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Abstract. The DNA open states, which are locally unwound regions of the double helix within which 
hydrogen bonds between complementary nitrous bases are broken, are often modeled as quasiparticles – 
DNA kinks. Most of the works on the DNA kinks are devoted to the studies of their dynamic properties, as 
well as their role in the functioning of the molecule. However, if not one but N open states are formed in the 
DNA molecule it is reasonable to consider the problem of the statistics of the ensemble of N DNA kinks. 
The statistical properties of such an ensemble are still poorly understood. In the present work, we study 
these properties applying new data on the dynamic characteristics of DNA kinks. 

1 Introduction  
When studying the internal conformational mobility of 
the DNA molecule by various experimental methods 
and, in particular, by the method of hydrogen-tritium 
exchange [1], the researchers found that locally unwound 
regions called open states or bubbles [2], can be formed 
in the DNA double helix. The bubbles arise as a result of 
exposure to temperature, collisions with solution 
molecules, radiation and interactions with proteins [3-6]. 
It is assumed that open states play an important role in 
the functioning of the molecule. The most striking 
example is the transcriptional bubble, which is formed at 
the initial stage of the transcription process as a result of 
the interaction of RNA polymerase with the promoter 
DNA region [7]. It is assumed that the velocity of the 
bubble movement along the DNA sequence is closely 
related with the velocity of the transcription process. 

To describe the open states mathematically, the 
instrument of theoretical physics and nonlinear 
mathematics are often used including representations 
about kinks, antikinks, and breathers. In this paper, 
following the work of Englander and coauthors [1] as 
well as the works of their followers [8-13], we shall use 
the sine-Gordon equation to model the internal dynamics 
of DNA, and shall apply the one-soliton solutions of the 
sine-Gordon equation – kinks, to describe the DNA open 
states. 

If the DNA molecule is long enough, it can form not 
one, but several open states, and it is legitimate to raise 
the question of the statistical properties of such an 
ensemble. This question was raised in the monograph 
[3]. A possibility to apply statistical characteristics of 
kinks in the calculations the dynamic form factor of 
neutron scattering on DNA was considered also in [14]. 
However, at that time the lack of a complete set of data 
on the DNA dynamic parameters did not make it 

possible to apply these preliminary developments to real 
DNA sequences. 

In the present work, the question of the statistics of 
the DNA kinks ensemble is investigated taking into 
account new data on the DNA dynamic parameters. For 
definiteness, all calculations are performed for kinks 
activated in the pBR322 plasmid which is a small 
circular DNA widely applied in gene research, and its 
components are used to create new instrumental 
plasmids [15]. 

 

Fig. 1. Schematic picture of plasmid pBR322.. CDS-1, CDS-2 
and CDS-3 are coding regions. 

2 DNA internal dynamics  

2.1 Model 

Let us use the sine-Gordon equation to simulate the 
DNA internal dynamics: 
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Here φ (z,t) is the angular displacement of the nitrous 
base, I is the moment of inertia of the base, K/ is the 
constant characterizing the torsion rigidity of the sugar-
phosphate chain, V is the constant that characterizes the 
interaction between complementary bases within pairs, a 
is distance between the neighboring pairs of bases. 

The sequence of the plasmid pBR322 is 
heterogeneous. Therefore, the values of the coefficients 
I, K/ and V are not constants and change along the DNA 
sequence. To simplify calculations, let us use the quasi-
homogeneous approximation, in which the coefficients 
of equation (1) become constants because of the 
averaging over the entire length of the plasmid sequence 
[16,17]: 
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where Ij, K/
j and Vj are the values of the coefficients of 

equation (1) for different types of bases (j = А, Т, G, С), 
cj = nj /n is the concentration of nitrous bases of the j-th 
type; nj is the number of nitrous bases of the j-th type; n 
is the total number of bases in the plasmid sequence. The 
values of the coefficients Ij, K/

j and Vj are presented in 
the Table 1. 

Table 1. Coefficients of equations (2) [18]. 

Type of 
the base 

Ij×10-44 
(kg∙m2) 

K/
j ×10-18 
(J) 

Vj ×10-20 
(N/m) 

A 7,61 2,35 2,09 
T 4,86 1,61 1,43 
G 8,22 2,27 3,12 
C 4,11 1,54 2,12 

Considering relations (2) the model equation (1) 
takes the form: 
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We calculated the values of the coefficients I , K ′  
and V  for the sequence of the plasmid pBR322. The 
results of the calculations are presented in Table 2. 

Table 2. Сoefficients of equations (3). 

Type of the 
sequences 

I ×10-44 
(kg∙m2) 

K ′×10-18 
(J) 

V ×10-20 
(N/m) 

a ×10-10 
(m) 

pBR322 6,14 1,93 2,21 3,4 

2.2 Dynamic characteristics of DNA kinks  

The kink-like solution of equation (3) is determined by 
the formula: 
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where kυ  is the velocity of the kink, 2/12 )/( VaKdk ′=  is 
the kink size, 2/122 )/1( −−= Ckυγ , 2/12 )/'( IaKC =  is the 
sound velocity in DNA. 

Hamiltonian corresponding to equation (3) has the 
form: 
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Inserting the solution (4) into the formula (5), we obtain 
the total energy of the DNA kink: 

VKEk ′= γ8 .      (6) 

In the "non-relativistic" limit, when the kink velocity, 
υk, is small compared to the sound velocity, C, the 
formula (6) takes the form: 
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where VKE k ′= 80
 is the rest energy of the kink. 

From (7) we obtain the rest mass (mk), kinetic energy 
(Tk) and potential energy (Uk) of the kink: 
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The momentum of the kink can be written then in the 
form: 

kkk mp υ= .    (11) 

These dynamic characteristics make it possible to 
propose a simple model of the DNA kinks ensemble in 
the form of a conventional classical system consisting of 
N interacting particles having size dk, mass mk, 
momentum pk and rest energy E0k. 

We calculated the values of the main dynamic 
parameters of the kinks activated in pBR322 plasmid and 
presented them in the Table 3. 

Table 3. Dynamic parameters of the kinks activated in pBR322 
plasmid. 

Type of the 
sequences 

mk ×10-24 
(kg) 

E0k ×10-17 
(J) 

dk 
(bp) 

pBR322 0,224 0,165 9,34 

3 Statistical characteristics of an 
ensemble of DNA kinks  

3.1 Model 
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If the number of DNA kinks is fixed, interactions 
between them are negligible and all kinks are identical, 
then the total energy of an ensemble of the DNA kinks 
can be written as: 
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and the statistical sum (or partition function) Z [19] and 
the Gibbs distribution ρ(P,Q) [20] take the form: 
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where L is the length of the DNA sequence, N is the 
number of kinks, T is the absolute temperature, kB is the 
Boltzmann constant, Q={q1,q2,....,qN} and P = {pk1, 
pk2,…,pkN} are the sets of coordinates and momentums 
of the kinks.  

3.2 Velocity distribution function of DNA kinks  

It follows from the form of formula (14) that, in the 
approximation under consideration, the kinks are 
statistically independent, and the distribution function of 
the individual i-th kink can be written as: 
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Having made a change of variables pki = mkυki in 
(15), we get: 
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is the kink velocity distribution function that is similar to 
the Maxwell velocity distribution. We calculated the 
velocity distribution function of kinks in plasmid 
pBR322. The calculation result is shown in Fig. 2. 

 

Fig. 2. Velocity distribution function of kinks. 

3.3 Free energy, average energy and entropy 

Let us use th In the approximation considered, the free 
energy of the DNA kinks ensemble is defined as [21]: 
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and the average energy is given as [22]: 
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Then the entropy and the heat capacity are 
determined by formulas [23]: 
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We plotted the temperature dependence of the free 
and average energies, as well as the entropy of the 
ensemble of kinks in plasmid pBR322.  

The results are presented in Fig. 3 and Fig. 4. 

 

Fig.3. Free energy F and average energy ε of ensemble of 
kinks of plasmid pBR322. 
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Fig.4. Entropy S of ensemble of kinks of plasmid pBR322. 

It can be seen from formulas (18) - (21) and from the 
graphs presented in Figures 3, 4 that with increasing 
temperature, the average energy and the entropy 
increase, the free the energy decreases, and the heat 
capacity remains constant for any temperature T. As 
expected this behavior is in a good agreement with the 
statistical properties of an ideal gas of quasiparticles 
having mass mk, velocity υk and the rest energy E0k. 

4 Discussion and conclusion 
In this work, we studied statistical properties of 
ensemble of the DNA kinks which simulate the open 
states of the molecule. When calculating the 
statistical characteristics, we used the data on the 
dynamic parameters of the kinks of the pBR322 
plasmid which is widely applied in genetic 
engineering. 

Formulas for statistical sum, free energy, velocity 
distribution function, average energy, entropy and heat 
capacity of the DNA kinks ensemble were obtained 
under the following three conditions: the number of the 
DNA kinks is fixed, interactions between them are 
negligible and all kinks are identical.  

In this case, ensemble of the DNA kinks is similar to 
the ideal gas of identical quasiparticles having mass mk, 
velocity υk and the rest energy E0k. Removing any of the 
three conditions will allow one to obtain in the future 
amendments to the obtained formulas and graphs. We 
believe, however, that these amendments will be small 
and will not make fundamental changes to the results 
obtained above. 

It should also be noted that all these results were 
obtained for the DNA model, which takes into account 
only one type of the internal DNA motions - angular 
oscillations of nitrous bases. Another limitation is related 
to the use of quasihomogeneous approximation. 
Nevertheless, it can be assumed that the above approach 
and the results obtained in the studying of the statistical 
properties of the DNA kinks are quite general and can be 
used to study the statistical properties of the DNA open 
states in the framework of more complex and more 
realistic DNA models. 
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