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Abstract. Recently the possibility to exploit quantum-mechanical effects to increase the performance of
energy storage has raised a great interest. It consists of N two-level systems coupled to a single photonic mode
in a cavity. We demonstrate the emergence of a quantum advantage in the charging power on this collective
model (Dicke Quantum Battery) with respect to the one in which each two-level system is coupled to its own
separate cavity mode (Rabi Quantum Battery). Moreover, we discuss the model of a Quantum Supercapacitor.
This consists of two chains, one containing electrons and the other one holes, hosted by arrays of double
quantum dots. The two chains are in close proximity and embedded in the same photonic cavity, in the same
spirit of the Dicke model. We find the phase diagram of this model showing that, when transitioning from the
ferro/antiferromagnetic to the superradiant phase, the quantum capacitance of the model is greatly enhanced.

1 Introduction

An ever increasing demand of high performance devices
for energy storage represents one of the main issues for
nowadays technological development [1]. In this context,
batteries [2] and supercapacitors [3, 4] have found an ex-
tremely wide range of applications. These systems still
operate on the basis of physical and chemical principles
discovered between the Eighteenth and Nineteenth cen-
turies [2]. However, new strategies are needed in order to
overcome their intrinsic limitations. Although a great ef-
fort is currently focused on the material optimization [5],
fundamental research in this field calls, in the long run, to
a radical paradigmatic shift.

A very interesting possibility to enhance the average
charging power of a battery or the energy stored in a super-
capacitor is offered by quantum mechanics. Indeed, quan-
tum phenomena are predicted to increase the performance
of technological devices [6] and an increasing theoreti-
cal and experimental research activity is currently focused
on applying quantum resources to improve energy storage
and transfer [7–14] in the framework of the so called quan-
tum thermodynamics. More specifically, a great number
of researchers have recently addressed various aspects of
quantum batteries [15–29]. A solid-state implementation
of a quantum battery based on an array of N two-level sys-
tems (TLSs) coupled to a common cavity photonic mode
(known as Dicke model [30, 31]) has been introduced in
Ref. [32]. Here, a

√
N enhancement of the averaged charg-
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ing power, keeping substantially fixed the average stored
energy, has been theoretically demonstrated.

Exploiting further the interesting physics related to
light-matter interaction, in Ref. [33] a model for a Quan-
tum Supercapacitor based on two chains of double quan-
tum dots (DQDs) [34], one filled with electrons the other
with holes, which implements a collections of TLSs has
been introduced. All DQDs are coupled to a common
photonic cavity mode [35–39]. Each chain separately can
be seen as a realization of the Dicke-Ising model [40].
The two chains, however, are further coupled via an on-
site electron-hole attractive interaction, which brings to an
even richer phase diagram investigated by means of an
analytical variational approach. As a remarkable conse-
quence of the charge rearrangement that occurs at the su-
perradiant phase transition [41] the capacitance of the sys-
tem is strongly enhanced.

Aim of this paper is to review the physical mechanisms
underlying both the Dicke quantum battery and the Quan-
tum Supercapacitors realized by means of a Dicke-Ising
interaction focussing also on their possible solid states im-
plementations.

The present article is organized as follows. In Sec-
tion 2 we discuss our model for the Dicke quantum battery
showing the advantage associated to a collective charging.
The physics of the quantum supercapacitor is described in
Section 3. Experimentally feasible realizations of these
devices are considered in Section 3.5. Finally Section 4 is
devoted to Conclusions.

EPJ Web of Conferences 230, 00003 (2020)	 https://doi.org/10.1051/epjconf/202023000003
FisMat 2019

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution  
License 4.0 (http://creativecommons.org/licenses/by/4.0/).



2 Dicke quantum battery

2.1 Model

We consider a collection of N TLSs, each being initially
prepared in its ground state |g〉. They are promoted to the
excite state |e〉 via coupling to a single cavity mode (charg-
ing process). Even if more general initial states can be
considered [21], we assume for sake of simplicity that the
cavity is in the N photons Fock state |N〉. According to
this, the initial state of the total system is:

|ψ(N)(0)〉 = |N〉 ⊗ |g, g, . . . , g〉︸�������︷︷�������︸
N

. (1)

The quantum dynamics of this system is governed by
the Dicke Hamiltonian [30]:

Ĥ (N)
λt
=�ωcâ†â + ωa Ĵz + 2ωcλt Ĵx

(
â† + â

)
. (2)

Here, â (â†) annihilates (creates) a cavity photon with fre-
quency ωc and

Ĵα =
�

2

N∑
i

σ̂αi α = x, y, z (3)

are the components of a pseudospin operator expressed in
terms of the Pauli operators σ̂αi associated to the i-th TLS.

With �ωa we indicate the level spacing between the
ground and excited state of each TLS. Throughout all this
paper, we will focus on the resonant regime, ωa = ωc. The
dimensionless light-matter coupling λt is driven in time
according to the charging (discharging) protocol sketched
in Figure 1.

t
0

⌧c ⌧s ⌧d

�t

�̄

Figure 1. Evolution of the coupling λt between the TLSs and
the cavity radiation as a function of time. One can identify three
different regions. Charging. Here, interaction is suddenly turned
on at time t = 0+ up to a constant value λ0+ = λ̄, and kept it at this
value for 0 < t ≤ τc. An energy transfer occurs from the cavity
to the array of TLSs. Storage. The interaction is then turned off
at time τ+c , i.e. λτ+c = 0, and kept it off for τc < t ≤ τc + τs.
Here, the TLSs are assumed to be isolated from the environment,
and hence keep their energy (as long as relaxation effects are
negligible). Discharging. The interaction is again turned on for
a time τd with λt = λ̄ for τc + τs < t ≤ τc + τs + τd. In this
phase energy is transferred back to the cavity. Picture taken from
Ref. [32].

2.2 Parallel charging

Let’s start by considering the case in which each of the
N TLSs is coupled to a separate cavity (parallel charg-
ing) as shown in Figure 2. Here, the Dicke Hamiltonian

!a

!c
|gi

|ei

Figure 2. Array of identical TLSs charged in parallel (Rabi QB).
The elementary unit (red box) consists of a two-level system with
an energy separation �ωa between the ground |g〉 and excited
state |e〉. Each two-level system is coupled to a separate cavity
(blue) hosting a single photonic mode. The red arrow indicates a
transition induced by the radiation. Picture taken from Ref. [32].

in Eq. (2) reduces to N identical copies of the the Rabi
Hamiltonian [42, 43].

The energy stored in the system after at time τc oper-
ating in this parallel fashion, indicated with E(‖)

λ̄
(τc), is N

times the energy ελ̄(τc) stored in a single Rabi QB:

E(‖)
λ̄

(τc) = Nελ̄(τc) ≡ N�ωc

2

[
〈ψ(1)
λ̄

(τc)|σ̂z|ψ(1)
λ̄

(τc)

− 〈ψ(1)(0)|σ̂z|ψ(1)(0)〉
]
. (4)

The label λ̄ in E(‖)
λ̄

(τc) reminds the fact that the stored en-
ergy depends on the coupling λ̄ of the charging step. More-
over, one has

|ψ(1)
λ̄

(τc)〉 = e−iĤ (1)
λ̄
τc/�|ψ(1)(0)〉. (5)

We now introduce the maximum stored energy (i.e. the
“capacity’ [24]’)

E(‖)
λ̄
= max

τc
[E(‖)
λ̄

(τc)] (6)

and the maximum charging power

P(‖)
λ̄
= max

τc
[P(‖)
λ̄

(τc)] ≡ max
τc


E(‖)
λ̄

(τc)

τc

 . (7)

According to Eq. (4) one has that both E(‖)
λ̄

and P(‖)
λ̄

scale linearly with N (constant energy and power per QB).

2.3 Collective charging
!a

!c
|gi

|ei

Figure 3. Array of identical TLSs charged in a collective way
(Dicke QB), namely coupled to the same cavity. The red arrow
indicates a transition induced by the radiation. Picture taken from
Ref. [32].

We now investigate the capacity when the N TLSs are
coupled to a unique cavity (see Figure 3). It is described
by the Dicke Hamiltonian in Eq. (2). Due to the fact that
Ĵ2 =

∑
α=x,y,z Ĵ2

α is a conserved quantity [44, 45] a con-
venient basis is |n, j,m〉, where n indicates the number of

2
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(Dicke QB), namely coupled to the same cavity. The red arrow
indicates a transition induced by the radiation. Picture taken from
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We now investigate the capacity when the N TLSs are
coupled to a unique cavity (see Figure 3). It is described
by the Dicke Hamiltonian in Eq. (2). Due to the fact that
Ĵ2 =

∑
α=x,y,z Ĵ2

α is a conserved quantity [44, 45] a con-
venient basis is |n, j,m〉, where n indicates the number of

photons, j( j+1) is the eigenvalue of Ĵ2, and m denotes the
eigenvalue of Ĵz.

It is worth mentioning that the Dicke Hamiltonian
doesn’t conserve the number of photons. Therefore, in or-
der to solve the system through exact diagonalization we
need to truncate it by introducing a cutoff Nph > N in such
a way that a larger value of it, N′ph > Nph, would not pro-
duce any noticeable difference in the results.

The energy E(�)
λ̄

(τc) stored collectively after a time τc
by the N TLSs is given by

E(�)
λ̄

(τc) = ωc

[
〈ψ(N)
λ̄

(τc)|Ĵz|ψ(N)
λ̄

(τc)〉

− 〈ψ(N)(0)|Ĵz|ψ(N)(0)〉
]
, (8)

where |ψ(N)
λ̄

(τc)〉 = e−iĤ (N)
λ̄
τc/�|ψ(N)(0)〉.

Figure 4. Top panel. Maximum collectively stored energy E(�)
λ̄

(in units of N�ωc) as a function of N. Bottom panel. Maximum
collective average charging power P(�)

λ̄
(in units of λ̄N

√
N�ω2

c) as
a function of N. Black squares denote the results at λ̄ = 0.05 ne-
glecting the counter-rotating terms in Eq. (2). Results for Dicke
QBs refer to λ̄ = 0.05 (red circles), λ̄ = 0.5 (blue triangles), and
λ̄ = 2.0 (green diamonds). The thin horizontal lines are best fits
to the numerical results, indicating the asymptotic values of the
maximum power at large N: limN�1 P(�)

λ̄
/(λ̄N

√
N�ω2

c) = 0.586
for λ̄ = 0.05 (red), 0.858 for λ̄ = 0.5 (blue), and 0.847 for λ̄ = 2
(green).

Figures 4 show the maximum stored energy (top)

E(�)
λ̄
≡ max

τc
[E(�)
λ̄

(τc)] (9)

and maximum charging power (bottom)

P(�)
λ̄
≡ max

τc


E(�)
λ̄

(τc)

τc

 (10)

in the collective case (properly rescaled), as functions of
N, for various values of λ̄. We clearly see that such

rescaled quantities rapidly converge to a certain asymp-
totic value as N increases. This implies that, for suffi-
ciently large values of N, E(�)

λ̄
and P(�)

λ̄
reach asymptotic

values characterized by the following scaling laws

E(�)
λ̄
∝ N (11)

and
P(�)
λ̄
∝ N
√

N . (12)

The super-linear scaling of the maximum averaged charg-
ing power in Eq. (12) constitutes direct evidence of a

√
N

advantage associated to collective charging as compared
to parallel charging. Such advantage is related to the scal-
ing law of the time needed to reach the maximum power,
namely τ̄c ∝ 1/

√
N, and has its origin in the renormal-

ization of the effective light-matter coupling as a conse-
quence of the collective interaction [46]. Thus our Dicke
QBs realize in practice the powerful charging mechanism
described in abstract terms in Refs. [17, 18].

2.4 Storage and discharging

In order for our system to properly work as a battery we
need to assume that the storage time τs is much shorter
than any decoherence/relaxation time scale associated to
the device. For what it concerns the discharging phases
one has that in the parallel case, and in the weak coupling
limit λ̄ � 1, the initial state in Eq. (1) can be recovered
at the end of the discharging phase as far as the condition
τc + τd = π/(λ̄ωc) is fulfilled. In the collective case, as
either N or λ̄ increases, such recoverability is lost. This
is a signature of an interesting trade-off between averaged
charging power and reversibility of the charging process.
Highest values of the maximum power are achieved at
strong coupling at the cost of a lower stored energy. Con-
versely, at weak coupling, one finds larger values of the
maximum stored energy at the cost of lower values of the
maximum power.

3 Quantum supercapacitor

3.1 Model

We are going to investigate now two arrays of double
quantum dots (DQDs) [34], each having the voltage pro-
file sketched in the top panel of Figure 5. Each DQD can
be seen as a charge qubit that plays the role of the TLS
discussed in the previous Section [47–50]. We consider
two coupled chains, each one containing M DQDs. The
chemical potentials in the top (T) and the bottom (B) are
tuned in such a way to host exactly one electron and one
hole in each DQD respectively (see Figure 5). Such charge
configuration has been chosen in order to mimic the two
oppositely charged plates of a classical capacitor. The only
two relevant electrostatic interaction contributions are in-
dicated as U and V in Figure 5. Finally, in each DQD,
the transitions between the energy levels are induced by
absorption (emission) of photons from (into) the electro-
magnetic field of a cavity through a Dicke-link coupling
extending what done in the previous Section.

3
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Figure 5. Schematic top view of the two-chain system. Here,
one has a top (T) chain (red) and a bottom (B) chain (light blue)
made up of DQDs. Each of them is singly occupied with elec-
trons (dark red) and holes (dark blue) respectively thanks to the
considered voltage profile V(y). The two dominant contributions
to the electrostatic interaction are: an inter-chain attractive in-
teraction of strengthU (green arrow) between an electron and a
hole in their respective ground states; an intra-chain repulsive in-
teraction of strengthV (orange arrow) between electrons (holes)
either in the ground-ground or in the excited-excited configura-
tion. Picture taken from Ref. [33].

Accordingly, our model for a quantum supercapacitor
is described by the Hamiltonian:

Ĥ = Ĥ (T)
DI + Ĥ

(B)
DI + Ĥ

(TB) + Ĥ (R) , (13)

where

Ĥ (T)
DI =

M∑
i=1

[
ε

2
τ̂z

i +
V
2

(
τ̂z

i τ̂
z
i+1 + 1

)
+ �ωcλ

(
â† + â

)
τ̂x

i

]
,

(14)

Ĥ (TB) = −U
4

M∑
i=1

(
1 − τ̂z

i

) (
1 − σ̂z

i

)
, (15)

and

Ĥ (R) = �ωcâ†â . (16)

The B chain Hamiltonian, Ĥ (B)
DI , can be obtained from

Ĥ (T)
DI by replacing τ̂αi → σ̂αi , where τ̂αi (σ̂αi ) with α = x, z

are pseudospin Pauli matrices acting on the 2D Hilbert
space associated with the i-th DQD on the T (B) chain.

The above equation can be seen as two copies of the
Dicke-Ising (DI) model introduced in Ref. [40], one for
the T chain described by Ĥ (T)

DI and one for the B chain
described by Ĥ (B)

DI , further coupled by means of a local
attractive interaction. The non-trivial phase diagram of
the DI model in the V-λ space is inherited by our model.
However, we expect additional ground-state phases due to
the Coulomb attractionU > 0.

3.2 Variational wave-function for the ground state
and order parameters

The ground state of the present system can be written in
terms of the variational wave-function

|Ψ〉 = |
√

Mα〉 ⊗
M∏

i=1


cos
(
θ(B)

i
2

)

eiχ(B)
i sin

(
θ(B)

i
2

)
 (17)

⊗
N∏

k=1


cos
(
θ(T)

k
2

)

eiχ(T)
k sin

(
θ(T)

k
2

)
 .

Here, |
√

Mα〉 is a photon coherent state in the cavity [41]
and θ(T/B)

i , χ(T/B)
i the angles characterizing the pseudospin

associated with the i-th DQD of the T or B chain in the
Bloch representation. In order to further simplify our anal-
ysis, we consider periodic boundary conditions (M+1 ≡ 1)
and we exploit the T ↔ B exchange symmetry of the
model, which allows us to set θ(T)

i = θ(B)
i = θi and

χ(T)
i = χ(B)

i = χi. The ground-state energy of the com-
pletely filled system is then given by

E =

M∑
i=1

[ (
ε +
U
2

)
(cos θi) +V (cos θi cos θi+1)

− U
4

(
cos2 θi

)
+ 4�ωcλ

√
Nα (sin θi cos χi)

+ �ωcα
2 +V − U

4

]
. (18)

Assuming M to be even, and restricting the analysis to the
case in which the polar θi and azimuthal χi angles can only
change between even and odd sites [40], i.e. θ2i+1 = θo,
θ2i = θe, χ2i+1 = χo, χ2i = χe, we finally obtain

E = M
[(
ε

2
+
U
4

)
(cos θo + cos θe) +V (cos θo cos θe)

− U
8

(
cos2 θo + cos2 θe

)

+ 2�ωcλ
√

Nα (sin θo cos χo + sin θe cos χe)

+ �ωcα
2 +V − U

4

]
. (19)

The function E = E(θo, θe, χo, χe, α) need to be minimized
with respect to its variables in order to obtain the ground-
state energy of the system and characterize the various
possible phases. This leads to

Ẽ = M
[(
ε +
U
2

)
s +V

(
s2 − m2

)

− U
4

(
s2 + m2

)
− �ωcA +V −

U
4

]
, (20)

where we have introduced the order parameters [40]

A = 〈â
†â〉
M
= Λ2 (sin θo + sin θe)2 (21)

which measures the average number of photons in the cav-
ity and is non-zero in the superradiant phase;

s =
〈σ̂z

1 + σ̂
z
2〉

2
=

1
2

(cos θo + cos θe) (22)

4
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1 − τ̂z

i

) (
1 − σ̂z

i

)
, (15)

and

Ĥ (R) = �ωcâ†â . (16)

The B chain Hamiltonian, Ĥ (B)
DI , can be obtained from

Ĥ (T)
DI by replacing τ̂αi → σ̂αi , where τ̂αi (σ̂αi ) with α = x, z

are pseudospin Pauli matrices acting on the 2D Hilbert
space associated with the i-th DQD on the T (B) chain.

The above equation can be seen as two copies of the
Dicke-Ising (DI) model introduced in Ref. [40], one for
the T chain described by Ĥ (T)

DI and one for the B chain
described by Ĥ (B)

DI , further coupled by means of a local
attractive interaction. The non-trivial phase diagram of
the DI model in the V-λ space is inherited by our model.
However, we expect additional ground-state phases due to
the Coulomb attractionU > 0.

3.2 Variational wave-function for the ground state
and order parameters

The ground state of the present system can be written in
terms of the variational wave-function

|Ψ〉 = |
√

Mα〉 ⊗
M∏

i=1


cos
(
θ(B)

i
2

)

eiχ(B)
i sin

(
θ(B)

i
2

)
 (17)

⊗
N∏

k=1


cos
(
θ(T)

k
2

)

eiχ(T)
k sin

(
θ(T)

k
2

)
 .

Here, |
√

Mα〉 is a photon coherent state in the cavity [41]
and θ(T/B)

i , χ(T/B)
i the angles characterizing the pseudospin

associated with the i-th DQD of the T or B chain in the
Bloch representation. In order to further simplify our anal-
ysis, we consider periodic boundary conditions (M+1 ≡ 1)
and we exploit the T ↔ B exchange symmetry of the
model, which allows us to set θ(T)

i = θ(B)
i = θi and

χ(T)
i = χ(B)

i = χi. The ground-state energy of the com-
pletely filled system is then given by

E =

M∑
i=1

[ (
ε +
U
2

)
(cos θi) +V (cos θi cos θi+1)

− U
4

(
cos2 θi

)
+ 4�ωcλ

√
Nα (sin θi cos χi)

+ �ωcα
2 +V − U

4

]
. (18)

Assuming M to be even, and restricting the analysis to the
case in which the polar θi and azimuthal χi angles can only
change between even and odd sites [40], i.e. θ2i+1 = θo,
θ2i = θe, χ2i+1 = χo, χ2i = χe, we finally obtain

E = M
[(
ε

2
+
U
4

)
(cos θo + cos θe) +V (cos θo cos θe)

− U
8

(
cos2 θo + cos2 θe

)

+ 2�ωcλ
√

Nα (sin θo cos χo + sin θe cos χe)

+ �ωcα
2 +V − U

4

]
. (19)

The function E = E(θo, θe, χo, χe, α) need to be minimized
with respect to its variables in order to obtain the ground-
state energy of the system and characterize the various
possible phases. This leads to

Ẽ = M
[(
ε +
U
2

)
s +V

(
s2 − m2

)

− U
4

(
s2 + m2

)
− �ωcA +V −

U
4

]
, (20)

where we have introduced the order parameters [40]

A = 〈â
†â〉
M
= Λ2 (sin θo + sin θe)2 (21)

which measures the average number of photons in the cav-
ity and is non-zero in the superradiant phase;

s =
〈σ̂z

1 + σ̂
z
2〉

2
=

1
2

(cos θo + cos θe) (22)

is the magnetization of a plaquette composed of two neigh-
boring sites and

m =
〈σ̂z

1 − σ̂
z
2〉

2
=

1
2

(cos θo − cos θe) (23)

which is the plaquette staggered magnetization.

3.3 Phase diagram

The quantity Ẽ in Eq. (20) has been minimized numeri-
cally as a function of the dimensionless parameters Ũ ≡
U/�ωc, Λ2 ≡ λ2N and for different values of Ṽ ≡
V/(�ωc). One can identify four distinct phases (see Figure
6):

• A ferromagnetic-normal (FN) phase (A = 0, s = −1,
and m = 0), where electrons (holes) occupy the ground
state |g〉e (|g〉h) of each DQD in the top (bottom) chain
in absence of coherent cavity radiation.

• A ferromagnetic-superradiant (FS) phase (A � 0, s � 0,
and m = 0), where the radiation in the cavity becomes
coherent.

• An antiferromagnetic-normal (AFN) phase (A = 0, s =
0, and m = 1), where electrons occupy the ground state
on even sites and the excited state on odd sites and holes
in the bottom chain follow the same charge profile in
absence of coherent cavity radiation.

• An antiferromagnetic-superradiant (AFS) phase (A � 0,
s � 0, and m � 0), where the radiation in the cavity
becomes coherent.

In top panel of Figure 6 we observe a net separation
between the FN (blue) and FS phases (red), with a contin-
uous transition occurring at

Λ2 =
1
8

(
1 + Ũ

)
. (24)

By increasing Ṽ (bottom panels of Figure. 6) the FN phase
progressively moves towards higher values of Ũ and the
AFN phase (green) emerges and expands, extending for
small values of Λ2 up to

Ũ = 4Ṽ − 2 , (25)

at which a first-order transition occurs. Moreover, at the
boundary between FS and AFN phases a very narrow AFS
region (yellow) appears.

It is worth noticing that the knowledge of all the three
order parameters is needed to properly reconstruct the
complete phase diagram.

3.4 Quantum capacitance

We can now consider the capacitance associated to our
model. We can define it as the inverse of the discrete
derivative of the chemical potential with respect to the
number M of charges [51, 52], i.e.

C =
e2

µM − µM−1
, (26)

FN

FS FS

AN

AS

FN

FS FS

AN

AS

Figure 6. Phase diagram derived from Eq. (20) in the Λ2, Ũ
space at different values of Ṽ. Top panel. Ṽ = 0 case, the
phase diagram shows a continuous phase transition between the
ferromagnetic-normal (blue) and the ferromagnetic-superradiant
(red) ordering. The situation remains qualitatively analogous
up to Ṽ � 0.5. Bottom panel. Ṽ = 1.0 case, emer-
gence of both an antiferromagnetic-normal (green) and a narrow
antiferromagnetic-superradiant (yellow) phase at the expense of
the previously discussed ones. Insets represent the charge ar-
rangement along the chain and the possible presence of radiation.

where µM = EM − EM−1. Here, Ek (k ∈ N) indicates the
ground-state energy of the system where only k sites of
the chains (out of a total of M sites per chain) are filled
with electrons and holes. The problem is thereby reduced
to evaluating the change in the ground-state energy of the
system when an electron and a hole are removed from the
same i-th site, while keeping fixed the total length of the
two coupled chains. This protocol is motivated by the need
to locally preserve the charge neutrality of the system, but
explicitly breaks translational invariance.

Accordingly, we consider the following two-step pro-
tocol. One can first remove an electron-hole pair from the
completely filled two-chain system in an arbitrary site (in
the sublattice of odd sites to fix the notation). One has, in
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the M � 1 limit,

µM ≈ ε cos(θo) − U
4

[1 − cos(θo)]2

+ 2V [cos(θo) cos(θe) + 1] − 8�ωcΛ
2 sin2(θo) .

(27)

A second electron-hole pair can be removed in one of the
nearest-neighbor sites (both in the sublattice of even sites)
leading to

µM−1 ≈ ε cos(θe) − U
4

[1 − cos(θe)]2

+ V [cos(θo) cos(θe) + 1] − 8�ωcΛ
2 sin2(θe).

(28)

The above protocol reminds of what happens in atomic
physics, where an atom with a completely filled shell is
progressively ionized by removing the most loosely bound
electrons and with µM (µM−1) playing the role of first (sec-
ond) ionization energy [51].

The capacitance of the system can then be written as

C =
C0[

(2 + Ũ)m − Ũms + Ṽ (1 + s2 − m2) + 32Λ2ms
]

(29)
with C0 ≡ e2/�ωc a dimensional factor.

In absence of coupling with the cavity radiation (Λ2 =

0), Eq. (29) reduces to

CFN =
C0

2Ṽ
(30)

for the FN phase (s = −1,m = 0) and to

CAFN =
C0

(2 + Ũ)
(31)

(lower than CFN in the considered range of parameters) for
the AFN (s = 0,m = 1) phase. At finite values of the
light-matter coupling, in the FS (s � 0,m = 0) phase, the
capacitance becomes

CFS =
C0

(1 + s2)Ṽ
. (32)

In order to quantify the enhancement of the capaci-
tance with respect to the one in absence of radiation, i.e. C
evaluated at Λ2 = 0 and indicated with C̄ in the following,
we need to introduce the ratio

κ =
C
C̄
− 1 . (33)

Its behavior as a function of the dimensionless parameters
Ũ ≡ U/�ωc and Λ2 ≡ λ2N and for different values of
Ṽ ≡ V/(�ωc) is reported in Figure 7. It is positive and
shows that an enhancement of the capacitance (κ > 0) as-
sociated to the superradiant phase transition occurs in the
system due to the, purely non-classical, arrangement of the
charges (see Figure 6). In particular, at the transition be-
tween the FN and FS phase (top panel of Figure 7), we
have

κ =
CFS

CFN
− 1 =

1 − s2

1 + s2 . (34)

Figure 7. Density plots of the ratio κ as a function of Ũ and Λ2

for Ṽ = 0 (top panel) and Ṽ = 1.0 (bottom panel). Picture taken
from Ref. [33].

This quantity only depends on the pseudospin order pa-
rameter s and reaches the value κ = 1 (doubling of the
capacitance) deeply in the FS phase (where one asymp-
totically approaches s = 0, namely electrons and holes
are completely delocalized in the DQDs due to the ra-
diation). Differently, at the transition between the AFN
and FS phase and neglecting the small AFS phase (bottom
panel of Figure 7) , we find

κ =
CFS

CAFN
− 1 =

2 + Ũ(
1 + s2) Ṽ − 1 , (35)

which depends on both the pseudospin order parameter s
and the specific values of the interaction terms leading to
even large values of the ratio (κ > 2.5). Again, this quan-
tity is maximal when s = 0.

3.5 Possible solid state implementations

Systems made of engineered TLSs coupled with a cav-
ity radiation have been realized with state-of-the-art solid-
state technologies such as superconducting qubits coupled
to line resonators [46, 53, 54] or quantum dots combined
with superconductive microwave circuits [38, 39, 55–57].
In such devices one has resonant frequencies ωc ≈ ωa in
the GHz range and coupling g0 = λ̄ωc around 10-100 MHz
leading to λ̄ ≈ 10−3-10−2. However, recent experimental
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shows that an enhancement of the capacitance (κ > 0) as-
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Figure 7. Density plots of the ratio κ as a function of Ũ and Λ2

for Ṽ = 0 (top panel) and Ṽ = 1.0 (bottom panel). Picture taken
from Ref. [33].

This quantity only depends on the pseudospin order pa-
rameter s and reaches the value κ = 1 (doubling of the
capacitance) deeply in the FS phase (where one asymp-
totically approaches s = 0, namely electrons and holes
are completely delocalized in the DQDs due to the ra-
diation). Differently, at the transition between the AFN
and FS phase and neglecting the small AFS phase (bottom
panel of Figure 7) , we find

κ =
CFS

CAFN
− 1 =

2 + Ũ(
1 + s2) Ṽ − 1 , (35)

which depends on both the pseudospin order parameter s
and the specific values of the interaction terms leading to
even large values of the ratio (κ > 2.5). Again, this quan-
tity is maximal when s = 0.

3.5 Possible solid state implementations

Systems made of engineered TLSs coupled with a cav-
ity radiation have been realized with state-of-the-art solid-
state technologies such as superconducting qubits coupled
to line resonators [46, 53, 54] or quantum dots combined
with superconductive microwave circuits [38, 39, 55–57].
In such devices one has resonant frequencies ωc ≈ ωa in
the GHz range and coupling g0 = λ̄ωc around 10-100 MHz
leading to λ̄ ≈ 10−3-10−2. However, recent experimental

work has also demonstrated that the strong-coupling λ̄ ≈ 1
can be reached [58–60]. Moreover, as stated above, the
proposed charging/discharging protocol is meaningful as
long as the relevant decoherence rate Γφ and the electron
relaxation rate Γe satisfy Γφ � Γe < g0, a condition which
is typically fulfilled in experiments [39, 46, 61]. As a final
remark, it is worth mentioning the fact that the actual pos-
sibility to explore the normal/superradiant phase transition
in a real solid-state device has been debated at length due
to the presence of an additional term ∝

(
â† + â

)2
(not con-

sidered here), which emerges from the minimal coupling
between matter and cavity radiation [63–69]. However,
according to recent calculations [70], superradiant phase
transition is expected also in correlated materials embed-
ded in photonic cavities.

For what it concerns more specifically the solid state
implementations of our quantum supercapacitor model,
capacitive couplings between DQDs up toU/h ≈ 30 GHz
have been reported [62]. Accordingly, it can be possible,
at least in principle, to explore a quite wide interval of val-
ues of Ũ. Moreover, one can also change this parame-
ter by both acting on the distance between the two chains
and changing the dielectric constant of the environment
where the chains are embedded. An analogous discussion
also holds for the intra-chain coupling V which can be
charged acting on the distance between the DQDs along
each chain.

4 Conclusions

We have reviewed some recent results concerning energy
storage in quantum devices based on two-level systems
coupled with a cavity radiation.

We have introduced the concept of a Dicke quantum
battery where the interaction of an array of N two-level
systems with a common quantized electromagnetic mode
creates entanglement. We observe a

√
N-fold enhance-

ment of the scaling of the maximum charging power with
respect to the parallel case (Rabi quantum battery), inde-
pendent of the value of the light-matter interaction.

We have also investigated a model of a Quantum Su-
percapacitor made of two chains, one containing electrons
and the other one holes, hosted by arrays of double quan-
tum dots. Electron and hole feel screened Coulomb in-
teractions and the whole system is embedded a photonic
cavity, which is responsible for long-range coupling be-
tween all the qubits. We characterized the stable phases
of this model by means of a variational approach showing
that, when transitioning from the ferro/antiferromagnetic
to the superradiant phase, the quantum capacitance of the
model is strongly enhanced.

Our work offers the proper theoretical background for
the experimental realization of a novel class of quantum
devices where an improvement in the energy transfer and
storage performance is achieved through purely quantum
mechanical effects.
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