not the weak maximum principle holds now depends on the choice of K

and so we include this in our new definition of the weak maximum principle:



Definition 3.3.1. For a given closed convex set K, we say that u satisfies the weak

maximum principle with respect to K if the following holds:

If u(x, t) E K at all boundary points (x, t) E 8Q, then u(x, t) E K for all points

(x, t) E Q.

In Theorem 4.4 of [7], S.D. Eidel'man shows that under mild regularity assump-

tions on Q, L, and u, every solution u of (2.8) satisfies the weak maximum principle

with respect to K for every closed convex set K such that # points inward on the

boundary of K. This is exactly what one would expect from the blob picture!

Note the importance of our assumption that # be Lipschitz continuous: When #

is not Lipschitz continuous, the weak maximum principle with respect to K may not

hold for solutions to (2.8) even when # points inward on the boundary.

For example, consider the vector field given by

1

-sgn(u2) 1u21

and let K = {u : U2 ;> 0}. Standard ODE theory shows that there are integral

curves of # which begin in K and exit K despite the fact that # points inward on the

boundary (See Figure 3-6).

U2

K

Figure 3-6:

With this in mind, we can construct the following counter example: Let u(x, t)

be a solution to (2.8) which is independent of x. Then Lu = 0 and so u(x, t) = u(t)



solves 2 = #(u). As u is independent of x, it is clear that

blob is now just a point which follows an integral curve of

above we see that the weak maximum principle with respect

(See Figure 3-7).

in our blob picture our

#. Taking # and K as

to K doesn't hold for u

U2  K

t U1

t 0

U2  K

t=0

U2  K

t=0

Figure 3-7:

This trick of considering a point-blob along with ODE theory is useful for con-

structing counter examples and we will use it again below.

We can extend our strong maximum principles similarly:

Definition 3.3.2. For a given closed convex set K, we say that u satisfies the bound-

ary strong maximum principle with respect to K if u satisfies the weak maximum

principle with respect to K and in addition the following holds:

If u(xo, to) E aK at an interior point (xo, to) E Q, then u(x, t) C BK for all points

(x, t) E with t < to.

Definition 3.3.3. For a given closed convex set K, we say that u satisfies the extreme

point strong maximum principle with respect to K if u satisfies the weak maximum

principle with respect to K and in addition the following holds:

If for some extreme point v C K, u(xo, to) = v at an interior point (xo, to) E Q,

then u(x, t) = v for all points (x, t) C Q with t < to.

The main result of this thesis is the following theorem.



Theorem 3.3.4. For each closed convex set K such that # points inward on the

boundary, every solution u of (2.8) which satisfies the weak maximum principle with

respect to K also satisfies the boundary strong maximum principle with respect to K.

Combined with Theorem 4.4 of [7], we have the following corollary.

Corollary 3.3.5. Under mild regularity conditions on Q, L, and u, every solution u

of (2.8) satisfies the boundary strong maximum principle with respect to K for every

closed convex set K such that 4 points inward on the boundary.

H. Weinberger first stated the boundary strong maximum principle for reaction-

diffusion systems in his 1975 paper [17]. Weinberger proved Theorem 3.3.4 under

an additional regularity condition on K which he called the "slab condition". In

his 1990 paper [16], X. Wang, gives a geometric proof of Theorem 3.3.4, following

Weinberger's arguments, in the case that the boundary of K is C2. In this case, the

distance function to the boundary of K, d, is C2 in K (at least near the boundary),

and so the boundary strong maximum principle is proved by applying the classical

strong maximum principle to d(u(x, t)). I have removed the regularity assumptions

on K imposed by Weinberger and Chen by proving (3.3.4) using the techniques of

viscosity solutions (see next section).

It is interesting to note that an analogous theorem to Theorem 3.3.4 for the ex-

treme point strong maximum principle does not hold. We construct a simple counter

example via the point-blob technique described above:

Let

#(u =

( ul

and let K = u: u2 + u2 < 1 be the closed unit disk. Then

u(x, t) = cos(t)
sin(t)

is a solution to (2.8) which is independent of x. We have the following blob picture

(See Figure 3-8).



t=0 t=1 t=2

Figure 3-8:

Our blob is a point-blob which travels counter-clockwise around the unit circle.

As every point on the unit circle is an extreme point of K, u takes values at extreme

points of K in the interior of Q, yet u is not constant at earlier times. And so we can-

not hope to have a theorem like Theorem 3.3.4 for the extreme point strong maximum

principle. Therefore, we conclude that the boundary point strong maximum principle

is the true strong maximum principle for reaction-diffusion systems and henceforth it

will be the only strong maximum principle we consider.

3.4 More Complex Reaction-Diffusion Systems

Finally, we would like to state the weak and strong maximum principles for the most

general reaction diffusion system (2.10). To get a feel for things, let's look at the

simpler equation
Bu

= D(u)Au
at

and in fact let's first look at the special case where D(u) is constant and diagonal.

In two dimensions we then have

a 1 = aAui (3.1)at
a2= bAn 2  (3.2)t

(3.3)



We can view ui and u2 as the densities of two non-reacting chemicals. Suppose b > a.

Then the second chemical diffuses faster than the first, and our blob picture might

look like (See Figure 3-9).

U2

t=0 t= 1

U2j

t=2

Figure 3-9:

That is, our blob contracts vertically faster than it does horizontally. Notice what

happens when we overlay the following closed convex set K (See Figure 3-10).

U2j

IK

U
1

t=o0 t= 1 t=2

Figure 3-10:

Even without a vector field # to push it, our blob has contracted outside of K!

So we are going to need some additional conditions on K in order for a solution u of

(2.10) to satisfy the weak maximum principle with respect to K.

Recall that we can view the dynamics of (3.1) in the blob picture by thinking

of D(u) as an eigen-axes field which perturbs the vectors Au. In the case where

a 0
D(u) =,the eigen-axes field looks like Figure 3-11.
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Now let's see what is happening that causes the blob to escape K.

Notice in Figure 3-12 that at the boundary point of K, the vector Au is perturbed

by D(u) to point outside the set K! How can we ensure that at each boundary point

of K, the vector D(u)Au points inward? We know that at each boundary point of

K, Au points inward and we also know that D(u) only perturbs vectors within its

eigen-orthants. Therefore, the key is to consider sets K which are aligned with D(u)

in the sense that for all v E OK, the normal vector to K at v is an eigenvector of

D(u). This will ensure that at each v E oK, the eigen-axes of D(v) are tangent to

oK and so Au will not be perturbed to point outside of K. See Figure 3-13.

D(u)Au(x,t)

-- U(x,t) -

Aligned

Au(x,t)

u~xt); D(u)Au(x,t)

Not Aligned

Figure 3-13:

So for a solution u of (2.10) to satisfy

to a closed convex set K, we need that #$
with K in the sense explained above. It

each of the matrices Mi and we will want

left-eigenvectors of the Mi(v) (recall that

vectors are the same and so this fits with

definition:

the weak maximum principle with respect

points inward on K and that D is aligned

turns out we need a similar condition for

the normal vectors at points v E OK to be

as D is symmetric its left and right eigen-

our analysis above). We give the following

Definition 3.4.1. A closed, convex set K is compatible with #, D, and the Mi if #

points inward on K and for all (x, t) E Q, v E OK, and each vector v normal to OK

at v we have that v is a left eigenvector of D(x, t, v) and each of the Mi(x, t, v).

In their 1977 paper [3], K. Chueh, C. Conley, and J. Smoller prove that, under



mild regularity assumptions on Q, L, and u, solutions u of (2.10) satisfy the weak

maximum principle with respect to K for every K compatible with #, D, and the Mi.

The main result of this thesis is the following theorem:

Theorem 3.4.2. For each closed convex set K compatible with $, D, and the Mi,

every solution u of (2.10) which satisfies the weak maximum principle with respect to

K also satisfies the boundary strong maximum principle with respect to K.

Combined with the result of Chueh, Conley, and Smoller, we have the following

corollary.

Corollary 3.4.3. Under mild regularity conditions on Q, L, and u, every solution u

of (2.10) satisfies the boundary strong maximum principle with respect to K for every

closed convex set K compatible with #, D, and the Mi.

In his 1990 paper [16], X. Wang, gives a geometric proof of Theorem 3.4.2 in the

case that the boundary of K is C2. I have removed the regularity assumptions on K

imposed by Chen by proving (3.4.2) using the techniques of viscosity solutions (see

next section).



Chapter 4

Overview of the Argument

In this section, we prove Theorem 3.3.4 for the simple reaction-diffusion system

Ou
= Au + #(u) (4.1)

The proof of the more general Theorem 3.4.2 for general reaction-diffusion systems

2.10 follows the same outline as the proof in this simple case and is given in the next

section.

We assume that u E C'1(Q; Rk) nfC(Q; Rk) satisfies (4.1) and that u(x, t) E K

for (x, t) E OQ (and hence for all (x, t) E Q by the weak maximum principle), where

# is Lipschitz and satisfies the inward pointing condition for K i.e.

#(z) -y > 0

for all z E OK and inward pointing normal vectors v to the boundary of K at z. Here

we say that v at w C OK is inward pointing if there exists a supporting hyperplane f

of K which touches K at w and has v as its "inward pointing" normal.

Suppose also that u(xo, to) E OK for (xo, to) E Q. Our goal is then to show that

u(x, t) E OK for all (x, t) E X x [0, to]. As our proof extends X. Wang's proof from

[16], we first sketch that proof of the boundary strong maximum principle for the case

that the boundary OK is C2 (and much of our notation is from [16] as well). For



z E K, let

d(z) = inf |z - w|
wE&K

be the distance function to the boundary of K. As OK is C2, it can be shown that

d(z) is also C2 (at least near the boundary of K).

We know that u(x, t) is C2 in the interior of Q, and so we have that d(u(x, t))

is C2 (at least for (x, t) such that u(x, t) is near the boundary of K). If we let

d(x, t) = d(u(x, t)), it is easy enough to show that (using (-,-) to denote the Euclidian

inner product)

dt(x, t) =Axd(x, t) + Vzd(u(x, t)) - #(u(x, t)) - Z([V2d(u(x, t))]u, (x,t),ux,(x,t))

>Axd(x, t) + Vzd(u(x, t)) -(u(x, t))

where the inequality holds because d(z) is a concave function in K. Next, for z E K,

let y(z) be the point on OK closest to z. By our inward pointing condition we have

that for any z E K,

Vzd(y(z)) - #(y(z)) 0

and so combining this with our previous inequality we get that

dt(x, t) > Axd(x, t) + Vzd(u(x, t)) -(u(x, t)) - Vzd(y(u(x, t))) - (y(u(x, t)))

We next note that Vzd(z) = Vzd(y(z)) and that |Vzd(z)| = 1 for all z E K. And so

we have that

dt(x, t) > Axd(x, t) + Vzd(u(x, t)) -(u(x, t)) - Vzd(u(x, t)) -#(y(u(x, t)))

= A d(x, t) + Vzd(u(x, t)) (#(u(x, t)) - #(y(u(x, t))))

> A d(x, t) - Clu(x, t) - y(u(x, t))

= A d(x, t) - Cd(x, t)

where C is the Lipschitz constant for #. We now apply the classical strong maximum



principle to the partial differential inequality

dt(x, t) ;> Axd(x, t) - Cd(x, t) (4.2)

to see that if d(xo, to) = 0 at some (xo, to) in the interior of Q, we have that d(x, t) = 0

for all (x, t) E X x [0, to]. This then clearly implies the boundary strong maximum

principle since d(x, t) = 0 iff (x, t) E OK.

In order for this proof to work, however, we need that OK be C2. Otherwise, we

cannot know that the partial derivatives of d will exist and equation (4.2) will have

no meaning in the classical sense.

We now show that a proof similar to this can be used for arbitrary convex sets K,

by showing that in general, j is a viscosity super solution to the differential inequality

(4.2). We will be done once we show this since an analogous strong maximum principle

for viscosity solutions is known (see proof in chapter 6).

We argue that d(x, t) is a viscosity super solution to (4.2) as follows. First, we

note that as K is a convex set,

d(z) = inf f(z)
f

where f ranges over all supporting affine functionals of K. We say that an affine

function f(z) is a supporting affine functional of K if f(z) is the distance from z to a

supporting hyperplane of K, which by abuse of notation we also call E.

Next, we note that for each z, this infimum is actually achieved. That is, for each

z E K, there is at least one point y(z) E OK and supporting affine functional f such

that

z - y(z)| = e(z) = d(z)

We display this graphically in Figure 4-1.

So in particular, letting (x, t) = f(u(x, t)), we have that

d(x, t) = d(u(x, t)) = inf f(u(x, t)) = inf f(x, t)
4 e
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y(z)

I -
Figure 4-1: Picture of the f which achieves the infimum.

and for each (x, t), this inf is achieved for some f. We say that a supporting affine

functional f(z) is active at (x, t) if f in fact achieves this infimum at (x, t). That is,

f(u(x, t)) = inf f(u(x, t))
t

Next, we examine what differential equation 1 satisfies.

have that Vzf(z) =V is constant. We therefore compute:

OBi(x, t)

Since £(z) is affine, we

= &t[E(U(X, t))] = Ve -ut(x, t) = VE -[Au(x, t) + #(u(x, t))]

= AC(u(x, t)) + V - #(u(x, t))

So for each supporting affine functional f(z), we have that

Et(X, t) = AJf(x, t) + VE -#(u(x, t))

Furthermore, at points (x, t) where f is active, by our inward pointing condition we

have that Vf - #(y(u(x, t))) > 0, and so at these points we have that

ft(X, t) = AxE(x, t) + Vf - #(u(x, t))

" AX(x, t) + VE - #(u(x, t)) - V -q#(y(u(x, t)))

> A E(x, t) - Clu(x, t) - y(u(X, t))|

2 Af(x, t) - CE(X, t)



where C is the Lipschitz constant for #. Here we have used the fact that since f is

active, f(u(x, t)) = d(u(x, t)) = |u(x, t) - y(u(x, t))|.

So we have that

d(x,t) = inf f(x, t)

and that

Bl(.-, ) Al(±, ) - Cl(i, ) (4.3)

for each pair of a point (2, f) and supporting affine functional f active at (2, i). It

therefore follows that

9td(x, t) > Axd(x, t) - Cd(x, t)

in the viscosity sense, because if 0(x, t) is any smooth function touching d(x, t) from

below at the point (±, i), we have that

, ) I= d(, i), and 4(x, t) d(x, t) in a neighborhood of (zt)

Taking f to be the supporting affine functional active at (,), we then have that

(2,1) = £(2, ), and 4(x, t) < f(x, t) in a neighborhood of (4)

Thus, (x, t) also touches the C,1 function f(x, t) from below at (z, i), and so

8t@ = Ot!(, i), and AZ@~ < Axf(., i)

from which, along with (4.3), it follows that

t@(i, i) Ay@(i', i) - C@(z, t)

Since this is true for all points (2, t) and all smooth functions 4 touching d from below

at ( , i), we have shown that d(x, t) is a viscosity super solution to (4.2).
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Chapter 5

Main Proof

This section contains the contents of my paper [8], and is devoted to proving Theorem

3.4.2. To be precise, let X C R" be open and connected, and set Q = X x (0, oc).

Suppose u E C2,1 (Q; Rk )l C(Q; k) satisfies a parabolic system of equations of the

form

au 892U au
= D(x, t, u) 1:a j (x, t) +- Mi(x, t, u) + #(x, t, u). (51

at 3xiox+ i axi

where the aij are real-valued, # takes values in Rk, and D(x, t, z) and each of the

Mi(x, t, z) take values in the space of k x k matrices.

We make the following regularity assumptions: As a function of z, we assume that

#(x, t, z), D(x, t, z) and each of the Mi(x, t, z) are Lipschitz continuous uniformly for

(x, t) in compact subsets of Q. We assume also that each of the asj(x, t) is locally

bounded in Q and that D(x, t, z) and each of the Mi(x, t, z) are locally bounded in

Q x R'k. Finally, we assume that the matrix {ajj(x, t)} is symmetric and locally

uniformly positive definite in Q and the matrix D(x, t, z) is locally uniformly positive

definite in Q x Rk.

Next, suppose that K is a closed, convex subset of Rk which is compatible with

#, D, and the Mi in the following sense: For all (x, t) E Q, v E &K and each vector

v which is inward pointing at v (See the next subsection for the definition of "inward

pointing at v."), we have that #(x, t, v) - y > 0 and that v is a left eigenvector of



D(x, t, v) and each of the Mi(x, t, v).

We will show that if

u(x, t) E K for all (x, t) E Q, (5.2)

then

u(xo, to) E K for some (xo, to) E Q == u(x, t) E K for all (x, t) E X x [0, to],

(5.3)

and we will refer to the implication in (5.3) as the strong maximum principle

with respect to K for solutions to (5.1). Under circumstances when solutions to (5.1)

satisfy a weak maximum principle with respect to K of the form

u(x, t) E K for (x, t) E 8Q == u(x, t) E K for (x, t) E Q, (5.4)

it is obvious that (5.2) can be replaced by

u(x, t) E K for (x, t) E 8Q.

5.1 Proof of (5.3)

We begin with the following definitions:

Definition 5.1.1. Given a convex set K and a boundary point v E K, a function

f : K --+ R is called a supporting affine functional of K at v if e(z) > 0 for all

z E K, £(v) = 0, and |VW(z)| = |Vf|= 1 (That is, f(z) is the distance to a supporting

hyperplane of K at v, which, by abusing notation, we also denote by f).

We say that a function f : K -> R is a supporting affine functional of K if it is a

supporting affine functional of K at some v E OK.

Definition 5.1.2. For v - OK, a vector v is an inward pointing vector at v E K if

there exists a supporting affine functional f(z) at v such that VE = v.



Note that in our definitions we include the assumption that an inward pointing

vector has unit length and that a supporting affine functional has unit-length gradient.

For geometric reasons, these are nice assumptions to make as they allow for the

intuitively appealing interpretation of f(z) as the distance to a supporting hyperplane,

which, by abusing notation, we also denote by f.

Given v E OK, we use L, to denote the set of all the supporting affine functionals

f of K at v. By well known results (e.g., the Hahn-Banach Theorem), L, # 0 for

every v E OK. For z E K we let d(z) = inf{|z - vi : v E oK} denote the distance

from z to the boundary of K.

First we present a lemma from convex analysis.

Lemma 5.1.3. For any convex set K,

d(z) = inf e(z),f

where the infimum is taken over all supporting affine functionals E. Furthermore, for

each z E K, there is a (possibly non-unique) point v E K and an f E Lv such that

d(z) = Iz -v|= (z).

In fact, Lv consists of just this one supporting affine functional f.

Notice that there are two points, vi and v2 , on the boundary which are closest to

z and that neither is at a corner of OK (where Lv has more than one element).

Proof. It is easy to see geometrically that d(z) < f(z) for each f: Given e, f(z) =

Iz - f4, where f is the projection of z onto the supporting hyperplane determined by

f. The line from z to f intersects K at some point w. Thus

d(z) < \z - w|<|z - f |= f(z).

Next we show that the infimum over f is in fact achieved. Using B(z, r) to denote

the closed ball with radius r centered at z, we have that d(z) = inf{|z - w| : w E



OK} = inf{Iz-w: w E OKfnB(z, 2d(z))}. By compactness, this infimum is achieved

and we have d(z) = jz - vi for some v E OK.

Take f E L,. We have shown that d(z) < e(z). Since v E e, we also have that

E(z) = dist(z, e) < jz - vi = d(z). And so it follows that d(z) = f(z).

So for all f E Lv we have that f(z) = |z - vJ which means that the line from z to

v is normal to the hyperplane f. As there is only one hyperplane with this normal

which touches v, we have that L, is just the singleton {}.

In the remainder of the paper we will use the notation d(x, t) for d(u(x, t)) and

f(x, t) for E(u(x, t)). The following is the key result proved in this section.

Theorem 5.1.4. d(x, t) satisfies, in the viscosity sense, a parabolic equation of the

form

-a - aig (x, t) -xax )3i(x,7 t) ai+ -y(x, t)d > 0,

where y(x, t) > 0 in Q, each of the aij, Oi, and -y are locally bounded in Q, and {ai}

is locally uniformly positive definite in Q.

Proof. Call a quadruple (x, t, v, f) nice if

1. (x, t) E Q, v E OK, and f is a supporting affine functional of K at v.

2. d(u(x, t)) = |u(x, t) - vj.

By the previous lemma, we know that for each (x, t) we can find at least one

v E OK satisfying the second condition and this in turn will determine a unique choice

of F satisfying the first condition. We then also have that f(u(x, t)) = |u(x, t) - v|.

For any nice quadruple we have that



Li = V E-ut

= VE - [D(x, t, u) aij (x, t)ux,2 + Mi (x, t, u)u, + #(x, t, u)]
i~ji

= VE -[D(x, t, u) ai2 (x, t)ux, + Mi(x, t, u)uxi + #(x, t, u)]
i~j 1

-VE - [D(x, t, v) E ai (x, t)ux~xj + E Mi(x, t, v)ux, + #(x, t, v)]

+VE - [D(x, t, v) 1 ai3 (x, t)ux + M (x, t, v)ux, + #(x, t, v)]

w c(xt)eZaij(x,t)ux~xI + ei(xt) luxl +p(x,t) , - vi
iji i

+th(X, te v l) E a (x, t) (V uxx) + A (x, t, v, V) (V u) + 0
i~j i

- c(x~t)II Zaij(xt)uxxjII + Zmi(x,t) Ilux~lJIxt
i~j i

+l(x, t, v7 V) |j E x,tu(x|+ xt + )u A(|, t, p, t) . I
i~j i

where c(x, t)fr m(x, t), and p(x, t) are the Lipschitz constants for D(x, t, -) Mi(, t, a)

and p (x, t, ), respectively, and u and A are the eigenvalues for D and Mi at v cor-

responding to the left eigenvector Vf (recall that WL is inward pointing at v). Note

that in the inequality step we have used the fact that (x, t, v) Ve> 0 which follows

from the fact that VW is inward pointing at v and from our compatibility assumption

on q5 and K.

Next, let -y(x, t) = [c(X, t) 11 Zij aij (X7 t)ux~xj 11 + mj n(x, t) Iux 11 + p(x, t)1] -it
follows from our regularity assumptions on D, Mi, and q$ that c(x, t), mni(x, t), and

p(x, t) are locally bounded. Since u c C' 1 (Q), its first and second spatial derivatives

are locally bounded, and so, since the ai (X, t) are locally bounded, it follows that

-y(x, t) is locally bounded. As each of the Lipschitz constants is positive, it is clear

that -y(x, t) > 0.



Thus we have shown that for each nice quadruple (x, t, v, f),

ft - Pu(x, t, v, V) E ai,(x, t) - Ai(x, t, v, VE) x + -y(x, t)e 0. (5.5)
i~j i

As remarked at the outset of this proof, given (x, t) E Q we can always find a

v E aK and f to form a nice quadruple (x, t, v, f). In general there will be more than

one way to extend (x, t) into a nice quadruple, but for our purposes we only care that

an extension is possible.

To avoid the axiom of choice, we now describe a method of choosing an extension:

Given (x, t) E Q we need that v E oK be such that lu(x, t) - vi = d(u(x, t)). The

set of v which satisfy this relation is a closed and bounded and hence compact subset

of R'. We first look at v in this set with smallest first component. If there is a

unique such v we choose it. Otherwise, among those v we look for the one with

smallest second component and we continue this algorithm until we find a unique v.

We denote this v by v(x,t) to make clear its dependence on (x, t). Lastly, once we have

V, f is uniquely determined (see Lemma 5.1.3) and we denote it by Etz,t).

Next we let jp(x, t) = p(x, t, V(x,t), Vf(x,t)) and A (x, t) = Ai(x, t, v(x,t), Vf(.,t)). We

claim that fi(x, t) and the Ai(x, t) are locally bounded. This is true as for any compact

set C c ,

sup A(X, t) < sup sup p(x, t, v, Vf)
(X't)E C (X't) EC {v:|u-o l=d(u)}

< sup sup |ID(x,t,v)| < oo,
(x,t)EC {v:|u-v|=d(u)}

where ||DII denotes the operator norm of D which is locally bounded by our regularity

assumption on D. The same argument works for the Aj.

We next claim that j(x, t) is uniformly bounded away from 0 on compact sets.

This is true as for any compact set C c Q,

inf >(x, t) > inf inf p(, t,v), V)
(X,t)EC (X,t)E C {v:|u-vl=d(u)}

> inf inf A1 (D(x, t, v)) > 0,
(X't)E C {v:ju-ol=d(u)}



where we denote by A1 (D) the smallest eigenvalue of the positive definite matrix D.

Here we have used our assumption that D(x, t, v) is uniformly positive definite on

compact sets.

Finally we reach the crux of our argument. We claim that d solves

dt - A(x, t) T aig(x, t)dx1 2, - Ai(x, t)dxi + 'y(x, t) 2 0
i~ji

in the viscosity sense.

Suppose that 4 E C (Q) touches d from below at the point (2, i), i.e.

( )= j(2, i), and O(x, t) d(x, t) in a neighborhood of (i, i).

We extend the point (, ) to the nice quadruple (i, I, ( (H,)). Since by Lemma

5.1.3, d(z) f(j,)(z), we then have that

(, I)= (,)(iI, i), and @ (x, t) < i(,,)(x, t) in a neighborhood of (i, t).

Therefore, @ also touches the function f(,t) from below at (2,, and so

a a -
-(i,)( , t), and Ax' - Ax£(it)(X, ).

It then follows from (5.5) (and recalling the definitions of f and Aj) that

bt- ft(x, t) E aa2 (X, t~xx E j A(X7 t)7px2 + 'Y(X, t)4' > 0
i~j i

Since this is true for all points (z, f) and all smooth functions 4 touching d from below

at (s,, we have shown that d(x, t) solves

dt - A(x, t) E ai (x, t)dxj - l (x, t)dx, + -y(x, t)d > 0

in the viscosity sense.



The theorem is now proved by letting Oi = A2 and ai3 = Aaij. Note that {ai} is

uniformly positive definite on compact sets as {aij} is uniformly positive definite on

compact sets and A is uniformly bounded away from 0 on compact sets.

In order to complete the proof of (5.3), we need the following version of the strong

maximum principle for supersolutions in the viscosity sense:

Theorem 5.1.5. Suppose that f E C(O; [0, oo)) satisfies

- E ai_ (x, t) -2 f A(X, t + y(x, t)f > 0 (5.6)at .j . xixy .-xi

in the viscosity sense. Suppose further that in Q, -y > 0, each of the aj, /3p, and -y are

locally bounded, and {aij} is locally uniformly positive definite. Then

f(xo, to) = 0 for some (xo, to) E Q ==> f(x, t) = 0 for all (x, t) E 0 with t < to.

Note that by applying this theorem to f = d > 0 and using Theorem 5.1.4, we

get (5.3) as an immediate consequence.

Theorem 5.1.5 follows from an extension of the proof of the classical strong max-

imum principle given by Nirenberg in [11] to the case of viscosity solutions given by

F. Da Lio in [61. Da Lio's proof handles more general PDE but has the drawback

that the PDE must have continuous coefficients. We do not make any continuity as-

sumptions on the coefficients of our PDE (5.6), and so our PDE does not directly fall

under the assumptions of Da Lio's result. Nevertheless, as our PDE (5.6) is of such a

simple form, Da Lio's method of extending Nirenberg's proof can still be applied to

prove Theorem 5.1.5. We present this proof in the next chapter.



Chapter 6

Proof of the Strong Maximum

Principle for Viscosity Solutions

In this section we prove the following strong maximum principle for viscosity solutions:

Theorem 6.0.6. Suppose that f G C(f; [0,oo)) satisfies

Of _F(f):= a Z aej(x, t) axf
i~j a i

Of
Zi(x, t)- + 7(x, t)f 2 0

in the viscosity sense, where, in Q, - > 0, each of the aij, 0j, and -y are locally

bounded, and {ajj} is locally uniformly positive definite. Then

f(xo to) = 0 for some (xo,to) E ==- f(x,t) = 0 for all (x,t) E Q with t < to.

Our proof reproduces a specific case of a more general result of F. Da Lio [6] )

whose proof follows the classic argument of L. Nirenberg [11]. We first prove the

following claim:

Claim 6.0.7. If f(xo, to) = 0 for some (xo, to) E intQ then f(x, to) = 0 for all x E X.

That is, f(x, t) is identically 0 on the horizontal strip X x {t = to}.

Proof 6.0.8. Suppose this is not the case. Then letting Po = (x0 , to), we have a

point Pi = (x1, ti) such that ti = to and f(P 1 ) > 0. By the continuity of f, we can



find a pair of points P2 = (x 2 , t2 ), P3 = (x 3 , t 3 ) in X x {t = to} such that f(P 2 ) = 0,

f(P) > 0, and dist(P2 , P3) < dist(P 3 , aQ) (If Po and Pi are sufficiently close we can

just take those as P2 and P3. If not, we can find P2 and P3 on the line connecting P

and P1). Our picture looks like Figure 6-1.

t

t=tlo 8 '

P1  P3  P2  PO
u>0 u>0 u=0 u=0

x

Figure 6-1:

Since f(P 3) > 0, by the continuity of f there exists a ball of radius e > 0 centered

at P3 such that f(x, t) > 0 uniformly in this ball (i.e. f(x, t) ;> C > 0 for some C in

this ball). Note that since f(P 2) = 0, it must be that E < dist(P 2 , P3) < dist(P 3 , &9)

and so this ball is contained in Q. Next, construct a family of ellipsoids S,\ which are

centered at P3 , whose vertical axis has length !, and whose horizontal axes each have

length A. Our picture now looks like Figure 6-2 (Note that in our figures we will drop

elements as they are no longer needed):

t

t=to

x

Figure 6-2:

Starting with A = 0 and letting A increase, by the continuity of f we eventually

find an ellipsoid EX such that

f(x, t) > 0 for all (x, t) E intSx and f(x*, t*) = 0 for some point (x*, t*) E 09x



Note that this will happen before the ellipsoid extends

f(P 2) = 0 and P2 is closer to P3 than the boundary of Q.

that x* # x 3 (i.e. P* is not at the top or bottom of the

looks like Figure 6-3.

P*

past the boundary of Q as

Let P* = (x*, t*), and note

ellipsoid). Our picture now

Figure 6-3:

Next, let B1 be a closed ball of radius R centered at a point (z, 1) such that B1

lies inside S and touches Ex at P*. Furthermore we take R small enough that z # x*

which we can do since P* is not at the top or bottom of the ellipsoid. Our picture

now looks like Figure 6-4.

Figure 6-4:

Let g(x, t) = -e-OR 2 + e-l(x,t)-(I 2 , where r is a constant we will tweak later,

and note that

g(x, t)

g(x, t)

g(x,t)

> 0 for (x, t) E intB1

= 0 for (x, t) E 0B1

< 0 for (x,t) g B1

t=to 
P

t A



Next, note that

F(g) = g a y (X, t) -0(x, 0) +7x ~
at 2,a)ax i x

-27(t - j)e I ~x0-(z)P 4n2 1ai (X, t)(Xi - ii)(Xi - zj)e -o,1(zt)P

i~j

+2-q > aii(X, t)e-n(Xt>-(:it)j 2 + 277 E,3i(x, t)(xi _ - ejXt-Ijj

i 2

+-y(x, t)[- e-R 2 +

By our assumptions on aij, 3, and y we can find a ball B 2 centered at P* such that

after tweaking q, F(g) < 0 uniformly on B 2: Note that since y(x, t) 2 0, we have

that

F(g) <; 2je-n(xt0-(i') 2 [-(t - - 27 Eai (x, t)(xi - (x- j)
i~j

+ ai(x, t) + Z#3i(x, t)(Xi - ii) + - (X, t)]

Choose a B 2 centered at P* sufficiently small that B2 C Q and (z, 9) ( B 2. Then by

our uniform positive definiteness assumption on {aij},

aij (x,t)(Xi - zi)(xj - Y) 2 KIx - z|2 > K 2 > 0
i~j

in B 2 for some constants K 1, K 2 . By our boundedness assumption on the coefficients,

all of the other terms above are bounded on B 2, and so after choosing a sufficiently

large q, F(g) < 0 uniformly on B 2 .

Let U =B 1  B 2. Our picture now looks like Figure 6-5.

We claim that on OU, f(x, t) > Eg(x, t) for some E > 0. On one part of OU

(the upper arc in our picture), this is trivially true as g = 0 along this part of the

boundary, and we know that f 2 0 everywhere. On the other part of the boundary



Figure 6-5:

(the lower part in our picture, which we take to include its boundary so that it is

closed and hence compact) we have that f > 0 and hence f > 0 uniformly on this

part of the boundary. Since g <; 1 we can choose an s sufficiently small that f Eg

on this part of, and hence on all of OU.

We next claim that in fact f 2 Eg in all of U: Suppose not. Let (s,) be the point

in U such that

f (2,)- Eg(:, ) = inf {f (x, t) - Eg(x, t)} < 0
(x,t)EU

Then, as g is smooth, and F(f) 2 0 in the viscosity sense, it follows from the definition

of viscosity supersolution that

1
F(g)(,)= -F(Eg)(, t) F 0

Since U C B2 and F(g) < 0 in B 2, this yields a contradiction.

As g < 0 outside of B1 , it follows that f eg on all of B 2. Since we have that

f(x, t) > Eg(x, t) in B 2

f(x*, t*) = 0 = Eg(x*, t*)



we see that eg touches f from below at (x*, t*) and since f is a viscosity supersolution,

this implies that
1

F(g)(x*, t*) = -F(eg)(x*, t*) > 0

But this contradicts our earlier calculation that F(g) < 0 in B 2.

We have so far showed that if f(xo, to) = 0 for some (xo, to) c intQ then f 0 on

the horizontal strip X x {t = to}. We next want to show that in fact f(x, t) 0 for

t < to as well. To this end, we will need the following lemma:

Lemma 6.0.9. Suppose P* E int2, and let R be a rectangular box with P* in the

center of its top face. That is, R takes the form

{X - a1, x* + a1} x {x* - a2, X*+ a2} X - x {x* -an, X*+ an} x {t* - a, t*}

for some positive constants a, a1,... , an. Then if f(P*) = 0, there exists a point P

in the interior of R such that f(P) = 0.

So far this seems far from what we want as this lemma only guarantees us that

one point in every such rectangle will have f = 0. But in fact, once we know this,

we can argue by geometry that in fact every point in the interior of R has f = 0 and

then in turn argue that f = 0 on all of X x [0, to]. We save these arguments for after

the proof of this lemma. The proof of this lemma resembles the proof of the previous

claim.

Proof 6.0.10. Suppose not. Then f > 0 everywhere in the interior of R. Let

h(x,t) = -(t - t*) - Kjx - x*12

where K > 0 is a constant to be tweaked later. Note that the set {(x, t)Ih(x, t) = 0}

is a paraboloid, and below it h > 0 and above it h < 0. Our picture looks like Figure

6-6.



Figure 6-6:

We compute that

F(h)
02 h

- aij(x,t) -
ax 3x z Oh

(X t) Oh+ -y(x,t)h

= -1- [-2K aij(x,t)6ij -2K f3i(x,t)(xi-x*)]

+y(x, t)[-(t - t*) - Kjx - x* 2]

We can find a ball B centered at P* such that after tweaking K, F(h) < 0 uniformly

on B: As -(x, t) > 0, we have that

= -1+2K[Zaii(x,t) + Z A(x, t)(xi - xi)]

+-Y(x, t)(t* - t)

First take a ball B 1 c Q centered at P*. Then by our boundedness assumption

on -y, -y(x, t) < F on B1 for some constant F > 0. Next take B C B1 to be a

smaller ball centered at P* and small enough that -y(x, t)(t* - t) < -. Then on B,

Ei (x, t) + EZ O#(x, t)(xi - x*) < C for some constant C > 0. And so

1
F(h) < - + 2KC

and so after taking K > 0 to be sufficiently small, we have that F(h) < 0 uniformly

on B.

Let U = B nf {(x, t)|h(x, t) > 0}. Our picture now looks like Figure 6-7.

We claim that f > Eh on OU for a sufficiently small E > 0. On the upper part of

h<O

>O
h=O

F(h)



Figure 6-7:

9U we have that h = 0 so this is trivially true. On the lower part (which we consider

to be closed and hence compact) we have by assumption that f > 0 and hence f > 0

uniformly. Since h is bounded from above on R, we can find the desired E > 0.

We next claim that in fact f Eh in all of U. This follows from the same argument

made in the proof of the previous claim from the fact that F(f) > 0 in the viscosity

sense, h is smooth, and F(h) < 0 in U

Finally, since h < 0 on B\U we have that f Eh on all of U. Since f(x*, t*) =

0 = Eh(x*, t*) we see that eh touches f from below at (x*, t*) and so since f is a

viscosity supersolution this implies that F(h)(x*, t*) 0. But this contradicts the

fact that F(h) < 0 in B.

We now argue that in fact, under the conditions of the previous lemma, we have

that f = 0 for all of the points in the interior of R. Suppose this is not the case.

Then there exists some point Pi in the interior of R such that u(P) > 0. Traveling

along the line from P1 to P*, there is a first point P 2 such that f(P 2) = 0 (it may be

that P2 = P*). We can now draw a rectangle R' such that P2 lies in the center of the

top of R' and P1 lies on the bottom of R' (see Figure 6-8).

By our previous lemma, there is some point Q in the interior of R such that

f(Q) = 0. And so by our earlier claim we have that every point on the horizontal

strip containing Q also has f = 0. In particular there is one such point on the line

between Pi and P2 . This yields a contradiction, however, as every point on the line

between Pi and P2 satisfies f > 0 (see Figure 6-9).

It is now clear that if f = 0 at some point Po = (xo, to) E intQ, then f = 0 on

X x [0, to] since if this weren't the case, there would be a point S in X x [0, to] such



Figure 6-8:

Figure 6-9:

that f(S) > 0. As X is connected, there exists a continuous path increasing in time

from S to Po. Traveling along this path, we hit a first point P* where f = 0. Then

if we draw a rectangular box with P* in the center of its top, we have that f = 0 in

the interior of this box. But this contradicts the fact that P* is the first point where

f = 0 on the line from S to Po (see Figure 6-10).

x

Figure 6-10:

t g
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Chapter 7

Second Result: Introduction

In this second half of the thesis we give an approximation scheme for solutions to

reflected SDE of the Stratonovich type. We will show that the distribution of the

solution to such a reflected SDE is the weak limit of the distribution of the solutions

of the reflected SDEs one gets by replacing the driving Brownian motion by its N-

dyadic linear interpolation. In the last chapter, we explore the implications of this

and in particular show how we can infer geometric properties of the solutions to a

Stratonovich reflected SDE from those of the solutions to the approximating reflected

SDE. The results of this half of the thesis are from joint work with Professor Daniel

W. Stroock.

After proving this result, we discovered the 2001 paper [9] by A. Kohatsu-Higa

which contains a more general result. Specifically, Kohatsu-Higa shows that a more

complex class of reflected SDEs is stable with respect to the driving process. In

particular, taking the N-dyadic linear interpolation of Brownian motion as the driving

process and passing to the limit, one gets our result. Moreover, one gets convergence

pathwise almost surely.

Our proof is however substantially different from the one in [9]. As we only

prove weak convergence for our approximations, we are able to give a proof which

doesn't require as much background and relies mainly on familiar methods of proof

(e.g. Kolmogorov's criterion and the martingale problem). We therefore believe our

proof has merit as well.



In his 1999 paper [12], R. Petterson also gives a proof of our result, but his proof is

limited to the case when the domain of reflection is convex. In our paper we consider

more general domains.

In this chapter we first lay out the background for our result. We explain the

Skorohod problem and give the definition of a reflected SDE. We then give a statement

of our result. Finally, in the last section we explain the structure of this half of the

thesis.

7.1 Skorohod Problem

We begin by introducing the (deterministic) Skorohod problem: Let 0 C Rd be a

domain and to each x E 90 assign a nonempty collection v(x) C Sd-1 of of vectors

in the (d - 1)-dimensional unit sphere. Given a continuous function wt : [0, oo) - Rd

with wo E 0, we say that a solution to the Skorohod problem for (0, v(x)) is a

continuous function xt : [0, oc) -+ 0 and a continuous function of locally bounded

variation Lt : [0, oc) - Rd such that

xt =wt + Lt,

|LIt = 1{x1Gaojd|Lis,

and Lt = j v(x,)diL|,,

where |Lit denotes the total variation of Lt by time t, and the third line is a shorthand

way of expressing
dLi
dLt G V(xt), Vt.

We will often speak of wt as being the "input" and xt as being the "output" of the

Skorohod problem.

We present the following intuitive picture of the Skorohod problem: Think of the

function wt as being a set of instructions we feed to a robot telling it how to move,

i.e. at time t, the robot should be at position wt. Left to carry out its instructions,



the robot happily traces the path described by the function wt.

Suppose now that the boundary 00 acts as a wall through which the robot cannot

move and when the robot contacts the wall at a point x E 00 it is pushed back in

one of the directions v E v(z). The robot, however, is oblivious to this and thinks

it is still on its original course and continues to carry out its movement instructions.

And so its final path, which we denote xt, is a perturbation of its programmed path

wt (See Figure 7-1).

0 0

A

WO .~- - - -'--' W

,'' 
X

Wtt

Figure 7-1:

If we let Lt = xt - wt, then Lt records the total perturbation up to time t of

the robot from its intended path. It makes sense that Lt should only change when

ze E 80 and then Lt should only change in one of the directions v E v(Xt).

In this thesis we will consider a certain class of domain which was first considered

by P. L. Lions and A. S. Sznitman in [10].

Definition 7.1.1. A set 0 is admissible if the following hold:

1. (a) There exists a Co > 0 such that for all x' E 0, x C 00, and v C v(x),

(z' - z) -V + CoIx - x'j2 > 0.

(b) Furthermore, if for any point x E 00 there exists a non-zero vector v E Rd

and constant C > 0 such that

(z' - x).v+Clx-x'I' 2 0, V'E0,



then - E v(x).

2. There exists a function # C C 2 (Rd; R) such that

V#(x) -v > a > 0

for all x E 0, v E v(x).

3. We have the following "circle covering" condition: There exist n > 1, A > 0,

R > 0, ai,..., a, C Rd with |ail = 1 Vi, and xi,...,xu E00 suchthat

n

00 C U B(xi, R)
i=1

and

x E 80 nB(xi, 2R) ==> v(x) -ai > A > 0.

When 0 is smooth, Part 1 of Defn 7.1.1 says that for each x E 80, v(x) consists

of a single element, the inward pointing unit normal to 0 at x. For more general

0, Part 1 of Defn 7.1.1 says that v(x) consists of all of the (there may be more than

one at, say, a corner) inward pointing "normal vectors" to 0 at x. Part la) gives

a uniform exterior sphere condition, and Part 1b) ensures that no "normal vectors"

are excluded from v(x).

Part 2 and Part 3 of Definition 7.1.1 are regularity requirements on 00 which

ensure that the "normal vectors" don't fluctuate too wildly. In particular when 0 is

bounded, Part 2 implies Part 3:

Theorem 7.1.2. If 0

Definition 7.1.1.

Proof 7.1.3. As 00 is

Take e = 2. Then there

is bounded and admissible, then Part 2 implies Part 3 in

compact it follows that V# is uniformly continuous on 00.

exists a 6 > 0 such that

X, y E 00, |x - y| < 6 =-> |V#(x) - V#(y)| < E.



So for y E B(x, 6), we have that for v E v(y),

a
V#b(x) -v = V#(y) -v + (V#(x) - V#(y))- v > a - E = -

As 0 is compact we can cover it with a finite collection of balls, B(x1, ), . , B(X, A),

with Xk E 0. Take ak = and letA= 2 ma > 0. Then for y E B(xk, 6)

and v E v(y), we have that

V#(X) -)v a

And so letting R = 6 we are done.

In their paper [10], Lions and Sznitman show that there exists a unique solution

to the Skorohod problem for any admissible domain 0.

7.2 Reflected Brownian Motion

We now can define reflected Brownian motion, i.e. Brownian motion which "reflects"

off of the boundary to stay in some domain 0. We do this pathwise. Simply take

any d-dimensional Brownian motion Wt defined on a probability space (Q, F, P) and

define Xt(w) to be the output to the Skorohod problem with W(w) as the input. We

call this process Xt reflected Brownian motion and it is clear that it behaves as we

would hope.

7.3 Reflected SDE

Defining reflected SDE in general is not as simple a task as we cannot simply apply

the deterministic Skorohod problem to each path. We give the full setup:

Let 0 C Rd be a domain and to each x E 80 assign a non-empty collection

v(x) of unit vectors v C Rd. Suppose also that we have an r-dimensional Brownian

motion Wt. For xO E 0, b E C(O; Rd), and o E C(O; Mat(R, d, r)) 1, we seek a

'Mat(R, d, r) denotes the space of real valued d x r matrices.



continuous process Xt : [0, oo) ->( 0 and a continuous process of locally bounded

variation Lt : [0, oo) -* Rd such that

Xt =xo + ft c(X,)dW + J b(X)ds + L,
JO 0o71

Lit = j l{xxold|Ls, and L =] v(X)d|LS.

Note that unlike the case of reflected Brownian motion, the coefficients o- and b depend

on the final path Xt and so we cannot simply solve the unreflected SDE and then

apply the deterministic Skorohod problem.

In [10], Lions and Sznitman show, using a Picard iteration scheme, that when 0

is admissible and b and o are Lipschitz there exists a unique solution to the reflected

SDE above.

In this thesis we consider reflected SDE of Stratonovich type, i.e. the first line of

(7.1) is replaced by

Xt = x0 + jo(Xs) o dW, + Jb(Xs)ds + Lt

for a bounded admissible domain 0 and where o e C2(O; Mat(R, d, r)) and b is

Lipschitz continuous.

We now explain our result. Suppose we are given the standard d-dimensional

Wiener space (Q, .F, W) where Q = C([0, o); Rd), W is Wiener measure, and Ft is

the usual filtration generated by paths under Wiener measure. We will use the usual

convention of writing Wt(w) for w(t) and will often suppress the dependence of Wt

on w.

We introduce the following notation which we will use throughout this thesis: We

will use the notation lujN to denote the greatest N-dyadic rational (i.e. number of

the form m2-N, m E Z) which is less than or equal to u. Similarly we will use the

notation 1Ul N to denote the smallest N-dyadic rational which is greater than or equal

to u. When the choice of N is clear from context, we will suppress the letter N. Define

AW :=(Wt - WLtJN) and define WtN to be the piecewise linear interpolation of



Wt over the N-dyadic rationals, i.e.

WN(w) = WtJ(cA) + 2N(t - [t])(AWLj(w))

Then for each w let XN(w) and L N(w) denote the solution to the reflected ODE

dXf = a-(XNj)dWtN(w) + b(Xf )dt + dLN, XON = 0 7.2)

We show then that, thought of as a stochastic process, the solution XtN converges

weakly in distribution (i.e. as a measure on the space C([0, oo); Rd)) to the process

Xt which solves the Stratonovich version of (7.1).

In their famous paper [18], Wong and Zakai show that, in the case without re-

flection, Xf converges to Xt in the uniform topology almost surely. Our result can

therefore be seen as a weaker version of this result for the case of reflected SDE.

For the proofs in this thesis we will often consider the Hormander form way of

expressing Stratonovich SDE. We write the Stratonovich SDE

dXt = o-(Xt) o dWt + b(Xt)dt

in Hormander form as

r

dXt = ( V(Xt)d(W)t + Vo(Xt)dt (7.3)
i=1

where the vector fields V are given by the columns of o and V = b.

An advantage of Hormander form over Stratonovich form is notational simplicity.

In particular, the operator associated with (7.3) can be expressed as

1 r 2

[Cf](x) : E[Dif](x) + [Dvof](x) (7.4)

where Dy = E=1 Vj(x) - is the differential operator associated with the vector field

V. We could of course express L in terms of a and b but the expression wouldn't be



as simple.

7.4 Structure of the Presentation

The structure of this second half of the thesis is as follows. First the proof of our

result is presented in 4 steps:

In Step 1 (Chapter 8), we argue that we have existence and uniqueness for the

approximating ODE (7.2). We do this by a Picard iteration scheme following Lions

and Sznitman's proof of Theorem 3.1 in [10].

In Step 2 (Chapter 9), we show that the measures pN on (C([0, o); Rd)) 2 induced

by the pair (XtN, LfN) are tight by showing that XN and L N satisfy Kolmogorov's

criterion.

In Step 3 (Chapter 10), we show that any limit point P of the pN satisfies both

a martingale problem and a submartingale problem for operators similar to (7.4).

Finally, in Step 4 (Chapter 11), we argue that the processes Xt and Lt under

P are in fact a weak solution to the Stratonovich reflected SDE. Therefore, by the

uniqueness result of Lions and Sznitman (Theorem 3.1 of [10]) we have that in fact

the sequence of measures pN converges weakly to P. This is our main result.

In the last chapter, Chapter 12, we present some applications/observations which

follow from our result. In particular, we look at geometric properties of the solutions

to Stratonovich reflected SDE in certain domains. Such properties have been used

to prove the "hot spots conjecture" in various domains ( [2] gives a good overview of

the conjecture and this technique).

One final note about our convention for constants: Throughout this paper there

will be many constants. For notational simplicity these are usually all lumped under

the constant C. That is, C may change from line to line or indeed two instances of

C on the same line may not be the same! When it is important to emphasize the

dependence of the constant C on a parameter, say T, we will use the notation C(T).



Chapter 8

Step 1: Existence of solutions to

the approximating reflected ODE

Suppose that 0 is bounded and admissible, xo E 0, and o and b are Lipschitz

continuous and let (Q, F, W) be the standard d-dimensional Wiener space, where we

will use the usual convention of writing Wt(w) for w(t). We will show that for each

fixed N and w, there exists a solution, which we denote by XN(w) and LN(W) to the

following reflected ODE:

ft ft
XtN =xo + oU(XN)dWN(w) + b(XN)ds + L N

JO J8t (8.1)

|LNt j 1{XNEOVdILN ,, and L'N = v(XN)d|LN

where XPt is a continuous function taking values in ( and LN is a continuous function

of locally bounded variation.

We solve (8.1) by a Picard iteration scheme following the proof of Theorem 3.1 in

[10]: Fix N and w and look at the mapping Xt -+ Y where Y is given by

dY = u(Xt)dWtN + b(Xt)dt

and the mapping Y -+ Zt, where Zt is the solution (guaranteed to exist and be



unique by Theorem 2.2 of [10]) to the deterministic Skorohod problem

Zt =Y + Lt

satisfying the usual conditions. Let F C([0, oo); Rd) - C([0, oo); Rd) be the com-

position of these two maps, i.e. Zt = F(Xt). We will show that F has a unique fixed

point. We first prove the following theorem:

Theorem 8.0.1. Given two paths Xt and X', let Zt = F(Xt) and Z' = F(X'). Then

|ZT - ZT12 < C |Zt - Zj'|2dt + C |O - XI|2 dt

Proof 8.0.2. Let 4 be the function associated with 0 (see part 2 of Definition 7.1.1).

For a constant y, we have that

t I -t Zt 12)
e--Yl+(zt)++(z;)]d(e-Y[e(zt)++(z;)]|I -Z'2

=2( Z - Z') - [(u(Xt)dWtN + b(Xt)dt + dLi) - (u(X')dWtN + b(X')dt + dL)]

+ IZt - ZI2_[Vq4(Zt) - (u(XtjdWtN + b(Xt)dt + dLi)

+ V4(Z') - (cr(X')dWtN + b(Xt')dt + dL')]

=[(2( Zt- Z') + _y|Zt - Zt'|2V4(Zt)) - v(Zt)]d|Llt

± [(2(Zt' - Zt) + _yIZt - Z'| 2V 4 (Z')) -v(Z')]d|L'|t

+ [2(Zt - Z') - (-(Xt) - o-(Xt')) + _yIZt - Z'|2 (V4(Zt) o-(Xt) + V(Z')a(XI))]dWN

+ [2(Zt - Z') - (b(Xt) - b(X')) + -yIZt - Z'|2 (V4(Zt) - b(Xt) + V45(Z') - b(X'))]dt

Taking y = 2C, we have that (c.f. part la) of Definition 7.1.1) the first two terms

are less than or equal to 0. As o, b, and V# are Lipschitz continuous and bounded on

O (0 is bounded), since N is bounded on O (N is fixed), and since Zo = Z6 = zO,

we have that

IZt - Zt'|2dt +C |Zt - Zt'|IXt - XI'dt + C |Xt - XI|2 dt|ZT - ZT12 < C

(8.2)



Since |Zt - Z'|l|Xt - X' ClZt - Z'|2 + CIXt - X'j 2 , (8.2) is proved.

Once we have Theorem 8.0.1, it follows from a standard Picard iteration argument

that F has a unique fixed point: First note that by Gronwall's inequality we have

that

||Z - Z'||<T C(T)IiX - X'[0,T]

Plugging this into (8.2), we get that

lZ - Z'||<,r C(T) X - [0,tidt

We now begin our Picard iteration. Let (X0 )= X0 E (, Xm+1 = F(Xm). Then

TT

IIXm~i _ Xm112j~ < C(T) j IIXm _ Xmil1112d (8.3)

Since I I X - X0 I 2 sp~ lUXEOII <00o, we have by iteration that

||Xm+1 - Xm||0] C(T)-M

It follows that o
ilXm+1 - Xm||oI < 00

m=0

and so Xm converges uniformly in [0, T] to a path X. It is easy to see by (8.3) that

this path is unique. Since we have the convergence for all T > 0, there is a unique

path X to which the Xm converge in C([0, oo); R d) equipped with the topology of

uniform convergence on compacts. This path X solves (8.1) and we denote it by

X/'(w). Once we have X[(w), we get the corresponding LN(w) by applying F to

Xt'().
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Chapter 9

Step 2: Tightness of the

Approximating Measures

In the previous chapter we showed for each N and w the existence and uniqueness

of paths X (w) and L N(w) which solve the approximating reflected ODE (8.1). The

corresponding pair of processes (X[N, LN) induces a measure, which we denote by pN,

on the space (C([0, oc); R d)) 2 which we will refer to as (X, L)-pathspace.

In this chapter, we show that the measures pN on (X, L)-pathspace are tight.

In the last section we also present some estimates which we will need for the next

chapter. In this chapter we make the assumptions that 0 is bounded and admissible,

and o and b are Lipschitz continuous.

9.1 Tightness of the pN

We begin with the following lemma:

Lemma 9.1.1. For s < t lying within the same N-dyadic interval, we have that

|XtN - XN| < C|WN - W _S

Prof91.2N tetha f ec WC(t) (9.1)

Proof 9.1.2. Note that, for each w, X,7 is the solution to the deterministic Skorohod



problem with input YN, where YN solves the SDE

dYN .(X7)dW N + b(XN t yN 0= XO

By Theorem 2.2 in [10], since the input YtN has bounded variation, so will the output

X[N and

d|XNjt<d N I

As o and b are bounded in 0, we have that

dIYNIt < CdIWNIt + Cdt

and so putting these together we have that

|XN-XN| IXN t_-XNIs C(IWNltIWNIs)+C(t-3) = CIWN-W C S)

where the last equality holds because s and t are in the same N-dyadic interval.

We now state the main theorem of this section

Theorem 9.1.3. (Kolmogorov Criterion) For each integer m > 1 and for all 0 <

s<t<T,

E[|WtN - WN 2m] C(m, T)(t - S) 2 m

E[IXtN - XN 2m] < C(m, T)(t - 3)2m

E[ILN - L N2m]Lt Sl < C(mT)(t - S) 2
m

In particular, the constant C(m, T) does not depend on N.

The tightness of the pN follows in a standard way from this theorem so the

remainder of this section will be devoted to proving this theorem. We start by proving

(9.2)

(9.3)

(9.4)



(9.2).

Suppose first that s < t lie within the same N-dyadic interval. Then, using the

notation

WN -: W[UJ+ 2 -N - W[U]

we have that

E[|WtN - W, 2"n N 2" ( t _ 2"E2"

= C( 2 N )2
m -2m( 2 N)2m-1

= C(t - S) 2 -1 t - s 2 1

< C(t - S)2"

as hoped.

Suppose next that s < t are in adjacent N-dyadic intervals. Then

E[|WtN -WN 2m ] < CE[\WtN -W 2 " + CE [Wj -WsN 2"

C(t - LtJ)2"n' + C(Lt) -s)2"

C(t - s)2"

as hoped.

Finally, consider the case when s < t are not in adjacent N-dyadic intervals. Then

E[|WtN - wCE[Wt - Wj 12m ] + CE[|W[ - WQ |2mI

+ CE[IW - WNl 2m]

=CE[\WtN - W ' 2m] + CE[IWLtj - W, 2m]

+ CE[IWN - WN 2m]

<C(t - (tj) 2 -- + C(t) - Fsl)2m1 + C(Fsl - s)2m1

<C(t - S) 2 M-1

as hoped. And so we have proved (9.2).



We will next prove (9.3), but first it will help to have the following Lemmas:

Lemma 9.1.4. For s < t lying within the same N-dyadic interval and m > 0, we

have that

E[( WJN - WNI dIWNIU) 2" ] (9.5)

and

E[( (u - Lu)) diWNIU)2 yn] C(t 2 ")2- (9.6)

Proof 9.1.5. Repeated applications of the Cauchy-Schwartz inequality show that

j p) 2 < (t - S)2m - f 2m dy

So from this we see that

E WN - W Id|WNIU) 2"]

|wlN -E [(t- s )2m-1

l uj+2-N
=(t -s 2--1E [

dW N 2"duW 2 - du" du]

dWN 2"2
W NI2 du du]

- S) 2 " -E[ (2N)2m+ 1AWN 212+1 f [V

[uj
(u - [zj)2"du]

<(t - s) 2 n-iE[)7(2N2n+1|AW 12w+1 (2 -N)2rn+1

=(t- s)2-n-1( 2 N)2"n-1 S E[|AWN 12m+1]

=C(t - s)2-m-1( 2 N)2"n-1 E( 2 -N)2m

C(t - S)2"1 (2-N)( 2 N(t _ S) +2)

< C(t - s)2-r

where we have used the fact that the sum has at most (2N(t - s) + 2) terms and the

fact that t - s > 2 -N. Thus we have proved (9.5).

J+2-N



The proof of (9.6) follows similarly (and in fact the inequality (9.6) is far from

sharp).

We are now ready to prove (9.3). We first handle the case when s < t are in the

same N-dyadic interval. In this case we have by (9.1) that

K CE[JWN -W w| 2m] + CE[(t - s) 2m

< C(t - s) 2

where we have used (9.2) and the fact we are in the interval [0, T] for the last inequal-

ity.

Next, we consider the case when s < t are in adjacent intervals. In this case,

E[|Xt - XN|2"] CE[JX -X 2m]] + CE[XN - X |12m]

< C(t - LtJ)2M' + C(|t) - s)2--

C(t - s)2M-1

It remains to prove (9.3) in the case when t - s > 2 -N. For this we will need the

following inequality:

Theorem 9.1.6. Let 4 be the function associated with 0 (see part 2 of Definition

7.1.1). Then there is a constant y such that

iSt|Xt - XN| 2 < Z NdW1N +

X = e(2(X - XfN) + - XN| 2 YVq4(XN))o-(X)

and

V=N - (Xf+ (X)( 2 (XN - XN) + |- XN12 _V4$(XN))b(XN)

where

VNdu (9.7)

E [|Xt - XN|2 ]



Proof 9.1.7. We compute,

d(e?*(X IX - XN| 2)

=e t (2(XfV - X ) (o-(XN)dWN + b(XfN)dt + dL N))

+ e |XN/\ - Xt |2 (yV4( X f) - (o-(X f)dWN + b(XtN)dt + dLN))

=e tX(2(Xt - X ) v(X t ) + y|Xt - X| 2V4(XtN) -v(Xf))d|LN t

+ e ((X - XN ) + f|XtN - X |2V4( XtN ) )- d

+e (2(Xf - X ) + y|Xf - XN| 2V4(XtN))b(Xfjdt

Taking -y - = , we have (c.f. part 1a) of Definition 7.1.1) that

- XN| 2)

<e?(2 (2(Xt - XN) + _Y|X[N - X%| 2 VO4(X[N) )o-(X)dWtN

+ e?*(Xfl(2(XN - XS) |X - X{| 2V4(X/))b(X[ 1)dt

from which (9.7) follows.

With this theorem in hand we are ready to proceed. Although our proof is not

by induction, we will need to prove the case m = 1 first. We have by (9.7) that

E[|Xt- X'| 2 ] < E[j

= E[f

= E[f

ZfNdW N + fS Vdu

(ZN- ZN )dWlN +

(ZN - ZN

I ttZN dWN' +IjV,du]
s Js

)dWlN] +0+ Elf VN]

We estimate the term on the right:

Elf VNdu] < E[f |VuNkIu]

< C(t - s)

since |VN| is bounded independent of N and u. We next estimate the term on the



E[ (ZN - ZNjdWN] E[ ZN - ZN dWNJ]

E;[ |XN - X |d|WN]

<CE [ |W N - W[ i |d|WNju]

+ CE[ (u - uj)d|WNIU]

C(t - s)

where in the second line we have used the fact that Zf is a Lipschitz function of XN

and in the last line we have used (9.5) and (9.6). We have therefore shown that

(9.8)

which proves (9.3) in the case when m = 1. We can now prove (9.3) for larger m, but

first we will need the following lemma:

Lemma 9.1.8. The random variable

ZN dWN
[s M

is a normal random variable with mean 0 and variance which is bounded above by

C(t - s).

Proof 9.1.9. As ZN is adapted, only the bound on the variance requires comment.
Lui

Note that by the Ito isometry,

ZN) dW ) 2] = jE[Z 2]du]

jE[XN -XN2dU]

C j (Lu - s)du

< C(t - s) 2

left:

E[(

E[lXtN - XN 2] <CtS



where for the second to last inequality we have used (9.8).

We can finally prove (9.3) for m > 2. Note that by taking the appropriate power

of (9.7), we have that

E[IXN - X|2n+1| ZNdWlN + i tVNdu) 2n]

CE[(f (ZN - Z )dWlN 2m

+ CE[(j Z( dWN) 2m ] + CE[( VNdu)2m

So it remains to bound these three terms. From Lemma 9.1.8 it follows that the

second term is bounded from above by C(t - s) 2m . Since |VN| is bounded uniformly

in N and u, it follows that the third term is bounded from above by C(t - s)2m.

Finally, for the first term we have that

CE[( (ZN - ZN2] CE[( |ZN - Z d|WNU) 2 "]

C E[(j |X,N - X N d| W NI 2 "

CE [( IWN - Id|WNIU) 2 ]

+CE[( (u - LujdlWNI ) 2"]

C(t - s) 2M

where in the last inequality we have used (9.5) and (9.6). Thus we have shown that

El - X1 2m+1] C(m, T)(t - )2m

and proved (9.3).

We next prove (9.4). Note that as

dXN = O.(XN)dWN + b(XtN)dt + dLN

t

:5E[(Js



we have that

E[ILN-L N 2m] < CE[|XtN-XfN2m]+CE[(j b(XN)du) 2m]

We have shown that the first term is bounded from above by C(t - s)2m-1. As b is

bounded, the third term is bounded from above by C(t - s)2m-1 as well (remember

0 < s < t < T). For the second term we have that

CE[(] u(X )dWN) 2m] CE[(
S

+ CE[(j -(X )dWN)2 "

:CE[( (U(XN) - U(X )2m + C(t _ S)2m-1

where the last inequality we have used the fact that ft a(XN )dWf is Gaussian and

a is bounded. Finally,

i t
<CE[(j

+ CE[(

IX -X IdIWNIU) 2"]

IWN -W |d|WN ) 2m]

(u - uj WN 2"

<C(t - S) 2 "

where in the last inequality follows from (9.5) and (9.6). Putting these all together

we have shown that

E [|LN - LN12 -] < C(t _ S)2

and so we have proved (9.4).

CE[(j (U(XN) -a(XN ))dWN 2m]CE[(



9.2 Additional Estimates

In this section we show that for all 0 < s < t,

Ei |LN - Lj Id|WiN|u] -- 0 as N - oo (9.9)

Recall our assumptions for this chapter that 0 is bounded and admissible, and o

and b are Lipschitz continuous.

We make the following definitions:

Definition 9.2.1.

XYN ItN

4(T) : = 0sp TItSY

0<s<t<T It - 3

W(T) : = sp(WN)t -(WiN) s

0<s<t<T It - 3

(|LN -LsN

,N () sp t
^f 0<s<t<T It - 3

Note that we have suppressed the dependence of WO on i. This is to simplify

notation, and in the end we will only need the expectation of WVN which is independent

of i.

We will need the following Lemma:

Lemma 9.2.2. For each r; > 0, and for all 0 < s < t,

|LNIt _ NI s (t - s)CR- (XN(t))? LN [s,t] (9.10)

where LN [s,t] : up8 tI LNJ

Our proof follows the proof of Lemma 1.2 in [10].

Proof 9.2.3. As 0 is admissible it satisfies Part 3 of Definition 7.1.1. Let 01, 0.. ,

denote the open sets B(xi, 2R) nO,..., B(x,, 2R) nO and let Oo be an open set such

that Oo c O and 0 C Un=1 B(xi, R) U Oo. It follows then that for each u, X is in

one of the Ok. In particular, XsN is in one or more of the 0 k and we "assign it" to one



of them arbitrarily. We next construct a sequence of times Tk corresponding to each

time the process X' leaves the Ok it is currently assigned to, letting To = s. Upon

leaving one of the 0k, if the process is in any of the B(xj, R) it is assigned to that Oi

(if there is more than one O, choose the one with the smallest index), otherwise it

is assigned to 00. We examine how the total variation of LN changes between these

re-assignment times:

In the case XN is assigned to 0, it never touches the boundary and ILN Tm+ -

|LNITm = 0. In the case X' is assigned to one of the Ok we have that

(LT+i - L T) - aim = j v(Xu) aimd|LNu

> A(|L NT"T+j - ILNIT)

And so in any case we have that

ILNIT+ - IL NITm < CILN - LN |I5 C||LN [S,t|

By our re-assignment times construction we have that XT -XTN > R. It therefore

follows that
R IXT - XT < N

(Tm+1 - Tm)P - (Tm+1 - Tm - M

therefore

(t - s) XN (t) 7

sup{m : Tm <t} < - < (t - s) ( )
(Tm+1 - Tm) R

from which it follows that

ILNI _ LNIS S N ITm+ 1  L NITm
{m:Tm<t}

S CLN [ (t - s)CR(N7(t))LN[
{m:Tm<t}

We will also need the following lemma.



Lemma 9.2.4. For each /3> 0, and for all 0 < s < t,

LN - L (|Ld|W IL Lsj)2tN -N

LN - LN|d|WN|= I Ns N Jul
I uJ

LN- LNJ dtWiNIu

t

+ jLN - LN IdIWiNju

+ |js LN L N I(Lsjd|WiNIu ± E IM
jtJ

ILNU _ IL NIujd|Wiu

I |N I ,I L NI - d|I IW Nu ±Z I N IFu]
+LUJ

+1 |LNj _L N (~tjd|WN'j
LtJ

- ILN|ILujd|WNju

Now we have that

LN NErud - ILNI Lu]dlWNju _ (IL N IFu N - -LNI[uj)I(WjN)ru1 - (WN)l

< (IL NI - ILNI [u)2NlW,3(t)

We have a similar estimate for the other two terms and so combining everything

together we have that

/t |LUN - L~u |d|WNj < Nit _ N L -Ls)2-N, WN(t)

as desired.

We now prove (9.9). It is simple to check that

ILNjj - t

I t
Proof 9.2.5.

(9.11)

J ul
[uJ



Putting this together with (9.10) and (9.11) we have that

E LN - L-d| -N)3(t - (s) )C -iE[(NE[j IL - L~ujIdIWi7Iu] < 2 77 7(t3- t

and so it suffices to show that E[(XN(t))LN(t)WO(t)] < K < oc, independent of

N. For this we will use the following theorem (c.f. Theorem 3.4.16 in [13]):

Theorem 9.2.6. Let Zt be a process such that

E[IZt - Z.|r] C~t - |1+a, 0 < s < t < T

Then for each b E (0, 2), there exists a constant K such that

P( sup >Zt _

O<s<t<T t- sb -

KC
--Rr

Take r/ = 3 = -y = . This theorem gives us (c.f. the estimates (9.2),(9.3), and4.

(9.4)) that X,7N(t), W,(t), and LN(t) have moments of all orders which are bounded

independently of N. And so it follows that E[(XN(t))4 Lg(t)Wy(t)] < K < o as

desired.
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Chapter 10

Step 3: The Martingale and

Submartingale Problem

In the previous section, we showed that the measures pN are tight on (X, L)-pathspace.

In this section we argue that any measure P on (X, L)-path space which is the weak

limit of the pN solves a martingale and submartingale problem.

In the previous chapters, we have only needed the assumptions that 0 is bounded

and admissible, and o and b are Lipschitz continuous. In this chapter, we will need

to make the additional assumption that - E C2(O; Mat (R, d, r)).

We have shown that there exists a unique solution (X[, L N) (pathwise) to the

reflected ODE

dXtf = a-(XtN)dWN + b(XN )dt + dLN, XN = (10.1)

For the proofs in this section, it will simplify notation to express (10.1) in Hormander

form:
r

dX = Vi(XtN)d(W N )t + V0(XfN)dt + dLN, XON = X0 (10.2)
i=1

where the vector fields V are just the columns of o for i = 1,... , r and V0 = b. In

this section we will prove the following theorem:

Theorem 10.0.7. Let P be the weak limit of (a subsequence of) our measures pN



on (X, L) pathspace. Then Vf E C2 (Rd)

f(Xt - Lt) - f(xo) - Ls)](Xs) + [Dvof(- - Ls)](Xs)ds

is a P-martingale with respect to the filtration T generated by the paths under the

measure P.

Also, Vf E C2(Rd) such that (() > 0, Vx E 0, Vv E v(x),

f(Xt) - f(xo) - Io t

r

Z[D 2f] (Xs) + [Dv f] (X,) ds
i=1

is a P-sub-martingale with respect to the filtration F generated by the paths under

the measure P.

For this we will need the following lemmas.

Lemma 10.0.8.

EPN [JLu - LLUjN |d|W N|u] -- 0

Proof 10.0.9. See previous section.

Lemma 10.0.10.

E[ O(|WJN - WN 2 )d(WN)u] -+0 as n -- + 00

where O(|WN - W(N |2) denotes any quantity whose absolute value

C|W1N -W | for some constant C > 0.

(10.6)

is dominated by

(10.3)

(10.4)

(10.5)

t , r 
2 f-Y[D

fo 2 Vi



Proof 10.0.11. We have that

O(|W N - WN 2 d(WiN)u] <E[J CIWN - WN 12d|WiNu]

=C(E[
fLuJ

=CZE[ f ulI uJ

|W - WN~ 2 dIWNju]

(2N)3(u - LUj) 2IAWN j 2 |A(WiN)[Uj1]

<C ( E[|AWNj I2|A(WN)

C N(2 ) - +

as there are at most 2N(t - s) + 2 terms in the sum.

Lemma 10.0.12. Let F: (Rd) 4 -> R be a bounded, Lipschitz continuous function.

Let s < t both be M-dyadic rationals for some integer M. Let A C F7. Then

EPN [F(Xu, X[uj, Xu - LU, X uj - L uj)((WjN)u - (Wj)[uj)d(WiN)U, A]

EpN [6i jF(Xu Xu, Xu - L, Xu - Lu)du, A] -+ 0

Proof 10.0.13. First note that

F(Xu, XuJ, Xu - Lu, X u - L uj ( - (Wf Lujd(W )U, A]

- EPNI[ F(XUJXUJXuj - LL, ,Xuj - L [uj)((W) - (W j) uj d(W N)UIA]

EPN [] C(|WN - WN | + (u - Luj))I/(Wf) - (W)LuJjdIWiu] -- 0

where the last line follows from an argument like the one used to prove Lemma 10.0.10.

Next note that

E[f

EPN [J



E PN [64 jt F(Xu, Xu, Xu - Lu, Xu - Lu)du, A]

- E pN [6 F(Xuj, XLuJ, XuJ - LLuI, XuJ - L LuJ)du, A]

i-E [pWN (U -W U|I+ (u - Lu))du] -* 0

where the last line follows from an argument like the one used to prove Lemma 10.0.10.

Therefore, it suffices to show that

EP[N F(Xuj, X[uJ XM - LLM , XU - L[uj)((Wj), - (WjN)u)d(WiN)u A]

- E pN [6 j F(XLuj , XLuj, Xuj - Luj , Xu] - Lin9jdu, A] - 0

In fact, once N is greater than or equal to M, we have that s and t are N-dyadic

rationals and the difference above is 0 for each N. To show this, it suffices by linearity

to show that

E pN [J (m+1)2-N
m2-N

F(XuJ , X uJ, g -L ], XLuJ iLu)((WNV)u-(Wj )Lu)d(WiN)u1A

SpN[ 
(m+1)2-N

2 M2-N
F(Xuj,Xu,Xuj - LLuj, XLUJ - L[n9jdu, A]

but this follows immediately from the fact that

E [ ul ((WjN)u
[uJ

- (W )Luj)d(WiN)u TI]

= E (2N( - [Luj|A(Wi) LuJIdu l i2-N

And so we have proved Lemma 10.0.12.

We are now ready to give our proof of Theorem 10.0.7.

(10.7)

(10.8)

First we prove (10.3).



Note that from (10.1), that for f E C ,

f(XtN - LN) - f(xo)

r tt

= J N Vf(XN - LN)d(WiN), + V(XfN) -Vf(XN - LN)ds
i=1 0 0

drift

rt

=S [Vi(XN) Vf (XN - L) -VV(X Vf(XN - L NJ)]d(WivN),

i=10
r t

+ j V(XN) Vf (X - LNJ) d(WN)s + drift

MG

We recognize that the second to last term is a martingale for each N, and so we will

henceforth refer to that term as "MG". Similarly, we will simply refer to the last

term in the first line as "drift" as the last term arises from the drift term b(XtN)dt



and won't change during our computations. Continuing, we have that

f(XN - L N) - f(X0)
r

[V(X*N) -V f(XN - LN) - K(XN) Vf (XNg - L NJ)]d(WiN)s
i=1 0

+ MG + drift

r
V(XN). [Vf (XN

i=1 0

r t r

Vi(X)TD2f (XN
i=1 j=1

+V (X N TVV(X N )V f(X N

L N) - Vf(XN1 - L )

+ [V (XN) - Vf(Xs 1 - L[8j)d(WN)s + MG + drift

- L) V (XN)((W)s - (W) [sJ)

- L ((W)

+V(X NT - L)VO(XN - [S

+ Vo(XNTVV (XN)V (X - Lf )(s - s)

+ (WN - W 2 ((s - )2)

+(L - LG V X )V f(XN - L Nj)d(WN), + MG + drift

=1 Nf(s)ds + MG

where we have denoted by L2Nf(s) the integrand of everything (including the drift

term) on the right hand side excluding the martingale term. Similarly, let £f(s) =

I E= 1 [Dif( - Ls)](X) + [Dvf(- - (X).

under P,

Our goal is therefore to show that

j f(s)dsf(Xt - Lt) - f(xo) -

is a martingale for each f E C2. It suffices to show that VA C F,,

f (n)du, A] = 0 (10.10)

Since the set of f satisfying (10.10) is closed under C2, it suffices to prove (10.10) for

f E Cce. Since X and L are continuous, it suffices to prove (10.10) for s < t where s

(10.9)

- (W)LsJ)]

EP[f (Xt - Lt) - f (Xs - L,) -



and t are M-dyadic rationals for some M. Finally, it suffices to show that

Ep[( f (X - Lt) - f (Xs - Ls) - j Lf(u)du)g(Xt, Lt,,... , Xt, L t)] = 0

where 0 < ti K ... < tn s and each g E Cb((Rd)2n; R) as 1A, A E F, is the limit

of such functions. As the term inside the expectation is a bounded and continuous

function on (X, L)-pathspace, we have that

pEN[(f (X - L) - f (X - Ls ) -j Lf (u)du)g(Xt, ... , Lt)]ft

oE[(f(Xt - Lt) - f(X - L) -b ( tf(u)du)g(X 1 ,... Lt)]

For each N, we have by (10.9) that

E PN [(f(Xt - Lt) - f (Xs - LS)
I t

And so it remains to show that

EpN[Sf (u) - LNf(u)]du)g(Xtl,... , Ltn)] -+ 0

Comparing the terms of If(u) and LNf(U), it is clear that we will be done after

showing the following seven results:

EPN [(f [D 2f

~ t=1

i=1 j=1

- - Lu)](Xu)du

Vi(Xu) T D2f(XinJ - LLU )V(Xu)((WN)u - (WN)[u])

+V(XU)TVV(XUJ )Vf (XUj -LLuJ)((WjN)u-(WjN)Luj)d(WN)u)g(Xt 1, ... , t)] -+ 0

(10.11)



EPN V(Xu)TD 2 f(XLuJ - L-)VO(Xu)(U - Luj)d(WN))g(Xt, ... , Ltj] -+ 0
i=1 a

(10.12)

E PN [(Ij Vo(Xu)TVV(XLUJ )Vf(XiJ -LiJ (u-[u)d(WVN))g(X,,,... , L)] - 0
i=1 (

(10.13)

E pN [( [Dvof(- - Lu)](Xu) - Vo(Xu) -Vf(Xu - Lu)du)g(Xt,... Ltj] -* 0

(10.14)

EPN[(ZJ(Lu - LLuj )TVVi(X[uj)Vf (Xuj - L Lj)d(W ))g(X,,, ... ,Lt.)] -+ 0
i=1 s

(10.15)

EPN [( O(IWN - W(j |2 )d(WiN)u)g(Xt, ... , Lt)] -+ 0 (10.16)

i=1

EPN [(ZIO((u - [uJ)2 )d(WiN).)g(Xt, . .. , Lt.)] - 0 (10.17)

But we have all these from our lemmas and the fact that all of the functions

appearing in (10.11)-(10.17) are bounded. Result (10.14) is immediate as the left

hand side is equal to 0 independent of N. Result (10.11) follows from Lemma 10.0.12.

Result (10.15) follows from Lemma 10.0.8. Result (10.16) follows from Lemma 10.0.10

and results (10.12), (10.13), and (10.17) follow from variants on the proof of Lemma

10.0.10. And so, (10.3) is proved.

We now turn our attention to (10.4). We proceed as in the proof of (10.3): For



each f E Cc"(Rd) such that [(x) > 0, Vx c 00, Vv c v(x),

f(XtN - f(xO)
r t 

t
=V %(XN). Vf (XfN)d(WN), + j Vo(X) -Vf(XN)ds

i=1 0

drift

+ j f(XN) v(XN)d|LNI

[(XN.Vf(Xf - K7(XN ) Vf (XN )]d(WiN)s

r t t
+ jV(XN) -Vf (XN )d(WiN)+ Vf(XN) -v(XN)dLNis+ drift

MG >0

sub MG

The rest of the argument is more or less the same as the argument used to prove (10.3)

only with some equalities replaced by inequalities to reflect the fact we are dealing

with sub martingales and with f evaluated at X instead of X - L. In particular we

again make use of Lemmas 10.0.8, 10.0.10, and 10.0.12.
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Chapter 11

Step 4: Final Argument

In this chapter we finish our argument by showing that the processes Xt and Lt

under P are a weak solution to the appropriate Stratonovich reflected SDE. By the

uniqueness result of Lions and Sznitman (Theorem 3.1 of [10]) it will follow that our

sequence of measures pN converges weakly to P.

Let P be any limiting measure of the sequence of measures pN on (X, L)-pathspace.

We have shown that for all f C C2 (ld) we have that under P,

t

f(Xt - Lt) - f(xo) - ] Ef(s)ds is a P martingale (11.1)

and that for all f E C2(R d) such that ; > 0, Vx E 8O, Vv E v(x), we have that

f(Xt) - f(xo) - j 1ff(s)ds is a P sub-martingale (11.2)

where

Ef(s) = 2 [Df( - L,)](X.) + [Dvof( Ls)](Xs)

and

f !(s) = [DVrf()](Xs) + [DvOf()](Xs)
Lf~)=1



Taking the coordinate funcitons f(x) = xi in (11.1), we see that

MIt:= Xt - x0
r

- -IZE[DVj](Xs) + V (X,) ds - Lt is a martingale
"2i=1

Taking the functions f(x) = xjxj in (11.1), we see that

d < M , Mj > (t) = (a-(Xt)ao(Xt)T )jdt

It therefore follows by standard techniques (c.f. Section 4.5 in [15]) that, extending

our probablity space if neccesary, there exists an r-dimensional Brownian motion Bt

such that

Xt - X0 - j 2 [DvVi](Xs) + Vo(Xs)ds - L= u(Xs)dBs.

Specifically, we can extend our probability space ((C([O, oo); Rd)) 2 , P) to ((C([O, oo); Rd)) 2 X

C([O, oo); Rd), P), where the marginal distribution of P in the appended space is

Wiener measure.

Remark 11.0.14. Note that (11.3) can be written in "Stratonovich form" as

dXt = o-(Xt) o dBt + b(Xt)dt + Lt, Xo = x0

Applying Ito's formula to (11.3) we have that for f E Cb(Rd) that

jf (s)ds - (f (t) is a P-martingale,f(Xt) - f(xO) - (11.4)

where

It is clear that
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(5():=Vf (Xs) -dLS.

Lt = ( xl(t),I



and

df (t) = (xS(t).

We will need the following lemma:

Lemma 11.0.15. Lt is a bounded variation process.

Proof 11.0.16. Fix T > 0. As Lt is continuous, we have that

LIT = limgM(Lt,T)

where

9M(L, T) := E ILTm2-M - LT(m-1)2-MI
m=1

is a non-decreasing sequence of positive functions on C([0, oo), Rd). We know that

9M(LI,T ) ILN IT < T/LN

and so it follows that

E[gM(L ,T)] < CT-

For each constant K > 0 we have that gm A K is a bounded continuous function on

C([0, oo), R") and so

EPN [gm(LtT) A K] -* EP[gm(Lt,T) A K]

whence it follows that

EP[gm(Lt, T) A K] < CT?

Then letting K -* oo we have, by the monotone convergence theorem, that

EP[gM(Lt,T )] < CT?

Finally, letting M -+ oo, we apply the monotone convergence theorem again to see
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that

EP[ILIT] < CT < 00

from which the lemma follows.

Combining the above lemma with (11.5), it follows that (f(t) is a bounded vari-

ation process as well. Comparing (11.2) with (11.4), we have by the uniqueness of

the Doob-Meyer martingale decomposition that for all f E C2(Rd) such that 2L > 0,

Vx E 090, Vv E v(X),

(f(t) is a non-decreasing function, P-a.s.

Before proving the next theorem, we will introduce the following two lemmas

from [14]. We remark that the proof of these lemmas carries over to our setting with

the function # in their setup replaced with the function # from our setup.

Lemma 11.0.17. (Lemma 2.3 in [14]) For all f

of P-measure 0,

1{xeoE}d((U) = 0,

Lemma 11.0.18. (Lemma 2.5 in [14]) Let U be

and suppose that f E Cb2(Rjd) is such that I > 0,

off of a set of P-measure 0,

i t

E C2(R) we have that off of a set

Vs < t.

a neighborhood of a point x E 80

Vx E Uno0, VvE v(x). Then,

We present a key theorem:

Theorem 11.0.19.

Lt= jv(Xs)ddLls, F-a.s.

That is, if we let p(t) := , then p(t) E v(Xt) for all t.

The proof of this theorem follows the proof of Theorem 2.4 in [14]. First we will

need the following lemmas.
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Lemma 11.0.20. The set valued mapping x E 00 1-* v(x) is continuous in the

sense that if x, E 80 is a sequence converging to x E 80 and vn E v(xn) is a

sequence converging to v then v C v(x).

Proof 11.0.21. As 0 is admissible, we have by Part

each n,

la) of Definition 7.1.1 that for

(x' -xn) - un + CO JX' - Xn| 12 >0, Vx' E 0

Taking the limit as n tends to infinity we get that

(x' -x) -v + C|x'- x|2 > 0 Vx' e O

It then follows by Part 1b) of Definition 7.1.1 that v E v(x).

Lemma 11.0.22. For f E C,2(Rd), let a: 80 -+ R be the function defined by

a(x) := inf (VfW )

vev(x) V#(x) - v

and let b : 80 -* R be the function defined by

b(x) := sup (VfW )vEV(X) V#(x) - J
(note that we have suppressed the dependence of a and b on f).
semi-continuous and b(x) is upper semi-continuous on 00.

Then a(x) is lower

Proof 11.0.23. We will just show that a(x) is lower semi-continuous as the cor-

responding proof for b(x) is analogous. Let xn E 0 be a sequence converging to

x E 80. For each n there exists a v, such that

a(xn) > Vf(X)
V#(xn) - vn n

It therefore follows that

lim inf a(xn) > lim inf Vf (X) Vf > a(x)n--+oo n-oo V#(xn) -n
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where the last inequality follows from Lemma 11.0.20.

Lemma 11.0.24. For each f E C2 (Rd), df(t) is absolutely continuous with respect

to dgp(t) and the Radon-Nikodym derivative, L(t), satisfies

< ( <vEv(Xt) kVf(Xt) V
Vf(Xt)-v

sup (V(Xt). V

Proof 11.0.25. Fix f E C 2 (lRd) and note that f - 5 is linear. Letting f = f + A#

then, as 0 is bounded, for sufficiently large A, 2L > 0,Vx Edv -
0, VV E v(x).

therefore follows that

0 < d 1 = df + Ad0

Similarly, letting f = -f + A# we find that

0 > Ad - df

Combining these we have that

-Ad<0 < d5 Ad

and so df (t) is absolutely continuous with respect to d0(t).

We next prove the left inequality of (11.6). By Lemma 11.0.22, for each x E 00,

and e > 0, there exists a sufficently small neighborhood U of x such that Vy E UnqO,

Vv E v(y),

v - Vf(y)
-v.-V#$(y)

(11.7)

From this it follows that Vy E U n 0, v E v(y),

(a(x) -E) (y) < -(y)

and this in turn implies that, by Lemma 11.0.18, on a set F1 such that P(F 1) = 1,
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we have that for all s < t,

(a(x) - e) j{x.sE}d((u) j 1{xeuE}d<f(u),

and so

(a(x) - e)1xfeu} l{xuEv} (u), P x d$p-a.s

Now for each k, let 6 k = . For each k, by the compactness of 80, there exist a finite

number of points Xj,k with corresponding neighborhoods Uj,k chosen to satisfy (11.7)

which cover 00. We can and do take these neighborhoods such that diam(Uj,k) <

. As there are a countable number of sets U,k we can find a single set F2 with

d((F2) = 1 such that

1 d'f() Vjk nIXF(a(xj,k) - k)l{xu.ky,, < 1 v ( Vj, k on F1 x 172

Furthermore, by Lemma 11.0.17 we may take 1F2 such that Xu E 80, Vu E F2. Now

fix u* E 172. For each k, there is some j(k) such that Xu. E Uj(k),k n 00 and so it

follows that

(a(Xj(k),k) - 1) d~f (

letting k -- o, by the lower semi-continuity of a(x) and the fact that Xj(k),k --+ Xu.,

we have that

a(Xu.) df(*)

As u* was an arbitrary element of the d-full set 12, we have proved the left inequality

of (11.6). The proof of the right inequality is analogous.

We will now present a proof of Theorem 11.0.19.

Proof 11.0.26. Following Stroock and Varadhan in [14], we will use the notation

do(t) for dILIt. First note that by (11.5), for all f E Cb we have that

d<5 < dx, +... -+dk, < d<o

105



and since, by Lemma 11.0.24, d., < d0, we have that

d 0 < d

Therefore, d(0-a.s. we have that

Vf(Xs) -p(s) = df ( X (s)].

Indeed, using (11.5), we can reduce both sides to d (s).

We first consider the case that V#(X,) - p(s) = /3 > 0.

(11.8), we have that

(11.8)

Combining (11.6) and

Vf(Xs) - p(s) 2 /3 inf (Vf(XS) -
vEv(x.) V6(X,) - v

here, s and X, are fixed, so since the above only depends on f through its gradient,

we have in fact that

v - p(s) > 3 inf .

T vev(x.) V# X) -V t

for each vector v E R d. Taking v to be (x' - X,), we then have that

(x' - XS) - pN(s)

and so

V(x' - XS)

>3 #inf
vGV(xs)

(X - X ) - v
V#(X8) - )

> # inf (COIXXSK
vev(x.) V6(X8 ) - V

> -c0|x' - XS12

C0#3
-(S)+ |oox' - XS|2 > 0

a

so, as 0 is admissible, it follows from Part 1b) of Definition 7.1.1 that 2p(s) and

hence p(s) is a positive multiple of some v E v(X,). Since p(s) has norm 1 it follows

that p(s) E v(Xs).

In the case where V#(Xs) - p(s) = -# < 0, applying the above to -p(s) we see
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that

-p(s) E v(Xs)

So we have that for each s, that either

p(s) E v(X,) or - p(s) E v(Xs)

We claim it is the former. Since 2 (x) > 0, Vx E 0, Vv E v(x), we have that dp(s)

is a positive measure P-a.s. Noting that

= [V#(Xs) - p(s)]d<o

we have (c.f. Part 2 of Definition 7.1.1) that p(s) E v(X,), d~o-a.s. And so Theorem

11.0.19 is proved.

It is clear that as P is the weak limit of (a subsequence of ) the pN and since

Xt E O, Vt under PN, it follows that Xt E (, Vt under P and hence under P.

So in summary, we have shown that under P, we have a weak solution to the

reflected SDE:

t
b( Xs ds + Lt,Xt =xO + jo(X,) o dWs +

|LIt j 1{xEaoidLs, and L = j v(Xs)dL 8

(11.12)

(11.13)

where Xt is a continuous process lying in 0 and Lt is a continuous bounded variation

process.

In Theorem 3.1 of [10] states that if H is the Frechet space of continuous adapted

processes X whose semi-norms

||X|| := E[ sup |X"4|]
O<s<t

are finite, then there is a unique X E H which satisfies (11.12). As ( is bounded,
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under P, X is an element of H which satisfies (11.12). Therefore we have that for

each limit point P of the measures PN, the distribution of X under P is the same

unique element of H which satisfies (11.12). It therefore follows that the distributions

of X under pN converge weakly to the unique weak solution X of (11.12).
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Chapter 12

Observations and Applications

In this chapter we record some observations and applications of our result. We have

shown that for a bounded and admissible set 0, under suitable regularity conditions,

if (XN, LN) are solutions to the reflected SDE

dXfN = u(XN)dWN + b(X t )dt + dLN

and (X, L) is the solution to the Stratonovich reflected SDE

dXt = u(Xt) o dWt + b(Xt)dt + dLt

then XN converges to Xt in distribution.

It is interesting to note that while the L N and Lt are bounded in variation uni-

formly almost surely (see the proof of Lemma 11.0.15), L N does *not* converge to

Lt in variation almost surely. We can see this even in the simple case where 0 is the

half-line:

Example 12.0.27. Let d = 1, 0 = R+, b = 0, and a = 1, i.e. (XN, LN) are solutions

to the reflected SDE

dX7 = dWN + dL N
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and (X, L) is the solution to the reflected SDE

dXt = dW +d Lt

(that is, Xt is reflected Brownian motion in the half-line). In this case, for a.e. W,

L (w) does not converge to Lt(w) in variation.

Proof 12.0.28. We fix w and suppress the dependence of L N and Lt on w. It is well

known that

L = sup [-WN] and Lt = sup [-W.]
O<s<t O<s<t

It is clear that LN is piecewise linear, and so dLN is absolutely continuous with respect

to Lebesgue measure dt for each N. If LfN did converge to Lt in variation then dLt

would be absolutely continuous with respect to dt as well.

But dLt is almost surely singular to dt: Lt is the local time of Xt at 0. Another

representation of reflected Brownian motion on the half-line is X(t) = Il. The local

time of Xt at 0 is clearly the same as the local time of Wt at 0 and this is well known

to be almost surely singular with respect to Lebesgue measure. As Xt and Xt are

representations of the same process we are done.

The main application of our result that we consider is the following: Suppose that

for each N, the paths XtN satisfy a certain geometric property almost surely and the

set S of paths which satisfy this geometric property is closed in C([0, oo); Rd). It then

follows that the paths of Xt also satisfy this geometric property almost surely since

P(S) > limSUpN(S) = 1
N-*oo

We illustrate this with some examples.

Example 12.0.29. In R2, let 0 be the rectangle [-1, 1] x [0, 2] and consider the

Stratonovich reflected SDE

dXt = o-(Xt) o dW+ dLt, Xo = xo,
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X2). Then
X1

where o(x) = (
If Ixo| > 1, |Xt| <; xol for t > 0 a.s.

If Ixo| < 1, IXt| ;> Ixol for t > 0 a.s.

Proof 12.0.30. Note that the vector field u(x) points counter-clockwise around the

origin. For a fixed w and N, X[N(w) will simply be a path which moves along arcs

of constant radius until it hits the boundary of the rectangle where it is nudged back

inside. It is clear that XtN(w) satisfies (12.1) and (12.2) since when |xol > 1, the path

will be nudged to a lower radius and when Ixol < 1, the path will be nudged to a

higher radius (See Figure 12-1).

X2

xo O_ 0

1x01 > 1 jxj < 1

Figure 12-1:

It is clear that the set of paths satisfying each of (12.1) and (12.2) is closed in

C(O, oo); Rd). And so it follows that Xt satisfies (12.1) and (12.2).

We next consider coupled reflected Brownian motion. We will first need the fol-

lowing theorem.

Theorem 12.0.31. Suppose 0 is bounded and admissible. Then 0 x 0 is bounded

and admissible as well, where for each (x, y) E 0(0 x 0) we take the set of normal
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vectors v(x, y) to be the set of vectors

E v(y), a 2+a = 1

v2 E v(x)}

vY E v(Y)}

when (x, y) E 00 x 0,

when (x, y) E 0 x 00.

Proof 12.0.32. In the proof below we will only consider boundary points (x, y) E

80 x 0. The other two cases are simpler and the proofs for them are analogous.

We first show that Part 1 of Definition 7.1.1 holds. Note that for each x', y' E 0

and v E v(x, y),

[( ) x
- V + Co

x'

y')

= a 1(x' - x) - vx + a 2(y' - y) . vy + CoIx - x'12 + Coly - y'12 > 0,

and so Part la) holds. Next, suppose that for some v =

that

x'
y'

x
-v + Co

X'
y )

Vi

V2
and C > 0 we have

x

y
= a1(x' - x) - v1 + a2(y' - y) -v2 + CIx - x'12 + Cly - y' 2 > 0.

Then, taking y' -+ y we see that

a(x' - x) -V1 + Cx - x'12 > 0.
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and so, since ( is admissible, v1 = kiv, for some vx E v(x), ki > 0. A similar

argument gives that v2 = k2v. for some vy E v(y), k2 > 0. It is then easy to show

that - E v(x, y) and so Part 1b) holds.

We next show that Part 2 holds. As 0 is bounded, # is bounded in 0 and so after

adding a constant to # if necessary, we may assume that # 1 in 0.

For ( x 0, we define D(x, y) := #(x)#(y). Then V4(x, y) = (Y)W
#(x)V#(y)

and for all (x, y) E DO x DO, v E v(x, y), we have that

VG(x, y) -v =a1 #(y)V#(x) - vx + a 2 4(x)V#(y) - Vy

2!1#(y)a + a2#(x)a

2a(al + a 2) > a

and so Part 2 holds with the function 1(x, y). Finally, as 0 x 0 is bounded, we get

that Part 3 holds for free via Theorem 7.1.2.

We now discuss coupled reflected Brownian motion. A d-dimensional coupled

reflected Brownian motion is a 2d-dimensional process Xt in a product domain 0 x 0

which satisfies the reflected SDE

dXt =co(Xt)dWt + dLt,

where

U(x) = .

Note that as o is constant, the Stratonovich and Ito versions of the above SDE

coincide. We will express this reflected SDE in a more convenient form as the pair of

reflected SDEs

dXt =dW + dLt, Xo = x0

dY =dWt + dMt ,Yo = yo
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where, abusing notation, Xt and Y denote the first and second d coordinates of the

process. We think of Xt and Y as being two d-dimensional processes which are driven

by the same Brownian motion Wt and which are constrained to lie in the same domain

0. The two processes move in sync except for where either process bumps into the

boundary and is nudged.

We now consider the geometric properties of coupled reflected Brownian motion

in two domains. Such properties were used to prove the "hot spots conjecture" for

these domains (See [2] and [1] for more details).

Example 12.0.33. We first consider the case where our domain 0 C R2 is the obtuse

triangle lying with its longest face on the horizontal axis and denote its left and right

acute angles by a and #. Suppose x0 # yo, and let et be the angle of the vector from

Xt to Y. Then, almost surely,

If - 0 < 6o < a, then Vt, either - E # < a or Xt = Y. (12.3)

Proof 12.0.34. Consider the approximating stochastic ODE

dXtN =dWtN +dLNXN =0

dY=N dWN+ dM YN =

Since, by Theorem 12.0.31, 0 x 0 is bounded and admissible, we have that ( YtN)

converges to (Xt, Y) in distribution. As the set of paths satisfying (12.3) is closed, it

suffices to show that (12.3) holds for XJ' and YtN for each N.

Some thought shows that this is true: Fix N and consider an N-dyadic time

interval [(m + 1)2 N m2N]. Within this interval, X and YtN will attempt to

travel along the vector W(m12-N - Wm2 -N. Pushing against the boundary kills the

component of motion perpendicular to the wall. And so at the end of the N-dyadic

interval, the processes will have moved to the same location they would have gone to

if they were allowed to leave the domain but were then projected back (See Figure

12-2).
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Figure 12-2:

Note that if either process would have ended up in one of the "exterior cones", it

is projected to the corresponding corner.

Now given any two points x and y in R2 , if we define by r(x) and 7r(y) their

projections onto the triangle, some thought shows that whenever the angle between

x and y lies in the interval [-0, a] so too will the angle between r(x) and r(y), unless

7r(x) = ir(y). It follows that X t and YtN satisfy (12.3) on each N-dyadic interval and

therefore satisfy (12.3).

Example 12.0.35. We now consider coupled reflected Brownian motion in a Lip

domain. A Lip domain is a Lipschitz domain in R2 which is bounded below by

a function fi(x) and above by another function f2(x) each of which is Lipschitz

continuous with constant < 1. The domains are so named because they look like a

pair of lips (See Figure 12-3).

Consider coupled reflected Brownian motion in a lip domain 0 where the defining

functions fi (x) and f 2(x) are smooth. Then ( is a bounded admissible domain. Recall

the definition of E8 from the previous example. We have the following geometric

property almost surely for the paths Xt and Yt:

F 7r ir 7r
If - -< 0 <- then Vt, either - - < E - or Xt = Yt. (12.4)

4 4 4 4

Proof 12.0.36. Again we consider the approximating reflected ODE and its solutions

X7/ and YtN We will take advantage of the fact that these approximate processes have
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f2(X)

f,(x)

x

Figure 12-3:

well defined notions of velocity. It again suffices to prove (12.4) for these approximate

processes. The fact that the Lipschitz constant is between -1 and 1 for fi and f2

means that the "ceiling" and "floor" each slope upward or downward at 45 at most.

Suppose Xf and YtN do not satisfy (12.4). Let T = inf t : et ( [-i, 1]. As e,
only changes when one of X/ and YtN is at the boundary, without loss of generality

assume YTN is at the boundary, and will be affected by the boundary (if not rotate

the whole picture by 1800) and that eT = { (if not reflect the whole picture across

the horizontal axis). T is in some N-dyadic interval of the form [m2-N, (m + ) 2 -N)

and so, if not for the boundary, both points would be traveling at a constant velocity

v = 2N(W(m+1)2-N - Wm2-N). Instead, for YT, the presence of the boundary projects

the velocity vector v onto the tangent space of the boundary.

It suffices to show that the presence of the boundary cannot increase et. Note

first that it is impossible for the boundary to cross the line segment eN connecting

X and YtN as doing so would violate the condition on the Lipschitz constants for

the boundary functions. It is possible that the Ef is part of the boundary, and the set

lies to the left of E, but this case is uninteresting as the points X[ and YtN will be

affected by the boundary in the same way and this cannot change et. The interesting

cases are depicted in Figure 12-4.

Some geometric thought shows that in either case depicted, any vector v which

would drive YN into the boundary could only decrease et. And so we have reached

a contradiction.
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Appendix A

Appendix for Viscosity Solutions

In this appendix we give a bare bones introduction to the theory of viscosity solutions.

For a more complete introduction to viscosity solutions, I recommend either [4] or

[5].

A.1 General Setting

We begin in the elliptic setting (which will in fact cover the parabolic setting once we

think of t as just being the (d + 1)st component of x, see below). A viscosity solution

is a type of weak solution for a second order, non-linear PDE:

Definition A.1.1. Let Q C Rd. Then u(x) E C(Q) is a viscosity solution for the

PDE

F(x, u, Du, D 2u) = 0 in Q (A.1)

(where Du and D 2 u represent the gradient and Hessian of u respectively) if the

following two conditions hold:

1. For every v E C (Q) which touches u from below at xO (i.e. u(x) > v(x),Vx

and u(xo) = v(xo)) we have that F(xo, v(xo), Dv(xo), D 2v(Xo)) > 0.

2. For every v E C (Q) which touches a from above at xO (i.e. u(x) <v(x),Vx
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and u(xo) = v(xo)) we have that F(xo, v(xo), Dv(xo), D2v(xo)) < 0.

A viscosity solution is clearly not a classical solution in general as we have not even

assumed that u is differentiable. Nevertheless, we have made sense of (A.1) by moving

the differentiation from u onto a smooth test function v. This is analogous to the

more common notion of a distributional weak solution where derivatives are moved to

smooth test functions using integration by parts. However, unlike distributional weak

solutions, viscosity solution theory can be applied to non-linear differential equations.

Before proceeding further, we should stop and examine why viscosity solutions are

our choice of weak solution. After all, the theory of viscosity solutions was developed

to handle non-linear PDE and in this thesis we only consider linear PDE. Why not

use distributional weak solutions? The main reason is that the notion of a viscosity

solution is closely tied to maximum principles. Indeed, Nirenberg's proof [11] of the

strong maximum principle for classical solutions extends without much change to

cover viscosity solutions via arguments like those used in the proof of Theorem A.1.8.

On the other hand, it is more complicated to work with maximum principles for

distributional solutions as they are not even defined pointwise.

Returning to our discussion of viscosity solutions, we can now decompose the

previous definition to define viscosity subsolutions and supersolutions. Let USC(Q)

and LSC(Q) denote the space of upper semi-continuous and lower semi-continuous

functions respectively.

Definition A.1.2. A function u E LSC(Q) is a viscosity supersolution of F(x, u, Du, D 2U)

0 (alternatively "u solves F(x, u, Du, D 2U) > 0 in the viscosity sense") if condition 1.

of Definition A.1.1 holds.

A function u E USC(Q) is a viscosity subsolution of F(x, u, Du, D 2 u) = 0 (al-

ternatively "u solves F(x, u, Du, D 2u) < 0 in the viscosity sense") if condition 2. of

Definition A.1.1 holds.

Clearly, if u is both a viscosity subsolution and supersolution then it is a viscosity

solution. In order for a viscosity solution to be a good notion for a weak solution we

would hope that

120



(I) Classical solutions are viscosity solutions.

(II) Viscosity solutions are unique.

These statements do not hold for general F and so we restrict our focus to proper F:

Definition A.1.3. F is proper if

a) F(x, r, p, X) < F(x, s, p, X) whenever r < s.

b) F(x, r, p, X) < F(x, r, p, Y) whenever Y < X (as symmetric non-negative definite

matrices).

When F is proper it is easy to see that statement (I) holds.

Theorem A.1.4. Let u E C2 (Q) be a classical sub/super solution to

F(x, u, Du, D 2u) = 0

where F is proper. Then u is a viscosity sub/super solution as well.

Proof A.1.5. We handle the supersolution case (the subsolution case is analogous).

Suppose v E C (Q) touches u from below at xo. Then v(xo) = u(xo), Dv(xo) =

Du(xo), and D2 v(xo) 5 D2 u(xo). So by the properness of F,

F(xo, v(xo), Dv(xo), D 2v(Xo)) > F(xo, u(xo), Du(xo), D 2U(Xo)) 0

Statement (II) for the Dirichlet problem follows from the following comparison

principle (c.f. Theorem 3.3 in [5]):

Theorem A.1.6. (Comparison principle): Let Q be a bounded open subset of Rd and

let F be proper and satisfy some additional regularity assumptions. Let u E USC(Q)

be a subsolution and v E LSC(Q) be a supersolution of F(x, u, Du, D2 u) = 0 in Q.

Then

u < v on 8 => u < v in Q



Corollary A.1.7. (Uniqueness of viscosity solutions to the Dirichlet problem) If

u1,u 2 E C(Q) are solutions to

F(x, u, Du, D2u) = 0 in Q

u(x) = f (x) on 80

then u1 = u2 .

The proof of the comparison principle is fairly involved and we won't present it

here. In fact, for the purposes of this thesis, the additional regularity assumptions

required for the comparison principle do not hold! Therefore we will instead use the

following weaker comparison principle. The proof in this case is much easier and

requires no additional regularity assumptions on F.

Theorem A.1.8. (Comparison with smooth functions) Let Q be a bounded open

subset of Rd and let F be proper. If u E LSC(Q) is a viscosity supersolution of

F(x, u, Du, D 2u) = 0 and v E Co (Q) is a (classical) solution of F(x, v, Dv, D2 v) < 0,

then

u < v on OQ ==> u < v in Q

If u E USC(Q) is a viscosity subsolution of F(x, u, Du, D 2u) = 0 and v E CO (Q)

is a (classical) solution of F(x, v, Dv, D2 v) > 0, then

u > v on Q ==> u > v in Q

Proof A.1.9. We will just prove the first statement as the proof of the second is

analogous. Suppose not, then by the boundedness of Q and the lower semi-continuity

of u we know 3xO c Q such that

u(xo) - v(xo) = inf {u(x) - v(x)} < 0
XEn

So v(x) - v(xo) + u(xo) touches u(x) from below at xO. By virtue of u's being a

viscosity super solution, we have that F(xo, u(xo), Dv(xo), D 2v(Xo)) > 0. By the
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properness of F we then have that

F(xo, v(xo), Dv(xo), D2 v(xo)) > F(xo, u(xo), Dv(xo), D2 v(xo)) 0

which contradicts the fact that v is a strict subsolution.

A.2 Our Setting

In this thesis we consider the linear parabolic PDE:

G(t, X, u, 9  Dxu, D U) = 9 i (, t) -92U i( t) + Y(z, t)U = 0,atX a : /3 (xXt)+yaxxt u=0

where u(x, t) : Rd x [0, oo) - R, -y(x, t) > 0, and the matrix {caj(x, t)} is non-

negative definite for each (x, t). We can put this in our general (elliptic) setting by

thinking of t as the (d + 1)st coordinate and thinking of u(x, t) : Rd -+ R as being

a solution to

F((x, t), u, Du, D 2 U) := G(t, x, u, , Dxu, D u) = 0

As -y is non-negative and {aij (x, t)} is non-negative definite matrix valued, it is easy

to see that F is proper and so the results for viscosity solutions above hold for this

PDE.
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