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Abstract
A diffuse-interface model for microstructures with an arbitrary number of components and phases
was developed from basic thermodynamic and kinetic principles and applied to the study of ternary
eutectic phase transformations. Gradients in composition and phase were included in the free energy
functional, and a generalized diffusion potential equal to the chemical potential at equilibrium was
defined as the driving force for diffusion. Problematic pair-wise treatment of phases at interfaces
and triple junctions was avoided, and a cutoff barrier was introduced to constrain phase fractions to
physically meaningful values. Parameters in the model were connected to experimentally measur-
able quantities. Numerical methods for solving the phase-field equations were investigated. Explicit
finite difference suffered from stability problems while a semi-implicit spectral method was orders
of magnitude more stable but potentially inaccurate. The source of error was found to be the
rich temporal dynamics of spinodal decomposition combined with large timesteps and a first-order
time integrator. The error was addressed with a second-order semi-implicit Runge-Kutta time inte-
grator and adaptive timestepping, resulting in two orders of magnitude improvement in efficiency.
A diffusion-limited growth instability in multiphase thin-film systems was discovered, highlighting
how ternary systems differ from binary systems, and intricate asymmetries in the processes of so-
lidification and melting were simulated. A nucleation barrier for solidification was observed and
prompted development of a Monte-Carlo-like procedure to trigger nucleation. However when solid
was heated from below the melting point, premelting was observed first at phase triple junctions
and then at phase boundaries with stable liquid films forming under certain conditions. Premelting
was attributed to the shape and position of the metastable liquid curve, which was found to affect
microstructure by creating low energy pathways through composition space. Slow diffusivity in solid
relative to liquid was shown to produce solutal melting of solid below the melting point. Finally,
the multiphase method was used to produce the first reported simulation of the entire transient
liquid phase bonding process. The model shows promise for optimizing the bonding process and for
simulating non-planar solidification interfaces.
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Chapter 1

Introduction

The primary goal of computational modeling is to gain a deeper understanding of

experimental systems and to use this deeper understanding to improve technology.

This work grew out of an industrial need for a better understanding of microstructural

evolution in ternary ceramic mixtures. The specific motivation was to model the

complex ternary reaction pathways that control the formation of cordierite, an exotic

ceramic with nearly zero thermal expansion that is used as the substrate material for

catalytic converters in automobiles. The formation of cordierite requires very high

processing temperatures, and a computer model could be helpful for optimizing the

reaction pathway so that cordierite is produced quickly and at lower temperature.

Transient liquids, which are regions of solid microstructure that temporarily become

liquid, were also observed to form under certain conditions and are thought to have

a very important role in microstructural development.

A secondary goal of computational modeling is to develop simple models that gen-

erate new insight through accurate prediction of complex experimental observations.

Microstructure evolution in multiphase, multicomponent systems is important to un-

derstand for industrial processes, and also interesting from an academic perspective

[1, 2, 3]. Morphological evolution in ternary and multicomponent systems is much

more complex than in binary systems.
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Advancements in science are made when we take the work of others and risk

heading in new directions instead of remaining in the safety of past successes. The

phase-field method, which is described in detail throughout the rest of this work, is

perhaps the best available tool for understanding the complexity of microstructure

evolution. Although phase-field has been extended to handle multiple components

or multiple phases, there has been limited progress on models that treat both mul-

tiple components and phases simultaneously, with the exception of binary two phase

models. The multicomponent, multiphase model developed in this work opens the

door for a variety of interesting kinetic studies of phase transitions, morphology, and

microstructure evolution.

1.1 The basics of phase-field

Phase-field modeling has become an important part of computational materials sci-

ence because it is a natural way to use thermodynamic data to study the kinetics of

microstructure evolution. Phase-field has been used successfully to study first and

second-order phase transitions, order-disorder transitions, nucleation and spinodal

decomposition, grain growth, coarsening, the growth of dendrites in a super-cooled

liquid, directional solidification, faceted crystal growth, diffusion controlled processes,

solute drag, interdiffusion, and the effects of anisotropy. The newly developed phase-

field crystal method has recently received attention for merging phase-field and molec-

ular dynamics, providing a way to simulate microstructure on diffusive time scales not

accessible by molecular dynamics, and atomistic length scales [4, 5, 6]. A substantial

amount of literature has been written about the application of phase-field models to

these areas, and the reader is referred to several recent review papers for an overview

[7, 8, 9, 10, 3,1 11].

Phase-field modeling is based on the idea that interfaces in microstructure are

diffuse at the nanoscale and can be represented by one or more smoothly varying order
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parameters, often taken to be concentration. Phase-field modeling eliminates the need

to explicitly track interfaces, which would require defining boundary conditions and

deriving evolution equations for each interface. Phase-field implicitly incorporates

curvature driven physics and handles creation, destruction, and merging of interfaces,

phenomena which are difficult to capture with a sharp interface model. The phase-

field equations also capture behavior that occurs in the bulk, away from interfaces.

Thus phase-field is ideally suited for modeling the complex morphologies that arise

in the study of microstructure.

The order parameter contributes to a free energy functional which is defined for

the system, and a variational method is applied to find evolution equations that evolve

the system toward the minimum of the energy functional. The free energy functional

is found by adding a gradient energy term to the homogeneous free energy density

f(c), and integrating over the system [12]:

F[c, Vc] = (f(c) + K(Vc) 2) dV (1.1)
JV

r. is a constant called the gradient energy coefficient, and the gradient energy term

K(Vc)2 penalizes regions with concentration varies sharply. In experimental systems,

these regions would have a high driving force for diffusion. The free energy density

is generally constructed to promote phase separation, in opposition to the gradient

energy term. A stable interface then represents a balance between phase separation

and interface formation.

Evolution equations for the order parameters are found by applying a variational

approach to the free energy functional. When the time derivative is set equal to

the divergence of a flux, evolution is governed by the Cahn-Hilliard equation, which

applies to conserved order parameters such as composition:

Oc 6
- = V M c ) (1.2)

8t Jc
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M(c) is the mobility of the diffusing species, and an important aspect of this thesis

will be to determine the compositional dependence of mobility in a multicomponent

system.

Setting the time derivative equal proportional to the variational derivative yields

the Allen-Cahn equation [13]. This equation does not conserve # and can be used to

model phase order parameters:

= -M()F (1.3)at 6#

The derivation of both equations and their application to multiphase modeling is

described in detail in chapter 2.

1.2 A history of multiphase and multicomponent

models

Multiphase modeling with a phase-field approach begins with a description of an

interface between two phases, possibly in the presence of one or more diffusing so-

lutes. In many systems, phase is thought of as binary variable that distinguishes

regions separated by sharp interfaces. Phase is generally considered to be a smoothly

varying quantity only for liquid-vapor boundaries close to the critical point. In a

diffuse interface model however, phase and composition are modeled as smoothly

varying quantities at all interfaces. To model such interfaces, a decision must be

made whether to treat the interface as an interpolation between two phases with the

same composition, or two phases with different compositions. It is not clear that one

treatment is necessarily correct, but the two approaches lead to distinctly different

models. The first approach was used in the classic WBM model [14, 15, 16] and is

extended in this work to model systems with an arbitrary number of components and

phases. The second approach was used to add component diffusion to the Steinbach
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0 ceq a 0.5 cegq
CB

Figure 1-1: The WBM model assumes that the energy of interfacial compositions
is a weighting of the dashed regions of the free energy curves, while extensions the
Steinbach multiphase model to include solute diffusion assume that the energies of
interfacial compositions lie on the common tangent line.

multiphase model [17, 18]. The development of both approaches will now be reviewed

as it is important to understand the advantages and disadvantages of each method

within the context of the modifications to be made in this thesis.

The fundamental difference between the two approaches is illustrated in figure 1-1,

where free energy curves and the common tangent construction for two phases are

drawn. A diffuse a-/3 interface must include compositions between the equilibrium

concentrations c', and cd3 although the energy of these intermediate compositions

is somewhat ambiguous. The WBM model assumes that each phase at an interface

has the same composition, the composition of the system, and that the free energy

of these interfacial points is a weighted average of the dashed portions of the a and

13 free energy curves. In a system with no phase gradient energy, the diffuse interface

would follow the minimum of the dashed curves, but when a phase gradient energy

is included, a possible energy profile across an interface is illustrated by the dotted
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line. The difference between the dotted and dashed line is the phase gradient energy

contribution to surface energy. AG in the figure denotes energy at an interfacial

point relative to a mixture of a and / at equilibrium. The gray shaded region is

AG integrated across an interface, and is the interfacial energy contribution due to

incorporation of nonequilibrium composition at the interface. The contribution of

the shaded area increases for wider interfaces because more nonequilibrium material

must be introduced.

The other choice for modeling diffuse interfaces between phases is to assume each

phase has its own composition which evolves toward the appropriate equilibrium con-

centration. At a diffuse interface, interpolation between phases at their equilibrium

concentration produces intermediate compositions with energies that lie on the com-

mon tangent line. This choice ignores the dashed regions of the free energy curves in

figure 1-1 and prevents any metastable phases from appearing, but permits interfaces

to be arbitrarily thick for computational convenience. AG is zero in this case, and

widening the interface does not involved the addition of nonequilibrium material at

the interface. Thus gradient energy is the only contributor to surface energy.

1.2.1 The Wheeler-Boettinger-McFadden model

Wheeler, Boettinger, and McFadden simulated isothermal phase transitions in binary

alloys in what became known as the "classic" (WBM) two phase model [14, 15, 16].

A similar model was developed by Caginalp and Xie [19]. The WBM model was

later modified to simulate non-isothermal solidification and used to model dendritic

growth [20]. The WBM model introduces a non-conserved order parameter # to

indicate which regions of the system are solid (# = 1) and which are liquid (#0 0).

At an interface between liquid and solid, # varies smoothly. Thus the WBM free

energy functional depends on both composition and phase gradients:

F[f, c, #] = f (#, c, T) + Icc(Vc)2 + e,0) dV (1.4)
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ec is a coefficient that specifies the composition gradient energy, and eo is a coefficient

that specifies the phase gradient energy. The gradient squared terms smooth and

regularize the interface between separated phases and introduce interfacial energy.

f (4, c, T) is a free energy density that promotes phase separation in the absence of

interfacial energies.

Phase and composition gradients are coupled by the free energy functional and

overlap at equilibrium to form an interface. The WBM model assumes that each

point within a diffuse interface consists of a mixture of phases, each with identical

composition. An interpolating function p(4) is used to merge the homogeneous free

energy densities of the individual phases, f liquid and f""lid into one function:

f(4, c, T) = p(4)fliquid(c, T) + (1 - p(4))fsolid(c, T) (1.5)

An interpolation between two free energy curves is illustrated in Fig. 1-2. p(4) has

a minima at 4 = 0 and 4 = 1 and provides a barrier for transition from one phase

to the other. 4 can be interpreted as AH/AH'""', the fraction of molar latent heat

that must be absorbed or released for the the system in order to transition from one

phase to another. The interpolating function is chosen for numerical convenience,

and several functions have been suggested [21]. Because there is no easy extension of

the function for handling more than two free energy curves, a multiphase extension

of the WBM model for more than three phases has never been developed.

The initial WBM model [14] did not include a (Vc) 2 term. Although the model

reduced to the sharp interface model in the asymptotic limit, the kinetics of the

model disagreed with solute trapping experiments. The necessity of a composition

gradient energy for correctly describing diffusion during spinodal decomposition was

recognized, and the disagreement was fixed with the inclusion of (Vc) 2 terms [15, 16].

However, a large gradient energy coefficient is often necessary for numerical stability

but introduces spurious physics as discussed in section 1.3. It was later shown that



18 CHAPTER 1. INTRODUCTION

-\0

\ G

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
CB

(a) Free energy curves for two phases a and (b) An interpolating function is used to smoothly

p3. connect the free energy curves.

Figure 1-2: The WBM model introduces a non-conserved order parameter < and an
interpolating function to smoothly connect two free energy curves.

solute trapping could occur without a concentration gradient energy [7, 22], and the

composition gradient energy was no longer included in many multiphase models.

1.2.2 The Steinbach multiphase model and its successors

Steinbach and Pezolla developed the first phase-field model that was capable of sim-

ulating the interaction of an arbitrary number of phases [17]. Their original model

did not include solute diffusion and considered pairwise interactions between phases

using double well interpolation functions and Allen-Cahn dynamics. The assumption

that the dynamics of a multiphase system could be modeled as the sum of pair-wise

interactions turned out to incorrect, producing violating Young's Law of interfacial

stress balance at phase triple junctions. Reports of a foreign third phase appearing

at two-phase interfaces are also common among phase-field models that use pair-wise

interpolation to model multiphase interactions. Steinbach and Pezolla later improved

on their original model with the introduction of interface fields, order parameters that

indicate overlap between pairs of phases [18]. The interface fields method correctly
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decomposes a multiphase problem into a sum of dual phase changes, allowing time

constants and energy scales to be independently specified for each different type of

interface.

Tiaden et al. [23] made the first attempt to add solute diffusion to the Steinbach

multiphase model. The interfacial region was modeled as a mixture of phases each

with a different composition, but with a constant composition ratio. In the Tiaden

model, the concentration c for the whole system is a weighted sum of all ca, the

concentration of c in phase a:

c(x, t) = c (1.6)

where 4, is the phase fraction of a. Diffusion of a single component was addressed by

partitioning the diffusing species amongst the different phases and solving separate

diffusion equations in each phase. Vca was defined as the driving force for compo-

nent diffusion, and standard Fickian diffusion equations were solved in each phase.

Partition coefficients were introduced to allow phases with different solute solubility

to be modeled. The coefficients, which can be deduced from an equilibrium phase

diagram and determine how solute is penalized, are specific to each phase. The dif-

fusion equations were coupled to phase evolution equations, and the driving force for

the phase parameters was a difference in free energy, which was determined from a

local linearization of a phase diagram. Such an extrapolation scheme assumes a dilute

solution with no demixing behavior, and prohibits the appearance of any metastable

phases that lie close to but not on the common tangent.

Although the Tiaden model was important because it demonstrated the feasibility

of modeling diffusional transport in a multiphase model, it has several limitations.

First, because of its simplistic handling of solute partitioning, it was limited to dilute

solute concentrations. Second, the model did not employ a variational approach with

its handling of diffusion. The use of diffusion equations with Vci as the driving force
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is incorrect because in non-ideal phase-separating systems it is the chemical potential

of each component which becomes uniform everywhere at equilibrium. Third, because

the model was an extension of the Steinbach model [17], the pair-wise handling of

phase interactions in a multiphase environment is problematic. And finally, the use of

partition coefficients permits phases to have different equilibrium concentrations, but

the coefficients cannot easily be related to free energy density. Thus incorporating

experimentally measured thermodynamic and kinetic data into the model is difficult.

The dilute solution limitation of the Tiaden model was removed in extension by

Kim et al. [24]. Once again only single component diffusion was considered. The

model employed the WBM interpolating function to merge free energy curves and

relieve the dilute solution assumption, but used the Tiaden assumption that phases

interpolated at a diffuse interface each have distinct composition fields. However, Kim

introduced a more sophisticated condition of equal chemical potential to determine

how to distribute solute amongst the phases at a diffuse interface.

Grafe et al. [25] developed the first multicomponent extension of the Tiaden

model. In their model, the total flux of a component in a multiphase region is the sum

of the flux of that component in each of the individual phases. ci is the concentration

of component i in phase a, and the fluxes are weighted by the phase fractions 0,a:

ci(x, t) = c (1.7)

The driving force for diffusion was again chosen to be Vci, the concentration gradient

of component i in phase a, which is a dilute solution approximation. To allow phases

to exchange solute, the model assumes that where multiple phase fractions are simul-

taneously nonzero, such as at a phase boundary or triple junction, the components

are able to instantaneously partition themselves amongst the phases as dictated by

partition coefficients. The use of partition coefficients amounts to an extrapolation

scheme, but the coefficients were assumed to be a function of composition and tem-
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perature and were calculated with Thermo-Calc. Grafe chose to use AGij, the change

in Gibbs energy for the transformation of phase i to phase j, as the driving force in

the phase-field model rather than an interpolation involving the individual free en-

ergy densities. The approximation of AGj, is only applicable for small undercooling

of pure substances and dilute solutions.

Nestler and Wheeler extended the Steinbach multiphase model to study eutec-

tic and peritectic binary alloys [26]. They modeled solute with a nonlinear diffusion

equation based on a free energy formulation but did not include a composition gra-

dient energy and assumed an ideal solution. Later on, Nestler, Garcke and Stinner

proposed a nonisothermal multicomponent extension governed by an entropy func-

tional [27, 28]. They claim the model applies to arbitrary free energies convex in c

and concave in T, presumably because no composition energy gradient was included.

A complicated phase barrier function was found to be necessary to prevent the ap-

pearance of a foreign third phase at a two-phase boundary.

Recently, Eiken et al. [29] developed a multicomponent extension to the Tiaden

dilute solution multiphase model which removed the dilute solution limitation and

allowed for easier inclusion of thermodynamic data. However, the driving force for

solute diffusion was chosen to be the elimination of gradients in a "phase diffusion po-

tential" i in each phase. Note that the "phase diffusion potential"1 expresses

the slope of the free energy curves and is conceptually different than the chemical

potential pf = G, which is the thermodynamic quantity uniform everywhere at

equilibrium. Apparently having confused slope with chemical potential, Eiken et al.

chose the wrong quantity as the driving force for diffusion. The slope of free energy

curves with respect to concentration is not required to be constant across a diffuse in-

terface at equilibrium, and their criticism of the WBM model for not having constant

"phase diffusional potential" at an interface at equilibrium is therefore incorrect. The

appropriate potential for the WBM model, which is defined away from equilibrium

'Eiken's choice of the name "phase diffusion potential" is confusing because phases don't diffuse.
The name intends to convey the idea of a diffusion potential within each phase.
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and is equivalent to the chemical potential at equilibrium, is discussed in Ch. 2.2.2

for binary and a multicomponent alloys.

Furthermore, exchange of solute between phases in regions of phase-interpolation

proved troublesome in the Eiken model [29]. With the assumption that locally coex-

isting phases can instantaneously exchange solute, a local minimization problem must

be solved at each timestep and for every grid point to calculate solute distribution.

The state that minimizes energy with respect to solute transfer between phases was

called quasi-equilibrium. Approaching this state is very computationally expensive

and requires complex thermodynamic calculations, but it eliminates the requirement

of dilute solutions while avoiding the use of extrapolation schemes employed by Tiaden

and Grafe.

Several other models have been proposed that continue to building on the Stein-

bach line of models. Of particular interest are several that offer improved ways to

incorporate experimental thermodynamic data. Grafe et al. reported linking a mul-

ticomponent, multiphase model to Thermo-Calc for thermodynamic data and Dictra

for diffusion data [25]. Qin and Wallach developed a two-phase multicomponent

solidification model [30] and a multiphase, multicomponent model [31] that were

linked to the MTDATA thermodynamic database. Steinbach and Eiken recently re-

ported obtaining thermodynamic data for their multiphase multicomponent model

with CALPHAD methods and using the NIST mobility database for diffusion data

[32].

1.3 Discussion

The different length scales that naturally occur in microstructure present a difficult

numerical challenge that has influenced the development of phase-field models and still

remains an outstanding problem [3, 10]. A detailed discussion of the computational

challenges can be found in appendix A. In experimental systems, the width of an
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interface might be at most 10nm while the single phase regions it separates (grains

if crystallography is included in the model) could be on the order of micrometers

in diameter, or larger. Important physics occurs at the length scale of interfaces,

but properties of microstructure are determined at the length scale of grains. Since

microscopic behavior often involves tens or hundreds of grains, performing realistic

simulations that capture both length scales has been impossible. Since a phase-field

interface must be resolved with 5-10 grid points for numerical stability, modeling a

single grain with a regular grid in 3D might require 10003 gridpoints. Most of the

gridpoints would be in the bulk of the grain where high resolution is not needed.

Modeling just this one grain would be very time consuming, and modeling more than

a couple of grains is currently impossible.

These computational limitations make it desirable to model interfaces that are

unrealistically thick relative to the areas they separate, and thick interfaces intro-

duce spurious physics. When interfaces are too wide, an unphysical jump in chemical

potential is observed at moving interfaces [33] and the coalescence of neighboring

particles is exaggerated, as are nonequilibrium effects like solute trapping and solute

drag. If interfaces are thick and interfacial energy is heavily dependent on compo-

sition gradient energy, these interfaces will not obey the Gibbs-Thompson relation.

Diffusion gradients in the bulk will contribute to the motion of a thick interface, al-

though they should not according to Gibbs-Thompson. For accurate simulations, the

computational interface width should not be larger than the atomistic width.

If the interface width used in a numerical calculation exceeds the atomistic width,

either the numerical difficulty must be addressed directly, or else a technique is needed

to separate the contribution from composition gradients at the interface and the con-

tribution from gradients in the bulk. Karma and Rappel developed a successful tech-

nique to separate the kinetic contribution and the diffusional contribution [34]. They

introduced an anti-trapping current to cancel out the chemical potential jump that re-

sults from simulating wide interfaces, and used their method to produce quantitatively
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accurate simulations of dendrite formation with computationally thick interfaces [35].

Anti-trapping has recently been extended to multicomponent alloys, but is limited to

dilute solutions [33]. Although the anti-trapping current fixes a problem that leads

to inaccurate dendrite simulations, it is a limited solution because it does not address

the underlying computational problem, a disparity in length scales. It merely allows

the use of non-physical parameters to achieve physical results.

Much effort in phase-field studies is often invested in insuring that the phase-

field equations reduce to a sharp interface model as the gradient energy coefficient

approaches zero. Showing that phase-field has built-in curvature driven interfacial

motion is certainly a valuable verification for both diffuse and sharp interface mod-

els and was an important step that lead toward the acceptance of phase-field as a

viable method. However, a diffuse interface model should not be judged solely on

its agreement with a sharp interface model. The sharp interface model and Gibbs-

Thompson relation are not perfect descriptions of grain boundary motion. They are

idealizations based on an infinitely thin Gibbs interface. They assume that all in-

terfaces are identical and make the simplifying assumption that interfacial velocity

only depends on curvature. Thus they fail to describe nucleation accurately because

interfaces are often diffuse on the length scale of critical nuclei, and interfacial energy

cannot technically be defined for a moving interface far from equilibrium.

It is reasonable then to expect that a diffuse interface model that includes composi-

tion gradient energy is necessary for studying nucleation and spinodal decomposition.

But to our knowledge, no previously developed multicomponent, multiphase model

has included a composition gradient energy. It appears that the leading reasons for

not including a (Vc)2 in the multiphase models summarized in section 1.2.2 were (1)

the demonstration of solute trapping behavior without a gradient energy, and (2) the

observation that using an unrealistically large gradient energy coefficient, which is

often necessary for numerical stability, produces dendrite tip velocities that do not

agree with experiment. Removal of the composition gradient energy contradicts a
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significant amount of research that has confirmed the Cahn-Hilliard theory as well as

pioneering work by Wheeler, Boettinger, and McFadden that recognized the impor-

tance of the term for modeling solute trapping [15].

1.4 Thesis outline

Chapter 2 derives a phase-field model that is suited for modeling phase change phe-

nomena in multiphase, multicomponent systems. The model was developed with

the goal of studying the growth of small nuclei in multiphase ternary systems, and

addresses several concerns with existing models. The multiphase, multicomponent

model is derived from basic, accepted thermodynamic arguments without assump-

tions of dilute solutions and without decomposing the multiphase problem into a sum

of pair-wise interactions. The appropriate free energy functional is obtained from a

Taylor expansion of homogeneous free energy, and it is shown that a generalized diffu-

sion potential is the appropriate driving force for diffusion. The relationship between

model parameters and their experimentally measurable quantities is clarified.

Chapter 3 investigates numerical methods for solving phase-field equations such

as those in chapter 2. Explicit finite difference and semi-implicit spectral methods

are analyzed. Explicit finite difference is found to be very inefficient and suffer from

discretization difficulties, while a semi-implicit spectral method is shown to be orders

of magnitude more stable, but potentially inaccurate if large timesteps are used. First

order time discretization and the dynamics of phase separation were found to be the

two major sources of error. Error was significantly reduced with the use of a second-

order implicit-explicit Runge-Kutta time integrator and adaptive timestepping.

Chapter 4 presents the discovery of a diffusion-limited growth instability that is

unique to multiphase systems. Simulation of the growth of critical nuclei confined to a

thin film in a ternary eutectic system was found to produce kaleidoscopic spherulites:

symmetric circular patterns whose morphology is highly dependent on system param-
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eters, much like snowflakes. The solidifying interface acts as a high energy nucleation

site, and competition between the three solid phases, in combination with a chang-

ing radius of curvature, triggers morphological instability. A study of the parameter

space reveals three unique growth modes. Because the instability has not yet been

experimentally observed, the kaleidoscopic spherulites are rationalized by comparison

to solidification structures in simpler systems.

Chapter 5 presents a statistical procedure for simulating nucleation in the mul-

tiphase model based on concepts from statistical mechanics that are adapted for

computational efficiency. Nucleation and growth in a 2D ternary eutectic system

are simulated and shown to agree quantitatively with the Johnson-Mehl-Avrami-

Kolmogorov (JMAK) equation. A ti/ 2 coarsening regime is observed at longer times.

The location of the metastable liquid curve is observed to have a profound effect

on the developing microstructure. At temperatures slightly below the melting point,

liquid appears at phase triple junctions and forms thin films at phase boundaries.

The presence of these films increased the coarsening rate by 25%. The ability of

metastable free energy curves to affect microstructure before the formation of a sta-

ble phase is proposed as an explanation for the experimentally observed phenomenon

of premelting.

Chapter 6 applies the multiphase model to simulations of transient liquid phase

bonding. The multiphase model is ideally suited for modeling transient liquid bonding

and addresses all of the major assumptions of previous modeling efforts. Correct

transient liquid bonding behavior emerges from the multiphase model with very little

modification. This chapter is the first report of a single simulation that correctly

captures all four stages of the bonding process, and composition profiles at each

stage are reported for the first time. A simulation of cellular solidification, which is

commonly observed during transient liquid bonding, is presented to illustrate how the

model could be used to better understand and improve the performance of transient

liquid bonds. The model is one of the first to simulate multi-dimensional non-planar
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solidification geometries.

Chapter 7 concludes and offers suggestions for future work, including the devel-

opment of improved numerical methods and further applications for the multiphase

model developed in this work.
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Chapter 2

A model for microstructure with

multiple components and phases

The discussion in chapter 1 highlighted shortcomings of existing multiphase, multi-

component phase-field models and argued that they are not adequate for modeling

metastable phases, nucleation, and spinodal decomposition because of unjustifiable

physical assumptions. Several models are also very computationally expensive. This

chapter will present the derivation a new model that combines aspects of the WBM

model, the Steinbach models, and nonlinear diffusion theory. The model is applicable

to systems with an arbitrary number of components and phases, each with their own

unique thermodynamic and kinetic properties. Isothermal conditions are assumed.

It is necessary to start from basic principles in order to correct subtle miscon-

ceptions that come from hasty application of the textbook concepts. Therefore the

derivation of the free energy functional and all evolution equations will be presented

in detail. The multiphase, multicomponent model is derived from basic, accepted

thermodynamic arguments without assumptions of dilute solutions and without de-

composing the multiphase problem into a sum of pair-wise interactions. Following

the approach of Cahn and Hilliard [1], a free energy functional is derived from a Tay-

lor expansion of homogeneous free energy. Three gradient energy parameters arise
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from the Taylor expansion. One is the classic composition gradient energy coefficient,

another controls the atomic width of an interface, and the third adds an additional

energy penalty for composition gradients at an interface. The combination of three

unique parameters allow the interfacial width and interfacial energy to be decoupled.

A common misconception addressed in this chapter is that the chemical potential

of component i in a multicomponent system with composition gradient energies is

= F[2 3, 4, 5]. This definition leads to a Cahn-Hilliard equation for each

component in a multicomponent system:

* = V -MVF) (2.1)
at ciJ

Although this formulation produces a monotonically decreasing energy and is correct

for binary systems, it violates a basic result of thermodynamics. The Gibbs-Duhem

relation states that when components are constrained, their chemical potentials are

also constrained. A generalized diffusion potential will be introduced to resolve the

misconception, and an important distinction will be made between the chemical po-

tential and the diffusion potential, which is defined away from equilibrium but ap-

proaches the chemical potential at equilibrium. The generalized diffusion potential

will then be used in the derivation of component evolution equations, and phase

evolution equations are derived with a special cutoff boundary condition to prevent

the appearance of negative phase fractions. Finally, the relationship between model

parameters and their experimentally measurable quantities is clarified.

2.1 Derivation of the multiphase free energy func-

tional

An important part of a phase field model is the free energy functional. Once the free

energy functional is defined and gradient coefficients specified, the evolution equations
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can be derived. This section begins with the derivation of the free energy functional

for a single phase binary system, then progresses to multicomponent systems, and

finally progresses to multicomponent, multiphase systems. Differences between the

free energy functions are highlighted.

2.1.1 Free energy of a binary system

In an influential paper that laid the foundation for phase field modeling, Cahn and

Hilliard derived an expression for the free energy of an inhomogeneous binary system

[1]. Their approach was to assume that the free energy of an infinitesimal volume in a

nonuniform system depends both on its composition and the composition of its nearby

environment. Total free energy cannot depend solely on local composition because

different spatial configurations with the same volume fraction are not energetically

equivalent; a heterogeneous system has more interfacial area and will have a higher

energy. Therefore Cahn and Hilliard assumed that free energy depends both on

composition and its derivatives for an inhomogeneous system.

Cahn and Hilliard started with the homogeneous free energy density for a binary

system f(c), and performed a Taylor expansion on f(c) in terms of the derivatives

of composition to approximate f(c, Vc, V2c,...). Because the mole fractions of a

binary system must obey the relationship c1 + c2 = 1, only one mole fraction and

one chemical potential are independent. The expansion of f(c, Vc, V2c, ...) about the
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point fo = f (c, 0, 0, ... ) yields:

f (C, VC, V2c, ... ) = fo + (Vc - 0) + (V2c - 0)+..

+ '( )(Vc- 0)2 + '( 2f (V2c - 0)2+..
2 8(Vc)2 0 2 19(V2c)2 )0

+ a 2 ) (Vc - 0)(V 2c - 0) +
B9VcBV2c) 0

(2.2)

The definition of Taylor's theorem for a function of n variables has been included

in an endnote'. Performing the Taylor expansion assumes that concentration is con-

tinuous over the entire system and differentiable to whatever order is required. The

subscript 0 is used to represent evaluation of a quantity under homogeneous condi-

tions where c is constant and all derivatives Vc, V2c, ... are zero. The terms with

this subscript express how f varies spatially and are related to crystal symmetry. For

example, the term (8f/8Vc)o is a vector and (82 f/8(Vc) 2)o is a second-rank tensor.

Morris [6] provides justification for excluding |Vcl terms from the expansion, and for

including terms in Vc only for systems with symmetries derived from the point group

CO. For higher symmetries (or any system with inversion symmetry), (8f/OVc)o

is zero. Furthermore for isotropic or cubic symmetry, (02 f/8(Vc) 2 )o reduces to a

scalar. Thus for an isotropic or cubic material, Eq. 2.2 simplifies to an equation with

constant coefficients and even powers of Vc:

f(c, Vc, V 2c, ...) = fo + K1V2c + 1 K2(Vc)2 + I r3(V2c)2 + K4 V4c + (2.3)

Cahn and Hilliard argued that the derivative terms with even powers V2c, V4c, V c,

etc. should vanish. They used the divergence theorem to break V 2c into the sum

of a term in (Vc) 2 and a flux through an external surface, which can be chosen

so that it is zero. Thus even power derivatives can be discarded. Because of the
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assumption that the free energy density is influenced only by concentration within a

small neighborhood of a volume, it is reasonable to truncate the expansion after very

few terms when c is well-behaved. Keeping only terms up to second-order produces

the Cahn-Hilliard free energy functional:

F[f, c] = j (f(c) + K(Vc) 2) dV
JV

(2.4)

where K is a gradient energy coefficient that penalizes the formation of sharp inter-

faces.

2.1.2 Free energy of a multicomponent system

The approach of Cahn and Hilliard is now applied to a system with an arbitrary

number of components. A system with M components has M - 1 independent mole

fractions' that obey the following constraint:

M

c =1 (2.5)

The inhomogeneous free energy becomes a function of each independent component

in the system as well as their derivatives:

f (ci, C2, ...,I Vci, Vc2, ..., V2ci, V2C2, .. (2.6)

'Note that if density is assumed to be constant everywhere in the system, mole fractions and
concentrations are equivalent quantities.
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The Taylor expansion of the multicomponent f about a homogeneous point fo =

f(ci, c2 , ..., 0,0, ..., 0,0, ...) is:

f (ci, c2, ...,Vc1, Vc2, ..., V 2ci, V 2c2 , ...) = fo

+ (1j) Vc1 + (oC2)O Vc2 +...

+ ( 0 VC) V2c1 + a D V2c2+...
(2.7)1 82f VC) + 92f

(+ vl))(vc1)2 + - 0 ~ 2  (Vc2)2 +±.*2 8(Vc1)2 )0 2 8(Vc2)20 C )2 +

+ Vci -Vc2 +...+Vc18Vc2 0

For simplicity only terms for two components up to second-order have been written

out because higher order terms will be excluded from the expansion. Higher order

terms and terms for additional components follow the suggested pattern. The biggest

difference between the binary expansion (Eq. 2.2) and the multicomponent expan-

sion (Eq. 2.7) is that the multicomponent expansion has terms that couple pairs of

composition gradients. These terms appear on line 5 of Eq. 2.7.

The assumptions previously discussed in section 2.1.1 are kept. Only isotropic and

cubic symmetry of f is considered, allowing the tensors to be replaced with constants,

and terms in Vc, as well as even derivatives, are excluded. The Taylor expansion of

f in terms of the M - 1 independent components and their derivatives is:

M-1 1  M-1

f(ci, c2, ..., Vci, Vc2,...) = fo+ Z i (Vci)2 + E E ri3Vci -Vc3  (2.8)
i j<i i=1

This equation has been previously reported in literature [7]. Multicomponent systems

with gradient energies were first studied in the thesis work of DeFontaine [8], and his

approach is summarized by Eyre [2] and by Elliott and Garcke [3]. Multicomponent

gradient energies have since been used by Morral and Cahn [9], Hoyt [10], and Eyre
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[11] in spinodal decomposition studies in ternary systems.

A simpler form for Eq. 2.8 can be found by combining the summation terms:

M-1I

f(cli, C2, ...,i Vci, Vc2, .. ) f f(ci, C2,...) + Kj Vc' -Vcj (2.9)
i,j=1

,ij is a symmetric matrix of gradient energy coefficients that will be discussed in

detail in section 2.1.6. A free energy functional that expresses the energy of the

entire system system is found by integrating the inhomogenous free energy:

M-1
F[f, {c}] = f({c}) + E -nVc -Vc3 dV (2.10)

i,j=1 2

where {c} denotes a sets of M - 1 independent mole fraction fields.

2.1.3 Definition of a phase

A phase is a region of a microstructure with homogeneous properties that is physi-

cally distinct from other regions of the system, excluding geometric transformations

that map one region onto another. In the study of microstructure, phases most com-

monly differ in composition and/or crystal structure, although many other physical

differences can distinguish phases. Although the volume fraction of phases in equi-

librium is predicted from thermodynamics, phase itself is not a thermodynamic state

variable; phase provides a thermodynamic state function. Phase may be thought of

as a labeling device for identifying regions with different state functions, and in this

work the definition of a phase is taken to be a region of microstructure characterized

by a homogeneous free energy density fa that differs from the free energy densities

of the other phases.

Phase fraction variables are introduced for the purpose of associating regions of

the system with different free energy curves. Each phase is assigned a phase fraction

# that varies between 0 and 1. For a multiphase system, 4,, is a spatially varying
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order parameter that indicates where the a-phase exists in a microstructure. Regions

of #0, = 0 designate areas where no a-phase is present, and areas of 0, = 1 correspond

to single-phase regions of a. For a system with N phases, the phase fractions obey a

phase fraction constraint:
N

#oa = 1 (2.11)
a=1

In single phase regions the homogeneous free energy is simply fa, the homogeneous

free energy of the a-phase. Microstructure (excluding grain boundaries, defects, etc.)

is composed of single phase regions separated by interfaces, and only at the interfaces

are more than one # non-zero. The free energy density at interfaces is a function of

multiple phase fractions, free energy functions, and components. Because the ther-

modynamic potential of a multiphase system is equal to the summation of potentials

over all all phases,[12] a linear weighting of the free energy densities by phase fractions

is used for the homogeneous free energy of a multiphase system:

N

f({c}, { 1, 42, ---4N}) = afa({c}) (2.12)
a=1

This form reduces to fa({c}) when only the a-phase is present, yet can be constructed

for an arbitrary number of phases. Additionally, the free energy where three or more

phases are simultaneously nonzero in the diffuse interface model is treated directly.

Treating a phase triple junction as a sum of pair-wise interactions caused problems

in other multiphase models as discussed in chapter 1.

2.1.4 Free energy of a multiphase, multicomponent system

The free energy functional approach reviewed for binary systems in section 2.1.1

and extended to multicomponent systems in section 2.1.2 is applied here to derive

a free energy functional for multiphase, multicomponent systems. For an N-phase,

M-component system, f({c}, {#}, {Vc}, {V#}, ... ) is a function of a set of M - 1
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independent mole fractions and N - 1 independent phase fractions. Once again

only isotropic and cubic symmetry of the free energy is considered, terms in Vc and

even derivatives of c are excluded from the Taylor expansion, and only terms up

to second-order are kept. The full expansion about the homogeneous free energy

f({c},{4}, {o}, {0}, ...)is not algebraically difficult but has many terms and is not

explicitly written out here. It is analogous to Eq. 2.10 but with terms for 4 in

addition to c. There is one new set of second-order terms in the expansion that

couple composition gradients and phase gradients:

SVc -V4 (2.13)avcBV4 e

It is assumed for simplicity that there is no coupling between Vc and V4 and that

these terms are all zero. These terms could be pertinent certain circumstances as

they provide a third parameter for adjusting interfacial energy. They penalize a

concentration gradient within an interfacial region independently of rij. The Taylor

expansion of the homogeneous free energy is simplified in the manner used to reach

Eq. 2.10 and integrated to produce the multiphase, multicomponent free energy

functional:

N N-1 M-1

F[{f}, {c}, {4}] = j ( fa({c}) + E AaaVo -V44 + i c Vc. ) dV
a=1 a"p=1ij=

(2.14)

where A03 is a matrix of phase gradient energy coefficients that couples phase gra-

dients. Eq. 2.14, which is the central equation of focus in this work, is a first order

approximation of the free energy of a system with an inhomogeneous distribution of

phases and components. It reduces to the Cahn-Hilliard equation for a single phase,

two-component system.
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A diffuse interface between two ternary phases

1

0.8

E

0.5 c1 .-----.-
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Figure 2-1: A diffuse interface computation of the of the boundary between two
phases a and # in a ternary system. The order parameters vary smoothly at the
interface and are at their equilibrium values far from the interface. The equilibrium
composition of a is ci = .8 and c2 = .1, and the equilibrium composition of 3 is
ci= .1 and c2 = .8.

2.1.5 The multiphase, multicomponent diffuse interface

The interface between two phases is assumed to consist of a thin layer across which

the physical properties vary continuously from those of the interior of one phase to

those of the interior of the other. Fig. 2-1 illustrates how composition and phase vary

at a diffuse interface in a ternary system described by Eq. 2.14. A diffuse interface at

equilibrium represents a balance between free energy curves, composition gradients,

and phase gradients. The free energy curves are the driving force for phase separation,

and the gradient energy coefficients A,, and ,ij penalize gradients that develop,

creating a surface energy at phase boundaries. rij penalizes phases for differing

in composition. Holding Kij constant, phases that differ more in composition will

naturally have larger gradients that will be more harshly penalized. Ap introduces

additional energy not captured by the composition gradients at phase boundaries.
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This energy derives from some physical difference between the phases other than

composition.

2.1.6 Physical interpretation of the gradient energy matrices

For an N-phase, M-component system, the phase gradient energy matrix A has di-

mension N - 1 and the component gradient energy matrix n has dimension M - 1.

The gradient energy coefficients coupling the implicitly defined Nth phase (and Mth

component) are not explicitly defined in A and K, but are instead distributed across

all of the coefficients. A and K, which appear in the free energy functional, are in fact

dense versions of larger matrices that have a direct physical interpretation. These

matrices are A, which couples the N phase gradients, and K which couples the M

composition gradients. For example, the coupling of N phase gradients can be written

in matrix form as:

Anl A12 - AlN V01

1[Vo VO, A2 1  A22  - A2N W2 (2.15)2 4 .4.--. VON] . . .(.5

AN1 AN2 ... ANN J VN

A similar expression relating composition gradients can also be written. Eq. 2.15

illustrates the physical basis of A. The coefficients of A determine the energy of

different configurations of interfaces by imposing an energy penalty for every possible

pair of overlapping gradients. An analogous MxM matrix K contains the composition

gradient energy coefficients Ki3 and introduces an energy penalty for overlapping

composition gradients. Recall that no coupling between phase and concentration

gradients was assumed, so the combination of A and K independently control the

interfacial energy of every combination of phases.

If the phase conservation constraint V#N = -(V 1 + V 2 + --- + VqN-1) (Eq.

2.11) is substituted into Eq. 2.15 and the matrix multiplication is performed, an
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expression representing the gradient energy in terms of the N - 1 phase gradients is

obtained. The coefficients of the terms in this equation are related to the Ap that

form the matrix A with N - 1 rows and columns. The diagonal terms A,, are the

coefficients of the squared terms, and the off diagonal terms A,, are equal to the

coefficients of the cross terms multiplied by j.
Because of the dependence of the Nth phase on all other phases, elimination of the

Nth row and column of A has distributed the gradient energy coefficients for the Nth

phase across all coefficients of A. In general A will be a fully dense matrix because

the coefficient ANN must always be positive.

The physical basis for A and K requires that they be symmetric positive definite

matrices. The symmetry of the matrices can be justified because free energy must be

invariant to reflection. Switching the direction of all gradients at an interface should

not change the free energy. The simplification of the summation terms from Eq. 2.8

to Eq. 2.9 (and the analogous simplification to reach Eq. 2.14) illustrates how sym-

metry has also been built in to the gradient energy matrices A and k. A and K must

also be positive-definite because, if the matrices had negative eigenvalues, there would

be a coupling of gradients (i.e. in the direction of the eigenvector corresponding to

the negative eigenvalue) for which making an increasingly sharp interface would lower

the free energy of the system, producing a physically impossible negative surface en-

ergy. The set of evolution equations would then become ill-posed, as solving diffusion

equations with a negative diffusivity is unconditionally unstable.

2.1.7 A barrier for phase transitions

A potential problem with Eq. 2.14 as stated is that the linear weighting of free

energy curves (Eq. 2.12) relies on the shape of the free energy curves to create

a phase transition barrier with respect to changes in composition. If composition

does not change in a phase transition, the model does not provide a barrier and

transition occurs without an interface (i.e. the interface has infinite width). Thus
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without modification the model does not correctly handle phase transitions for pure

components.

Although a phase barrier may not be necessary for phases that differ significantly

in composition, a barrier can be easily incorporated into the model when needed. A

result of the cutoff constraint developed in section 2.3.2 is that any function can be

used as a barrier, regardless of its slope at # = 0 and # = 1. A simple barrier between

a and # of the form 4W,,Q0#4 is suggested, where W,3 is the height of the barrier.

The homogeneous free energy with this barrier then becomes:

N

f({c}, {1, 4 2 , -#...N, T) E aolfo({c}, T) + 1 4Wagq5#4 (2.16)
a=1 g3a

Eq. 2.16 is similar to the regular solution model, but applied phase fractions instead of

mole fractions, and the new barrier term 4Wag~4# functions like a positive enthalpy

of mixing for phases.

2.2 Component evolution

Component evolution equations are derived here for a non-ideal ternary system char-

acterized by a free energy functional. Extension to systems with more components (or

fewer, a binary system) follows the same approach but becomes algebraically tedious.

Parts of this derivation were drawn from nonlinear diffusion papers by Nauman and

Balsara [13] and Nauman and He [14, 15].

The thermodynamic condition defining equilibrium in phase-separating systems

is the elimination of all chemical potential gradients. Fickian diffusion with Vc as

the driving force applies only to the special case of an ideal system where there

is no enthalpy of mixing. Systems which undergo phase separation exhibit "uphill

diffusion", and Fickian diffusion must not hold for these non-ideal systems. To derive

component evolution equations for a system characterized by a free energy functional,
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it is necessary to begin with the generalized form of Fick's first law:

Ji = -MiVpi (2.17)

Ji is the flux of component i, Mi is its mobility, and pIi is its diffusion potential. In

principle Ji might also depend the diffusion potential gradients of other components

besides i, but this work focuses on the case where diffusivity is a scalar quantity

and there is no cross-diffusion. Emmanuel et al. have derived nonlinear diffusion

equations for non-ideal systems where diffusivity is a tensor quantity [16].

Mi, the mobility of component i, is related to the diffusivity Di by the Nernst-

Einstein relation:
Dici

M = (2.18)
RT

where RT sets the energy scale of the system. The diffusivity Di is a macroscopic

quantity determined by the random walks of microscopic particles, according to the

relationship D = F (r2) /6 [17]. IF is a local jump attempt rate that could be a function

of composition, and (r2) is the mean squared jump distance. If F is assumed to be a

weak function of composition, ci will be the leading term in the mobility expression.

It is sensible that mobility should be proportional to c, because when the mole

fraction of a component approaches zero, the flux of that component must also ap-

proach zero. If mobility did not depend on c, it would be possible to have a flux

of a component without any of that component being present, behavior that is not

possible for conserved quantities. An alternative justification of the form of the com-

ponent flux equation comes from combining the Einstein relation with the definitions

of flux and mobility, and is presented in an endnote.2

2.2.1 Equivalence of Gibbs and Helmholtz potentials

Chemical potential is defined only at equilibrium once the natural variables of fa

have been specified. Gibbs free energy is minimized if temperature and pressure
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are held constant, but if temperature and volume are held constant Helmholtz free

energy is minimized. The fundamental relations (Euler integrals) for molar Gibbs

and Helmholtz energies, respectively, are:

S= Zp ci (2.19a)

A = -PV + Z pici (2.19b)

The Euler integrals show how the Gibbs and Helmholtz potentials differ only by a

constant term PV, where V is molar volume. In many phase-field simulations the

system is assumed to be incompressible, meaning that volume does not change with

pressure. In such a system constant volume and constant pressure are equivalent,

dG = dA, and minimization is the same under either potential.

2.2.2 Generalized diffusion potential

When interfaces are present at equilibrium, the free energy functional F is minimized

instead of Gibbs or Helmholtz energy. F may be thought of a Gibbs or Helmholtz

energy plus nonequilibrium terms that depend on concentration and phase gradients:

, /N-1 M-1

F =G+f (1 AapVea- Vqp+( ijVci- Vcj dV (2.20)
a,)=1 i,j=1 /

The Gibbs energy can be treated with equilibrium thermodynamics, but the presence

of gradient terms requires a nonequilibrium treatment. Thus it is desirable to define

a quantity, the generalized diffusion potential, that will account for gradients and

become uniform across an interface at equilibrium. In the same way that a functional

is a generalization of a function, the functional derivative is a generalization of a
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partial derivative. Since F is a functional, the functional derivative2 can be used to

define generalized diffusion potentials, which are fields:

(SF (SF\ (SF
1 = 2) A2= F ) A3 = F (2.22)

\nl T,Pn 2 ,n3  (n2 T,Pn1 ,n 3  6n3 ) T,P,ni,n 2

ni is the number of moles of component i, and tilde notation indicates that the

generalized diffusion potential Ii is a different quantity from the chemical potential:

p = -(2 .2 3 )an)T,Pngo

In the absence of concentration gradients, the variational derivatives in Eq. 2.22

become partial derivatives, and the generalized diffusion potential is equivalent to

the chemical potential. Therefore [L = i in bulk single-phase regions at equilibrium.

Furthermore, because #4 is the driving force for diffusion in a system with gradient

energies, it becomes uniform at equilibrium. Thus the generalized diffusion potential

approaches the chemical potential everywhere as equilibrium is approached, even

when diffuse interfaces are present.

The fundamental relation for the ternary free energy functional F at constant

temperature and pressure can now be written as:

P - #=1c1 + 2c 2 + #3c 3  (2.24)
n

where n = n1 +n 2 + n3 is the total number of moles in the system, and F is a molar

quantity. The number of moles in the system is an independent qunatity that must

be defined, and it is convenient to define n = 1 so that F = F.

2 The variational derivative of a functional F[y] = fy L(y, Vy)dV, where y is a spatially varying
field, is found using the Euler-Lagrange equation:

6F _L 9L
S- V. (2.21)

Sy 0y vy
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It can be shown by standard thermodynamic arguments that the generalized dif-

fusion potentials obey a generalized Gibbs-Duhem relation3 that places a constraint

on how the chemical potentials may vary. At constant temperature and pressure, this

relation is:

cidi = 0 (2.25)

Application of the mole fraction constraint (Eq. 2.5) to Eq. 2.24 to eliminate c3

reveals that the variational derivatives of F are related to a differences in generalized

diffusion potentials:

- = #1 - A3 (2.26a)
\Ci T,P,c2

jp = #2 - A3 (2.26b)
C2 T,P,c1

2.2.3 Evolution equations

The derivation of evolution equations begins with the observation that when individ-

ual chemical potentials are defined, their gradients are linked by the Gibbs-Duhem

equation [18]. If local thermodynamic equilibrium is assumed, the Gibbs-Duhem

equation relates gradients in chemical potential Vpi instead of changes in chemical

potential di. The assumption of local equilibrium implies that global intensive pa-

rameters vary so slowly that small neighborhoods around a point can be considered at

equilibrium. For a system not at global equilibrium, local equilibrium is a necessary

assumption for chemical potential to be defined.

In section 2.2.2, the generalized diffusion potential # was defined as the quantity

which becomes uniform at equilibrium for a system with gradient energies. If a local

equilibrium assumption is made, the generalized Gibbs-Duhem relation can be written

to relate gradients in generalized diffusion potential. For a ternary system at constant

3The Gibbs-Duhem equation is: E nidpi = -SdT + VdP
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temperature and pressure, this generalized Gibbs-Duhem relation is:

c1VA1 + c2 Vf 2 + c3V 3 = 0 (2.27)

The mole fraction constraint (Eq. 2.5) can be used to eliminate c3, and the equation

can be rearranged to put Vft1 on the left hand side:

VA 1 = (V# 1 - V# 3 ) - c1(VT1 - V# 3 ) - c2 (VA2 - VA3 ) (2.28)

= (1 - c1)V(A1 - A3) - c 2 V(ft2 - 13)

The variational derivatives (Eq. 2.26) can now be substituted in place of the chemical

potential differences:
65F 6F

VAi = (1 - c1)V - c2 V (2.29a)oc1 oc2

The same procedure can be used to find Vp 2 in terms of the variational derivatives

of F:

V-2 = (1 - c2)V c 1 V-- (2.29b)
oc2 6C1

Combining Fick's second law and generalized first law (Eq. 2.17) with the Nernst-

Einstein relation (Eq. 2.17) and the expression for the chemical potential gradients

(Eq. 2.29) produces the ternary evolution equations:

ac1 = . (D- (1 - c1 ) V-- c 2 V (2.30a)
dt RT 6c1  oc2

= V - (1 - c 2 )V - c 1 V- (2.30b)
dt RT Sc2  Sc1

The variational derivative 3 which appears in the component evolution equations

is found by defining the number of moles in the system and then applying the Euler-
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Lagrange equation (Eq. 2.21) to the free energy functional (Eq. 2.14):

-F N M-1= N #a _- rV 2cj (2.31)
a=1 j=1

2.3 Phase evolution equations

The purpose of the phase fractions introduced in section 2.1.4 is to associate each

region of a microstructure with a specific free energy curve. Phase fractions are not

constrained by thermodynamics, and phase is not a conserved quantity, as phases

are created and destroyed in phase transitions. In a nucleation event for example,

appearance of the nucleating phase is expected without any of the phase being present

initially. Evolution of the phase fractions follows Allen-Cahn dynamics, which was

originally used to describe a non-conserved order parameter in anti-phase domain

coarsening [19]:
&#_ 1 SF- - = - - - (2.32)at Tra 904a

T-, is a relaxation time associated with how quickly the a-phase can transform to

another phase. It affects the velocity of moving a interfaces.

Wis found by applying the Euler-Lagrange equation (Eq. 2.21) to the multiphase

multicomponent free energy functional (Eq. 2.14):

F N-1
f f- fN - (2.33)

#3=1

fN is the free energy function of the implicitly defined Nh phase and appears because

= 1 due to the phase fraction constraint. The driving force for phase separation

is a difference in homogeneous free energy functions, and this force is balanced by

diffusive terms that introduce a phase surface energy.
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A x B
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Figure 2-2: For a homogeneous system of composition CB = X, converting phase a to
phase # decreases free energy by an amount GO - G'.

2.3.1 A problem with the phase equations

The definition of the phase fraction as a positive quantity less than or equal to 1

imposes a constraint on the phase evolution equations (Eq. 2.33) which was not

included in their derivation. In fact, negative phase fractions would be energetically

favorable if they had physical meaning4 . To illustrate this point, free energy curves are

drawn in Fig. 2-2 for a binary system with two phases, a and ,3. For a homogeneous

system of composition CB = x, converting a to # always decreases free energy by

G3 - G'. Imagine now a two phase system consisting of 150% # and -50% a. This

hypothetical system obeys the phase constraint that all phase fractions add to 1 (Eq.

2.11), but the energy is less than if the system were 100% #, the low energy phase.

This situation represents arbitrage where the system can always lower its free energy

by producing more of the lowest energy phase while creating negative high energy

phase. The problem from an energy minimization perspective is that the global
4In systems where borrowing is allowed, negative percentages have meaning. Consider financial

leveraging - taking out a loan to make an investment. It could be profitable to say, invest 150% of
your income by taking out a -50% loan, if you expect the return on the investment to be higher than
the interest due on the loan.
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energy minima are not contained within the bounds of the constraint.

Phase-field models typically avoid addressing the phase constraint problem by

constructing f(c, 4) so that it has steep slopes for 4 < 0 and 4 > 1 to discourage but

not prohibit the formation of negative phases. Such a restriction is computationally

useful but not a physical requirement for modeling phase fractions. Furthermore,

restrictions on the form of the interpolating function makes it particularly difficult to

construct a function for handling an arbitrary number of phases. For this reason the

WBM model has not been extended to handle more than two free energy curves.

Interestingly, the constraint for the component evolution equations (Eq. 2.30) is

built-in, a side effect of their thermodynamic derivation. c is confined to the range

[0, 1] by the c(1 - c) term in the component equations that insures the flux of a

component goes to zero as its mole fraction goes to c = 0 or c = 1. In practice

however, numerically solving a diffusion equation where the flux becomes zero at

just one point is challenging. Any small step over the boundary results in negative

mole fractions and ill-posed diffusion equations. Overstepping the boundary can be

avoided with an appropriately constructed free energy density. It is justifiable for

the free energy density function to include c ln c terms to account for the entropy of

mixing, and these terms cause the free energy density to approach the boundary with

infinite slope. The combination of cln c terms and a free energy density with large or

infinite slopes at the boundaries was found to be sufficient for solving the component

equations.

2.3.2 A barrier function for phase fractions

The issue of constraints can be addressed with concepts from the field of linear pro-

gramming [20]. Barrier methods that convert a constrained problem into a sequence

of unconstrained problems are often applied to minimization problems subject to one

or more inequality constraints. Phase-field can be thought of as an energy mini-

mization problem (or entropy maximization, the dual case) under a set of physical
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constraints. Unlike many optimization problems where only the location of the mini-

mum is desired, in phase-field modeling the path taken to reach the energy minimum

is very important because it is described by kinetics. Therefore any phase fraction

constraint should ideally not affect the kinetics of the model except exactly at the

constraint boundary.

Barrier methods define a feasible region of phase space where the set of constraints

are not violated. A barrier function is then defined in the feasible region, and it

adds a high cost for approaching the boundary from within the feasible region. the

barrier function must be continuous and usually approaches oo near the boundary

as one of the constraints approaches zero. Constrained optimization then consists of

minimizing the sum of the original potential and the barrier functions representing

the inequality constraints. Logarithms5 and 1 inverse functions are commonly usedx

barriers. These barrier functions however are not ideal candidates for phase fractions

which spend a lot of time in the vicinity of # = 0 where the barriers are undefined.

Single phase-regions in a multiphase system would be unstable for instance, as would

any evolution directed along the boundary of the feasible region, which corresponds

to a phase transition. Finally, the functions are non-zero in the feasible region and

will therefore affect the kinetic path a phase-field system takes.

A cutoff barrier function is proposed here for constraining phase fractions and its

algorithmic implementation for a multiphase system will be presented. The barrier

function is zero everywhere inside the feasible region and on the boundary, but infinite

everywhere outside the feasible region. This type of barrier, under the name double

obstacle potential, has previously been studied in a mathematical context by Blowey

and Elliott [21], who used asymptotic analysis to show that the barrier was consistent

with curvature dependent phase boundary motion. The double obstacle is useful in

practice because it can be combined with other arbitrary barrier functions yet still

enforces the necessary boundary conditions [22, 23]. An algorithmic implementation

5In fact, the xln(x) terms in the ideal entropy of mixing are a barrier function for components
that has a thermodynamic justification.



2.3. PHASE EVOLUTION EQUATIONS

Algorithm 1 cutoffBarrier2D(#1)
if #1 < 0 then

1<- 0

else if 1 - #1 < 0 then
#1+- 1

end if

of the barrier, however, has not been rigorously developed, and is presented here for

a system of N order parameters that obey a mass constraint (Eq. 2.11).

First, the phase fraction constraint problem must be formulated as a set of in-

equalities. Because an N-phase system has only N - 1 independent phase fractions,

enforcing that all N phase fractions remain positive is enough to insure that all N

phase fractions will also be less than 1. Recall that the implicitly defined Nth phase

is defined by the phase fraction constraint (Eq. 2.11):

N-1

ON=1: 0"' (2.34)
a==1

Enforcing that #N remain positive insures that no #, can be greater than 1.

For a two-phase system there is only one independent phase fraction #1, and

performing the projection is simple. If #1 becomes negative after an iteration, set

#1 = 0. On the other hand if 1 - #1 becomes negative, set #1 = 1. The procedure is

written in algorithmic notation in Algorithm 1.

Applying the cutoff barrier to a system with more than two phases is more com-

plicated. The phases in an N-phase system form the vertices of an N-simplex, and

the feasible set of phase fractions lie on or within this simplex. The boundary condi-

tions are implemented by projecting a vector of phase fractions back onto the surface

of the simplex when one or more phase fractions becomes negative as a result of

timestepping the evolution equations.

Fig. 2-3 offers a geometric description of the cutoff projection for a three-phase

system. Orthogonal axes are drawn to represent the two independent phase fractions



A MULTICOMPONENT MULTIPHASE MODEL

03=0 -------

E

D '

A '

B C

0
01=1

Figure 2-3: Illustration of the cutoff barrier function for a three-phase system.

#1 and #2, and each coordinate in the graph corresponds to a unique point in phase

space. #1 and #2 must be positive, so the feasible region lies in the first quadrant.

The dependent phase fraction 3 introduces additional constraints. At the origin

#3= 1, and # = 0 corresponds to the dashed line connecting #1 = 1 and #2 = 1.

The constraint that all three 4 be positive restricts the feasible region to the triangle

with vertices at the origin, #1 = 1, and 02 = 1. Any point outside of this triangle is

non-physical and is given an infinite energy penalty by the cutoff barrier.

Two potential violations and the appropriate projection fix are illustrated in Fig.

2-3. Suppose a system at point A evolves one timestep and lands outside the feasibility

triangle at point B. Point B is a violation because #1 < 0, so B is projected onto the

#1 = 0 surface to point C which lies on the 02-axis. The effect of the projection is

to set the negative #1 to zero. The projection has reduced the three-phase system to

a two-phase system, and it is now necessary to check that C falls within the feasible

region for a two-phase system. This is done by applying the 2D cutoff procedure to

0 2 and 43. In the example there are no additional violations to fix because C lies on

the feasible triangle, and the original straight line path AB is replaced by the bent

path AC.

56 CHAPTER 2.
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Algorithm 2 cutoffBarrier3D(# 1, #2)
if #1 < 0 then

# - 0
end if
if #2 < 0 then

4)24<- 0
end if

3 <- 1 -#1 - #2
if #3 < 0 then

cutoffBarrier2D(#1)
#2<- 1-01

end if

A more complicated violation occurs when the dependent phase fraction #3 be-

comes negative after an iteration. An example of this is illustrated in Fig. 2-3, where

point D is evolved to point E. The negative #3 must be corrected, but #3 is implicitly

defined and cannot explicitly be set to zero. Point E must be projected onto the

#3 = 0 surface by moving in the direction (-1, -1). This corresponds to subtracting

equal quantities from #1 and #2 to make #3 = 0. After projection onto the 43 = 0

surface, the 2D constraint must be then be applied to #1 and #2. Algorithm 2 presents

implementation of the barrier for a three-phase constraint system.

Generalization of the projection procedure for an N-phase system involves fixing

violations and then recursively projecting the system to lower dimensions to fix ad-

ditional violations until the system has been projected back onto the simplex. The

recursive procedure for an N-phase system is given in Algorithm 3.

2.4 Relationship between material properties and

phase-field parameters

In order to simulate real materials systems it is necessary to relate the parameters

in the phase-field model to physical quantities. The physical quantities that arise
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Algorithm 3 cutoffBarrier(N, {#1, ...#N-1
for #i = #1 ... #N-1 do

if #i < 0 then
#i = 0

end if
end for

if #N < 0 then
for #i = #1 ... #N-2 do

end for
cutoffBarrier(N - 1, {#1, .#N-21
#N-1 +-1 - N-

end if

in studies of microstructure are the Gibbs free energy of each phase as a function

of composition and temperature, the interfacial energy at phase boundaries, and

the diffusivity of the components in each phase. The simulation parameters in the

phase-field model are the homogeneous free energy densities for each phase fa (c),

the gradient energy coefficient matrices Aa3 and kij, and the diffusivities Di. The

free energy functions and diffusivities in the model are directly equivalent to the

physically measured quantities. The free energy functions are commonly obtained

from CALPHAD databases and diffusivities can be obtained from DICTRA databases

or the NIST mobility database. Diffusivity could in principle be a matrix, as is the

case with coupled diffusion, and it is not uncommon for the diffusion constant to

be composition dependent in multicomponent systems. A diffusivity dependent on

concentration is important for some materials systems and gives rise to phenomena

such as the Kirkendall effect.

Unfortunately it is only possible to calculate an analytic expression for surface

energy in phase-field models with very simple free energy functions. For the case

of arbitrary free energy functions, interfacial energy must be computed numerically.

In general, surface energy in a diffuse interface model has two contributions. One

contribution comes from the sharp gradients which are present at the interface, and
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the other results from composition straying from its equilibrium values at the interface

as illustrated in figure 1-1. The surface energy of a diffuse interface is the difference

between the free energy functional and the free energy the system would have if the

properties of the phases were continuous throughout. Surface energy is calculated by

numerical integration across an interface at equilibrium:

o = F[f, c, #] - ( 1ici + ic 2 + pic3 )dV (2.35)
JV3

p[ is the chemical potential of component i at equilibrium, and will be the same in

all phases. The [ can either be found by computing the tangent plane to the free

energy curves or by numerically relaxing an interface and computing the [ (using

Eq. 2.19a and Eq. 2.26) away from the interface in the bulk, where there are no

gradients in phase or composition. Where no gradients are present, the functional

derivative is equivalent to the partial derivative and equilibrium chemical potentials

can be calculated.

Notes

'The Taylor Polynomial of degree m for a function f(Y) of n variables, evaluated at a is [24]:

Pm (Y) = (Dj f) (d)(x- - a)J (2.36)
IJIsm

J is a sequence J = (ji,j2,.... ,jn) of nonnegative integers with IJ = ji + j2 + ... + j+ and

J = jl!j2! -in!, and (- d)J = ( .-).(X2-a2) .. (Xn - a)in. Dj is a differential operator:of

the
ok

D = (2.37)

2An alternative derivation of the flux of a component starts with the definition of flux as the

product of a density o and a drift velocity vd:

J = coVd (2.38)
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The drift velocity (or root mean squared velocity) Vd is defined as the product of a driving force F

and a mobility M:

Vd = FM (2.39)

The Einstein relation connecting diffusivity and mobility is:

D = MkT (2.40)

Combination of equations 2.39, 2.38, and 2.40 produces:

D
J =FT (2.41)

For a system of diffusing particles with constant volume, the density a is the same as the concen-

tration c, the driving force is a chemical potential gradient F = Vp, and k = R, where R is the

universal gas constant. Thus:
Dc

J = Vp (2.42)
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Chapter 3

Numerical methods for phase-field

modeling

Computational modeling has often been driven by demonstration of impressive results

rather than development of improved models. One of the side effects of the massive

increases in computing speed and affordability over the last two decades has been

frequent acclaim for simulations that are large, complicated, or pretty but provide

few new scientific insights. The 1990's was a particularly notorious time for papers

whose major finding was that they had performed the largest known computation.

While increases in computing power have no doubt revolutionized computational

modeling, there is still wisdom in the careful development of simple models that

correctly describe complex behavior.

Phase-field modeling is particularly vulnerable to qualitative verification because,

unlike other modeling approaches, obtaining quantitative data from simulations is a

major challenge. Incorporating parameters from experiment is not easy, but solv-

ing the phase-field equations with these correct parameters presents an even more

difficult numerical challenge. Interfaces much thicker than experimentally justifiable

are almost always simulated, and phase-field models are evaluated on whether or not

they look correct. A detailed discussion can be found in appendix A. Such vague
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validation criteria has the negative effect of discouraging meticulous development of

models and numerical methods, even though both are needed.

While the goal of chapter 2 was to present a carefully derived phase-field model

for studying complex systems, this chapter explores numerical challenges involved in

solving the evolution equations. The multiphase, multicomponent model produces a

set of coupled nonlinear differential equations that are numerically stiff with a fourth

spatial derivative in the diffusion equations. Because the equations are nonlinear

and the free energy density is assumed to be arbitrary, an analytic solution of the

equations is not possible. Therefore development of numerical methods that estimate

and control error is important.

Explicit finite difference and implicit-explicit Fourier spectral methods are con-

sidered here, and spectral methods were found to be several orders of magnitude

more stable. However, the large timesteps that become possible with semi-implicit

integration introduce a significant amount of error. One source of error is the first-

order accurate time integrator commonly used in spectral methods, and the other

source arises from the dynamics of phase separation itself. Both sources of error

are addressed here with a second-order Runge-Kutta time integrator and adaptive

timestepping.

Because finite difference is a commonly used method, its application to the multi-

phase equations will be reviewed and several pitfalls will be highlighted. Appropriate

finite difference schemes for the nonlinear diffusion equations will be presented, al-

though the difficulties that arise further increase the appeal of spectral methods.
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10c 2(1-c) 2+cn(c)+(1-c)ln(1-c)

0.5
Mole fraction (c)

Figure 3-1: The binary double-well free energy function used for numerical analysis.

3.1 The phase-field model for numerical analysis

Numerical analysis in this chapter will focus on solving the component diffusion equa-

tion for a single-phase binary system:

(3.1)a = V - c( - c)V - V2c

This diffusion equation was chosen because it is the simplest equation that exhibits

the numerical difficulties of the multiphase model described in chapter 2. Simulating

a multiphase, multicomponent system involves solving a set of coupled equations, but

the numerical difficulty lies in the nonlinearity and stiffness of the diffusion equations.

The phase evolution equations, in contrast, are less stiff and linear, and are easily

treated with a variety of numerical methods. Thus the solution to the numerical

challenge should focus on solving the diffusion equations.

The free energy density f(c) to be used in all calculations is a standard double

well with an entropy of mixing:

10c 2 (1 - c)2 + cln c + (1 - c) ln(1 - c) (3.2)
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Figure 3-2: Use of the centered finite difference for evaluating the first derivatives in
Eq. 3.1 produces zig-zag artifacts which appear while an interface is evolving. They
slowly disappear at longer times.

Illustrated in figure 3-1, the function is used to simulate spinodal decomposition in a

binary system and has minima near c = .15 and c = .85.

3.2 Finite Difference

Explicit finite difference is perhaps the most commonly used method for solving phase-

field equations because it is simple to understand, easy to code, and straightforward

to parallelize. But unfortunately it turns out to be a poor choice. To begin with,

the diffusion equations are nonlinear and difficult to discretize. Even with a good

discretization though, the method suffers from severe instability problems due to the

fourth derivative and extremely small timesteps are required.

Discretizing Eq. 3.1 using finite difference is not straightforward. A naive first

approach is to use the standard second-order accurate discretization for the first and

second spatial derivatives:

Vc ~ ci - ci_1 (3.3a)
2h
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V 2c cj+1 - 2ci + ci 1  (3.3b)
h2 

(.b

However application of the centered first derivative discretization (Eq. 3.3a) twice

produces a stretched version of the Laplacian operator that depends on neighboring

gridpoints a distance of two gridspacings away:

V -VC ~% Ci+2 - 2ui + ci-2 (3.4)
(2h)

2

Although this discretization's spatial convergence is second-order, it is poorly suited

for solving diffusion equations. There is no connection between point ui and its

nearest neighbors, and oscillations on the length scale of the grid spacing can appear

during evolution, as illustrated in figure 3-2. These zig-zags are artifacts that slowly

disappear at long times times and are not predicted by the dynamics of the diffusion

equation.

Another problem arises with the centered difference operator if the outer gradient

is distributed over the inner nonlinear terms in the following manner:

Dc
- = .V (XVy) = XV2y + VX -Vy

at

x = c(1 - c) (3.5)

y = L - kV 2c

Distributing the gradient in this manner may appear advantageous because the equa-

tion has been decomposed into the sum of a constant coefficient Cahn-Hilliard equa-

tion plus nonlinear terms. However, applying the centered difference operator to

Vx -Vy leads to a scheme that does not conserve composition. A proof of the loss of

conservation can be found in an endnotes.
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3.2.1 Comparison of two finite-difference schemes

A simple solution to the discretization problem is to use a forward difference V+ for

one gradient, and a backward difference V_ for the other:

ac af- = V+. c(1 - c)V_- - V 2 cat ac
V+c Ci+1 - Ci (3.6)

h
Vcci - ci_1Vc 

- h

This scheme, called the forward-backward scheme, does not exhibit the aliasing ob-

served with centered differences (figure 3-2b). The forward and backward gradient

discretizations are only first-order accurate themselves, but the combination of V+.V-

is known to produce the second-order accurate Laplacian operator (Eq. 3.3b). Al-

though Eq. 3.6 is nonlinear, it is possible that the scheme might exhibit second-order

spatial convergence, but it is necessary to numerically verify the spatial convergence

of the scheme.

An alternative discretization approach avoids using the centered difference op-

erator entirely. The diffusion equation can be formulated in such a way that only

Laplacian finite difference operators are necessary:

- = V - (xVy) = -(V2(xy) + xV 2y _ YV 2x)at 2
x = c(1 - c) (3.7)

af

The derivation of this form is presented in an endnote4 . This approach has the ad-

vantage of being second-order accurate in space because it only uses the second-order

Laplacian discretization. It is more computationally expensive than the forward-

backward scheme because three Laplacian operators must be evaluated, although the

additional cost could be reduced by evaluating the terms in Eq. 3.7 in parallel.
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Figure 3-3: Initial and final phase-field solutions used to measure the spatial conver-
gence of finite difference discretization schemes.

A spatial convergence test was performed to evaluate the performance of the two

proposed finite difference schemes. To measure discretization error, the Gaussian

CO = .2 + .6e-50(c-.5) 2 illustrated in figure 3-3 was relaxed to steady state at t = .1

at several different grid resolutions. A Gaussian was chosen as the initial condition

because it is a smooth function that can be represented well on coarse grids. Be-

cause no analytic solutions to the evolution equation are known, a reference solution

was computed on a very fine grid (N=2048) and interpolated to the coarser grids

(N=1024,512,256,128) to measure error. To obtain the reference solution, the right-

hand side of the equation was evaluated using the pseudo-spectral approach discussed

in section 3.3.2. All solutions were calculated using the fifth-order accurate numerical

differentiation formulas (the function odel5s in MATLAB) with a maximum timestep

of 1 x 10-. Error was computed in the L 2 and L, norms. Because the number of

gridpoints is different at each resolution, relative error is reported:

= 1C - 112

IIC112 (3.8)

c i s t h e a t uc - ca|t

c is the exact solution (i.e. calculated at N=2048), and a is an approximate solution
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Figure 3-4: Spatial convergence of two different finite different schemes used to solve
the nonlinear diffusion equation (Eq. 3.1). The forward-backward scheme (Eq. 3.6)
is first-order accurate and Laplacian scheme (Eq. 3.7) is second-order accurate.

calculated on a coarse grid.

Results from the test show that the Laplacian scheme offers better convergence

than the forward-backward scheme, although it is more computationally expensive.

Figure 3-4 presents the results of the spatial convergence test. ln(e) is plotted against

ln(h), where h is the grid spacing, and the slope of the data in these plots is the

order of spatial convergence. The slopes, where were measured with linear regression,

reveal that the forward-backward difference scheme (Eq. 3.6) is first-order accurate

in space, and the Laplacian scheme (Eq. 3.7) is second-order accurate.

3.3 Implicit-Explicit spectral methods

Discretization difficulties aside, the major challenge with solving the phase-field dif-

fusion equation is that it is both stiff and nonlinear. The stiffness issue could be

addressed with an implicit solver, but many of the usual numerical methods are dif-

ficult to apply because of the nonlinearity. The free energy densities are arbitrary

functions with no guarantee of invertibility. They might not have symmetric or even
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semi-definite Jacobians, and an iterative solver for the implicit equations might be

necessary. It could be desirable, then, to handle the nonlinear terms explicitly and the

linear terms implicitly. Such a splitting is referred to as an implicit-explicit (or semi-

implicit) method and is a common method for solving partial differential equations

[1].

Spectral and pseudo-spectral methods have emerged as powerful methods for solv-

ing partial differential equations [2, 3, 4]. In particular, the Fourier transform provides

a simple and inexpensive way of accurately evaluating spatial derivatives. The im-

plicit solution of a differential equation can be found by a division operation in Fourier

space rather than a matrix inversion in real space. The discrete Fourier transform

can be computed efficiently for use in numerical computation with the fast Fourier

transform (FFT) algorithm. The algorithm scales as O(N In N), and implementations

of the algorithm have been highly optimized to run on modern multi-core computers

[5].

The Fourier transform f(k) of a function f(x) is:

F[f(x)] = f(k) = f(x)e-ikxdx (3.9)

k is a wavenumber and f(k) is the representation of f(x) in frequency space. The

inverse Fourier transform converts f(k) back to f(x):

F- [f(k)] = f(x) = f(k) eikxdk (3.10)

The derivative of f'(x) in Fourier space can be found by taking the derivative of Eq.

3.10:

f'(x) = f (f(k)eikx )dk = ikf (k)eikxdk
-- x- (3.11)

= F- 1[ikf(k)]
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Thus the derivative in real space is merely a multiplication by ik in Fourier space. In

addition to avoiding the inconvenience of discretizing a difficult equation, using the

Fourier transform to calculate derivatives also offers optimal spatial accuracy. Finite

difference only considers nearby neighbors for evaluating a derivative, but Fourier

transform methods can be thought of as a finite difference scheme with the largest

possible stencil that incorporates all available data.

3.3.1 An IMEX splitting for the Cahn-Hilliard equation

The use of implicit-explicit Fourier spectral methods in phase-field became popular

after L.Q. Chen and Jie Shen showed that an IMEX spectral method was between

two and three times more efficient than explicit finite difference for solving the Cahn-

Hilliard equation [6]. They showed that the spectral solver offered better spatial

accuracy and was several orders of magnitude more stable, without introducing a

significant amount of error. The IMEX method proposed by Chen and Shen will now

be reviewed, as it is important to start with a simple example that illustrates how

the discrete Fourier transform can be used to efficiently solve a differential equation

that has been split into a linear part to be solved implicitly, and nonlinear part to be

solved explicitly. The Cahn-Hilliard equation with mobility M = 1 will be used as

an example:
C V 2 f'(c) - rV 4c (3.12)

at

V2 f'(c) is nonlinear and will be integrated explicitly and -nV'c is stiff and linear

and will be integrated implicitly to avoid stability problems. A first-order forward

Euler discretization is used to approximate the temporal derivative:

Cn+1 - n 2c - c -
2 f'(c") -VCn+1 (3.13)

At
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and the discrete Fourier transform is employed to evaluates partial derivatives:

C - = -k 2f'(c ) - Kk4 cn+1 (3.14)
At

Hat notation is used here to indicate the Fourier transform of a quantity (i.e. Cn+1 =

F[cn+l]). Eq. 3.14 can be rearranged and solved for cn+1, the solution at the next

timestep:

cn+ 1 + Atsk4cn+1 = cn- Atk 2f'(cn)
-- c - Atk 2 f'(c")cn+1 = 1 + AtKk 4  (3.15)

n+1 F- 1 c7 - Atk2 f'(c")
1 + Atsk4

With the use of the Fourier transform, the implicit solution to the forward Euler

timestep has become a division in Fourier space. The increased stability that results

from the implicit solve can be rationalized by noting that the denominator contains

only positive terms that will always be greater than one. Dividing by a number

greater than one will reduce the amplification of each Fourier mode and tend to

promote stability. The IMEX discretization is not unconditionally stable because At
also appears in the numerator as a result of the explicit treatment of the nonlinear

terms. Increasing At to large values will amplify frequencies by factors greater than

one at each timestep, resulting in instability. 12 becomes large for large values

of At and small values of k.

3.3.2 An IMEX splitting for the nonlinear diffusion equation

In Chapter 2, nonlinear diffusion equations were derived for multicomponent, mul-

tiphase systems from basic thermodynamic and kinetic arguments. The simplest
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diffusion equation is for the case of a binary single phase system:

c = V. (c(1 - c)V (f'(c) - KV2 c)) (3.16)at VC)(.6

This equation is the Cahn-Hilliard equation with a mobility that depends on c(1 - c).

The spectral evaluation of the right-hand side is complicated by the fact that the

multiplication of two functions in real space is not equivalent to the multiplication

of the Fourier transforms of the two functions. Multiplication by c(1 - c) must

be performed in real space, and the spectral discretization of Eq. 3.16 involves an

additional Fourier transform and inverse transform:

= ik (F [c(1 - c)F- [ik (f'(c) + k22] (3.17)

A more serious problem is that the c(1 - c) terms make the entire equation nonlin-

ear, and the IMEX splitting of section 3.3.1 can no longer be applied. Unfortunately,

an explicit treatment of Eq. 3.17 exhibits sever timestep restrictions. Zhu and Chen

[7] proposed a way to stabilize the equation with the inclusion of a stiff linear term

that can be solved implicitly. The term -AV 4 c is added to the implicit part of the

splitting and subtracted from the explicit part in the following manner:

Dc
- = N(c") + L(cn+1)at

N(c) = ApV 4c + V . (c(1 - c)V (f'(c) - KV2 c)) (3.18)

L(c) = -AV 4 c

N(c") contains the nonlinear terms to be solved explicitly and L(cn+1) contains the

linear term that will be handled implicitly. A is a constant, and A = 0 corresponds to

the original non-stabilized equation. As A is increased, the equation becomes more

stable but less accurate. This is because the splitting is attempting to implicitly solve

of a linear portion of the c(1 - c)'V 4c term, which is the nonlinear fourth-order term
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0.8 1 1.2
Distance

Figure 3-5: Coarsening of random noise was used to measure the accuracy of finite
difference and spectral solvers. The initial noise and the coarsened solution at t = 10
are shown. A grid of 256 points with a grid spacing of h = 1/128 was used.

in Eq. 3.16. The implicit stabilization term must have the same sign as this nonlinear

term for numerical stability and should be approximately the same magnitude as the

nonlinear term to minimize error. Thus the value of A should be on the order of the

average value of c(1 - c). Zhu and Chen report that A = .5 was found to work well

in practice and produced stability for timesteps orders of magnitude larger than for

explicit finite difference.

Using a forward Euler discretization in time, the resulting stabilized equation is:

- C = N(c") + L(cn+1 )
At

cn+1 -e = AtN(cn) - AtAnk c

-n = + AtN(c)
- 1+ AtAKk 4

Eq. 3.17 must be employed to evaluate N(c).

(3.19)
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At = 2 x 10- 7  At = Atmax

A Atmax 11e112 ||elo |e|I|2 ||e||o
0 3 x 10-7 - - 2.07 x 10~4 8.88 x 10-T

.0625 7 x 10-7 1.40 x 10-4 5.64 x 10-4 5.94 x 10-1 7.32 x 10-1
.125 1 x 10-4 2.88 x 10-4 1.16 x 10-3 6.20 x 10-' 8.28 x 10-1
.25 1 x 10-3 5.92 x 10-4 2.40 x 10-3 7.32 x 10-1 8.27 x 10-1
.5 2 x 10-3 1.22 x 10-3 4.97 x 10-3 7.23 x 10-1 8.29 x 10-1
1 5 x 10-3 2.52 x 10-3 1.03 x 10-2 7.22 x 10-1 8.27 x 10-1

finite difference 2 x 10-6 2.41 x 10-2 9.18 x 10-2 2.40 x 10-2 9.12 x 10-2

Table 3.1: Measurements of largest stable timestep and error for different values of
the parameter A. Large values of A increase stability but decrease accuracy. Using a
large timestep introduced a significant amount of error.

3.4 Measuring error introduced by the stabiliza-

tion method

Since the stabilization method introduced in the previous section has altered the

diffusion equation with the introduction of a stiff linear term scaled by a constant

A, it is important to measure the effect of A on the accuracy and stability of the

IMEX spectral solver. A representative phase-field simulation involving dampening

of sharp gradients followed by phase-separation and then coarsening was performed

for different values of A to quantify its effect. The simulation consisted of randomly

generated noise with a value between c = .45 and c = .55 which was coarsened to a

time of t = 10. The initial and final conditions are shown in figure 3-5. All tests were

performed using 256 gridpoints and a grid spacing of h = 1/128. A reference solution

was computed using A = 0 and a very small timestep of At = 2 x 10-'. Computing

the reference solution took several hours of computing time, even for a 1D grid.

Numerical tests results for several values of A can be found in table 3.1. The

maximum stable timestep is reported for each A, along with the relative errors for

At = 2 x 10-7, the small timestep used to compute the reference solution, and error

for the maximum stable timestep. The At = 2 x 10-7 error quantifies how A affects

accuracy independent of the timestep, and the Atmax error provides an estimate of
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the error introduced by using a large timestep.

Two trends in table 3.1 are clear: A does not introduce significant error when

small timesteps are used, but error increases dramatically as A is increased and the

equation becomes more stable. Errors in the 60-80% range, as were measured in some

cases with the maximum stable timestep, are unacceptable for any type of simulation.

Since A by itself only introduces a modest amount of error, the accuracy problem is

likely the result of accumulated error from using large timesteps.

3.4.1 Discussion

It is surprising that Chen et al. [6], Zhu et al. [7], and the hundreds of papers that

have applied their methods have never acknowledged temporal resolution of phase-

separation dynamics as a significant source of numerical error. With the potential for

errors as high as 80%, the findings of many phase-field papers might be questioned,

especially since most papers make no attempt to estimate error. It seems likely that

many authors may have overlooked the fact that stability of a numerical method does

not imply accuracy. Ignoring error does not make it irrelevant.

Even more unsettling are the unsupported and misleading claims of Chen and Zhu

et al. that their methods are more accurate than explicit finite difference, in addition

to orders of magnitude more stable. This claim seems to arise from a focus on the

improvement in spatial accuracy that spectral methods offer without considering the

effect of dynamic temporal error. Chen attempted to measure error while using the

largest stable timestep, but did so for a relatively static problem, the formation of a

equilibrium diffuse interface from an initially sharp interface. Zhu et al. claim that the

use of large timesteps is acceptable but did not measure error for different timesteps.

To their credit, both papers did suggest that second and third order accurate time

integrators (using a BDF/AB scheme) would increase accuracy, but did not specify

whether such schemes were necessary, quantify the accuracy of the schemes, or use

higher-order schemes in their own calculations. Furthermore, the data in the previous
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section shows that even a higher-order time integrator can still introduce significant

error when a large timestep is used to simulate high frequency dynamics.

An interesting finding in table 3.1 is that explicit finite difference does not suffer

from accuracy problems, largely because very small timesteps are required for stabil-

ity, and a consequence of small timesteps is good temporal accuracy. An appropriate

argument for using an implicit-explicit spectral method is that it can achieve a desired

level of accuracy much more efficiently than explicit finite difference.

The fact that so many phase-field models can be developed using suspect numerical

methods highlights one of the pitfalls of phase-field. Phase-field models almost always

produce pretty pictures that appear qualitatively correct, even when the model is

wrong for many possible reasons. The eye cannot possibly determine whether a

model is accurate or not, but pretty pictures have the psychological effect of seeming

convincing and discourage careful attention to detail. But carefully derived models are

exactly what phase-field needs, as verification of phase-field with appeal to experiment

is very difficult.

The following sections will identify two significant sources of error with the stabi-

lization method (Eq. 3.18) and present appropriate fixes: a higher order Runge-Kutta

time integrator and adaptive timestep control. The adaptive Runge-Kutta was found

to improve the efficiency of Zhu's stabilization technique by two orders of magnitude

when a simulation is required to meet acceptible error tolerances.

3.5 An adaptive timestep spectral method

There are two sources responsible for the large errors measured in table 3.1, and each

must be addressed separately. First, the forward Euler time discretization used in

Eq. 3.19 is only first-order accurate in time. This results in error proportional to the

timestep size. The stabilization method has increased the stable timestep by orders

of magnitude with the side effect of increasing error by orders of magnitude. One



3.5. AN ADAPTIVE TIMESTEP SPECTRAL METHOD

improvement then is to use a more accurate time integrator.

The Euler time integrator did not cause problems for the finite difference solver

because very small timesteps were required to maintain stability. One redeeming

feature of explicit finite difference then is that it usually becomes unstable before it

becomes inaccurate. The last row of table 3.1 shows that for finite difference with

the largest stable timestep, the L2 error is only about 2.5%, which is acceptable for

a long coarsening simulation.

The second source of error comes from the the dynamic time scales that occur

during phase separation. High frequency oscillations are smoothed on a very short

time scale, while phase separation then occurs on an intermediate timescale, and

coarsening on a long timescale. Typically for coarsening in 3D, the radius of parti-

cles is expected to grow as t. A small timestep accurately captures decay of high

frequencies as well as phase-separation, but renders the long time coarsening regime

inaccessible. A large timestep allows simulations of coarsening, but does not provide

the resolution to accurately simulate high frequencies and phase separation. Error

from different timescales can be addressed with an adaptive timestep method that

automatically adjusts the timestep according to the current dynamics in a simulation.

Using a fixed timestep is inefficient.

The following two sections demonstrate how both sources of error can be reduced

with the use of a second-order IMEX Runge-Kutta time integrator, an error estima-

tor, and adaptive timestep controller. Holding total accumulated error constant, the

second-order time integrator and timestep controller were each found to provide a

magnitude improvement in running time compared to the first-order IMEX scheme.

3.5.1 2nd-order Runge-Kutta timestepping

Runge-Kutta methods are popular multi-step integrators for ordinary differential

equations. For a review of Runge-Kutta techniques, the reader is referred to books

by Hairer [8, 9]. Runge-Kutta methods take small intermediate steps between the
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current time t and the next step t + At, and weights the intermediate steps to com-

pute an accurate solution at the next timestep t + At. The methods are popular

because they offer high accuracy, good stability, and are self-starting, only requiring

knowledge of the field at its current timestep. Runge-Kutta also provides a natural

way to estimate truncation error and, unlike other multistep methods, is well suited

for variable timesteps.

Ascher et al. developed a set of Runge-Kutta methods for solving differential

equations with an implicit-explicit splitting [10]. Such IMEX-RK schemes use a dif-

ferent Runge-Kutta tableau for the implicit and explicit parts, and the tableaus are

constructed in such a way that higher order temporal accuracy is achieved. The

Ascher schemes were analyzed by by Kennedy and Carpenter [11] (see table 11, bot-

tom of pg 163) who found that the Ascher (2,3,2) scheme' has very good numerical

properties compared to many other multistep schemes. Kennedy and Carpenter also

note marginal improvement in efficiency of higher-order methods at practical toler-

ances. Since the right-hand side of the diffusion equation is expensive to evaluate and

very high accuracy is generally not necessary in phase-field modeling, a second-order

accurate time integrator is likely a good choice.

Because the implicit-explicit splitting of the nonlinear diffusion equation (Eq.

3.18) produced both a stiff linear term and a stiff nonlinear term, it is important that

the scheme be stiffly accurate. This criteria is necessary because it has been observed

that the order of diagonally-implicit Runge-Kutta schemes can be reduced for stiff

problems [8]. The stiffly accurate requirement rules out several of the other Ascher

schemes, including the (2,3,2) scheme. The closely related Ascher (2,2,2) scheme (2

implicit stages, 2 explicit stages, 2nd order accurate) is stiffly accurate and was used

'In Ascher's notation, (2,3,2) denotes a Runge-Kutta scheme with 2 implicit stages and 3 explicit
stages that is 2nd order accurate.
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Temporal error convergence for Ascher (2,2,2) IMEX-RK
-14

slope=1.931

C, -17

-1- slope=1.937

-2-

-15 -14.5 -14 -13.5 -13 -12.5 -12 -1i.5

ln(A t)

Figure 3-6: Temporal error convergence for the Ascher (2,2,2) IMEX-RK time inte-
grator.

in this work. The Butcher tableau for the scheme is [10]:

Implicit Explicit

0 0 0

7 0 Y IT 7 (3.20)

1 0 1 -7 -/ 1 1-5

0 1-^/ 7 5 1-j 0

with -y = (2 - V.)2 and -= 1 - 1/(27).

It is important to verify that the chosen IMEX-RK scheme is second-order ac-

curate when applied to the nonlinear diffusion equation because of the possibility of

order reduction for stiff equations. The Gaussian initial condition (figure 3-3) and

free energy function from section 3-1 were used to measure temporal convergence.

This simulation was chosen instead of spinodal decomposition because it minimizes

error resulting from the temporal dynamics of the simulation. Dynamic error will

be properly be addressed with an adaptive timestepping approach. A grid spacing

of 1/128 was used, and a reference solution was computed using the IMEX-RK time

integrator with A = 0 and At = 1 x 10'. Timesteps much smaller than the max-
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imum stable timestep (At = {4,8,16, 32, 64} x 10-7) were used as well to minimize

error. Figure 3-6 plots the natural log of both L 2 and L, error versus timestep. The

slope of the fit lines are very close to 2, confirming that the method is second-order

accurate in time.

3.5.2 Adaptive timestepping

In a recent paper [12], Cueto-Felgueroso and Peraire remark that timestep control

for the Cahn-Hilliard equation is virtually absent from literature despite frequent

application of the equation in models of phase transformations. They note that

the equation is very stiff due to the biharmonic V4 c term, and also rich on the

temporal scale. To address these concerns, Cueto-Felgueroso applied a time-adaptive

implicit Runge-Kutta integrator to the Cahn-Hilliard equation using a finite volume

method. Since a fully implicit solver is often expensive in practice, a time-adaptive

implementation of an IMEX spectral solver is presented here.

Runge-Kutta with adaptive timestep control relies on the idea that truncation

error can be computed by comparing a solution or order p to a solution of order

p - 1. For example, the difference between a second-order accurate solution and

a first-order accurate solution 11u2 - il is proportional to At 2 . In this work, the

second-order solution is computed using the Ascher (2,2,2) scheme (Eq. 3.20), and

the first-order solution is calculated using Eq. 3.19, the forward-backward Euler

discretization, which is stiffly accurate. This discretization can also be described

with a Runge-Kutta tableau:

Implicit Explicit

0 0 0
(3.21)

1 0 1 1 1

0 1 1 0

The algorithm for adaptive timestepping used in this work is described by Hairer
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eo Atave total steps ||e||2 ||e||oo

1 x 10-6 1.33 x 10-4 74942 1.47 x 10-3 6.36 x 10-3
1 x 10-" 5.03 x 10-4 20594 5.08 x 10-3 2.22 x 10-2
1 X 10-7 1.11 x 10-3 9997 2.25 x 10-2 9.50 x 10-2
1 x 10-3 1.39 x 10-3 8416 4.78 x 10-1 8.28 x 10-1

Table 3.2: Performance of the adaptive timestepping method for different error tol-
erances (A = .25).

[8], and the equation for picking the next timestep is:

111- U 1 2

Atnew = .95Atold (j1 - 2 (3.22)

where eo is a desired error tolerance for each step and error is measured in the L 2

norm. The new At is chosen so as to keep the estimated error approximately equal to

the error tolerance. If the estimated error is less than eo, the iteration is accepted and

the the timestep is increased for the next iteration. If the estimated error is larger

than eo however, the iteration is rejected and the timestep is reduced for the next

iteration. .95 is a safety factor that decreases the number of rejected steps by slightly

reducing the new timestep choice.

The trade-off between grid spacing and timestep is replaced with a trade-off be-

tween running and time and accuracy, and adaptive timestepping provides a method

to pick an appropriate timestep to stay within error bounds. Being able to safely reject

an iteration has other benefits as well. For example if c were to become negative as

a result of overstepping the c = 0 boundary, perhaps because of a large timestep, the

diffusion equation would become ill-posed. The adaptive timestep algorithm would

reject such an iteration and reduce the timestep.

Tables 3.2 and 3.3 present performance data for adaptive timestepping applied

to the 1D coarsening problem (figure 3-5). Table 3.2 shows how different values of

the error tolerance eo affect the total error in the solution as well as the number

of required iterations. Table 3.3 confirms that for values of A < .25, the diffusion
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A Atave total steps ||e|| 2  ||ello
.125 2.82 x 10-6 4008130 2.05 x 10-3 6.27 x 10-3
.25 1.11 x 10-3 9997 2.25 x 10-2 9.50 x 10-2
.5 1.67 x 10-3 6515 3.92 x 10-2 1.66 x 10-1
1 1.76 x 10-3 6058 1.06 x 10-1 4.25 x 10-1

Table 3.3: Performance of the adaptive timestepping method for different values of
A (eo = 1 x 10-4).

8000 12000
Accepted step

(a)

10~ 10 10 10 10
time

Figure 3-7: The timestep At chosen by the adaptive timestep
separation simulation with eo = 1 x 10-.

algorithm for the phase

equation is unstable and a large number of iterations are necessary, even with time

adaptivity. The table also confirms that large values of A increase the total error

independent of the time integrator used.

Figure 3-7 shows the timestep chosen by the adaptive algorithm for the coarsening

problem when an error tolerance of eo = 1 x 10-' was used. Timestep is plotted versus

iteration number in figure 3-7a to convey how a large fraction of the computation effort

is focused on accurately capturing spinodal decomposition with small timesteps at

the beginning of the simulation. The complex dynamics of spinodal decomposition is

reflected in the shape of the At curve. Part way through the simulation, the timestep

stabilizes around At = 10-3. The beginning of this stable region corresponds to the

start of the coarsening regime in the simulation. Figure 3-7b shows At as a function
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Method CPU time (sec) ||e||2 Ile||oo
Explicit finite difference, At = 2 x 10-6 1051 2.40 x 10-2 9.07 x 10-2

RK1, A = .25,At = 5 x 10-6 286 2.52 x 10-2 1.06 x 10-1
RK2, A = .25, At = 1 x 10-4 28 3.06 x 10-2 1.25 x 10-1

Adaptive RK2,A = .25, eo = 1 x 10-F 3 2.25 x 10-2 9.50 x 10-2

Table 3.4: Running time of different integrators coded in MATLAB. The slow time
measured for explicit finite difference iterations might be partially explained by inef-
ficient implementation in MATLAB.

of simulation time on a log scale. This plot shows the fine timestep adjustments at

the beginning of the simulation which are difficult to see in figure 3-7a. From start

to finish, the timestep was varied over five orders of magnitude.

3.6 Benchmarks

Perhaps the most important consideration when developing a numerical method for

engineering problems is the computational efficiency. Accuracy and stability are

important considerations as well, but in the end, results must be obtainable in a

reasonable amount of time. Running times for several different methods applied

to the ID coarsening problem are presented in table 3.4. The simulations were all

performed in MATLAB. Total accumulated error was held roughly constant at about

2.5% in the L2 norm and about 10% in the Lc, norm. The timestep of each method

was adjusted to achieve these tolerances. Table 3.4 shows that the adaptive Runge-

Kutta method is about three orders of magnitude more efficient that explicit finite

difference, two orders of magnitude more efficient than first-order RK1 timestepping,

and an order of magnitude more efficient than second-order RK2 timestepping. The

adaptive RK2 algorithm is by far the most expensive per iteration, but wins out by

taking its steps very efficiently. The order of magnitude difference between RK1 and

RK2 reflects the fact that solving Eq. 3.19 with constant timesteps, and is common

practice in phase-field modeling, is either inaccurate or inefficient depending on the
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problem. The order of magnitude difference between RK2 and adaptive RK2 reflects

the rich temporal time scales in phase separation problems.

3.7 Future Work

A discussion on future work related to numerical methods for phase-field modeling

can be found in section 7.1.1 and appendix A.

Notes

3 Distributing the outer divergence operator in the Cahn-Hilliard equation and using centered

differences produces a discretization that does not conserve when mobility is non-constant. A proof

of the loss of conservation in a ID periodic system follows. Begin by distributing the outer gradient

and substitute centered finite differences for the gradients:

ac -V.J=V. (Mvf
t c)

=VM - V-J + MV2_f
ScSc

Ac_ Mi+I - Mi_ 1 6i+1 - 6i-1 + M-+1 - 2 6i + 6j-1

At 2Ax 2Ax Ax 2

1
- 4Ax2 (Mi+1Si+1 - Mi+,1 i- 1 - Mi-16i+1 + Mi_1- 1 + 4Mj64+1 + 4MjoS_ 1 - 8MjSj)

(3.23)

The symbol 6i was used in place of ! for simplicity. The following summations over the system

hold because periodic boundary conditions are assumed:

Mi+A1S+ 1 = MioS

Mi+A1 6- 1 = MA-2

(3.24)
Mi- 1 6i+ 1 = MA+2

ZMi 1 S- 1 = MAS
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Using these relationships, Eq. 3.23 can be simplified:

4 Z (M A64 - M6-2 - M AS+2 + M j61 + 4M jSi+1 + 4M jSi-1 - 8M jo;)

(3.25)
4Ax 2 ZM (-

6 i-2 + 4 6 i-1 + 68 i + 4 5i+1 -
3 i+2)

A 0

Concentration is not conserved because Ej ji = , 0. If the Laplacian operator is not distributed,

the same approach can be used to show that mean concentration is conserved:

Act

= V - Mv

= V. (Mi M +1 - Mi-1)
2Az

= V - (Miji+1 - Miji_1)

2Ax

(3.26)

Mi+16e+2 - Mi_1 6 Mi+13i - MiA-2

2Ax 2Ax

4Ax 2 (Mi+16i+2 - Mi_6 - Mi+16A + Mi_1 6+ 2 )

ZAcj
At 4AX2 Mi+1- ZMAi+1 - Mijii1+ Mj-

(3.27)

= 0

4 Starting with an equation of the form:

V - (X(

Distribute the outer gradient operator to obtain:

V - (xVy) =

Now expand V2 (xy) and solve for Vx -Vy:

c)Vy(c))

X -Vy + xV 2y

V 2 (Xy) = XV 2y + 2Vx . Vy + yV 2X

Vx - Vy = (V 2 (Xy) - XV 2 y _ YV 2x)

(3.28)

(3.29)

(3.30a)

(3.30b)

= j
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Substitute Eq. 3.30b into Eq. 3.29 to obtain an expression with only Laplacian operators:

V. (xVy) = (V2 (xy) + xV 2y _ YV 2x) (3.31)
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Chapter 4

Spherulitic growth in multiphase

systems

The phase-field model developed in chapter 2 is used here to study the growth of a

critical nucleus in a ternary eutectic system. Little is known about phase-separation

in ternary systems [1], and this work represents a new direction in multiphase mod-

eling, which has focused largely on two and three phase binary systems [2]. This

chapter shows that under certain conditions nucleus growth in multiphase is kalei-

doscopic, with complex symmetric patterns being formed through growth-front nu-

cleation mechanism. The conditions governing the formation of these kaleidoscopic

spherulites is studied and, much like snowflakes, it was found that small parameter

changes were found to produce completely different patterns. Several features ob-

served in the spherulites are related to experimental observations in simpler systems

and new way of visualizing and interpreting microstructure is also introduced. The

chapter begins with a description of the ternary eutectic free energy landscape used

throughout the rest of this thesis.
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Cl
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Figure 4-1: A ternary function of the form f (ci, c2) = -(cic 2 + c1c3 + c2c3).

4.1 The free energy landscape

Perhaps the most important input to a phase-field model axe the free energy density

functions. The free energy functions used here to study a four-phase ternary eutectic

system are based on simple parabola-shaped functions of the form:

f (ci, c2) = -#(cic 2 + cic3 + c2c3) (4.1)

C3 = 1 - c 1 - C2

This function is plotted on a triangular grid in figure 4-1 with the three components

as vertices of the triangle. The function is symmetric with respect to the three

components and has a minimum at (ci, c2 , c3) = (j, }, j). # is a constant that adjusts

the sharpness of the free energy curves and sets the energy scale. # = 10 was used in

this work.

A four-phase free energy landscape was created by translating the bowl function

to create curves with minima at different compositions. The four free energy functions
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(a) Free energy curves for T=-1.45. (b) Phase diagram for T=-1.45.

- C3

-2 '

-3 

I

Cu
(c) Free energy curves for T=.2. (d) Phase diagram for T=.2.

Figure 4-2: Ternary eutectic free energy curves, viewed from below, and the calculated
phase diagrams. The diffusing components are colored red, green and blue, and there
are three solid phases: a red-rich phase, a green-rich phase, and a blue-rich phase. A
silver liquid phase appears in the center of the triangle, and the energy at its minimum
relative to the solid curves is controlled by a dimensionless temperature.

............ ............. . .
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are:

fi(ci, c2 ) = f(c1 + 1/3 -.9, C2 +1/3 -. 05) + AGmix

f2 (ci, c2 ) = f(ci + 1/3- .05,c 2 +1/3- .9) + AGmix

f3 (ci, c2 ) = f(ci + 1/3 - .05, c2 + 1/3 - .05) + AGmix (4.2)

f4 (ci, c2 , T) = f(ci, c2 ) - T + .5266 + AGmix

AGmix = ci ln(ci) + c2 ln(c2 ) + (1 - C1 - c2) ln(1 - c1- c2)

The curves are plotted in figure 4-2 at two different temperatures along with the

corresponding phase diagrams. The three diffusing components in the system are

colored red (c1), green (c2), and blue (c3), and the free energy curves are colored

according to the concentration of their stable phase. The red curve is a red-rich

phase, the green curve a green-rich phase, and the blue curve a blue-rich phase. The

fourth phase is colored silver and its minimum is at the center of the ternary triangle.

The system is a ternary eutectic in the sense that the "liquid" phase first appears

in the center of the phase diagram, and upon cooling, separates into three "solid"

phases, each with a limited amount of solubility. The energy of the liquid curve

minimum relative to the other curves is specified by T, a dimensionless temperature.

T sets the energy difference between the minimum of the liquid curve and that of

the solid curves. Fig. 4-2a shows the free energy curves for a temperature below the

melting point, and the corresponding phase diagram in figure 4-2b shows no stable

liquid at equilibrium. Figure 4-2c shows free energy curves for a temperature above

the melting point. The minimum of the liquid curve is lower than the solid curves,

and a single-phase liquid region now appears in the center of the phase diagram.

The liquid curve in 4-2a is higher in energy than the solid curves everywhere except

for a small region of composition space close to the center of the ternary triangle. Over

this small composition range liquid is the lowest energy phase, but liquid is metastable

because the system can further lower its energy by phase-separating into the three
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solid phases. The remainder of this chapter will investigate the process by which such

a metastable eutectic liquid phase separates into three solid phases.

4.2 Eutectic solidification morphologies

A eutectic reaction occurs when a liquid is cooled and solidifies into two or more

distinct solid phases. Eutectic solidification has been extensively studied for binary

systems, and the resulting structures are generally limited and predictable [3, 4, 5, 6].

Ternary systems in contrast have more degrees of freedom and are much less pre-

dictable. This section will review some current theory related to binary and ternary

eutectic solidification. A thorough review of the application of phase-field to solidifi-

cation microstructures has been written by Boettinger [7].

The morphology of a binary eutectic is almost completely determined by the the

relative volume fractions of the equilibrium phases. Quenched binary eutectic liquid

often forms a lamellar structure, but if the volume fraction of one of the equilibrium

phases is small, rods or fibers of that phase grow embedded within a matrix of the

high volume fraction phase. The rod morphology minimizes interfacial area and

forms when the minor phase has a small volume fraction. A transition from rods to

a lamellar structure occurs when the minor phase has a volume fraction greater than

.32 [3]. The lamellar structure has the advantage that the relative thicknesses of the

layers can change without introducing additional surface area.

Theory for interface stability in ternary solidification has been developed [8, 9],

but morphological studies in ternary systems have often focused on systems where

at least one phase has a small volume fraction at equilibrium. When one phase is

not prevalent, it precipitates as droplets while the two remaining phases behave like

a binary eutectic. Morphologies in ternary systems become interesting when the

volume fraction of the equilibrium phases are approximately equal and phase triple

junctions become a common feature in the microstructure. On this topic, Hecht [1]
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Figure 4-3: A sketch of possible morphologies for the solidification of a ternary eutectic
liquid. The growth direction of the solidifying interface is out of the page. From left
to right, the geometries are three lamellar planes, one fibrous and two lamellar, two
fibrous and one lamellar, two fibrous in a matrix of the third, and three fibers. [10]

comments that "it emerges as challenging to question what coupled growth patterns

will select, when forcing the alloy to grow in 2D confinement, i.e. when prohibiting the

formation of quadruple points". The next section will begin to investigate solidifying

three-phase morphologies in 2D and reveal the importance of phase triple junctions

on growth structures.

Ternary eutectics solidify into three-phase microstructures, and many more pos-

sible morphologies can be formed than in a binary system. With three interfacial

energies, a three phase system will have phase triple junctions with contact angles

dictated by surface energies. Ruggerio and Rutter [11] offer a verbal description of

five morphologies expected to form during solidification of three phase eutectics, and

a drawing of these morphologies is provided in figure 4-3. In addition to combinations

of lamellar and fibrous structures, it is noteworthy that three-phase systems are able

to form hexagonal arrays.

Himemiya and Umeda [12] analyzed three-phase growth morphologies including

a regular lamellar structure, a rod and hexagon structure, and a brick-like structure

resembling the middle picture in figure 4-3. Their analysis assumed only planar,

flat interfaces, although solidifying eutectics often form of cellular structures. They

admitted that there are likely many possible three-phase morphologies, and that
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enumerating the morphologies and determining which morphology a specific system

will form is a very difficult problem. It will be demonstrated in this chapter that

the multiphase model is a very useful tool for investigating multiphase morphology

problems because it obviates Himemiya's assumption of planar growth.

4.3 Kaleidoscopic spherulites

Liquids which are rapidly solidified under nonequilibrium conditions are often ob-

served to form spherulites, which can be broadly described as microstructure that

grows from a single nucleus and maintains a roughly spherical shape (circular in 2D).

Spherulites are observed in pure materials, metallic alloys, ceramics, glasses, poly-

mers, minerals, volcanic rocks, and even biological molecules [13, 14]. Despite their

prevalence in everyday materials, there is no concrete theory to describe the formation

and growth of these structures.

Experimental studies of spherulites has lead to classification into two categories.

The first category grow spherically from the nucleation site. This type is similar to

the lamellar structure which forms in a solidifying eutectic. The second category

begin as rods which grow in opposite directions. The rods branch as they grow,

eventually becoming spherical at longer times, but leaving two uncrystallized eyes

near the center of the spherulite. This type of spherulite is not considered in this

work.

There have been just a few phase-field studies of spherulite formation and growth

[15, 16], and they have demonstrated that a relatively simple phase-field model could

replicate many of the intricate spherulite morphologies that arise in microstructure.

This previous work specifically focused on the effects of crystalline and interfacial

anisotropy in binary systems and has not addressed the morphologies that are possible

in multiphase systems.

An interesting morphological class of spherulites can be formed by systems that
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(a) k=.5 (b) k=.25 (c) k=.15

(d) k=.5,D 2 = .5

(g) A2 2 = 4 (h) A22 = 4,c = (), }, )

(e) k=.25,T=-1.35

(i) A2 2 = 4,T=-1.4

Figure 4-4: Three-phase spherulite morphologies under a variety of different condi-
tions. Unless otherwise specified k = .25, T = -1.45, and c = (.35, .31, .34). (a)-(c)
show the effect of decreasing interfacial energy. The middle row shows how subtle
parameter changes lead to dramatic morphological changes. (f)-(g) shows the effect
of changing the contact angle of the green phase with the other two phases so that
green takes up more than 120 degrees at a phase triple junction.

....... . .... .... . .. .....

(f) k=.15,c=( I, -, )1
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phase-separate into more than two phases. Several examples of the growth of a critical

solid nucleus from a metastable ternary eutectic liquid confined to a thin film are pre-

sented in figure 4-4. These structures will be referred to as kaleidoscopic spherulites.

The spherulites were grown under different conditions, and it was found that phase

barrier hight, interfacial energy, interfacial velocity, contact angles of the different

phases, and the mean composition of the system all play a role in the development

of kaleidoscopic structures. In the figure, k is the value used for all gradient energy

coefficients (both composition and phase), and the gradient energy matrices K and

A are assumed to be diagonal.

The first row of structures in figure 4-4 show three different growth modes that

were found to occur for different interfacial energies. The formation of ring spherulites

in (a) corresponds to large interfacial energy, while an intermediate interfacial energy

produces hexagons in (b), and a small interfacial energy and hence slow interfacial

velocity results in a radiating lamellar structure in (c). Large interfacial energy tends

to promote fast interface velocity, but it is unclear whether interfacial energy, growth

velocity, or some combination of the two is responsible for the morphology changes.

The ring morphology in (a) may be related to the phenomenon of halo formation

observed in off-eutectic solidification [17]. Radiating lamellar structures qualitatively

similar to (c) have been previously reported in binary eutectic phase-field simulations

[18].

The second row of figure 4-4 shows how small parameter changes from the con-

ditions in the first row result in drastic morphology changes. In (d), the diffusivity

of c2 was reduced, in (e) the temperature was increased, and in (f) the composition

of the liquid was changed. The structures in the second row show coexistence of the

different growth modes from the top row. In (d) rings grow initially but break up

as the radius increases, in (e) the initial growth is hexagonal but then transitions to

radial lamellar growth, and (f) exhibits characteristics of all three modes.

The final row of figure 4-4 shows what happens when the green-red and green-
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Figure 4-5: Accumulation and depletion of solute outside a growing nucleus in a
ternary system governed by diffusion-limited growth.

blue surface energies are larger than the red-blue surface energy. Force balance at

triple junctions requires that the angle taken by green becomes larger than 120.

The formation of hexagonal patterns is disrupted and results in noticeably different

morphologies.

4.3.1 Growth mechanism

The spherulites were observed to grow by a process of secondary or growth front nu-

cleation, which has frequently been reported to play a role in the growth of spherulites

[13, 19, 20, 16]. Drolet et al. studied a similar growth mechanism in binary eutectics

with phase-field [18]. After nucleation of the primary nucleus at the center of the

spherulite, the growing interface acts as a high-energy site that aids in the nucleation

of new phases. The nucleation of new phases on the solidification front can be seen

in several of the spherulites in figure 4-4. Phase triple junctions which form at the

growing interface are particularly favorable high energy sites for secondary nucleation.

cl
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Figure 4-6: A spherulite that grew initially with 8-fold symmetry due to geometrical
restrictions imposed by the natural length scales of the microstructure. k = .5,
W = 0, c = (.36, .32, .32).

The growth of the spherulites is also controlled by diffusion of solute in front of

the solidifying interface. Figure 4-5 shows solute building up in front of a growing red

nucleus. As the red-rich nucleus grows, red is depleted from the nearby environment

and blue and green accumulate outside the nucleus. The red phase can only grow as

fast as red can diffuse to the interface, and growth is therefore limited by diffusion.

The build up of solute outside the interface affects the growth of the spherulite,

and the high concentrations of blue and green just outside the interface reduce the

nucleation barrier, resulting in the nucleation of red and green phases at the growing

interface.

4.3.2 Origin of symmetry

It is tempting at first to believe that the four-fold symmetry of the spherulites is a

numerical effect arising from the use of a square grid, periodic boundary conditions,

and a four-fold symmetric initial nucleus. These tend to promote four-fold symmetry,

there are other forces at play as well. The free energy functions and gradient energy
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(a) a 2 = 0 (b) U2 = 10-6 (c) a 2 = 10-5

Figure 4-7: Adding Langevin noise to the diffusing components disrupts the symmetry
in a growing kaleidoscopic spherulite. A22 = 2 and A33 = 2 for these spherulites.

coefficients define characteristic length scales for the microstructure, and the mean

composition of the system sets the volume fraction of equilibrium phases. These ge-

ometric restrictions combined with the radial growth of the spherulites can lead to

other symmetries. An example is shown in figure 4-6, where the initial growth of a

spherulite exhibited eight-fold symmetry. The phase barrier height W was set to zero,

and c2 and c3 in the homogeneous liquid were set equal so that the blue and green

phases are energetically equivalent. The result is that spinodal decomposition is trig-

gered but only in the vicinity of the moving interface. As the spherulite grows larger,

the 8-fold symmetry disappears, presumably an effect of the periodic boundaries.

4.3.3 Morphological stability

The spherulites in figure 4-4 were simulated without the addition of any noise so

that the different growth modes might be highlighted. In experimental systems,

thermal fluctuations will affect the stability of moving interfaces. Noise was added to

the composition variables as described in section 5.1.1 to investigate morphological

stability. A finding that emerged from running many simulations over the large

parameter space was that slow diffusivity in the solid relative to the liquid functions

102



4.4. EXPERIMENTAL EVIDENCE

as a stabilizing force in the presence of noise.

Figure 4-7 shows the effect of different degrees of thermally induced noise on the

growth of a kaleidoscopic spherulite with equal solid and liquid diffusivities. Although

the noise disrupts symmetric growth, it does not dramatically change the characteris-

tics of the spherulites. It is interesting that the introduction of noise is able to initiate

radial lamellar growth in isolated regions of the spherulites in figures (b) and (c).

Composition plays an important role in the stability of interfaces, and morpholo-

gies formed from liquid with a composition very close to c = (1, , ) are inherently

unstable and prone to breaking symmetry. The instability can be rationalized be-

cause c = (j, j, j) is equidistant from each of the three solid phases and all energy

barriers are equal. Small composition fluctuations are easily able to nudge the local

composition toward one of the phases at random and cause that phase to precipitate.

4.4 Experimental evidence

No direct experimental observation of kaleidoscopic growth could be found, possibly

because there has been little experimental or theoretical work studying morphology

in multiphase systems. Kaleidoscopic growth is expected when the volume fraction

of the phases at equilibrium are approximately equal, but most previous multiphase

work has focused on the case where at least one of the phases has a small volume

fraction at equilibrium. Although the multiphase growth instability has not yet been

experimentally observed, many features found in the spherulites have been observed

in experiments of diffusion controlled growth. It is possible to rationalize that kalei-

doscopic growth could occur in multiphase systems by studying spherulite grown in

simpler systems.
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(a) (b) (c)

Figure 4-8: Photographs of highly symmetric snowflakes that are on the order of
millimeters in size. [21]

4.4.1 Similarity to snowflakes

One concern is whether kaleidoscopic structures could actually grow to a reasonable

size in an experimental system without breaking symmetry. Snowflakes are good

example of a well known diffusion-limited growth structure that, under the right

conditions, can grow to very large size while maintaining symmetry [21]. Photographs

of large symmetric snowflakes are shown in figure 4-8. Snowflakes are thought be

symmetric in part because they grow quickly and in a relatively uniform environment.

The environment fluctuates, but the fluctuations are more or less constant over the

small domain of the growing snowflake.

The dynamics of snowflake growth is controlled by particle diffusion which brings

water molecules to the surface of the ice crystal, and heat diffusion which removes

latent heat from the solidifying interface. Thus snowflakes are an example of solid-

ification in a two-phase, binary system. The phases are water vapor and ice, and

the independent component is the saturation of water. The growth of a snowflake

is very sensitive to temperature and moisture content of the air, resulting in com-

plex displays of symmetry and the old adage that no two snowflakes are alike. Like

snowflakes, the morphology of the kaleidoscopic spherulites also strongly depends on

input parameters, as previously illustrated in the previous section.

...................... .. ...... ... .1 -
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(a) Phase separation at the growth front of a (b) A PCL spherulite in a PCL/PS (40/60) wt% sys-
PCL spherulite in a PCL/PS (70/30) wt% sys- tem at 46C after 27h. Tar corresponds to 50 um. [22]
tem at 50C. The bar corresponds to 100 pm.
[19]

Figure 4-9: A solidifying interface can trigger spinodal decomposition in polymer
systems.

4.4.2 Growth front nucleation in polymers

Tanaka and Nishi published two influential papers demonstrating that crystallization

of a spherulite from a polymer blend could trigger phase separation at the growing

interface [19, 20]. Follow-up studies examined the process in greater detail [22, 23].

All found that in a solidifying mixture of poly(e-caprolactone) (PCL) and polystyrene

(PS), the PS is rejected from the crystallizing spherulite and piles up at the growth

front, triggering phase separation and the formation of PS droplets on the growing

spherulite. The formation of these structures is a result of a kinetically controlled

competition between the crystallization process and the phase separation process.

Pictures of two crystallizing spherulites are shown in figure 4-9. (a) shows formation

of beads of amorphous polymer at the interface, and (b) shows an intermixing of

crystallized and amorphous polymer that resembles radial lamellar growth found in

kaleidoscopic spherulites.
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(a) Polarized optical micrograph of a (b) Polarized optical micrograph of a double-
double-ringed spherulite in PNT crystal- ringed spherulite in PNT crystallized at 80C.
lized at 70C. Scale bar is 20 pm. Scale bar is 20 pm.

Figure 4-10: Growth of single and double ringed polymer spherulites is common in
thin films. [24]

4.4.3 Ring structures

Ring-banded spherulites have been frequently observed in a variety of thin film poly-

mer systems [25, 26, 24], and recently as compositional banding in thin film silicon-

gold systems [27]. Examples of ringed spherulites are shown in figure 4-10. These

ringed spherulites show remarkable resemblance to the kaleidoscopic spherulite in

figure 4-4a, although the mechanisms of ring formation are not identical. The kalei-

doscopic rings form from a cascade of nucleation events in a multiphase system, but

rings in polymer spherulites are thought to be related to the structure of crystallizing

polymers, forming due to the twisting of polymer lamellae. Diffusion-limited growth

kinetics is thought to play an important role however, and the formation of ring

spherulites in binary polymer blends has been simulated with phase-field methods

[28].
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Rhythmic growth of multiphase ring spherulite

0 10 20 30 40 50
time

Figure 4-11: Measurement of
shows nonlinear growth. Each

the radius of the growing multiphase ring spherulite
blip corresponds to the nucleation of a ring.

4.4.4 Rhythmic ring growth

Experimental and theoretical studies have shown that, in contrast to theory, ring-

banded spherulites do not grow at a constant rate [29, 30, 31, 32]. Instead, there

is a period of fast growth as a new ring forms followed by a period of slow growth.

Although some explanations are tailored to specific polymer systems, the leading

explanation for rhythmic growth is that rejection of solute (amorphous polymer) from

the crystallizing spherulite slows growth. It takes time for rejected solute to diffuse

away from the interface, and growth is disrupted. Such an explanation applies to the

kaleidoscopic rings, since each ring forms by rejection of the other two components.

Measurement of the radius a growing kaleidoscopic ring spherulite shows that

growth is rhythmic. The radius of a simulated ringed spherulite is plotted in figure

4-11 with clear evidence of nonlinear growth. Each blip in the plot corresponds

to the nucleation of a ring, and the shape of the nonlinear deviations show good

qualitative agreement with plots in [29, 30, 31, 32]. Figure 4-11 is further evidence that
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a) b) c)
(a) Sections of eutectic colonies in Fe-C-Cr alloys (x600) [33].

(b) Molybdenum cast iron with (c) Diagram of the austenite-chromium
25.13% Mo and 2.96% C, 400x. carbine eutectic [33].
[34]

Figure 4-12: Micrographs of eutectic colonies in ternary iron alloys.

solute rejection is a mechanism that can lead to rhythmic spherulite growth, and also

a validation that the simulated kaleidoscopic spherulites are displaying appropriate

growth dynamics.

4.5 Evidence in metallic systems

A final concern is whether kaleidoscopic spherulites might be a very specific morphol-

ogy that only form in thin-film polymer systems under highly controlled laboratory

conditions. Figure 4-12 shows quasi-2D structures that formed in cast iron alloys

[33, 34]. The image shows a cut through a eutectic colony, which is a cylindrical

structure with a growth direction out of the page. A fiber initially grew to form

the center of the colony, and triggered the growth of a two-phase eutectic lamellar
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structure which grew radially outward from the fiber, roughly maintaining a circular

cross-section. Over short distances along its longitudinal axis, the fiber is essentially

a 2D system. The growth patterns are similar in appearance to the radial growth

simulated in figure 4-4c.

4.6 Visualizing diffuse interfaces

A challenge with diffuse interface modeling is interpreting results. Phase-field simula-

tions contain a lot of important information, but it is difficult to extract because the

output of the simulations are pictures of microstructure. 1D plots of concentration

profiles at interfaces become difficult to comprehend for large microstructure and are

not particularly effective for 2D or 3D microstructures. However, understanding how

the composition profile at interfaces changes as microstructure develops is crucial.

To address this difficulty, a composition map was developed as a useful ternary

visualization method, drawing on a technique originally used by Eyre [35]. Compo-

sitions in a microstructure are plotted on a ternary triangle to visually reveal infor-

mation about all compositions in a microstructure at once. The composition map

gives insight into which compositions are present in the microstructure, and the mo-

tion of the points when viewed as a movie reveals the path the system takes toward

equilibrium.

The composition map is a triangle is drawn to correspond to the phase diagram,

with the red diffusing component (c1) at the top vertex, green (c2) at the lower left,

and blue (c3) at the lower right. For every composition in the microstructure, a

corresponding point is drawn on the composition map, and the color of the point

chosen to match the color of the composition in the microstructure. Compositions

that are in the liquid phase are colored silver in the composition map for clarity'.

The composition map in figure 4-13 provides additional insight into the growth

'The liquid occurs at a composition near the center of the triangle, where an equal mix of red
green and blue produces a dark brown which is difficult to distinguish visually.
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(a) t=10.5

(b) t=20

Figure 4-13: Illustration of a growing multiphase ringed spherulite with a composition
map.

--, .... ...... ... . ... ..................
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of multiphase ring spherulites. As rings nucleate, wispy lines of composition radiate

from the center of the composition map toward the vertices of the triangle one at a

time. Each point on the line corresponds to a composition within a diffuse interface

somewhere in the microstructure. The lines eventually settle into an equilibrium

profile, which can clearly be seen in the figure.

The appearance of loops in the line as rings nucleate is an unexpected finding

that highlights the ability of the composition map to illuminate behavior that would

be difficult to detect from images of microstructure alone. The loops result from a

concentration gradient that is initially present in the outermost ring as it nucleates,

and the corners of the loop correspond to the inner and outer surfaces of the ring. The

disappearance of the concentration gradient at later times corresponds to shrinkage

of the loops. Since the rings form by expelling solute which must then diffuse away

from the spherulite, it is not surprising that the rings initially have a concentration

gradient, although it is not visible in the microstructure images.
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Chapter 5

Solidification and melting of a

ternary eutectic

At first glance, melting and solidification, which both involve a transformation be-

tween liquid and a solid, would appear to be inverses of each other. Experiments

have repeatedly shown though that liquids must often be supercooled before they

solidify, but solids can rarely be superheated without melting. This asymmetry has

been the focus of centuries of scientific investigation, yet some aspects still cannot be

completely explained. The current understanding of the finer aspects of solidification

and melting is discussed in recent review articles [1, 2, 3]. A particularly interesting

question that will be addressed in this chapter is why some solid alloys begin to melt

below their melting point while others do not.

The presence of a nucleation barrier is usually cited as the reason why liquids may

be supercooled, and phase field modeling of the nucleation process necessitates the

development of a way to model the statistical fluctuations that trigger nucleation.

Such a procedure is described in this chapter and nucleation, growth, and coarsening

are studied in a ternary eutectic system and found to agree with basic theory. Beyond

the simple observation that no energy barrier exists for melting, the explanation for

the inability to superheat solids becomes complicated. The second half of this chapter
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illustrates different aspects of the asymmetry between solidification and melting. An

interesting finding is that the shape of free energy curves can qualitatively explain

experimentally observed premelting behavior. It will be shown that metastable energy

states have a large influence on microstructure evolution. Asymmetry introduced

because of unequal diffusivity in solids and liquids will also be explored.

5.1 Phase-field model for nucleation

Nucleation occurs in systems where there is an energy barrier that inhibits transition

from one phase to another. Nucleation is triggered when random fluctuations com-

bine to produce a rare, localized critical event that crosses the barrier and leads to

the growth of the lower energy phase. Within the context of the multiphase model,

there are three different contributions to the energy barrier. The first is a composi-

tional barrier which arises from differing equilibrium compositions of phases and the

parabolic shape of their free energy curves. The second is the phase transition barrier

discussed in Section 2.1.7, and the third is an energy penalty due to the creation of

interface.

Figure 5-1 schematically illustrates the two ways noise can be added to trigger

nucleation within the context of the multiphase model proposed in chapter 2. The

illustration shows free energy curves for a binary system with three phases. A ho-

mogeneous system of phase y with composition CB = x can lower its free energy by

phase separating into regions of a with composition xz and # with composition xz.

The path from the initial to final state involves both changes in composition and

changes in phase. Whether compositional fluctuations or fluctuations in phase are

more important in generating critical nuclei is largely unknown.

Phase-field is particularly well-suited for modeling nucleation since the fluctua-

tions that lead to nucleation occur on the length scale of an interface, and on that

scale the diffuseness of interfaces is important. This section will demonstrate that the
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Gox

A Xeq eq

Figure 5-1: Two types of fluctuations can trigger a nucleation event in the multiphase,
multicomponent model. ( illustrates composition fluctuations, and AE is an energy
fluctuation that converts one phase to another at constant composition.

multiphase model proposed in this work provides a natural way to model the nucle-

ation process. Langevin noise will be introduced to model fluctuations in composition

due to thermal noise, and a nucleation procedure will be proposed to introduce phase

nuclei following a statistical energy distribution.

5.1.1 Stochastic Langevin noise

Langevin noise terms are frequently added to phase-field simulations to model the

effect of thermal fluctuations [4, 5, 6, 7] and are used in this work to model fluctu-

ations in composition. Following model C of Halperin, Hohenberg, and Ma [8], the

component diffusion equations with Langevin noise terms (1 and (2 are:

=c, _ Dic1 ((1 - c1) (V -F)- c2 VF (5.1a)di RT 6c, - c2V C 1(.1a
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=C2 - (1 - c2) (V F) - ciV I + ( (5.1b)dt RT 6C2 6c1 (

Langevin noise is added inside the outermost gradient so that composition is con-

served. (1 and (2 are vectors of random numbers that follow a Gaussian distribution.

The vectors have two indices (i, J) for 2D systems and three indices in 3D. The random

numbers have a mean of 0 and a variance determined by the fluctuation-dissipation

theorem [9, 101. When a distribution has zero mean, its inner product is equivalent

to its variance:

(( (j, t)(j (j, t')) - 2IMRT6o 6(? -i)5(t - t') (5.2)

M is the mobility of the component, 6ij is a Kronecker delta reflecting the fact that

the noise in direction i is not correlated with the noise in direction j, and the two

Dirac delta functions reflect that the noise is also not correlated in space or time.

In order to discretize the Langevin terms for simulation on a grid with grid spacing

Ax and timestep At, appropriate scalings for the Dirac delta functions must be

applied [4]:
2MRT

(( (W, t)( (WI t') = AtAX2 6ijrr't' (5.3)

The local magnitudes of the Langevin noise must also be adjusted to account for

non-constant mobility. The diffusivity D and c(1 - c) in the expression for mobility

both potentially vary in space and time. For a Gaussian distribution ( with variance

o.2 = T (note that mobility has been omitted from the variance), the correct local

scaling to account for varying mobility is:

/Dc(1 - c)( (5.4)

where M = Dc(1 - c). Unless otherwise noted, RT = 10-6 was used to set the energy

scale for compositional fluctuations in all simulations in this work, and Gaussian noise

was generated using a Box-Muller transform [11] and the C++ randO function.
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5.1.2 Incorporating classical nucleation theory

Unfortunately for the computational modeling community, a brute force simulation

of nucleation at small undercooling may never be achieved by any modeling method.

A reasonable experimental nucleation rate of 1/cm2/s is way beyond the reach of

both the time and length scales accessible by molecular dynamics, but capturing

nucleation in continuum models requires very high space and time resolution because

nucleation is such a rare event. Simulating nucleation events with Langevin noise

in phase-field models is justifiable and elegant but easily becomes computationally

prohibitive. One solution is to increase the variance of the noise, but this introduces

numerical instabilities and produces fluctuations that are significantly different from

real systems [6].

Attempts to model nucleation with phase-field methods have taken two different

approaches. For highly undercooled systems far from equilibrium, Langevin noise is

appropriate. For small undercooling however, the computational time necessary to

simulate nucleation is prohibitive. Gaussian noise is expensive to generate, and small

timesteps, grid spacings, and large domains are necessary. Thus it has become pop-

ular to introduce nuclei into phase-field simulations to trigger nucleation instead of

using Langevin noise. Large fluctuations are added on the computational time scale

in an attempt to capture the nucleation events that occur on much smaller length and

time scales. Granasy et al. did this by randomly adding critical fluctuations that were

calculated to match local composition [5, 6], and Langevin noise was added to deter-

mine whether or not the critical fluctuations nucleated. Unfortunately, calculation of

a critical fluctuation becomes complicated in a multiphase system.

An alternative approach Simmons simulated nucleation by adding fully formed nu-

clei and adjusted the nucleation rate according to the local supersaturation [12, 13].

The nuclei were added to the conserved composition variable which lead to large

concentration gradients, numerical instabilities, and a challenge maintaining mass

conservation. A nucleation rate that varies with composition is also not easy to im-
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Figure 5-2: Classical nucleation of a in 3 involves creation of a volume of a separated
from 3 by an interface with surface energy -y4.

plement in practice. Another concern with Simmons's method is that the nuclei that

are added are already completely transformed, unlike Granasy's critical fluctuations

that push the system just to the the top of an energy barrier rather than all the way

over it.

A new approach for introducing nuclei is proposed here that uses elements of both

techniques. The nucleation rate naturally becomes a function of local supersaturation

as nuclei are added following a statistical energy distribution. Nuclei are added to

the system at random locations, and the system decides which nuclei grow and which

do not, much like a Monte-carlo simulation. The nucleation attempt rate is assumed

to be constant everywhere, and the radius of the nuclei is adjusted so that the energy

of the fluctuations obey a Gaussian distribution. Unlike the other nucleation models,

there is no need for difficult calculations of the critical radius, and because phases are

not conserved, adding nuclei by altering the phase variables poses no conservation

challenges.

Figure 5-2 depicts a classical description of the formation of a nucleus of phase a

'3
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in a bulk region of phase #. The nucleus of a has a lower free energy density than

the 3 it replaces, and this free energy decrease drives the growth of the nucleus. The

formation of the nucleus also introduces a surface energy 7"3, which contributes to

a nucleation barrier. A nucleus is expected to grow when its radius is large enough

that the free energy savings more than offsets the free energy increase due to the

appearance of surface energy.

Classical nucleation theory assumes that the interface is sharp and that the inter-

facial energy of a nucleus is the same as that of a flat interface. Since the nuclei that

are added computationally have sharp interfaces that are the width of a gridpoint,

the classical model is appropriate for approximating the energy of a computational

nucleus. In 2D, the classical energy of forming a nucleus of radius r is:

AE = 7rr 2AF + 27rry (5.5)

with Af being the difference in free energy density between phase a and 3:

AF = fa - f3  (5.6)

In classical nucleation theory, AF is negative and represents the energy savings driv-

ing the growth of the nucleus, which is assumed to already be at or close to its equi-

librium concentration. This assumption is not necessary in the multiphase model.

It is important to keep in mind though that when nuclei are added computationally

with composition held constant, AF will often be positive, as illustrated in figure 5-1.

Equation 5.5 can now be solved for the particle radius r corresponding to an

energy fluctuation AE. There are two solutions, but only one gives a positive radius:

- + V72 + AFAE/r (5.7)
AF

In order to evaluate Eq. 5.7 it is necessary to approximate y, the interfacial energy
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0.25 --

0 1

S I a

r+h r 0 r r+h
Distance

Figure 5-3: Profile of a nucleus of a added to a matrix of # on a discrete grid. The

nucleus has a radius of r and an interfacial width of h, the grid spacing.

introduced by the phase nucleus. An approximation for 7 is acceptable because it is

the system that ultimately determines which nuclei grow. The goal of the nucleation

procedure is to introduce random nuclei that follow a Gaussian energy distribution,

not to calculate the size or shape of the critical nucleus exactly.

To further simplify the calculation of the nucleus radius, the composition at the

randomly chosen attempt sites is assumed to be constant over the small volume of

the nucleus. This implies that composition gradients will not be included in the

estimation of 7 . To calculate interfacial energy within the context of the multiphase

model it is necessary to evaluate Eq. 2.35 numerically. With the assumption of only

phase gradient energy, the equation takes a simple form:

= Aaa(VOQ)2 + Ap0(V#O)2dV (5.8)

This form is correct for a diagonal phase gradient energy matrix A.

The assumption that nuclei have computationally sharp interfaces that are the
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width of one gridpoint simplifies the calculation of -y. As illustrated in figure 5-3, the

phase fractions change by a value of .5 over the width of a gridpoint at the interface.

The magnitude of V# is then .5/h, and therefore (V#) 2 = .25/h 2 . Because the phase

gradients are assumed to be zero except at the interface, the expression for surface

energy can be solved in ID by integrating across the interface from r to r + h:

J = Aa(Va)2 +1 A p(VOp)2dr
2 +

r+h Aaa + A00 dr (5.9)
jr 8h 2

Acic + A00
8h

5.1.3 Nucleation algorithm

The nucleation procedure is as follows: Define a nucleation attempt rate for each

phase and a variance for AE. For each phase a, match the nucleation attempt rate

by randomly selecting locations. At each location, introduce a nucleus of a. To do

this, choose a random number for AE from a Gaussian distribution. Use Eq. 5.6

to compute the energy change per unit volume for the phase transition', and obtain

a radius by solving Eq. 5.7. Introduce a circular nucleus to the system by setting

0a = .5 within a radius of r from the randomly chosen location. Multiply the rest of

the phase fractions by .5 within the circular radius as well to account for the phase

change. Continue running the simulation and let the system decide which nuclei grow.

5.2 Simulation of nucleation, growth, and coars-

ening

The nucleation procedure developed in the previous section was used to simulate

nucleation and growth, and snapshots of the evolving microstructure can be found

'for a multiphase system, evaluate an expression like 2.12 for fo
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(a) t=15 (b) t=30

(c) t=45 (d) t=100

Figure 5-4: Simulation of nucleation, growth, and coarsening of a three-phase solid
from a homogeneous metastable liquid. Diffusivity is equal in all phases.

.............. ....
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in figure 5-4. The solidification is qualitatively similar to phase-field simulations of

binary eutectic solidification performed by Drolet et al. [14]. A computational grid

of 5122 points, a grid spacing of h = .25, and k = .5 were used in the simulation. The

temperature of the liquid was T=-1.45, which corresponds to the free energy curves

and phase diagram in figure 4-2. The initial condition was homogeneous metastable

liquid of composition c=(.35,.31,.34). A slightly off-center mean composition was

chosen so that each phase would have a different nucleation barrier. Since the system

is slightly red-rich, red has the lowest nucleation barrier. Red is observed to nucleate

first at random locations as predicted by the rule of Stranski and Totomanow (difficult

to verify experimentally), which states that the phase that nucleates in the one with

the lowest barrier [15]. The growing nuclei then undergo secondary nucleation at the

growth front and blue and green solid phases are observed to form. The growing

structures maintain a roughly circular shape as in chapter 4, although symmetry is

broken by the presence of Langevin noise and phase nucleation attempts. As the

spherulites continue to grow, they begin to impinge on each other and eventually

consume all of the liquid.

5.2.1 Analysis of nucleation and growth

Although there is no theory to describe nucleation and growth in ternary multiphase

systems, the example presented here can be analyzed in terms of theories that govern

simpler systems. The Johnson-Mehl-Avrami-Kolmogorov kinetics (JMAK) equation

predicts the amount of transformed volume as a function of time for diffusion limited

transformations with concurrent nucleation and growth, and a constant nucleation

rate and constant growth rate [16]. Under these assumptions, the JMAK equation

for a 2D system is:

X = 1 - e-'r/3JR2t 3 (5.10)
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Figure 5-5: A plot of the fraction of liquid transformed in the solidification simulation,
and a fit to the 2D JMAK equation. The slope of the fit line is 3.31.

Where X is the fraction of the system which has undergone the phase transition, J

is the nucleation rate and R is the growth rate.

Since the multiphase solidification studied in chapter 4 was diffusion limited, there

is hope that the JMAK equation might apply. Additionally, the growth rate of the

three-phase spherulites was shown to be more or less constant in section 4.4.3, and

the nucleation attempt rate is constant, although not necessarily the nucleation rate.

Figure 5-5 shows a plot of the fraction of solid as a function of time, as well as a log

plot used to determine the exponent of t in the JMAK equation. For a 2D system,

the slope of the plot should be 3, and a slope of 3.31 was measured. The relationship

is linear as expected, but the slightly larger than expected time exponent reveals that

the transformation took place more quickly than predicted by theory.

The discrepancy is fairly minor however, confirming that the multiphase model

and nucleation routine are behaving properly. The deviation from theory might be a

result of the assumption of constant nucleation rate. The simulation only implements

a constant nucleation attempt rate, while the actual nucleation rate is determined by

the evolving system. Nucleation at the growth front is a complicating factor that is

not accounted for in the JMAK analysis.
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(a) With no intergranular film, the slope of the (b) With an intergranular film, the slope of the
coarsening regime is .208. coarsening regime is .263.

Figure 5-6: Coarsening of a ternary microstructure with and without the appearance
of an intergranular film at t=100. The intergranular film, which forms as the result
of an instantaneous temperature change, increases the coarsening rate by 25%.

5.2.2 Analysis of coarsening

After the system has completely solidified, the solid begins to coarsen. In a 2D system

with impinging particles and diffusion driven coarsening, the average particle area of

particles is predicted to grow linearly. Figure 5-6a plots the average particle size over

time during nucleation, growth, and coarsening regimes. The particles grow quickly

at the beginning of the nucleation and growth stage, but as they impinge on each

other the growth rate begins to slow. Around the nondimensional time of 60, a linear

coarsening regime begins, and the coarsening rate constant is found by measuring the

slope of a fit line. A computer program was written to calculate the number and size

of particles in each of the phase fraction order parameters, and a contour of 4 = 1 was

used to locate the particle boundaries. The coarsening rate, in non-dimensional units,

was found to be .208. Since the surface energies of the solids are all equal, six-sided

domains are predicted to be the most common as the system coarsens, according to

the N-6 rule [16].
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5.3 Coarsening at an elevated temperature

To study melting in a ternary multiphase system, the completely solidified microstruc-

ture from the previous section was brought to a higher temperature still below the

melting point at time 100 and allowed to coarsen. Because the multiphase model

assumes isothermal conditions, the temperature increase happens instantaneously.

Figure 5-7 shows the microstructure just before and just after the temperature in-

crease. Although the magnitude of the temperature increase was not large enough

to produce a stable liquid region in the phase diagram, liquid is observed to form at

triple junctions and phase boundaries. Image filters have been used to exaggerate

the width of the liquid film in figure 5-7b for clarity of display. The unaltered liquid

phase fraction for the same microstructure is presented in figure 5-8 to convey that

liquid first pools at triple junctions while forming thin layers at phase boundaries.

The composition maps in figure 5-7 reveal the effect the metastable liquid curve

has on the solid microstructure when temperature is increased. The composition

variation at the diffuse solid interfaces shows up as straight, diffuse lines that connect

the single phase regions in the composition map in figure 5-7a. When liquid forms at

the phase triple junctions and phase boundaries, the interfacial composition profiles

bow inward toward the center of the composition map, as shown in figure 5-7b.

The average particle size for the microstructure coarsened close to the melting

point is plotted in figure 5-6b. The slope of the plot was measured starting after the

temperature increase at time 100, and was found to be about 25% larger than for

coarsening at low temperature, even though the initial solid microstructure was iden-

tical in both tests. The increased coarsening rate likely has two contributing factors.

The first is that the metastable liquid curve, which is responsible for the premelting

behavior, lowers the energy barrier for diffusion from one solid phase to another by

providing a metastable, lower energy diffusion pathway through composition space.

The second factor is that small particles become unstable at high temperature and

melt as discussed in section 5.3.2, leaving larger particles to contribute to the average
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(a) Just before the temperature increase, t=99.5.

(b) Shortly after the termperature increase, t=110.

Figure 5-7: Premelting is observed at triple junctions and phase boundaries when
a three-phase microstructure is heated to a temperature (T=-.3) slightly below the
melting point. Time is reported in nodimensional units.

... ............. . .................. . .. . . ... .............. .. "
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Figure 5-8: The liquid phase fraction for the microstructure in figure 5-7b. Liquid is
white and solid is black. Premelting is observed in multiphase microstructure below
the melting point. Liquid forms first at phase triple junctions and then at phase
boundaries as temperature is increased.

size.

5.3.1 Premelting and metastable liquid

Solids are often but not always observed to begin melting below the melting temper-

ature, with liquid appearing first at triple junctions and then at grain boundaries.

Several explanations have been offered, including the general observation that grain

boundaries and triple junctions are high energy sites that are less thermally stable

than the bulk. Premelting of free surfaces has been studied extensively and has been

described in terms of atomic thermal vibrations [1]. Melting at grain boundaries and

triple junctions was first observed experimentally by Hsieh and Baluffi in aluminum

[17]. Raj presented an analytic description of premelting at triple junctions and found

that melt pockets at triple and higher order grain junctions can be thermodynam-

ically stable, with a size inversely proportional to the undercooling [18]. Recently,

premelting at grain boundaries has been modeled as a structural transition using a
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(a) (b)

Figure 5-9: The shape of the liquid free energy curve determines whether premelting
occurs at grain boundaries. The free energy at the minimum of the liquid curve is
the same in both landscapes, but intergranular liquid films are only observed for the
curve in (a). Both curves exhibit premelting at phase triple junctions.

diffuse interface model [19, 20, 21].

The argument that premelting occurs at crystal defects because they are high

energy sites cannot be a complete description of premelting however, because in some

experimental systems premelting is not observed. The multiphase model offers a

plausible thermodynamic explanation for why some material systems premelt while

others do not; premelting in the multiphase model results largely from the shape of

the metastable regions of free energy curves. The explanation relies on the assumption

that interfaces are diffuse and that points within an interface must therefore choose

between various high energy states.

Just below the melting point, the liquid phase is not thermodynamically stable,

although its energy minimum is not high above the common tangent plane. The

liquid free energy curve is still lower than the solid free energy curves over a significant

composition range, as illustrated in figure 5-9a. Liquid is metastable in these regions,

because its energy is not as low as a phase separated three-phase solid mixture. An

explanation for premelting is that the system makes use of these metastable liquid

states, first at triple junctions where the energy difference between the solid curves
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and the metastable liquid is largest, and then at grain boundaries where the difference

is smaller but still favors the liquid over composition ranges far from the single phase

solid regions.

Thickening of liquid films at grain boundaries as temperature approaches the melt-

ing point has also been observed experimentally. Thickening of the liquid films can

be interpreted as an increase in the number metastable liquid states available with

increasing temperature, illustrated in figure 5-9. As the liquid curve continues to de-

scend, it becomes lower than the solid curves over a larger range of compositions, and

the liquid film thickens. This diffuse interface interpretation of the width of the liquid

layer may address why previous theoretical studies of grain boundary melting found

it necessary to "incorrectly" assume that chemical potential in the liquid depends

on the width of the liquid [22]. The diffuse-interface model developed in this work

accounts for the effect of nonequilibrium material at the interface which penalizes

interfaces differently based on their thickness.

5.3.2 Instability of small particles

Coarsening theory predicts that the radius of shrinking grains will smoothly decrease

to zero. However, in phase field simulations of coarsening close to the melting point,

shrinking grains were observed to melt when they became small rather than shrink

to zero radius as a solid. The larger white pockets that are apparent in figure 5-8

are locations in the coarsening microstructure where small grains melted instead of

continuing to coarsen as a solid.

The melting of small grains in figure 5-8 is a demonstration of the intrinsic insta-

bility of nanocrystalline materials that was predicted by Wagner [23] and reviewed in

detail for experimental systems by Mei [2]. Wagner built on the premelting analysis

of Raj [18] to show that there is a critical temperature above which a nanocrystal of

radius r will become unstable. Figure 5-8 demonstrates the inverse of Wagner's rela-

tionship; for a fixed temperature, there is a critical radius below which nanocrystals
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become unstable and melt.

5.4 Asymmetry introduced by unequal diffusivity

Experimental measurements usually find that diffusion in a liquid is three to four

orders of magnitude faster than in a solid, and is another source of asymmetry be-

tween melting and freezing. During melting the phase that forms has high diffusivity,

but during solidification the phase that forms has low diffusivity. Thermodynamic

and kinetic arguments have shown that the driving force for trans-interface diffusion

(exchange of solute across the solid-liquid interface) disappears when the diffusivity

of the parent phase approaches zero [3, 24]. Thus trans-interface diffusion is expected

to occur during solidification, but not melting. For solidification, some of the driving

force must be spent on trans-interface diffusion, while for melting, all of the driving

force goes into interface migration.

One of the effects of differing diffusivities in the solid and liquid phases is that it is

possible for concentration gradients to develop in solids at high at high solidification

rates. Solid microstructures with concentration gradients are observed experimentally

and form by a process called coring. When an alloy is cooled under nonequilibrium

conditions and diffusion in the solid is limited, the composition of the solid formed

initially at the core of the solidifying structure is not the same as the composition

at the outer edge of the structure [25]. Concentration gradients do not form during

melting, however, because of the high diffusivity in the liquid.

To investigate the effect of diffusion, a phase-field simulation of nucleation and

growth was performed with slow diffusivity in the solid. The simulation parameters

were the same as those used in the nucleation and growth simulation in section 5.2,

except the diffusivity of each component was made to be a linear function of the

liquid phase fraction #4. The. diffusivity of the liquid regions was kept at 1, but the

diffusivity in the solid regions was decreased by three orders of magnitude to 1/1000.

135



136 CHAPTER 5. TERNARY EUTECTIC SOLIDIFICATION AND MELTING

(a) t=25 (b) t=50

(c) t=75 (d) t=100

Figure 5-10: Simulation of nucleation, growth, and coarsening of a three-phase solid
from a homogeneous metastable liquid. Diffusivity is three orders of magnitude slower
in the solid than in the liquid. Time is reported in nodimensional units.
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Decreasing the solid diffusivity while holding the relaxation parameters constant in

the phase evolution equations simulates solidification with a rapidly moving interface.

Figure 5-10 contains snapshots from a simulation of nucleation and growth with

a diffusivity in the solid of 1/1000. The microstructure that forms is visibly different

than formed under conditions of equal diffusivity (figure 5-4). The microstructure

consists of smaller, rougher particles that are less equiaxed and do not coarsen on

the time scale of the simulation. The particles are also a noticeably different shade

of color, with a somewhat washed-out appearance. The composition map in figure

5-11a provide an explanation. With slow solid diffusivity, solidification occurred at

compositions outside the stable single phase regions. Once the system has frozen in a

supersaturated state though, it is essentially stuck because reaching equilibrium now

requires significant solid diffusion.

Figures 5-11 (b)-(d) show what happens to the microstructure shortly after the

temperature is increased to T = -. 3, a value just below the melting temperature

(the same temperature as in figure 5-7). Once again the composition maps help to

clarify what is happening, especially when compared to the equal diffusivity case

(figure 5-7). The solidified microstructure is initially out of equilibrium but unable to

evolve, being frozen in place. The temperature increase initially causes the highest

energy compositions to melt because the solid phases are supersaturated with solute.

Interestingly, the regions that melt appear to be the areas that solidified last. Large

pools of liquid form, but eventually the grains surrounding these liquid regions begin

to grow back into the liquid. By figure 5-11d, some of the liquid regions have begun

to re-solidify. The evolution is evident in the composition map, which evolves from an

initial diffuse spray of compositions toward thinner lines of composition connecting

the single phase regions. The composition map relaxes to a profile similar to figure

5-7 indicating that the system is evolving toward equilibrium.
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(a) t=99.5

(b) t=105

(c) t=150

(d) t=200

Figure 5-11: Solutal melting and re-solidification of a rapidly solidified multiphase
microstructure held at a temperature below the melting point. The diffusivity in
solid is 1/1000 the diffusivity in the liquid. Time is reported in nodimensional units.
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Chapter 6

Transient liquids and reactive

phases

Transient liquid phase bonding (TLPB) is a commonly used process for producing

strong bonds between materials that are difficult to join, perhaps because they cannot

be welded or suffer from thermal cracking when welded. TLPB is commonly used to

bond metals, ceramics, composites, and semiconductors, and has been employed in

the aerospace industry for several decades. It is also useful for joining small devices

and has found application in MEMS and microelectronics. TLPB produces interface-

free bonds that are identical chemically and structurally to the parent materials.

The bonds are therefore more stable at high temperature than materials joined by

brazing, yet TLPB bonding requires lower temperatures than welding. The liquid

that forms during TLPB wets the solid, eliminating the need for the high clamping

force required in diffusion bonding. Review papers by MacDonald and Eagar [1] and

[2] provide detailed descriptions of specific materials systems where TLPB is used.

There have been many attempts to model the transient liquid bonding process,

but they have all made restrictive assumptions and as a result have only met with

mixed success. The models simplify the TLPB process, breaking it into discrete

stages and modeling each stage with linear diffusion equations, when in reality TLPB
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is a complicated, continuous, nonlinear process. Surprisingly, there has been only one

very recent attempt to model TLPB with phase-field, and only the solidification stage

was modeled [3]. Modeling the entire process is important because the the stages can

occur simultaneously, and the initial conditions for each stage are controlled by the

stage that precedes it.

This chapter will demonstrate that phase-field is ideal for modeling TLPB and

addresses all of the deficiencies with previous modeling attempts. It will be shown

that the multiphase model developed in this work captures all of the experimentally

observed behavior in the bonding process including stages II and IV which have not

previously been modeled. This work is also the first report of a multidimensional

TLPB model, and the first TLPB model capable of simulating arbitrary geometries.

The composition profile in the transient liquid is also reported here for the first time.

6.1 Simulation of transient liquid bonding

TLPB makes clever use of the fact that the melting point in a eutectic system is a

function of composition, and the transience of the liquid phase arises from composition

changes that occur because of diffusion. A thin interlayer of material is sandwiched

between substrates of the material to be joined, and the interlayer and substrate form

a eutectic system with the interlayer acting as a melting point depressant. Localized

liquid forms as interdiffusion progresses at the interlayer-substrate interface, and the

liquid eventually wets the substrate. Capillary forces then bond the two pieces of

substrate. As diffusion progresses further, the composition of the liquid hits the

liquidus line in the eutectic phase diagram, and the liquid solidifies, producing an

interface-free bond.

TLPB will now be modeled here with a simulation employing the multiphase

model derived in chapter 2 and the free energy landscape from section 4.1. A fifth

phase, a compound of 50% ci and 50% c2 , is added to the energy landscape. The
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Cl

C2  C3

Figure 6-1: The phase diagram used for simulating transient liquid bonding. A fifth
phase of composition c = (.5, .5, 0) has been added to the system. The dots indicate
the compositions of the initial phases in the simulation.

phase diagram with this compound added is shown in figure 6-1. The free energy

density of the new phase is:

f(ci, c2) = f(c1 + 1/3- .5, c2 + 1/3- .5) + AGmix (6.1)

AGmix and f(ci, c2) are defined in section 4.1. This blue-green phase is an attempt

to simulate a stoichiometric line compound with little solid solubility that forms from

a reaction of blue and green. The blue-green phase has a small amount of solubility

in practice because a true line compound cannot be modeled with a diffuse interface

method.

The fifth phase was introduced to create a binary eutectic-like reaction involving

this new blue-green phase, the red phase, and the silver liquid phase. A more compli-

cated reaction that is unique to a ternary system will be presented in section 6.4. A

transient liquid bond can be made by sandwiching a thin interlayer of the blue-green

. . . . .........
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phase between substrates of the red phase and allowing the system to react. The

black dots in figure 6-1 indicate the initial compositions of the base material and the

interlayer in the simulation, and the diffusion path connecting the two phases passes

through a region of stable liquid phase. Thus a transient liquid is expected to form.

6.1.1 The four stages of TLPB

The results of the transient liquid bonding simulation are displayed in figure 6-2 and

will be used to illustrate the four stages of transient liquid phase bonding. Figure

6-3 shows corresponding plots of solute concentration across the interfaces in figure

6-2. Since the simulation is effectively a binary eutectic reaction contained within a

ternary system, c2 + c3 may be taken as the solute concentration. In this case ci and

c2 maintain the same profile at interfaces since they occur in equal amounts and with

equivalent energetics and kinetics. A computational grid of 1024x256 points, a grid

spacing of h = .25, and k = .25 were used in the simulation. The pictures in figure

6-2 are 512 gridpoints wide and have been cropped to highlight the interlayer region.

The first stage of TLPB is dissolution, which requires only short-range diffusion

and as a result usually occurs on the order of minutes experimentally. Interdiffusion

near the substrate-interlayer interface brings regions of the system into the stable

liquid region of the phase diagram. A liquid film forms at the outer edges of the in-

terlayer and progresses inward toward the center of the interlayer, eventually meeting

at the center of the interlayer, as illustrated in figures 6-2 (b)-(d).

The second stage involves widening of the liquid layer, although in experiment,

the dissolution stage and the widening stage often overlap. The width of the liquid

increases as the liquid is further diluted with ci and c2 and continues moving toward

the liquidus line of the substrate phase. Eventually the liquid region reaches a max-

imum width, which occurred at time=80 in the simulation (figure 6-2d and 6-3c).

Evidence of widening is visible in the interface composition profiles of figure 6-3 with

the help of the vertical dashed lines that mark the location of the initial interfaces.
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(a) t=O

(b) t=2

(c) t=40

(d) t=80

(e) t=600

(f) t=820

Figure 6-2: A phase-field simulation of transient liquid bonding in a ternary system.
Time is reported in nodimensional units.
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Position

(a) t=2

Position

t=80

0.8

0.6

0.4

Position

(b) t=40

Position

(d) t=600

Position

(e) t=820

Figure 6-3: Plot of solute concentration at the interlayer during transient liquid
bonding. The vertical dashed lines mark the initial position of the interlayer. The
plots correspond to the microstructures in figure 6-2.
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There is not a significant amount of widening in the simulation because the liquid

region in the phase diagram is small. The amount of widening could be increased

by raising the dissolution temperature so that the size of stable liquid phase region

increases.

Isothermal solidification of the liquid layer occurs during the third stage. As

solute from the liquid layer continues to diffuse into the solid, the liquid begins to

solidify. The liquid region shrinks, and eventually disappears, as illustrated in figures

6-2e and 6-2f. The isothermal solidification stage is generally very time consuming

because it is limited by long-range diffusion of the solute into the substrate, and can

take anywhere from several minutes to many hours experimentally. The solidification

time is also specific to each system, strongly depending on diffusivities in the solid,

the shape of the phase diagram, and the composition and thickness of the interlayer.

For this reason, the solidification stage has been the focus of most TLPB modeling

efforts.

After the liquid has solidified the bond must be held at the solidification tem-

perature so that the solute can homogenize. Homogenization is necessary to avoid

precipitation of unwanted phases at the interlayer as the bond is cooled. Figure 6-3e

reveals that even after the interlayer has solidified, there is still a high solute concen-

tration in the area where the liquid used to be. The homogenization stage is usually

very slow because it too is dependent on long-range diffusion, and can range from

several hours to several days. And like isothermal solidification, the homogeniza-

tion time is specific to each system with the phase diagram, energetics, and kinetics

playing a big factor.

6.2 Discussion of TLPB models

The transient liquid bonding process lends itself to modeling because it has direct

technical importance yet is time consuming to study and optimize experimentally.
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Since the process is highly dependent on system parameters and can take many hours

to complete in practice, a predictive model for optimizing the parameter selection

process would be extremely helpful. Unfortunately, modeling of TLPB has only

achieved moderate success because, in the words of Gale [2], the models lack of

sophistication. All of the currently proposed models have made large assumptions

that severely limit their applicability. Despite several decades of work, no model

has successfully captured all four stages of the transient liquid bonding process. It

is important to review several aspects of the current models in order to show why

they have been unsuccessful and why phase-field is well suited for modeling TLPB.

Many of the TLPB individual modeling attempts have been critiqued in review papers

[1, 4, 5, 2].

A serious problem with current models is that they simplify the bonding process

by dividing it into discrete stages that are each modeled separately, even though

the stages are observed to occur simultaneously. Breaking the process into stages

makes it easier to model the process with linear diffusion equations that can be

solved analytically, although the use of diffusion equations to model phase-separating

systems is a significant simplification that was discussed in section 1.2.2. The diffusion

equation with concentration as a driving force applies only to ideal systems and cannot

describe systems that phase separate. Limited thermodynamic data is included in the

models, and planar interfaces, isothermal conditions, and completely sharp interfaces

with a jump in composition are usually assumed.

Transient liquid phase bonding models have largely focused on modeling the

isothermal solidification stage because it is a limiting step in the bonding process as

well as a stage that is relatively easy to model. Modeling the isothermal solidification

stage with diffusion equations quickly becomes challenging because of the presence of

the moving solid-liquid boundary, which cannot be accounted for with diffusion equa-

tions alone. Models have therefore had to make simplifying assumptions about the

interface. Some have modeled just the base material as a semi-infinite phase with the
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solute concentration of the liquid as one of the boundary conditions [6]. While simple,

this method does not predict accurate solidification times [5]. Other approaches have

treated the moving interface as a jump in concentration occurring at a single moving

gridpoint. This too is a simplification as there is no physical justification for modeling

an interface as a composition shock. Illingworth et al. studied numerical solutions of

diffusion equations with sharp interfaces and found that tracking the sharp interface

presents a numerical challenge [7, 8]. Specifically, the ability to estimate error and

adjust the timestep is an important idea that has not been addressed. The adaptive

numerical methods studied in chapter 3 may be a solution to this problem.

There have been a few attempts to derive models for isothermal solidification in

ternary systems [9, 10]. Campbell and Boettinger reported using the commercially

available DICTRA code which incorporates composition dependent diffusivities and

multicomponent thermodynamics to simulate transient liquid bonding, although sim-

ulations were only performed in 1D and diffusion was only modeled in the base mate-

rial [11]. Attempting to model complex nonlinear behavior with linear equations again

proved difficult, in part because ternary systems are significantly more complicated

than binary systems. The assumption of constant equilibrium composition in the

solid and liquid at the interface no longer holds in a ternary system. The equilibrium

concentrations change continually and must be found from mass balance equations

governed by tie lines on the phase diagram1 . Planar interfaces and complete mixing

in the liquid layer must also be assumed. In contrast, the phase-field model developed

in this work is governed by the free energy curves themselves and mass balance is

implicitly included in the model, as are the ability to simulate complex morphologies

and concentration gradients.

'This process is similar to the expensive quasiequilibrium calculation in the Eiken multiphase,
multicomponent model [12] discussed in section 1.2.2

151



CHAPTER 6. TRANSIENT LIQUIDS AND REACTIVE PHASES

6.3 Cellular solidification

The formation of cellular structures due to gradients in temperature and composition

is a well known phenomenon in materials science [13], and the transition between

planar and cellular structures has previously been modeled with phase-field methods

[14]. Experimental studies of TLPB have often observed that solidifying interfaces do

not remain planar during isothermal solidification [1, 2]. Cellular morphologies are

common and are believed to form as a result of constitutional supercooling [15]. Con-

stitutional supercooling occurs when solute builds up in front of a quickly solidifying

interface, causing the liquid to become supercooled without a change in temperature.

The moving planar interfaces then break up into cells via a Mullins-Sekerka instability

[16, 17].

An interesting recent discovery is that a cellular solidification morphology im-

proves the mechanical performance of transient liquid bonds compared to bonds with

a flat bond interface while decreasing bonding time [18, 19]. Planar solidification was

disrupted by performing transient liquid bonding with a temperature gradient across

the interface, which induces a composition gradient in the liquid. It is thought that

a planar bond line tends to concentrate oxides and other impurities and does not

provide as much bonding surface area as a wavy bond line. Being able to control the

morphology very carefully is important because the formation of dendrites was found

to weaken the bond. The temperature gradient bonding method was very recently

modeled with a 2D phase-field method that included grain structure [3].

A newer discovery is that heat treatments can be used instead of a tempera-

ture gradient to trigger cellular growth during transient liquid bonding. Wang et

al. report using this approach to create bonds with the mechanical strength of the

parent material in minutes instead of hours [20, 21]. The interlayer is first heated to

high temperature and held for a few seconds to trigger the dissolution, and then the

bond is held at a lower temperature during isothermal solidification, which finishes

in just a few minutes. The lower holding temperature is in a region of constitutional
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supercooling that produces cellular solidification. Compared to the temperature gra-

dient method, this multiple heat treatment technique appears experimentally easier

to control and potentially faster.

A simulation of a cellular structure during the isothermal solidification stage of a

transient liquid bond is shown in figure 6-4, with the liquid phase colored silver. In

order to trigger cellular growth, several phase-field parameters were adjusted from the

simulation presented in section 6.1. First, the composition of the liquid was moved

closer to the red-rich phase: c=(.7,.15,.15). This would be achieved experimentally by

performing the TLPB dissolution stage at a higher temperature than in the original

simulation so that the liquid phase region would be larger than in the phase diagram

of figure 6-1. Second, the liquid was made unstable by quenching the system to a

temperature of T = -. 2. Third, the diffusivity of the components in the solid was

set to 1/1000 the diffusivity in the liquid to more closely agree with experimental

observations. Finally, the phase barrier height was increased to W = .5 and the

velocity of the solidifying interface was increased by changing the relaxation parameter

from r = 1 to r = .1.

Being able to accurately predict the morphology of the solidifying liquid interlayer

is an important technical problem that can be addressed with the multiphase model

developed in this work. Since the model captures all of the TLPB stages, it could

be used to optimize annealing times and temperatures in bonding processes involving

multiple heat treatments.

6.4 Simulation of reactive boding

The TLPB simulations that have been presented essentially simulated transient liquid

bonding in a binary eutectic, even though technically the system had three compo-

nents and five phases. The ability of the multiphase model to capture complicated

reaction pathways is highlighted here with a transient liquid bonding simulation that
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(a) t=7 (b) t=10

(c) t=12 (d) t=25

Figure 6-4: Simulation of cellular growth during the isothermal solidification stage of
a transient liquid bond.
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C1

C2 C3

Figure 6-5: The phase diagram used for the reactive liquid bonding simulation.

is inherently ternary. The reaction also produces two different transient phases.

Imagine that formation of the blue-green phase from the blue phase and green

phase involves an expensive processing step, possibly at high temperature. Rather

than starting with the blue-green phase as the interlayer material, it could be cheaper

to apply a thin layer of the green phase to one of the substrates and a thin layer of

the blue phase to the other. The initial interlayer is now half blue and half green,

and the starting compositions are identified in figure 6-5.

Dissolution of the new geometry is shown in figure 6-6. Blue and green first

react to form the blue-green phase, which then reacts with the red phase to form a

transient liquid. Two transient phases have formed during the reaction. Although the

formation of the liquid takes longer than starting with the blue-green phase, the time

from the beginning of the reaction until no more liquid remains is the same. What

is particularly interesting about this reaction is that neither the green nor the blue

interlayer would react with the red to produce a liquid, yet a liquid forms anyway.
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(a) t=O

(b) t=30

(c) t=100

(d) t=120

(e) t=150

Figure 6-6: An example of TLPB in a ternary system. A liquid interlayer forms after
a solid state reaction that produced the blue-green phase. Once the liquid layer has
formed, iosothermal solidification proceeds as in figure 6-2.
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6.5 Future work

A discussion on future work related to modeling transient liquid phase bonding can

be found in section 7.1.2.
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Chapter 7

Conclusion

This thesis has shown that successful computational modeling involves a balance

between theoretical model development, numerical methods, and reference to experi-

ment. The original goal of this work was to improve materials processing by simulating

transient liquid phases in multiphase microstructure, and achieving this goal required

deriving a new multiphase, multicomponent model and appropriate numerical meth-

ods. The model leads to a new interpretation of premelting and liquid film formation

at phase boundaries, and produced the first complete simulation of transient liquid

bonding. As a whole, the work emphasizes the importance of metastable phases in

modeling microstructure evolution. Previously proposed models that use phase di-

agrams and diffusion equations rather than the free energy curves, it is argued, are

too simplistic to correctly model multiphase systems. The important contributions

of this work are now summarized.

Model development

Perhaps the most important contribution of this thesis is the derivation in chapter

2 of diffuse interface model for simulating microstructure with an arbitrary number

of phases and components. The model was derived from basic thermodynamic and

kinetic principles with all steps and assumptions described in detail. This allowed
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for the correction of subtle misconceptions which appear in other multiphase and

multicomponent models. A composition gradient energy is included in the model,

and driving forces and evolution equations that properly account for conservation

conditions are derived. The physical interpretation of the model parameters was also

discussed. Compared to other proposed multiphase models which were summarized in

chapter 1, the model developed in this work is simpler in form and less computation-

ally expensive, yet capable of simulating a wider range of phenomena. The model is

particularly well-suited for studying nucleation and growth, spinodal decomposition,

and the effect of metastable phases on microstructure, all of which were studied in

later chapters.

A time-adaptive numerical method

A correctly derived model is an important, but any computer simulation is governed

by the accuracy and robustness of the numerical methods employed. In this regard,

the multiphase equations, which are nonlinear and stiff, present a numerical challenge.

Explicit finite difference and semi-implicit spectral methods are commonly used to

solve phase-field equations and were analyzed in chapter 3. The methods were applied

to a single-component nonlinear phase-field diffusion equation that describes spinodal

decomposition. Explicit finite difference was found to be very unstable and suffer

from discretization difficulties while the semi-implicit spectral method was found to

be orders of magnitude more stable but potentially very inaccurate. The sources of

inaccuracy have been overlooked in studies that favor the stability improvements.

This thesis investigated the source of the error and found that the rich temporal

dynamics that occur during spinodal decomposition as well as using a large timestep

with a first-order accurate time integrator were responsible for much of the error.

The accuracy of the spectral method was improved with a second-order semi-implicit

Runge-Kutta time integrator and an adaptive timestepping procedure. For a constant

amount of total accumulated error, this adaptive Runge-Kutta method was found to
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be orders of magnitude faster than explicit finite difference and first-order spectral.

Data analysis techniques

A composition map was introduced in section 4.6 as an insightful way to visualize

composition in complex microstructures, particularly at interfaces. The composition

map was used throughout the thesis to supplement images of microstructure. In sev-

eral instances, the composition map illuminates microstructural evolution dynamics

that is not detectable in pictures of the microstructure. Computer code that performs

quantitative image analysis of microstructures was also written. This code counts the

number and size of particles in images and is useful for studying coarsening behavior.

Discovery of diffusion limited growth instability

An interesting diffusion limited growth instability in multiphase systems confined to a

thin film was discovered with the new multiphase model and is discussed in chapter 4.

The instability does not appear to have been previously reported, although its exis-

tence has been suggested by several authors. The instability leads to spherulites with

complex patterns that appear to share similarities with snowflakes as well as struc-

tures in solidifying metallic alloys and polymer mixtures. The instability highlights

how ternary multiphase systems, which have received little study, are significantly

different from binary systems.

Simulation of metastable phases and transient liquids

Chapters 5 and 6 present a variety of simulations that demonstrate how the multi-

phase model correctly captures intricate asymmetries in the processes of solidification

and melting. A nucleation barrier for solidification was observed and prompted de-

velopment of a Monte-Carlo-like procedure to trigger nucleation. However when solid

was heated from below the melting point, premelting was observed first at phase triple
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junctions and then at phase boundaries. The formation of liquid below the melting

point was attributed to the shape and position of the metastable liquid curve, which

was found to have large effect on microstructure by creating low-energy paths through

composition space. Slow diffusivity in solids relative to liquids lead to solutal melting

below the melting point and was another example of asymmetry between solidifi-

cation and melting. Finally, the multiphase method was used to produce the first

reported simulation of the entire transient liquid phase bonding process. The model

was also shown to be a promising candidate for optimizing the bonding process and

for simulating non-planar solidification interfaces which were recently discovered to

increase bond strength.

7.1 Future work

This primary focus of this thesis was on model development, analysis of numerical

methods, and a phenomenological description of materials behavior such as nucleation

and growth, premelting, and the appearance of transient liquid phases. These were

necessary steps toward the larger goal of quantitative and predictive modeling of

microstructure. Having developed a suitable multiphase model, the next steps of

this research will involve incorporating thermodynamic and kinetic data to simulate

experimental systems. Attempting a quantitative simulation of transient liquid phase

bonding would be a good first step because it would be help answer difficult materials

processing questions while at the same time providing a valuable validation of the

multiphase model. Modeling other physical systems may necessitate extension of

the model to include nonisothermal conditions, interfacial anisotropy, elasticity, or

crystallography, and further development of sophisticated numerical methods will

likely prove necessary as well. Three specific areas for future work are discussed

below, and a detailed proposal for the application of wavelet transforms to solve the

phase-field equations can be found in appendix A.
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7.1.1 Numerical methods

Although the adaptive Runge-Kutta method studied in chapter 3 offers significant

improvements over explicit finite difference and first-order spectral methods, there

is still room for improvement. It greatly increases accuracy, but the method can be

quite computationally expensive, especially if stochastic noise is added as the sim-

ulation progresses. The method proposed here represents a quick and easy fix for

a commonly used method, and more importantly demonstrates that simple numeri-

cal methods are not sufficient for phase-field modeling. Ultimately, a multiresolution

technique is needed that allows for both spatial and temporal adaptivity. The wavelet

transform appears to be a very promising candidate, and its application to phase-field

modeling is discussed in appendix A. The biggest computational drawback (besides

lack of an adaptive grid) with the adaptive timestepping method proposed here is

that the timestep for the entire system is limited by the smallest timestep required

anywhere in the system. Chapter 6 presents simulations of transient liquid bond-

ing where diffusivity is orders of magnitude faster in the liquid than in the solid.

Timestep adaptivity where the liquid is evolved with small timesteps and the solid

with large timesteps would result in a big computational savings. Thus space and

time adaptivity of wavelets could be advantageous.

Even without the development of multiresolution methods, the adaptive IMEX-

RK2 method could likely still be improved. A more sophisticated PID timestep

controller would likely make better timestep choices [1, 2]. It could be interesting

to investigate variable step size BDF multistep IMEX methods that were recently

developed [3]. SBDF schemes have better error damping properties for very stiff

equations and heavily dominant diffusion problems, and are less computationally

expensive because they make use of data that has already been calculated. However

because the step sizes in the past cannot be changed, they may be limited in their

ability to make rapid changes to the step size.

Very recently, a stiffly accurate third-order IMEX-RK scheme has been developed
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[4]. The third order Runge-Kutta iterator is more computationally expensive than

the second-order iterator, but also more accurate. There is a chance that the third-

order method with an embedded second-order method might outperform the second-

order/first-order method proposed here by allowing larger timesteps to be tolerated.

It is also possible that the additional cost of the third-order method more than offsets

the timestep savings.

7.1.2 Transient liquid bonding

Perhaps the most promising application of the multiphase model is simulating and

optimizing transient liquid liquid bonding, which can be very time consuming and

therefore difficult to optimize times and temperatures experimentally. This thesis

showed the promise of the multiphase model in that it was able to capture subtle

aspects of the bonding process as well as the formation of non-planar geometries. It

should also be able to simulate the other important phenomena that influence the

quality of transient liquid phase bonds. Oxide layers or precipitates of other phases

can form and disrupt the solidification process, or form when a bond is cooled without

sufficient homogenization. The formation of these phases is specific to the thermo-

dynamics of each material system and cannot correctly be captured with the current

models that use diffusion equations and phase diagrams. Another complicating factor

is that the substrate material in a transient liquid bond is usually composed of grains,

and the transient liquid can penetrate the grain boundaries. This and the fact that

the grains grow preferentially into the solidifying liquid can produce a non-planar

interface. All of these phenomena could potentially be simulated with the multiphase

model developed in this work.

7.1.3 Thermodynamic and kinetic data

While the multiphase, multicomponent model represents an improvement in the way

we think about materials processes, it does not improve our current knowledge of
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materials properties. Ultimately, any attempt to accurately model highly nonlinear,

materials specific microstructural processes will be limited by the availability of ther-

modynamic and kinetic data. Unfortunately the systems that are most desirable to

model are often the ones for which little thermodynamic data exists or is very difficult

to obtain experimentally. Prediction of these quantities is part of the motivation for

development of models in the first place. For instance, the phase-field model devel-

oped in this work relies on knowledge of metastable extensions of free energy functions

which are difficult to measure but essential to the method. Furthermore, diffusivity

in ternary or higher systems is know to be a function of composition but remains a

formidable experimental task to measure. Progress determining and cataloging free

energy functions and diffusivities in multicomponent systems is being made [5, 6], but

remains a challenging problem. The solution will likely involve clever combinations

of thermodynamic models for the parameters themselves, calculations from ab-initio

and atomistic simulations, and experiment, when possible.
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Appendix A

Multiresolution phase-field

modeling with the discrete wavelet

transform

The discussion in this appendix is taken from a proposal written by the author in

July 2009 for an NRC postdoctoral fellowship at NIST.

A.1 Introduction

Phase-field modeling has provided insight into many difficult materials science prob-

lems over the last twenty years, contributing to our understanding solidification [1],

solid-state phase transformations, coarsening and grain growth, crystallography, elas-

ticity, dislocation dynamics, and electrochemistry [2, 3]. Despite its success, impor-

tant problems ideally suited for phase-field have often proven too difficult computa-

tionally. Connecting physics on the nanometer scale to experimentally measurable

phenomena on diffusive time scales and microstructural length scales remains a major

challenge for computational science. As a result, phase-field has remained largely a

phenomenological approach; direct comparison of phase-field simulations with exper-
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imental observations has not been possible despite advances in numerical methods,

development of sophisticated software libraries, and increases in computing power of

orders of magnitude.

Removing the computational limitations of phase-field modeling would transform

it into a predictive approach that would an impact on many areas of science. Predic-

tive modeling techniques are needed to help solve real-world engineering problems like

understanding how nanograins in photovoltaic materials affect electro-optical prop-

erties, modeling stress in thin films to better understand Sn whisker formation, and

studying microstructure formation in energy storage materials to improve batteries

and hydrogen fuel cells.

The downside of phase-field is that it is very computationally intensive because

the now wide interfaces must be resolved. The different length scales that naturally

occur in microstructure present a numerical challenge that was highlighted in recent

survey papers as an outstanding problem in phase-field modeling [4, 5]. The problem

is that in experimental systems, the width of an interface might be at most 10nm

while the grains it separates could be on the order of micrometers in diameter, or

larger. Important physics occurs on the scale of the interface, but many properties

of microstructure are determined at the length scale of grains. Since microscopic

behavior often involves tens or hundreds of grains, performing realistic simulations

that capture both length scales has been impossible. An interface must be resolved

with 5-10 grid points for numerical stability, making the size of a regular square grid

needed to model a collection of grains enormous. Unfortunately this numerical dif-

ficulty is often avoided in phase-field modeling with the use of unrealistically thick

interfaces that introduce spurious effects. When interfaces are too wide, the coales-

cence of neighboring particles is exaggerated, as are nonequilibrium effects like solute

trapping and solute drag. As a result, a direct comparison of phase-field simulations

with experimental observations has been challenging, and phase-field modeling has

remained largely a phenomenological method.
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A.2 Background

Many different numerical methods have been used to solve the phase-field equations,

and each method has advantages and disadvantages. Explicit finite difference is com-

monly used because it is the simplest to program, but the 4th order spatial derivative

that often appears in phase-field equations introduces a severe timestep restriction for

explicit timestepping and makes simulation of long times impossible. Fourier spectral

solvers with implicit-explicit operator splitting have proven to be one of the most

efficient methods to date, but use of the discrete Fourier transform (DFT) requires

a regular square grid. Adaptive grid techniques are appealing because interesting

behavior occurs mostly at interfaces which comprise a very small volume fraction of

a microstructure. There is not as much activity in the interior of grains, and much

less resolution is required there. Adaptive grid techniques have been successful, but

the advantages of DFT must be forfeited. Additionally, much computational effort is

wasted tracking interfaces, especially for microstructures comprised of a large num-

ber of grains or precipitates. Explicitly tracking interfaces with adaptive meshing

is somewhat counterproductive, since one of the main advantages of phase-field is

to eliminate the necessity of tracking interfaces. Implicit finite volume solvers have

proven effective with non-uniform grids and allow for the use of large timesteps, but

fully implicit solvers are computationally expensive and generally do not scale well.

The discrete wavelet transform (DWT) is currently used in many fields of engi-

neering to solve PDEs [6] and may be the key to addressing the numerical difficulty

in phase-field. The discrete wavelet transform is similar to the Fourier transform in

that it is a way to represent a complex function by simpler functions that are well

understood. A wavelet w(x) is a square integrable function with zero mean, and a

wavelet basis Wjk is created by scaling and translating the wavelet:

Wjk(X) = 2'/ 2W(2jx - k)
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k is the translation index and j is the scale index. The wavelet series for a function

f(x) is:
00 

00o 00

f (x) = E ak#(x - k) + E I bykw(x) (A.2)
k=-oo k=-oo j=O

ak and b.k are the wavelet coefficients and 4(x - k) is a scaling function that captures

the average value of the function. The wavelets Wjk capture the multiresolution

detail. Having two indices allows the wavelet transform to provide both frequency

and spatial localization. The basis functions in the Fourier transform, on the other

hand, are frequencies that have only a scale component. Wavelets used in numerical

simulation must be compactly supported, meaning that they are non-zero only on a

finite interval and zero outside that interval. Compactly supported wavelets can be

used as trial and test functions to solve PDEs using the Galerkin method.

DWT has three major advantages over DFT and adaptive mesh techniques when

applied to phase-field problems. First, unlike the discrete Fourier transform, the DWT

is localized in space as well as frequency, providing information about which frequen-

cies are present and also where they occur. The wavelet transform is a multiresolution

method because the wavelet basis captures high frequencies with high resolution, and

low frequencies with low resolution. Spatial localization can be used in phase-field to

extract the interfacial regions of a microstructure and focus the computational effort

at the interface, much like an adaptive grid but without the headache of tracking

interfaces. Extraction of the grain boundaries could be achieved by appropriately fil-

tering the DWT coefficients. This is not possible with the Fourier transform because

the DFT is only localized in frequency; a local change in a signal is reflected in all of

the Fourier coefficients. Information about where each frequency occurs is encoded in

the phase of the Fourier transform rather than the amplitude, and this phase infor-

mation cannot easily be interpreted [7]. Second, the DWT is designed to capture high

frequencies, while the DFT is plagued by the Gibbs phenomenon and slow decay of

coefficients for functions that aren't smooth. Wavelet transforms do not exhibit the
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Gibbs phenomena, and when properly designed can be used to capture discontinuities

and sharp features efficiently [8]. Capturing high frequencies accurately and with few

coefficients is an attractive feature when modeling thin interfaces which have large

concentration gradients. Finally, the DWT is cheap to compute, scaling as O(N) [9].

This scaling is ideal and an improvement over DFT which scales as O(NlogN), and

DWT may allow for simulation of systems larger than ever before possible. When

the size of a system becomes large, the difference between forO(N) and O(NlogN)

becomes significant. N for a large simulation could easily be 1010, and log(10' 0) ~ 10,

meaning DWT could be an order of magnitude faster than DFT. Additionally, DWT

may also be easier to parallelize than DFT because of the spatial localization offered

by DWT. The computation of each coefficient in a discrete Fourier transform requires

knowledge of the entire grid, making parallelization difficult.

The wavelet transform has not yet received much attention from the phase-field

community, and an extensive literature search revealed only one attempt to use

wavelet transforms to solve phase-field problems [10]. In this paper, Wang and Pan

focused on numerical methods rather than searching for new physical insights, and

the work was limited in that it focused on solving the Allen-Cahn equation, perhaps

the simplest example of a phase-field model. The work also only took advantage of

the data compression aspect of the DWT and used explicit timestepping on a uniform

grid. Still, the authors demonstrated the promise of wavelet transforms as an effective

replacement for adaptive meshes. Their wavelet solver was 33 times faster than an

explicit finite difference solver for an equivalent simulation. This is a significant find-

ing, because using DFT with explicit timestepping is significantly slower than explicit

finite difference. Not only is DFT is less stable, but for a fixed timestep the computa-

tional overhead of one iteration of DFT is much larger than for one iteration of finite

difference. The real improvements with DFT appear after the use of semi-implicit

operator splitting, which provides stability for timesteps two to thee orders of mag-

nitude larger. Incorporating semi-implicit techniques with the DWT will likely lead
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to similar huge performance gains. Wang and Pan acknowledge that there is room

for improvement with the use of different timesteps for wavelet coefficients at differ-

ent levels. Small, quickly evolving frequencies require small timesteps while large,

slowly evolving frequencies can be evolved with much larger timesteps. Development

of a multiscale timestepping technique within the framework of an implicit-explicit

operator splitting will be necessary to fully realize the advantages of DWT.

The Allen-Cahn equation studied by Wang and Pan applies to non-conserved

fields:

-o- =M -f(0) kV24 (A.3)
at at I

# is the order parameter, M is a mobility, f(4) is a homogeneous free energy, and k

is a gradient energy coefficient. Generally f(4) is constructed so that a system will

want to separate into regions of # = 1 and 4 = 0. This phase separation is opposed

by the gradient energy term which penalizes sharp interfaces, and a stable diffuse

interface represents equilibrium between these two opposing forces.

It will be important to extend DWT techniques to the Cahn-Hilliard equation,

which applies to conserved fields:

(#(8f(#)= V - MV af - kV2g (A.4)

The fourth derivative in this equation causes severe instability for explicit solvers,

and the payoff from using a wavelet transform technique will likely be much greater

than for the Allen-Cahn equation.

A.3 Expected results and their significance

The value of this project is that it has the potential to transform phase-field from a

phenomenological modeling approach into a predictive approach that captures both

experimental time and length scales. Computational methods have had difficulty
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connecting physics on the nanometer scale to experimentally measurable phenomena

on diffusive time scales and microstructural length scales. Making this connection

would be a big leap forward for computational modeling. Furthermore, because phase-

field has been used to study a wide variety of phenomena, improving the fundamentals

of the modeling technique will have an impact on many areas of science. Several areas

where the wavelet transform is expected to make important contributions are now

described.

Phase-field simulations of solidification have always been performed at large un-

dercooling, often more than an order of magnitude larger than in experiments, because

of numerical limitations [4]. It is crucial to extend simulations to the low undercooling

regime because it is known that interfacial kinetics change. High undercooling is a

kinetically limited regime, but low undercooling represents a diffusion limited regime.

The problem, once again, arises from differing length scales that must be resolved

during solidification. Low undercooling produces slow growth rates, and the diffusion

field ahead of a solidifying structure can be several orders of magnitude larger than

the structure itself. Multiresolution DWT methods seem ideally suited to solve this

problem.

Nucleation and growth is another phenomena that suffers from length scale dif-

ficulties that could be alleviated by the DWT. Nucleation has proven to be a truly

difficult problem and remains the least well understood stage of solidification, even

though phase-field is extremely well suited for simulating it [11]. Because nucleation

events occur on the length scale of an interface, simulations require extremely small

spatial and time resolution over the whole domain to catch them. Growth and coars-

ening of the nuclei then occurs on much larger length and time scales, and it has been

impossible computationally to capture the nucleation events followed by a consider-

able growth of the microstructure. Being able to simulate the entire nucleation and

growth process is important because microstructure plays a big role in determining

the macroscopic properties of materials.
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The newly developed phase-field crystal (PFC) method has recently received at-

tention as an approach that merges phase-field and molecular dynamics. PFC pro-

vides a way to simulate microstructure on diffusive time scales, which are not accessi-

ble by molecular dynamics, and atomistic length scales. In PFC an atomic probability

density serves as the phase-field variable for which an energy functional is minimized.

It is somewhat analogous to density functional theory which is used to simulate elec-

trons based on their density distribution. Crystal anisotropy, dislocations, and plastic

deformation are incorporated automatically in PFC, unlike in standard phase-field

models [12, 13]. One of the difficulties with phase-field crystal is that it faces the

same system size limitations as molecular dynamics, and the key to improving PFC

lies in bridging length scales from atomistic to macro-scale [14]. The PFC equations

are sixth order nonlinear partial differential equations that present a numerical chal-

lenge. Adaptive meshing and DFT methods have been successfully employed but have

not resolved the numerical difficulties. Wavelet transforms could provide an advan-

tage over DFT when dealing with the longer wavelengths that control microstructure

evolution. DFT has already proven to be particularly efficient when applied to PFC,

[15] and it may be possible to combine DFT and DWT into a hybrid method where

DFT is used to represent the underlying crystal lattice which is periodic at the atomic

scale, and DWT is used to efficiently handle longer wavelength interactions.

Finally, the DWT approach may also provide advantages to phase-field models of

electrochemistry. A recently developed and relatively simple electrochemical phase-

field model correctly captured the behavior of an electrochemical interface, including

the formation of a charge double-layer [3]. The model has been used to produce

phenomenologically realistic simulations of electrodeposition and electrodissolution,

but unfortunately encountered sever numerical challenges [2]. Solving the evolution

equations proved difficult because the resolution of charge within the interfacial region

required many more mesh points than typical of phase-field models because of the

intricate charge distribution in the interface. Only 1D systems were studied, as the
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need to resolve the charge distribution in close proximity to the interface restricted

the size of the domain and lengths of time that could be modeled. The ability of

wavelet transforms to capture sharp frequencies and focus computational effort at

interfaces could be particularly helpful to deal with this problem.
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