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Abstract

Systems are performing increasingly complicated tasks, made possible by significant
advances in hardware and software technology. This task complexity is reflected in the

system design, with a corresponding increased demand on comprehensive design
efforts. Fundamental to the safety and mission success of these systems is the tradeoffs
between human tasking and system tasking, and the resultant human interface. The
research presented in this thesis was motivated by the development of an early-stage
system design tool. This tool includes models of human decision making in order to
evaluate system design tradeoffs with regard to human performance. An experiment
was conducted to evaluate the effect of trend information displays on human decision
making performance. Decision latency and accuracy were examined as performance
metrics. To elicit information regarding the subjects' decision making process, the Lens
model was used to gather metrics on achievement and decision consistency. The
experimental results showed that both detection latency and diagnosis accuracy
improved when trend information about dynamic system parameters is explicitly
available to operators of spacecraft systems. The presence of this additional
information also improved decision consistency. However, it made no significant
difference for subjects' detection accuracy, diagnosis latency or achievement. Other
predictors of latency and accuracy included the type of failure and the spacecraft
trajectory. This was expected as both of these factors are important contributors to an
operator's mental model of normal system behavior, which is critical to detecting and
identifying failures. From these results, it can be concluded that operators of spacecraft
systems could benefit from the inclusion of trend information, since it improves failure
detection and diagnosis performance which can improve overall mission safety and
success.
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1 Introduction

1.1 Background and Motivation

Advances in hardware and software have created an opportunity to build

systems that are capable of increasingly complicated tasks. This opportunity is

accompanied by a corresponding increase in system complexity, making the design

effort particularly demanding. As part of this effort, engineers are tasked to balance the

demands of four drivers: reliability, safety, cost, and performance [1]. Because these

drivers have aspects that are often mutually exclusive, engineers are forced to trade one

characteristic for another. Evaluating these tradeoffs becomes more difficult, as the

system complexity increases. The complexity increases even further when human

interaction coupled with high levels of automation are added to the design equation [2].

Even though humans have unique ways of processing information, and are influenced

by factors such as stress, fatigue, and hunger, there are still tasks for which humans are

better suited than automation. This, in turn, makes the design of the human-system

interaction critical to both mission safety and success [3]. Exploring these design

challenges was the driving motivation for this thesis, focused on the area of human-

system interaction.

While systems can now be engineered to be highly reliable for many known

conditions, the noisiness of the real world still introduces complications. Real operating

environments introduce unplanned variations in operating conditions, not to mention
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the inherent difficulty of predicting future conditions. Real systems must cope with

unexpected behavior of system components or human operators, and system

malfunctions. All of these inconsistencies mean that there will always be a set of

conditions under which the system will fail or automation will reach an incorrect

decision [3]. In order for the mission to continue, these failure conditions must be

compensated for either by the human or the system[11]. The possibility of failure

makes human failure detection and diagnosis critical functions of human operators in

both manual control situations and monitoring situations [4, 12]. Poor failure detection

and resolution can result in not only loss of productivity but also in loss of expensive

equipment and ultimately human lives[10]. Ensuring good failure detection and

diagnosis requires understanding and evaluating the operator's decision making

process. The area of failure detection and diagnosis was further refined in this research

to investigate how the addition of trend information displays for dynamic system

parameters affect these decisions.

Trend information on system parameters eliminates extra cognitive workload for

operators who would normally be required to store this information in memory. This

should allow operators to make faster, more accurate and more consistent decisions, three

key decision making performance metrics. A model of human decision making was

selected from current literature to aid in examining operator decision performance in a

human subject experiment [4-9]. Then, an experiment was conducted to evaluate the effect



of trend information specifically in failure detection and diagnosis tasks. Improving

performance in these tasks is an important issue in the design of complex systems

because good failure detection and diagnosis are prerequisites for increased reliability,

safety, system availability, and also for the enhancement of system performance, and

reduced cost [7, 10].

1.2 Research Objectives

The goal of this thesis was to select and evaluate a model of human decision

making from past literature and to apply this model in a dynamic environment to

investigate the effect of trend information on failure detection and diagnosis tasks. In

order to select an appropriate decision making model, several basic requirements were

established. These requirements were set in the hope that this model could be useful in

future human-system modeling work. These requirements included:

* The model must be applicable and expandable to a variety of different
decision types and task domains.

" It must be capable of switching between different human mental models and
system task models in order to allow modeling of full mission phases with
different actions and tasks

* The model must highlight human decision making performance in both
nominal and failure conditions

The Lens model was selected and implemented as the model that best fulfilled these

requirements. The Lens model was originally developed for the study of perceptual

psychology and is unique in its ability to compare the decisions of a human judge to the

true condition in the corresponding environment through a variety of correlations



coefficients which are the outputs of the model[5]. Once selected and implemented, the

actual implementation needed to be validated to ensure that it had been implemented

accurately. Secondly, the model needed to be calibrated using actual human decision

data to prove that it was a legitimate choice that satisfied the basic requirements.

The validation of the model in the context of a dynamic complex system was

done via human subject experimentation. The experiment was designed to investigate

the possible human performance benefits of explicitly displayed trend information of

system parameters for failure detection and diagnosis. Performance metrics included

the speed and accuracy for each of these decisions. The Lens model was also used to

post process data and two model parameters were also selected as metrics of human

decision making performance. The speed and accuracy results have implications for

designers as they attempt to build safe and functional complex systems. The model

parameter results are useful, both to calibrate the model for future use, and to illustrate

the model's use for two different decision types in a dynamic complex system domain.

Since most realistic decision making environments are dynamic, it was important

that the model be able to represent dynamic system behavior. However, the Lens

model is primarily a static model that has not been used to incorporate dynamic

information in its analysis of human decision making. Therefore, this research also

extends the use of the Lens model in the area of dynamic decision making. While the

Lens model has been previously applied in dynamic environments in literature[13],
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dynamic information has not been directly inserted into the Lens model as a part of the

human judgment strategy. This thesis seeks to represent dynamic trend information in

the Lens model to get a more accurate representation of how this information and its

dynamic characteristics affect the judgment performance of complex system operators.

1.3 Thesis Organization

* Chapter 1, Introduction, outlines the motivation, research objectives, and
provides an overview for this research.

* Chapter 2, Background, provides information on previous work in human
performance modeling, situation awareness, judgment theory, and failure
detection and diagnosis.

* Chapter 3, Lens Model, describes the selection and implementation of the Lens
model, as well as its history and formulation.

" Chapter 4, Focus Area, describes the two specific decisions, failure detection and
diagnosis, that this thesis is focused on.

" Chapter 5, Methodology, describes the procedures and design of a human
performance experiment used to test the hypotheses of this research regarding
the effect of trend information on failure detection and diagnosis.

" Chapter 6, Data Analysis, Results and Discussion, details the analysis conducted
on the data from the experiment, presents the results and a discussion about
interesting findings.

* Chapter 7, Conclusions and Future Work, reviews important conclusions drawn
from the results section and discusses directions for future work in this area.



2 Background

A key issue in complex system design involves understanding the way humans

perceive and process system information and how they make decisions. While this

thesis is focused on the decision making activities, components of the other cognitive

processes help to provide the foundation for decision making.

2.1 Human Information Processing

In order to examine human decision making, it is important to understand the

human information processing cycle that it fits into. This cycle defines how humans

interact with their environment as they perceive, process, and respond to

environmental cues and stimuli. A basic framework of human system interaction is

provided in Figure 1 below.

-- -- -- - -- Attention -- -- -- -- -- -- -- -- - -
i -- -__- Resources _~~~~~~-

Long-term
Memory

Working

Figure 1: Wickens' model of the human information processing cycle[14]



This model of human information processing includes the following stages: sensory

processing, perception, attention, memory, and response. Although this model is an

abstraction of the complex nature of human sensation and cognition, it provides a

useful platform from which to approach human performance.

This thesis examines the portion of the information processing cycle that begins

with the outputs of perception and addresses the cognitive tasks of situation awareness

and decision making. Perception is distinct from cognition in that cognition requires

significantly more time, effort and attention than perception alone, though the lines

between these two processes can be blurred[15]. Cognitive processes are conscious

activities which transform or retain information, are resource limited, and are highly

vulnerable to disruption when attentional resources are diverted to another task.

Situation awareness, which is achieved through perception and augmented by these

cognitive transformations, is often the basis for appropriate response selection[15].

2.1.1 Memory

Memory is a foundational piece of the human information processing cycle. It is

at work in virtually every stage of human cognition. Memory is both the place where

information is stored long term and where information is integrated and transformed.

There are generally thought to be two different types of memory: working memory and

long-term memory. Working memory is the temporary, attention demanding store that

humans use to retain information for a short period of time until they are ready to use it



or commit it to long-term storage. Working memory is also the "cognitive workbench"

where we examine, evaluate, and compare different mental representations. It is where

judgment and decision-making take place. Working memory has limitations in both

capacity and duration. Research has shown that when rehearsal is prevented, humans

retain information for approximately 20 seconds. Working memory also has capacity

limits which interact with time. The capacity of working memory is generally limited

to 7 +/- 2 pieces of unique information. Faster decay occurs the more items are held in

working memory because rehearsal is not instantaneous. Therefore working memory

tends to perform best if immediate rehearsal of information is possible and if this

information is approximately 5-9 pieces in length. This type of memory is significantly

affected by stress, and is considered a fragile resource in the context of decision making,

because it can so easily be derailed by distractions[16]. Information can be encoded

from working memory into the more permanent type of memory: long-term memory.

Long-term memory stores facts about the world and how to do things that operators

use repetitively. This is a more stable form of memory which is ideally where

operators draw on their experience and pattern recognition skills to identify problems

with a system or environmental conditions. However it is largely developed through

individual experience and therefore not always reliable, particularly for novice

operators or monitors who do not have the repetition necessary to have committed such



information to long-term memory. As a result, the success or failure of human memory

can have a major impact on the success and safety of a system.

2.1.2 Situation Awareness

Situation awareness (SA) is another metric for evaluating human performance

and a critical component of human decision making[17]. In the information processing

model, it generally falls somewhere on the border between perception and cognition.

SA is described as an emergent property of the model, as opposed to a structural part of

the model itself. It is the product and result of many different components and in

practice is often treated as a "black box", where the internal workings are essentially

unknown[18]. Endsley defines situation awareness as "the perception of elements in

the environment within a volume of time and space, the comprehension of their

meaning, and the projection of their status in the near future"[19]. Situation awareness

is tasked with three things: recognizing and interpreting environmental cues, assessing

present and future risk, and assessing the time available to make decisions [16, 20]. It is

closely tied to understanding the interrelationships inside the system and the system

interaction with the environment or larger domain. Misunderstanding these

relationships can result in adverse consequences. Therefore, situation awareness is

critical to an operator's ability to adapt and function effectively in its environment.

Endsley presents the following model of situation awareness and its different levels

below in Figure 2 [19].



System Capability
- Interface Design
- Stress & Workload
- Complexity
- Automation

nform a n i sm

Z~esAuto mabticty

Figure 2: Endsley's model of human situation awareness

Situation awareness is a complex integration of a variety of information which

begins with basic perception and ends with projection of environmental states and

decision outcomes into the future. In order to plan or problem solve effectively in

dynamic, changing environments operators must have a relatively accurate awareness

of the evolving situation which is the role of situation awareness. It is a prerequisite for

accurate decision making and response selection[15]. It is not purely a raw sense

impression, but includes projections of future states and an integrated knowledge of the

complete current picture[18].



Understanding which possible states of the world might be in effect, forms the

foundation of effective choice[15]. This awareness of the current system condition

resides mostly in working memory, making the link between SA and working memory

direct. Therefore, awareness degrades as both memory and attentional resources are

allocated to different competing tasks. While accurate situation awareness depends on

selective attention and memory, it is not the same. The process of maintaining situation

awareness, supported by attention, working memory and long term memory is not the

same as the awareness itself. It is usually domain specific and is affected by the

expertise of the operator. This means that good situation awareness must be developed

for every operator and task individually, and is critical to operator's response in new

situations. Therefore, supporting broader situation awareness has been shown to be a

critical component in decision making.

Situation awareness is measured using a variety of subjective, performance-

based, and physiological techniques. Memory probe measurement is a common

method which seeks to evaluate the contents of the users working memory for a given

task. This is generally done in the form of a questionnaire or evaluation which is

designed to determine the overall picture that the operator had of a task situation at the

current time. This is a widely used method and generally accepted as a viable

measurement of SA[18]. The most common memory probe is known as the Situation

Awareness Global Assessment Technique (SAGAT), which freezes a screen and queries



subjects on their knowledge of the situation at given times during an experimental task.

This is a knowledge based measurement of situation awareness, which is more accurate

at providing detailed theoretical assessment of an operator's awareness. However

performance based measurements look directly at user response to realistic situations

and are sometimes preferred since knowledge based measurement can only make

inferences about what a subject would do given their current knowledge base. Some

performance based measures of situation awareness include: workload, user

confidence, latency, and accuracy [21].

2.1.2.1 Environmental Cues and Stimuli

The information that operators require to make good decisions and maintain SA

is acquired through cues in the environment. Typically cues are estimated initially

through perception, then information is selected and integrated by attention and

cognition using long term memory and working memory to provide background

update and revise different hypotheses about the exact nature of the situation.

Initially, the decision maker is confronted with a series of cues or sources of information

that have some impact on the true state of the world. Some or all of these cues are

attended to with the goal of using them to influence the operators current belief in one

of several alternative hypotheses about what is going on within the system. Each cue

can be characterized by three properties:



- Diagnosticity-Represents how much evidence a cue can offer the decision maker

regarding one or the other hypothesis. Cues may be high or low in diagnosticity

and also have polarity to favor one hypothesis or another. A perfectly diagnostic

cue means that the presence of this cue is a perfect predictor or indicator of a

particular hypothesis, and obviates the need for a decision.

- Reliability-Refers to the likelihood that the physical cue can be believed or that

the information is accurate. The product of reliability and diagnosticity reflects

the information value of a cue. The higher the information value of a cue, the

more useful that cue is in terms of evaluating decision alternatives.

- Physical features - Refer to the actual physical representation of the cue such as

its salience. These characteristics have bearing on the attention and subsequent

processing that any given cue receives.

Selective attention must be utilized in order to process a variety of different cues

and give them a subjective weight associated with their predicted information value.

First, all of the raw perceived information from any available cues must be integrated

together to form some sort of understanding of the current situation. Then, the operator

incorporates any expectancies or prior beliefs from long-term memory and mental

models, which bias one hypothesis over any others. Finally, they iteratively test and

retest that hypothesis in order to attain the final belief which forms the basis for

choice[15].

This can be interrupted by three vulnerabilities of human attention and cue

integration that can prevent cues from effectively informing decision making:

- Informational cues are missing- The operator doesn't have all the necessary

information at hand. Good decision makers are often aware of what they don't

know and seek out these missing cues.
- Information overload-Available cues are numerous. Beyond three distinct cues,

people do not use the information to make more accurate decisions. This is



because human operators deploy a selective filtering strategy on available

information. This filtering can be time consuming and affect decision quality.

- Cue salience- How noticeable a piece of information is to the operator. This

affects the attention and processing devoted to any particular cue. If one cue is

highly salient it may end up being paid too much attention and over processed.

For example, alerting cues (high salience) are not necessarily compatible with

effective fault diagnosis since salience should be related to the information value

of a piece of information for full failure resolution, not just in detecting that a

failure has occurred.

Once cues are processed and integrated, the operator must assign a weight or

importance to each one to use it in their judgment strategy. Processed cues are often

not differentially weighted effectively based on their information value. More valuable

cues would theoretically be weighted higher; however this requires estimating the

information value for all cues. It requires less cognitive effort to simply weight all cues

equally. Operators subjective weighting tends to vary in an "all or none" manner,

instead of as a linear function of the cue's correlation to the actual environment. When

people are asked to estimate differences in the reliability of a set of cues, they can often

do so accurately. However, when these estimates are to be used as part of a larger

aggregate, the values become distorted. This is more commonly known as the "as-if"

heuristic. Values are typically interpreted "as-if" they were all equal in their predictive

value. The relative insensitivity of humans to differences in the predictive validity or

reliability of a cue should infer that we are poorly equipped for performing tasks where

diagnosis or prediction involves multiple cues with different information values. It has

been suggested that humans should only be involved in identifying the relevant pieces



of information for a task, and machines should be tasked with the diagnosis decision

[15].

2.1.3 Decision Making Heuristics

A current trend in the study of human judgment under uncertainty suggests that

it is largely based on heuristic processes. A heuristic is a mental shortcut involving a

variety of psychological processes that help humans asses information without using

probabilities in their reasoning[16]. Heuristics are useful because we often don't know

the true probability of each possible outcome, and so we use tactics like similarity, past

experience, and examples to guide our decisions and save time in dynamic situations.

This leads to the view that actual human information processing is not as accurate as

normative models of classical rational decision theory which involve actual event

probabilities. Heuristics explain our deviations from these optimal decision

frameworks. They trade accuracy for speed and attempt to save time and cognitive

resources by using shortcuts or samples of available information. However, some

research has shown that well developed heuristics can be both fast and accurate. Under

normative theory, the decision maker must select the best course of action based on the

highest expected utility. Expected utility can be calculated by taking the "cost" of an

outcome and multiplying it by the probability that particular outcome will occur. Since

humans naturally avoid using probabilities in their decision making however, this

expected utility is often difficult to determine, and that normative decision making



theory may not be the most accurate way to model real world human decision making

[16]. Human problem solvers often select what they perceive to be the current best plan

with no guarantee or even probabilistic assurance that it is the absolute best plan. From

an information processing standpoint, decisions represent a many to one mapping of

information to responses. The simplest decisions are go-no go scenarios, with more

complexity entering the equation as the decision options become multiple choice. More

complex decisions take more time and cognitive effort to go through the decision

making process.

A basic set of information processing activities and the biases and heuristics that

commonly affect them is presented below. The information processing model lays out

the steps of the decision making process as[22]:

1. Cue sampling

2. Situation Assessment (Diagnosis)

a. Hypothesis Generation

3. Choice

a. Criterion Setting

b. Risk Assessment

c. Action Generation

4. Action

Within each of these steps are specific heuristic processes

particular stage.

that affect the output of that

Figure 3 shows a diagram of this process, with square "keys"

representing the effect of different decision making biases and heuristics on that stage.
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Figure 3: Representations of memory heuristics and where they act on the decision making process

Different memory heuristics affect each step of the decision making process. The

first step, cue sampling, is subject to the salience bias (S). The salience bias is a human

bias where people focus their attention on things that are highly salient or prominent

and overlook more subtly presented, modest information in the environment[23].

Situation assessment is affected by the "as-if" heuristic (As) and the representativeness

heuristic (R). The "as-if" heuristic means that operators weight all incoming

information equally when making decisions, with no one piece of information being

considered more important or reliable than another. The representativeness heuristic

biases operators to judge the probability of an outcome by how much it resembles

available data. The inputs for situation assessment, like mental models, come from long

term memory and are affected by the availability heuristic (Av). The availability
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heuristic acts from the long-term memory because this is where recollections of

previous events, mental models, and patters are stored. It influences the operator to

judge the likelihood of a choice as being optimal based on how quickly and easily they

can recall situations to support that particular event[16, 24]. Other heuristics that affect

the operator's decision making strategy originate from within the system. It has been

suggested that automated systems introduce opportunities for new decision making

heuristics and associated biases[25]. Automated systems introduce new highly salient

cues that supplant the operator's traditional reliance on assessing patterns or

combinations of familiar cues. This bias, known as an automation bias, reduces

situation awareness and leads to overreliance on cues provided by an automated

system.

2.1.3.1 Operator Mental Models

The prevalence of heuristics in decision making is largely connected to the

mental models that the operator has established about the specific task they are

attempting to perform, or others similar to it. Humans form mental models about the

tasks they are doing and the environment. These models help humans integrate and

comprehend the meaning of an aggregate of different sources of state information. A

mental model is a set of well-defined, highly-organized yet dynamic knowledge

structures developed over time from experience [26, 27]. These models are highly

susceptible to heuristic biases, and are generated from an operator's personal



experience. They play a key role in operator decision making, and are actually a metric

for assessing human performance. Accurate operator mental models are one of the

foundations for achieving good situation awareness and subsequently making good

decisions[28, 29].

Mental models are primarily developed through training and experience. This

explains why novice operators have more difficulty making decisions and get

overloaded with information more quickly[30]. In contrast, experienced decision

makers assess and interpret the current situation (Level 1 and 2 SA) and select an

appropriate action based on the different conceptual patterns stored in their long-term

memory as mental models[31]. This stable source of information allows them to

recognize specific situations quicker and more consistently. Specific environmental

cues activate these stored mental models in experienced operators, which then guide

their decision making process. Mental models, therefore, reflect the user's experience

with and understanding of a system and its environment. Accurate mental models are

one representation of operator experience and are helpful when other learned

procedures fail as well as improving performance at novel tasks, because they draw on

similarities between the current situation and different stored models. One of the goals

of training is therefore to give operators sufficient experience to create accurate mental

models and facilitate efficient system operation and decision making.

2.2 Human Decision Making



Decision making is the act of choosing between alternatives under the conditions

of uncertainty[16]. Decision making has been studied extensively, and decision making

research generally falls into one of three classes:

- Rational or normative decision making approaches are focused on how people

should make decisions according to some optimal framework. It includes

factoring both the value of an outcome and its subjective likelihood into the

choice. This type of research looks at how and why humans depart from these

optimal strategies.

- Cognitive or information processing approaches are focused on the biases and

processes used in decision making related to limitations in attention, working

memory, strategy, or familiar decision routines such as heuristics. This type of

research examines the causes of these biases

- Naturalistic decision making places great emphasis on how people make

decisions in a realistic environment where they have expertise, and where the

decisions are complex. This can be combined with other classes of research.

The decisions that are studied are typically classified according to several factors

including their level of complexity and their quality. The environment has the largest

influence on the actual decision. In the context of flight planning it has been shown that

nearly half of the variability in pilots' problem solving behavior is due to environmental

or domain features. The domain characterizes the type and complexity of the decision

being made. Planning difficulty increases for tasks and environments where there are

more choices available for action. Domains that generate good decision making, and

those that are more likely to generate poor decision quality have certain identifiable

characteristics[15]. Domains that lend themselves to good decision making are dynamic,

repetitive, and have feedback available to the operator. Humans tend to perform better



in these environments when the decisions are about things, and are decomposable

problems. Examples include chess, physicians, accountants, and weather forecasting.

Characteristics of poor decision making domains are just the opposite. They are static,

more uncertain, and incorporate less feedback. The decisions may be about people or

behavior and are not easily decomposable, such as clinical psychology, personnel

selectors, stock brokers, and court judges.

Aside from the domain, other key features of decision making include: the

amount of uncertainty in the decision, expertise of the operator, and time allotted to

make the decision. Uncertainty is associated with the consequences of a decision and is

also termed risk. Information is defined as the reduction of uncertainty. Before the

occurrence of an event we are less sure of the true state of the world than after that

event occurs. This reduction in uncertainty comes from the information gained from

the event. In decision making, this evidence is particularly important when decisions

have more than two outcomes, which is often the case in real decision making tasks.

Providing the operator with as much useful information as possible in order to reduce

the uncertainty improves decision performance[8].

Expertise is a characteristic of the decision maker or operator that decreases the

time they need to make a decision and helps alleviate time pressure. Time pressure can

have a critical influence on the decision making process. The more time pressure the

operator experiences, the more likely they are to use heuristic decision making methods
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and the more likely they are to make a rash, incorrect decision. With time pressure,

normal retrieval of relevant mental models is prevented; they do not have time to

adequately search their long term memory. Operators are also influenced by stress and

fatigue, which reduce both decision optimality and operator confidence.

Decision making can be studied from the standpoint of the actual decision or

from the strategy employed to reach that decision. Judgment theory examines decision

strategies using two different classifications of strategies. Judgments can be made using

a compensatory strategy or a noncompensatory strategy. Compensatory strategies

weigh both good and bad attributes of a decision option or choice, and allow these

strengths and weaknesses to "compensate" for one another. These strategies generally

make better use of available information, although struggle when the decision is being

made with a high level of uncertainty. Noncompensatory judgment strategies do not

consider a balance of the good and bad attributes of a choice and as a result may not

consider all the information available to the decision maker. An example of a

noncompensatory strategy is setting an absolute minimum for a certain characteristic.

All alternatives that fall below that minimum would be rejected as valid choices. This is

a common practice in aviation and simplifies a complex decision situation by reducing

the cognitive effort required to make the decision[16].

2.2.1 Decision Making Performance



2.2.1.1 Decision Quality

The quality of a decision is typically based on the outcome. This quality metric is

retrospective, and based on comparison to "expert" decisions. This is not necessarily an

accurate measure of quality since it has been shown that experts don't always make

better decisions. It also assumes the expected value of the decision is common among

all decision makers, which depends on assigning universally agreed upon values to the

outcomes of a choice. Since this is not very realistic, it may be more important to look at

the ways different environmental and information characteristics influence processing

operations and outcomes. Decision quality is influenced by stress, which interrupts or

exerts pressure on the decision maker and leads to a suboptimal decision making

process, especially when the task involves a high level of spatial working memory [15].

Quality may be better determined by examining the process by which the decision was

reached, and how consistently the operator applies this strategy, rather than the actual

outcome.

2.2.1.2 Decision Performance

Evaluating an operator's decision making process or strategy is difficult because

this information is challenging to elicit accurately. Humans are notoriously poor at

accurately understanding and self-reporting cognitive activities. As a result, metrics

available to examine decision making processes tend to be limited in their scope and

effectiveness. While decision quality is an important consideration, other performance



metrics are commonly used which are more objective as to their definitions and easily

measured. These common metrics are decision latency and accuracy. Latency is the

time it takes for an operator to make a decision. Accuracy is simply whether or not the

decision was correct as compared to the actual environment. The ideal decision would

be both fast and accurate; however there is generally a tradeoff between these two

metrics. Pilots who are good decision makers tend to take longer to understand a

situation or decision problem and acquire evidence, even though they select and

execute actions quicker[15]. Depending on the domain and the possible consequences,

accuracy is generally considered the more important of the two metrics, although, in

dynamic systems, excessive decision latency can also have an adverse affect on system

performance which must be taken into consideration.



3 Lens Model

The Lens model was selected as the human decision making model that both met

the initial requirements, and provided the greatest amount of descriptive information

about the human judgment and its corresponding environment. The Lens model is

traditionally a static model. For this work, it was expanded to incorporate dynamic

information as part of the human judgment strategy, and implemented to post process

experimental data about failure detection and diagnosis decisions in the context of a

lunar landing scenario.

3.1 History and Formulation

The Lens model is part of a class of normative decision making models that was

developed and proposed by Ergon Brunswik originally for the study of perceptual

psychology. Brunswick believed that psychology should seek to provide descriptions

of behavior that actually occurred rather than discover laws of behavior[32]. This led

him to develop the theoretical foundations for the Lens model in the early 1950's. Ken

Hammond was the first to apply and popularize Brunswik's work through application

to judgment and decision making theory, where the model is still primarily used today.

The model's foundations are based on the concepts of representative design and

probabilistic functionalism[5].

Representative design is concerned with the selection and inclusion of stimulus

conditions in a scientific study. The goal is to ensure that any stimulus to be tested is
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sampled from a representative population in the same way that subjects are sampled

from a representative population. A representative population means that all facets of

the population of interest that exist in the actual world are also represented in the study

group. This is commonly practiced when selecting a subject pool, but experimenters

typically only present subjects with a limited set of stimuli that is often unrepresentative

of the true environment[32]. Brunswik believed that psychology generally focused too

much on how subjects were sampled and not enough on ensuring that the environment

was well represented in a variety of different contexts. The normal systematic design of

experiments that is so common in the science communities to date strives to control

variables through factorial design. This allows the results to be generalized to other

subjects and populations of subjects but does not allow for generalization to other

conditions or contexts within the same environment.

Probabilistic functionalism has two main premises:

1. Psychology should be concerned not just with the human organism but, more

importantly, with the interrelations between the organism and its environment.

2. This relationship of organism to environment is based on uncertain or

probabilistic relations among environmental variables. These variables are the

proximal information or cues which are used to make inferences about the

environment. These cues are not consistent, and not always available.

This second point leads to Brunswik's theory of vicarious functioning, which is

essentially the redundancy of cue information in the environment. An organism may

use any number of available means to achieve the end goal[33]. These theoretical



concepts are all encompassed in the basic formulation of the Lens model, shown

graphically in Figure 4.

Achievenent, r.

Cue Utilization r,,

Cues X,

Figure 4: A visual representation of Brunswik's Lens Model

Several mathematical representations of the model have been developed, the

formulation of the Lens model presented here is based on multiple regression and

correlation techniques[34]. It begins on the left side of the model with

environmental variable, Ye. Ye is modeled as a linear function of a set of k cues, Xj

where j = 1, ..., k.

Y = Z =e,jX; + Le

Where rej

Thus, the environment is modeled by the regression equation:

is a vector of weights that represents the relative change of different cues

with changes in the environmental state, and e, is the error term of the regression of Ye

on the cue values of Xj.

the



Similarly the human judgment about the environment, denoted Y, , is modeled in

the same way, yielding the formula: Y = E> rs,jXj + Es

Where rs,j is a vector of weights that represents the relative change of different cues that

the human judge ascribes to the environment in their decision strategy, and Es is the

error term of the regression of Y on the cue values of X.

The cue weights for the judgment, rs,j, and the environment, rej, cannot be

compared to one another initially because they are all in different units, depending on

the cue the weight was generated from. In order to compare cue weightings to

effectively understand the judgment strategy and environmental prediction from a

certain set of cues, we must standardize the weights.

are called beta weights and denoted fe,j and3s,j.

These standardized coefficients

These are relative weights that

indicate the relative importance of one cue over another in the actual prediction of the

environment and the corresponding judgment strategy.

Given the fact that the judgment variable and the environmental variable are

based on the same set of observable cues present in the environment, a person's

decisions should match the environment to the extent that the weights that the judge

assigns to environmental cues match those used in the actual model of the environment.

This is the same as identifying the correlation between pe,j and 3s,j for all j = 1, ..., k.

This multiple correlation between the judgment and the criterion, pyey, ,is also called

achievement and denoted by ra. This value is the primary performance metric



generated by the Lens model and is calculated based on the Lens model equation:

ra =GReRs+C (1-R3)(1-R) [35,36].

Where:

r Achievement: correlation between judgment and criterion

G Knowledge: correlation between the linear models of the judge and the

environment

Environmental
Re Predictability: multiple correlation between the environment and the cues

Participant's
R C onsisten: multiple correlation between the cues and the judgment

Consistency:

Unmodeled
C = correlation between the residuals of both models

knowledge:

The primary values of interest in the model are the beta weights that represent

the cue influence in both the environment and the judgment strategy and the

achievement. The other Lens model parameters then provide supplementary

information about the performance of the model, the environment, and the performance

of the judge individually. Other alternative performance measures have been defined

from the achievement equation. For situations where the unmodeled knowledge C =

0, the human component of the achievement equation can be expressed independently

as the product, GR, , named "linear cognitive ability". This neatly captures the ways in

which judges match the environment and how consistent they are in their strategies.

Similarly, the quantity GRe, captures the validity of the judges strategy if it were to be



applied in a perfectly consistent manner and Rs = 1. This is what would happen if the

human judge were replaced by their regression model[34].

While regression is the most common formulation of the model, other

formulations have been suggested to overcome the inherent limitations of regression

analysis. The use of the Lens model in judgment theory was popularized by Ken

Hammond who is quoted as saying: "a [...] sin of commission on my part was to

overemphasize the role of the multiple regression (MR) technique as a model for

organizing information from multiple fallible indicators into a judgment. There is

nothing within the framework of the lens model that demands that MR be the one and

only model of that organizing process"[33]. Other methods have been used to get these

judgment weights including fast and frugal heuristics[37], non-compensatory

formulations [38], and Bayesian methods[39].

3.1.1 Limitations of Correlation and Skill Score

Correlation is the basis for calculating all of the Lens model output parameters

and so is an important piece of the formulation. The correct use and interpretation of

correlation coefficients can significantly influence the interpretation of any Lens model

results. Correlation is highly dependent on the assumptions made with respect to the

data that is being correlated and on the basic principles forming this index of

association. In situations where these assumptions are violated, the correlation



coefficient yields little valuable insight into the relationship between variables, in this

case the human judgment and the corresponding environment[40].

It is unwise to assume that the correlation coefficient neatly captures the

relationship between two variables in a single value. Many different types of

relationships can have the same correlation coefficient and therefore the relationship

should be examined more thoroughly. In order to accurately capture the relationships

in a set of data, it is important that the data be sampled from a representative space in

order to capture the relationships within a whole population and not just a segment

[40]. Ensuring representative sampling is difficult and creates two primary biases in

the calculation of correlation: scale errors and magnitude errors.

Regression bias: The regression bias is a scale error representing the degree to

which the standard deviation of human judgments is not scaled to the standard

deviation of the environment and imperfect achievement. A regression bias is common

in uncertain environments. This bias occurs when an operator does not appropriately

regress their judgments towards the mean but instead is biased by case-specific

information. They do not adaptively balance both base-rate and case-specific

information.

Base rate bias: A base rate bias is a magnitude error that exists when the mean of

the distribution of the human judgment variable does not equal the mean of the

distribution of the environment. This occurs because a judge must reason and make



predictions about a specific case and appropriately balance both case-specific

information and base rate information about the whole population or environment. This

means that the judgment and the actual environment distributions will be slightly

offset, and the judges decisions are consistently under or over estimated[33].

Since correlation analysis is so critical to most Lens model formulations, the

limits of correlation have led to the creation of another performance metric called the

skill score. The skill score originated from weather forecasting[41], and was applied to

human factors and situation awareness for judgment analysis[42, 43]. A diagram of the

skill score as a measure of judgment quality is found in Figure 5.

Figure 5: Diagram of Skill Score and its components

The skill score is a measure of "distance", the squared Euclidian distance,

between data sets rather than the shared shape of a distribution, which is how

correlation is determined. It accounts for the regression bias and the base rate bias that

are inherent in the calculation of correlation and can make its interpretation more

ambiguous. The equation given for skill score is: SS = r2 - (ra Sludge 2

Senv )



(,Y)2'where senv and Sjudge are the standard deviations of the judgment and the
Seny

environment, and YS and Ye are the means of the judgment and environment[33]. High

quality judgments have a high correlation between the judgment and the environment

but generally have low regression bias and base rate biases which leads to a high skill

score.

3.2 Previous Applications

The Lens model has been explored, enhanced, and developed for five decades.

As a result there is a wealth of previous research to draw upon in a wide variety of

domains. According to a meta-analysis of Lens model studies done in 2007, the Lens

model has been applied to at least 259 different task environments in 78 different

papers[34]. This work synthesized the Lens model statistics presented above and found

overall high levels of achievement and noted that people can achieve similar decision

performance in both noisy and predictable environments. One of its primary

applications is for cognitive engineering and the Lens model has been applied in

domains ranging from military command and control to music education, from

laboratory experiments to field studies, and also studies containing an emphasis on

learning. The Lens model is in a unique position to provide feedback for learning

studies and determine what the most effective form of feedback is for a particular

task[44]. It has business applications in marketing, accounting, and engineering, and



has continued to be used in social research areas like preventing violent behavior,

moods, and consciousness studies.

This large body of previous work on the model and its extensions gives the

model some credence for further use in more new domains. It has been used effectively

on a wide variety of problems which has shown that despite its limitations it is a useful

model for examining human judgment in an array of contexts. Few papers that contain

Lens model data provided individual data and so assumptions cannot be made about

variation within the different environments[34]. The model does appear however to be

relatively robust to differences in both domain and task. The same meta-analysis

provides generalized information from the aggregate of much of this past work.

3.3 Limitations

While the Lens model provides us with an interesting way to examine judgments

and environments there are four major limitations that it does not accurately model.

First, it does not model a judge's adaptive use of cues not included in the model. This is

true of most modeling efforts but still leaves the question of whether or not the most

appropriate cues have actually been included. Secondly, the Lens model does not

inherently capture the judge's ability to adaptively respond to non-linearity in the

environment, and cue-criterion relationships. This means that any environmental

variables that affect the criterion value in a nonlinear way will be represented in the

quantity C, but the Lens model will not help determine how the operator might be



using those nonlinear cues and their relationships to any other cues in the model. These

adaptations can significantly alter an operator's decision making strategy. In light of

this, it is critical to recognize that environments with highly nonlinear components will

have lower achievement values and the predictions of the Lens model will be less

accurate. Next, the model does not explain any possible chance agreement between

errors of both the human and environmental models. It is therefore important to

understand that the Lens model does not capture or identify errors in the models.

When selecting cues for the environmental model, if they can be selected or engineered

(i.e. do not occur naturally), it is critical to select the best possible linear model of the

environment with which to compare judges. This can be done by statistically

investigating the effects of a variety of sets of "possible" cues to determine which ones

are most important to include in the model[45]. One last important limitation of the

Lens model is that it is primarily a static model without the capability to investigate

dynamic cues. Though it has been used to try to evaluate decisions in time-dependent

domains[13], this is generally done by ignoring the dynamically changing nature of

information in the model directly and building models from snapshots of data at the

instant of a judge's decision. Dynamically changing information is implied in the

results, but not actually directly investigated in the model.

3.4 Implementation and Data Post Processing



The Lens model was implemented in Mathematica's MATLAB 2009a as a generic

m-file that can be used with any set of data in either text file, Comma Delimited (CSV),

or Excel spreadsheet format. The implementation currently requires the following

input data which was collected in CSV format from the experimental interface:

- Cues : These can be represented in any number of column vectors of data

which correspond to the different observable cues or inferred dynamic

information being used to predict the judgment and the environment.

- Actual Judgment: The actual judgment vector must also be a column vector

that is the same length as the number of cue observations, one judgment

response for every set of cues, this data is often binary or in some other scaled

integer format.

- Actual Environment: The actual environment vector, represents the true

condition of the environment for each set of cues, and has the same

requirements as the actual judgment and should be in the same data format

(binary, integer scale, etc.).

The model provides the following outputs, one value for each data file that is run

through the model:

- Achievement: The measure of how well the judge did at predicting the

environment, or how accurate they actually were. It is essentially a correlation

coefficient but also accounts for nonlinear components of the environment and

the different parameters listed below in its calculation.

- Skill Score: This metric of decision quality is described above in reference to the

limits of correlation coefficients and their interpretation. It is a measure of

quality which accounts for the correlation between two variables and also

accounts for both the scale and magnitude errors inherent in its calculation.

- Judgment Strategy: This can be discerned by looking at the standardized

weights assigned to each of the cue variables. These weights can be compared

relative to each other to see where the human judge allocates more of their



confidence or importance in terms of the cues they believe best predict the

environment.

- Environmental Predictability and Judgment Consistency: These measures are

multiple correlations between the environment, the judgment, and their

corresponding models generated in the multiple regression. This gives us some

idea of how well the environment can be linearly predicted, and how

consistently the judge applies their same judgment strategy each time they are

faced with a decision

- Matching: This is a correlation between the judge and the environment. It

describes how well the judge understood the linear component of the

environment and adapted their judgment to match it.

- Unmodeled Knowledge: This accounts for any nonlinearities in the

environment that cannot be explained by the linear combination of the cues

presented. This is the correlation of the model residuals for both the judge and

environment. It gives us an indication of how much outside information the

judge was using in their decision making.

In this form, the model was used to post process data from the experiment to

determine each subject's achievement and decision consistency, which were also

performance metrics for their decision making. The experimental data files recorded

the subject's decision as well as the values of each system parameter at each time of

decision as well as calculating the inferred deviation of any of these system parameters

from their corresponding normal states. First the detection and diagnosis data were

separated for each subject so that the impact of the trend information could be

evaluated for each decision type individually. Then these recorded parameter values

became the actual judgment values and the cues or inferred states that were used to

build the regression equation for the human judgment side of the model. The true



values of the environment were added to the CSV file manually by the experimenter

after each session.

Once the environmental data was added, the data with trend information present

and without trend information present were separated for each subject and then run

separately through the model implementation. This generated two sets of Lens model

output parameters for each subject, one that was achieved when trend information was

present, one without it. These values were all aggregated into a single data file so that

statistical analysis could be performed to explore the impact of the trend information on

the Lens model output parameters and compare it to the results of the other human

performance metrics like speed and accuracy for both failure detection and diagnosis.



4 Focus Area

In order to utilize a model of human decision making and evaluate the impact of

explicitly displayed trend information for system operators, it was necessary to narrow

the field of decision making to a subset of decisions applicable to complex system

design. Failure resolution is a critical task in human-system interaction and was

selected as the focus area for this thesis, specifically two stages of the failure resolution

process: detection and diagnosis. Some considerations for modeling human failure

detection and diagnosis must include: the types of failure modes that can be modeled,

the complexity of the model implementation, the decision performance, and the

robustness in the presence of modeling errors[6]. In addition to these, several other

studies suggest that participatory mode of the system operator should also be a

consideration. Participatory mode is the amount of interaction the human operator has

with the system. It is classified into two categories: operator and monitor, one in the

control loop, one outside of it[12, 46].

4.1 Failure Types

In order to understand failure detection and diagnosis, it makes sense to begin

with the definition of a failure. A failure is any critical changes in the system

parameters, or the inherent dynamics of the system[10]. In a complex system with

hundreds of parameters that could change, this definition may be too narrow.



Therefore, a failure can also be defined as any unpermitted or uncommanded deviation

of at least one characteristic property of a variable from acceptable behavior[7].

The types of failures that an operator may encounter are dependent on the

specific domain and systems involved. All components in a system have some unique

set of failure modes. However, there are some general failure types that have been

previously investigated. Three primary types of failures are discussed below based on

the time it takes the failure to develop:

Step Failures: One of the most common types of failures is a "hard over" failure

or step failure. This is a failure which involves adding some kind of bias or significant

error instantaneously to a parameter value. It is generally sudden and well above the

detection threshold for humans and thus detection is often assumed. A step failure can

be made more subtle by using an output-additive time function which transforms it into

a ramp failure, by altering the mean of the observed process[9].

Ramp Failures: A more subtle type of failure is a ramp or degradation failure.

This type of failure is closer to the threshold of detection and is more difficult to identify

because it occurs slowly over the instrument lifetime and incipient. This failure is

caused by the error measurement in a sensor or other instrument increasing very

slowly, almost unnoticeably over time as the sensor generating the data ages or

degrades and manifests itself in an indicator that is inconsistent with others[9].



Intermittent Failures: An intermittent failure is a repetitive on-off failure.

could be something like a communications link going down and then coming back

online, cell phone reception, or other examples in signal transmission and receipt. It

can be very difficult to detect because it is only apparent if the operator needs access to

that particular piece of equipment or that information at a time when the instrument is

not functional. For example, you only notice that you have poor cell phone reception

when you need to make a call.

Another way to look at classifying failures is in terms of overall system impact.

Up till now failure types have been discussed based on how they develop over time.

Each of these types can have different effects depending on whether or not they can be

resolved by the operator or the system. This "reparability" gives another dimension

along which different failures can be investigated. Failures can either be permanent or

transient. Permanent failures are typically the result of a hardware or software issue

that cannot be fixed by the operator in real time during the current mission. The

operator must operate with that failure or abort the mission. Transient failures are less

serious in the sense that they are correctible during operation and are more often simply

a disturbance. They require time and operator cognitive resources but do not usually

necessitate a mission abort.

Failure distributions can be modeled in a number of different ways. Failure

times can be distributed randomly among participants or components, or failure times

This



can be modeled as a stochastic process which is a function of the Mean Time between

Failures (MBTF), for that specific component or system. Failures have commonly been

investigated singly, as opposed to cascading failures or multiple single-point failures,

assuming that system failures are independent which is unrealistic. In

experimentation, failures are also modeled at higher failure rates than would normally

occur because true failure rates can be low and infeasible for human subject testing.

These unrealistic failure rates however, may induce expectancy or bias in the human

detector to look for failures more than they normally would in a real world situation.

4.2 Failure Detection

Failure detection is of primary importance to the operator of a complex system.

Key to balancing the performance, reliability, and cost of a system is the ability of that

system or the human involved to perform accurate and timely failure detection and

diagnosis. Engineering systems will eventually will encounter unexpected failures and

environmental disturbances which must be detected to be resolved [11]. If the human is

monitoring, their primary role is to be an accurate and efficient failure detection

mechanism and problem solver who intervenes after a failure to ensure a safe

outcome[12]. System failures can potentially result in loss of productivity, expensive

equipment, and human lives[10].

Full failure resolution in a system follows a three step process: detection,

diagnosis, and compensation[10]. The work in this thesis focuses on the detection and



diagnosis steps. Detection is defined as "determining if a malfunction has actually

occurred in the system"[10]. Other authors incorporate the human operator, stating

that failure detection is, "the process whereby a human operator decides that an event

has occurred"[4]. This indicates the importance of decision making in the human

failure detection process. Failure detection is believed to be largely domain and tasks

dependent, but a general framework of four different process measurements that

humans typically look for in order to detect failure has been identified[8]. These four

include: the magnitude of changes between successive measurements, reversals in

direction in successive measurements, simultaneous occurrence of large magnitudes

and reversals, and localized magnitude changes. Based on these types of trends in

system information, and their perceived accuracy of that information, operators must

decide if they believe a failure has occurred[15].

There are circumstances where detection represents a source of uncertainty or

potential bottleneck in performance because it is necessary to detect events that are

subtle and near the threshold of human perception. Humans' ability to do this

effectively is based on their sensitivity as detectors in different situations. This is

known as the sensitivity level. It is important to understand what these levels might be

in a system so that it can be designed such that critical failures can be detected as

quickly as possible.



There are a variety of things that affect detection sensitivity of an operator. One

is the number of states of categorization. The process of detection may involve a binary

go-no go decision or it may require the human to choose between three or four possible

levels of uncertainty about an event, or detect more than one kind of event. This

decreases detection performance by increasing the time it takes for the operator to

evaluate multiple options. Sensitivity, like detection, is domain and task specific,

influenced by operator training, display design, and a myriad of other factors such as

physiological state, operator expectations, and experience. Participatory mode of the

operator is another consideration. Though there are conflicting results, it is generally

accepted that the amount of interaction the operator has with the system as part of the

control loop, does have some effect on their detection performance. Sensitivity can also

be impacted by the operator's level of preoccupation with secondary or side tasks or

mental workload. Increased mental workload has been shown to decrease detection

sensitivity[47]. However, despite all their possible limitations, humans have been

shown to be relatively keen when contrasted with the detection resolution of

machines[15].

Aside from sensitivity other measures of detection performance include latency,

accuracy, and false alarms[6]. Detection latency is the time interval between the

introduction of the failure and when the human can cognitively detect its presence. It

has been argued that detection time is not the best measure of detection performance



and that identification and recovery times should be incorporated as well. Near the

operators detection threshold, this is a valid and interesting parameter to evaluate[47].

Accuracy is a measure of how well a detector performs. This is often presented as the

fraction of the failures that the human got correct. Another consideration that is closely

tied to accuracy are false alarms, which are a special case of inaccuracy in detection

which is of primary concern to designers in many different system domains such as

medical monitoring. A false alarm occurs when a failure is detected when it is not

actually present in the environment.

4.3 Failure Diagnosis

Failure diagnosis is the next step in failure resolution and seeks to identify the

cause of the failure. The more complex the system, the more difficult it is to diagnose

failures and accurately evaluate system reliability, particularly where the human is

involved. This is typically a categorical decision with multiple possible outcomes. The

human must be able to discriminate between these different categories of failures,

gather evidence about system performance, and receive feedback to accurately diagnose

a failure. To do this, human operators use knowledge of cause and effect relations. The

ways that faults propagate through a system and manifest themselves as observable

symptoms generally follow physical cause and effect relationships. These relationships

help operators to identify possible causes, assuming they are familiar with the system

dynamics. Since the physical properties of the different system parameters are
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connected quantitatively by the system dynamics and by time, these dynamics define

the symptoms of each failure in a unique way. Diagnosis may require learning decision

strategies and criteria for cross checking instrumentation as well as developing a set of

rules to identify a failed component[48]. Diagnosis decisions then, are based on the

observed symptoms of the systems current behavior up to the current time[7].

If the operator does not know the failure-symptom relationship prior to the

failure occurring, they apply classification methods, such as neural networks, which

classify symptoms into failure categories that make implicit sense from their knowledge

about the system. If the causal relationship is known ahead of time, diagnostic

reasoning strategies and logic are used to try and narrow down the possible failures.

Rule based decision makers and Boolean algebra are models that fit this type of decision

making process[7].

Like detection, diagnosis is affected by fatigue, stress, and complexity. Diagnosis

is often a complex decision involving a large number of cues and a large number of

possible outcome categories. Difficulty in making diagnosis decisions arises when the

failure symptoms are not essentially unique, so that symptoms in the system dynamics

could be attributed to multiple possible failures that look similar on multiple levels.

Here operator experience, extensive knowledge of the system dynamics and functions,

and accurate mental models are incredibly valuable for accurate failure diagnosis.

Pattern recognition and associative memories are effective means for dealing with this



complexity; comparing the characteristics of failures with the signatures of previously

known failures. Other tactics for failure identification include either hardware or

analytical redundancy so that system parameters can be compared to a nominal value

in order to determine what has failed[11].

Diagnosis performance is predicated on the initial step of failure detection, and is

likewise measured by latency and accuracy. The diagnosis latency can be calculated as

the time between the detection of a failure and the identification of its cause. For

accuracy, inaccurate diagnoses take several forms. First, the operator both detected and

diagnosed a failure that was not present. Secondly, the operator detected a failure

correctly, but diagnosed it incorrectly. Next, the operator detects a failure but never

made a diagnosis as to what occurred. And lastly, the operator failed to detect or

diagnose a failure that was present. Some mistakes are mistakes only in detection, some

are errors in diagnosis only, and some may be errors in both detection and diagnosis.



5 Methodology

This chapter discusses the failure detection and diagnosis experiment that was

conducted to examine the effect of trend information on human failure detection and

diagnosis performance and generate data to demonstrate the Lens model

implementation.

5.1 Motivation

This experiment is designed to investigate the effect of explicitly displaying trend

information about system parameters to operators on their performance in failure

detection and diagnosis tasks. Understanding what constitutes normal for the system is

critical to failure detection and diagnosis so that deviations from this normal state can

be detected and identified. The system operator must have both good situation

awareness and a mental model for what normal conditions should be to perform well at

these tasks. Understanding the past trend of system parameter behavior is part of

maintaining awareness of the current system state, as well as projecting those states into

the future. Trend information also allows the operator to learn patterns and signatures

for specific failure modes. These specific mental models and improved pattern

recognition are important factors in accurate and timely failure diagnosis. Typically,

these trends must be stored in the operator's working memory which is known to be

limited in both duration and capacity. Displaying them explicitly removes this extra



cognitive workload from the operator, theoretically improving detection and diagnosis

performance.

5.2 Research Questions and Hypotheses

5.2.1 Research Questions

The experiment was designed to explore the following research questions:

* Does explicitly represented parameter information in the form of past trend
behavior improve the detection and diagnosis performance, in terms of reduced
latency and increased accuracy, of the system operator?

" Does the addition of explicit trend information improve the achievement of
system operators?

" Does the addition of trending information increase the consistency of operators'
decision making?

5.2.2 Hypotheses

Adding trend information will decrease latency and increase accuracy for both the

detection and diagnosis decisions. Explicit trend information was expected to decrease

detection latency and increase accuracy because deviations from the nominal behavior

of a system should be more quickly recognizable if the past nominal behavior is

immediately visible versus stored in working memory. Similarly for diagnosis, it

makes sense that patterns would be more quickly and accurately identified if the past

behavior is explicitly displayed. The corresponding reduction in the demands on

memory was expected to help subjects be both faster and more accurate decision

makers.



Trend information will improve a subject's ability to consistently use the same judgment

strategy in detecting and identifying failures. The increase in consistency should occur for

several reasons; first it has been shown that additional cues (in this case trend

information) increase an operator's ability to make decisions consistently to a certain

extent before they become overwhelmed by information overload[49]. This information

provides a critical crosscheck that will help confirm or deny a subject's hypothesis

about which failure has occurred. This extra evidence reduces uncertainty and

therefore should increase both accuracy and consistency.

Explicit trend information will increase the achievement of subjects when compared to

the recall of this information from working memory. This makes sense when we look at the

hypotheses above and the equation for achievement in the Lens model: ra = GReRs +

C (1 - R2)(1 - R 2). Achievement is another measure of subjects' accuracy which takes

into account other model parameters. It has been shown that Rs and G are positively

correlated, and for a dynamic task it is assumed that the trend information is an

important component of the actual environment, G. Given this assumption, and the

belief that explicit historical information will increase the consistency of judges and

their accuracy, an increase in achievement is expected.

5.3 Experiment Overview

5.3.1 Background



The focal point for all experimental failures was the reaction control system

(RCS) in the context of a lunar landing scenario. This subsystem is responsible for the

attitude control of the spacecraft in the roll and yaw directions during descent. It was

selected because failures of this system would all be manifested in some way on the

instruments that might be available in the cockpit.

5.3.1.1 Lunar Landing Spacecraft

Due to the nature of the detection task, it was important to present subjects with

multiple trajectories, in order to prevent them from becoming overly familiar with one

trajectory signature and thereby make the detection task trivial. Three different

trajectories were used based on the angle of their approach to the surface: 15 degrees, 30

degrees, and 45 degrees. The 30 degree approach angle was defined as nominal

because it most closely approximated the approach angle used for lunar landing during

the Apollo space program. The 15 and 45 degree trajectories were then defined as

shallow and steep, respectively. All three trajectories had the same acceleration profile

of 1.2 lunar gravities and began at a slant range of 1000 km from the desired landing

point. Below in Figure 6 is a notional diagram of the three trajectories used. The figure

also depicts the portion of the trajectory that was selected for the experiment from the

end of the pitch over maneuver to the start of the terminal descent to the surface.
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Figure 6: Diagram of three different lunar trajectories selected for experiment and highlighted which
portion of the trajectory is incorporated in the experimental task

The trajectory is important to the operator because different trajectories exhibit

different burn patterns during this phase. These burn patterns are important to an

operators understanding of "normal" trajectory conditions, which means that fuel is a

primary indicator of RCS system failures. Steep trajectories burn less fuel overall but

come in much higher and faster than shallow trajectories. Shallow trajectories begin

closer to the lunar surface and have larger burns required in order to complete the

spacecrafts large rotation and pitch over maneuvers early on in the approach phase.

Normal and steep trajectories have larger burns towards the end of the approach phase

as they attempt to maintain proper attitude during deceleration for the terminal descent

phase.



5.3.1.2 Spacecraft Subsystems: RCS

The RCS is primarily responsible for spacecraft attitude control. Guidance

receives position information from the spacecraft navigation filter and commands the

RCS thrusters accordingly in order to maintain a stable attitude. Spacecraft attitude is a

three dimensional vector quantity comprised of three angles: pitch, roll, and yaw. Pitch

is a forward and backward rotation around the Y-axis. In the spacecraft, positive pitch

is a pitch backward or a pull up of the "nose" of the spacecraft. Roll is rotation about

the X-axis where positive roll is roll to the right, negative roll to the left. Yaw is a

rotation around the Z-axis. Positive yaw is defined to be motion to the right, and

negative yaw to the left. In the lunar lander pitch is controlled by the spacecrafts

gimbaled descent engine, called thrust-vector control (TVC) and so is largely unaffected

by firings from the RCS thrusters.

The configuration for this test case was drawn from conceptual designs for the

next lunar lander[50]. In this configuration, there are 16 RCS thruster located in four

clusters of four around the spacecraft. Two thrusters on each cluster are oriented in the

Z-axis and can affect pitch behavior when not overshadowed by the descent engine.

The other two thrusters on each cluster stick out at an angle to the X and Y axes and can

affect both the roll and yaw angles of the spacecraft which are coupled due to the

dynamics and this physical orientation. In order to maintain the proper stable attitude

during descent to the lunar surface, the thrusters fire in short bursts in pairs on opposite



sides of the spacecraft. The spacecraft axis convention and thruster configuration are

shown below in Figure 7. The thrusters are fixed and cannot be individually pointed.

Each thruster can produce approximately 100 lbs of force.

+Y V up-
("starboard") ("Caft")

+X RCS Thruster Pod
(forward") s
(crew windows)

Windows -Y

+Z
("down")

Figure 7: Square configuration of RCS thruster pods around lunar lander (left), full lunar lander with
axis definition and close up of RCS Thruster pod (right)

Fuel System: The RCS uses hypergolic fuel technology for propulsion, which

consists of a liquid fuel and oxidizer that combust on contact with each other, requiring

no ignition mechanism and allowing an indefinite storage period as long as they are

kept separate. The fuel for the RCS is liquid monomethyihydrazine, designated MMH.

The oxidizer is nitrogen tetroxide designated NTO. The thruster system is fed by fuel

pumps in order to keep the fuel/oxidizer ratio at the correct level. A conceptual

schematic of the RCS that was modeled for the experiment can be shown below in

Figure 8.



Figure 8: Conceptual schematic of the RCS including fuel tanks, thrusters and fuel pumps

The system is designed to consume approximately 460 kg of total RCS fuel for

both the descent to the surface and the return ascent to lunar orbit[50]. Half of this

should be remaining at touchdown in order to make a safe return to lunar orbit. Four

different failure conditions plus normal operating conditions were presented to subjects

during the experiment and are discussed in detail below.

Fuel pump failure: This failure would result in the loss of an entire cluster of four

thrusters. Each cluster of thrusters is equipped with one fuel pump installed in the fuel

line, which branches to feed each of the four thrusters individually. If a fuel pump were

to seize or stop working, this would result in fuel starvation for an entire cluster of

thrusters, rendering them inoperable. The spacecraft would exhibit deviations in roll

and yaw in the direction of the failed cluster of thrusters as other thrusters on opposite

sides of the spacecraft continue to fire as planned and are not compensated for by those



thrusters which are now non-operational. The fuel behavior would remain normal with

the exception of a few additional burns necessary to correct the deviations in attitude

that result from the loss of the four thrusters. With system weight a prime

consideration, it is unlikely that there are auxiliary pumps on board, and thus a failed

fuel pump would require increased compensation from the other thrusters in order to

maintain proper landing attitude.

Fuel leak: This failure could result in a mission abort, as fuel is a critical resource

for the return to lunar orbit. A leak will appear only in the cockpit fuel gauge. It should

not cause any attitude deviation, but will affect the spacecraft's center of mass, which

can affect its dynamics. If a leak occurred, the fuel gauges would drop linearly without

any commanded burns. Typical fuel system behavior is a step function, with each

thruster that fires creating a small step down in the fuel level. Depending on the

trajectory, there may be long periods of time where there is no fuel decrease because

there are no burns occurring.

Valve Failure: This failure mode could result in severe vehicle instability and

possibly a loss of the mission. A valve failure is a very rare failure mode that could be

caused either by the build up pressure pockets in the fuel lines around a valve or a short

circuit in the valve. Either of these conditions, would cause intermittent thruster firings.

These intermittent thruster firings would induce a mild oscillation in the roll or yaw

directions which would slowly increase in magnitude as guidance attempts to correct



Since the intermittent firings are a random behavior, guidance would

always be one step behind in its corrections increasing the magnitude of the oscillation

slowly over time. The additional thruster firings and the compensation to damp out the

oscillation and return to stable flight would cause fuel to decrease in a step fashion that

depended on the number of random thruster firings.

Thruster Failure: This failure, modeled as a continually firing thruster, would

result in a persistent deviation in roll and yaw that would be compensated for by

continual firings from opposing thrusters. This would cause not only attitude

deviations but a decrease in fuel similar to a fuel leak since at a minimum the stuck

thruster would be continuously burning fuel. This failure was intentionally selected to

be similar in its symptoms to a fuel pump failure. Deviations in roll and yaw for these

two failures could look almost the same to the human operator. The distinguishing

factor between the two failure modes is the fuel behavior. The gradual linear fuel

decrease that occurs when a thruster is stuck on does not occur in a fuel pump failure,

which burns fuel normally.

All of the data for each of these failures was taken from a high fidelity MATLAB

simulation of the descent trajectory of a lunar landing spacecraft. The dynamics were

altered in a simplified linear fashion to reflect the given failure mode. All of the failures

could be detected and identified using three parameters: roll, yaw, and fuel quantity.

RCS failures can have a significant impact on the success of the mission. Depending on

the oscillation.



the failure, the consequences of such system failures can be relatively minor such as

additional compensation from other thrusters, or could be serious and require

immediate landing or abort to preserve the crew and the spacecraft.

5.3.2 Task

The experimental task was a supervisory control task, where the subject was

monitoring the progress of an autopilot conducting the final approach to landing of a

lunar lander spacecraft to a specific landing aimpoint. Each scenario started with the

subject being presented a screen as shown below in Figure 9.

Figure 9: Display presented to subject at the start of each scenario

This screen allowed the subject to start each scenario when they were ready by clicking

the "OK" button. The scenario would then begin to dynamically update. The subject's

responsibility was to detect and identify failures that occur in the RCS as described



above. It was also possible for no failure to occur and the system to perform normally. If

a failure was detected the subjects were instructed to press the "Failure" button

indicated by the red circle in Figure 10.

Figure 10: Failure button to be selected when subjects detected a failure

Once the failure was detected, subjects were then asked to diagnose the failure as one of

the four predetermined types or to cancel their detection decision if they felt they had

made an error. This was done by a series of five buttons on the emergency procedures

panel which activated after a the failure button was pressed. The emergency

procedures panel is shown in the red oval below in Figure 11.



Figure 11: Failure identification panel where a subject selected a button to diagnose a failure after
detection

Once the failure was diagnosed, the scenario ended automatically and the next scenario

for that particular subject was automatically loaded by the simulation. The subjects

were returned to another screen where they could select "OK" when they were ready to

begin the next scenario as shown initially in Figure 9 above.

A trend information display shown below in Figure 12, was displayed in half of

the scenarios to compare the impact of this additional information on subjects'

performance.



Figure 12: Trend information display shown to each subject during half the scenarios

Three different trajectories were used to prevent the detection task from becoming

trivial through subjects rapidly learning the failure signatures and normal trajectory

pattern for a single trajectory over many scenarios. For each trajectory 20 scenarios

were developed, 4 of each failure condition plus normal, for a total of 60 scenarios

overall. The monitoring task was 60 seconds in duration for each scenario. Scenarios

were blocked in groups of 30 based on the two information conditions described below,

and the subjects were counterbalanced and randomized as to whether they received one

or the other condition first. Each subject saw all 60 scenarios. Within the blocks of 30

scenarios, scenarios were evenly divided between trajectory and failure type such that

there were two of each combination of these factors, and the scenarios were randomized

within these blocks. Failures occurred randomly between 10 seconds and 50 seconds so

that subjects still had enough time to make a decision if the failure occurred late.
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Below are short descriptions of the experimental factors:

Trend Information Conditions:

- Not Present: In this condition the operators was presented with only the

primary flight display as a means of detecting and diagnosing system failures.

The trend screen was present on the monitor but is blank grey. The primary

flight display is shown in Figure 13 below.

Emergency Procedures
F-1 Leak

Figure 13: Primary flight display shown to subjects for every scenario

- Present: The trend information was added to the primary flight display on a

secondary monitor which the subject may cross reference or utilize at their

discretion in order to detect and diagnose failures. The trend information was

updated at the same rate as information on the primary flight display. The trend

display is shown in Figure 14 below.



Figure 14: Trend display at scenario completion

System States:

- Failure: The system encounters one of the four failure conditions described
above, with corresponding symptoms displayed on either the primary flight
display or both displays depending on the information condition.

- Nominal: The scenario proceeds from start to finish with no failure. This is a
control condition to ensure that people are not able to cheat the experiment by
instantly declaring a failure at the start. It also attempts to remove subjects'
expectancy that a failure will occur in every case which could bias the results.

Trajectory Types:

- Shallow: The shallow trajectory is a long range, low altitude trajectory which

uses more fuel in a large burn at the beginning of each scenario.

- Steep: The steep trajectory is a short range, high altitude trajectory that is much

more fuel conservative, but requires an additional large burn at the end in order

to maintain stability as it decelerates.



- Nominal: The nominal trajectory has a blend of these characteristics, with a small

burn exhibited at the scenario outset, and a larger burn towards the end similar

to the steeper trajectory in order to stabilize during deceleration.

Independent Variables

- Trend Information Condition

o Not Present
o Present

- System States

o Failure
- Fuel Leak
- Fuel Pump Failure
- Thruster Failure
- Valve Failure

o Normal
- Trajectory

o Shallow
o Steep
o Nominal

Dependent Variables

- Detection/Diagnosis Latency

- Detection/Diagnosis Accuracy

- Judgment Consistency
- Lens Model Achievement

Below in Table 1 is the test matrix for all trajectory types. There are ten cases

for each trajectory type and one replication of each of these conditions to produce 60

total scenarios.

Table 1: Experimental test matrix for all three trajectory types
Not Present Present
Leak Leak

Fuel Pump Fuel Pump



Thruster Thruster
Valve Valve
Normal Normal

5.3.1 Subjects

After conducting an a priori sample size calculation for a power of 0.8, a

minimum of 24 subjects was required. The total number of subjects tested was 28,

which should provide robust statistical results. The subject pool included 19 males and

9 females, ages 21-57, recruited from the Charles Stark Draper community. In order to

ensure that no experience bias affected the results, because the display was based on a

modern glass cockpit, subjects with little to no flight experience were preferred. Two

subjects with flight experience were tested and their data was cross checked and no

significant difference was found. Subjects were also asked to report their use of flight

simulators and any experience that they had with spacecraft systems.

5.4 Procedure

Subjects first completed an informed consent form and a background

questionnaire that gathered their demographic information. Next, they completed a 20

minute, computer-based PowerPoint tutorial that outlined the experimental tasks,

explained the software interfaces, described the RCS, and covered all possible system

states (See Appendix C: Experimental Consent Forms and Training Materials). Subjects

were given a cheat sheet that listed the failures and their symptoms in bullet format,



and told that they could take notes on this sheet while they were viewing the tutorial if

they so chose.

The subjects then completed a series of five interactive practice sessions (one

with each failure type plus normal) in the experimental task environment. The practice

sessions were active trainings in which subjects detected and diagnosed a system failure

with the experimenter present for feedback and so they could ask any questions they

had regarding the interfaces and the information presented to ensure they were

comfortable before proceeding. During practice, important functionalities

interfaces were explained and the subject was given the opportunity to view any of the

trials over again if they desired.

Each subject then completed 60 full task scenarios in blocks of 30 with a 5 minute

break in between blocks. After the last set of scenarios, subjects took part in a post-

experiment interview to gather feedback about the experiment, their judgment

strategies, the information they felt was most helpful, and how much learning they felt

took place. These interviews were audio recorded for future data processing. The

experiment was conducted over a period of 12 days, each session lasting approximately

two hours.

5.4.1 Apparatus and Graphical User Interface

The experiment was conducted at Draper Laboratory. Participants monitored the

scenarios on two 17" monitors situated directly next to one another and pressed a

of the



button on the lower portion of the primary flight display when they detected and

identified a failure. A standard keyboard and mouse were available on the desk. The

room contained one other desk for the experimenter to observe and was otherwise

cleaned of all other information. The data was refreshed to the screen at a rate of 25

Hz, displayed to participants using the graphical user interface described in detail in

Appendix B. On the screens, the primary flight display was located flush with the

upper right corner of the left monitor, and the trend information display was located

flush with the upper left corner of the right monitor. This was done so that they would

be close enough to scan but also not collocated on the same screen.

The graphical user interfaces (GUI) were implemented in the Python

programming language. Each of the GUIs was implemented so that all of the available

data and time was recorded in a data file for later analysis. The GUIs included button

press functions that allowed the user to start each scenario at their own discretion when

a pop up box indicated that they could move to the next scenario. Buttons were also

included at the bottom of the display to indicate that a failure had been detected, and

then diagnose the failure as one of the four predetermined failure types or cancel their

detection decision.

5.4.2 Data Collection

The values of each parameter presented to the subject along with the time stamp,

and decision at each decision point, indicated by a button press, were recorded in a text



file for each subject and each scenario. These parameter values provide the cue data

that will be used in the Lens Model for data post processing to determine judgment

consistency, achievement, and subject's judgment strategy[5]. Latency is the difference

from the time of failure injection, which was fixed for each individual scenario, to the

time the subject identified a problem via a button press on the interface. Detection

accuracy is based on whether a failure was actually present or not and the subject's

response. Diagnosis latency is the time difference between the detection of a failure, and

when it is categorized as one of the four possible failure types. This is calculated by the

difference in time between the two button presses on the interface. Diagnosis accuracy

is determined by which button was pressed, compared to the true failure condition.



6 Data Analysis and Results

6.1 Purpose for Analysis

The purpose for the analysis was to investigate the hypotheses regarding the

effect of trend information on operator failure detection and diagnosis performance.

Performance is defined by operator latency and accuracy. Latency is the time difference

between either the introduction of a failure or its detection, and the corresponding

detection or diagnosis. Accuracy is determined by whether the subject's decision

matched the actual state of the environment. Lens model parameters like decision

consistency and judgment achievement, will also be evaluated as performance metrics.

Improved performance results in decreased latency and increased accuracy,

achievement, and decision consistency.

Another purpose for the analysis was to calibrate the Lens model by using it to

post process dynamic data. This involved coding the dynamic trend information into

the model. This has not been done previously even in dynamic cases where the Lens

model has been applied. In order to represent the dynamic nature of trend information

in the model, it was assumed that subjects infer the size of the deviation from normal

that occur during a failure from the trend display. It was assumed, and supported by

experimental observations of subject behavior, that larger, more dramatic deviations

from an operator's normal mental model would typically generate a quicker and more

urgent response because they are dramatic and hence appear more serious to the



operator. In order to evaluate this intermediate cognitive processing of the trend

information and its impact on subject decisions, the dynamic information for use in the

model was reduced to a ratio of the total visual display space which is taken up by any

deviations from normal. A figurative representation of this is shown in Figure 11. This

type of display was not actually shown to subjects in the experiment.

Figure 15: The area of a deviation is the integral between the normal trajectory signature (top curve),
and the failure case (bottom curve) from the scenario start to the time of decision indicated by the

white line.

Each approach type has a normal signature for each parameter that it follows

when no failure is introduced. These normal scenarios are the baseline normal for this

calculation. The percentage of the display taken up by the deviation is then determined

by taking the integral between the current trajectory and the normal scenario. This area

is divided by the area of the entire trend graph axes for that particular parameter to give

the percentage of visual area of the deviation. This representation of dynamic trend

information strives to capture the impact the deviation had on the operator's response.



6.2 Analysis and Results

The analysis was designed to investigate the effects of trend information on

subjects' detection and diagnosis latency and accuracy, as well as Lens model

achievement and consistency data. Analysis was conducted using a combination of

SPSS 15.0 Statistical Software Package and MATLAB. Other factors that also influenced

the results included the approach type, failure type, the order the subject saw the

different scenario pairs, and the whether they saw the trend information in the first

block or the second block of experimental trials. These different components of the

experimental design were evaluated to determine if they had a statistical effect on the

results. Each of the steps of this analysis is discussed in detail below for each type of

data collected. Additional analysis results in support of the discussion and conclusions

can be found in Appendix G.

6.2.1 Latency Data

The first dependent variable was latency. Initially, the raw data was examined to

predict the results of the statistical analysis. After drawing these initial conclusions it is

important to support them with the appropriate statistical tests. Since latency is a

continuous variable, parametric statistical techniques are most appropriate. The

primary technique was either a Univariate or repeated measures ANOVA (Analysis of

Variance), which are special cases of regression. First the data were cleaned so that,

outliers and other invalid cases didn't skew the results. Then the data was examined



for normality, homogeneity of variance, and independence. If all these criteria were

met, a Univariate ANOVA model with multiple factors was used to determine the

significant factors and their interaction effects. If the assumptions were not met, data

transforms were applied to help with normality and homogeneity. If the data could not

be improved sufficiently, then nonparametric testing was used. If independence was

violated, the simpler Univariate model was replaced with a repeated measures ANOVA

model. This ANOVA is used when each subject is exposed to multiple levels of an

experimental factor, meaning the observations for each experimental factor are not

independent since more than one factor was observed by the same subject.

6.2.1.1 Detection Latency

For detection, all misses, false alarms, and correct rejections were cleaned from

the data. Misses are scenarios where a failure was present but it was not detected. False

alarms are defined as detecting a failure where none was present. Correct rejections are

normal scenarios where no failure was present and the subject never detected a failure.

Figure 12 below shows a pair of box plots of latency data broken up by whether it was

achieved with or without trend information present. From this plot, there appears to be

a significant effect for trend information which appears to decrease the overall mean

latency. Significant effects for the type of failure and the approach type were also

expected, as these affect the subjects' perception of "normal", which is a critical for

developing a mental model to detect deviations from normal system behavior.
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Figure 16: Data suggesting that trend information has an effect on detection latency.

This raw latency data failed to meet two primary assumptions: normality,

homoscedasticity. The cube root transformation was used to give the data both a

normal distribution and homoscedasticity. The results from running a Univariate

ANOVA on this transformed data are presented in more detail in Appendix G. As

expected, history, failure type, and approach type all had highly significant effects

(p<0.0005). The experimental block, which indicated whether subjects saw trend

information first or second, did not have a significant effect (p=.924) and neither did the

order in which the subjects saw each pair of scenarios (p=.6 2 4 ), indicating that there was

no significant learning effects for detection.



6.2.1.2 Diagnosis Latency

Any cases where a diagnosis decision was not made were eliminated from the

diagnosis data. These were cases where subjects detected a failure but did not make a

diagnosis before the scenario time ran out. In examining the raw diagnosis latency data,

Figure 11 shows the latency as it was broken up by whether trend information was

present or not.
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Figure 17: Data suggesting that trend information has no significant effect on diagnosis latency

This box plot of the data does not suggest a significant effect for trend

information. Other expected effects include the failure type and approach, which are

important since some failures and trajectories were intentionally selected to be easier to

diagnose than others, and hence should have a significantly lower latency. The data is

homogeneous, but not normal or independent. Therefore it is inappropriate to use a

repeated measures ANOVA was used. ANOVA is robust to departures from normality

87

. ....... . .. .... .. ................................... I .. .........................................



but not homogeneity of error variance, so no data transformation was necessary.

Detailed results are shown in Appendix G. As expected there was no significant effect

for the presence of trend information (p=0.722). As expected, there was a significant

effect for both failure type (p<0.0005) and approach (p=0.024).

6.2.2 Accuracy Data

Accuracy is determined by whether the subjects' decisions correctly matched the

actual state of the environment. Since this decision only has two possible categories,

correct or incorrect, accuracy data ends up being binary, and does not meet ANOVA

assumptions and so nonparametric testing was used. For simple single factor analysis

with more than two levels, like failure type and approach type, the most appropriate

test is the Kruskal-Wallis H test, which is essentially a nonparametric ANOVA.

However, this test only evaluates one independent variable at a time. It was used

primarily to get a sense of what to expect from further more inclusive analysis. In order

to create a nonparametric model with multiple factors and interaction effects, binary

logistic regression must be used. The regression model was built using a stepwise

forward likelihood ratio procedure which checks at each step for variables that add

significant effects to the model and adds those variables into the regression model until

it converges on a solution that is the optimal predictive model for the given data.



6.2.2.1 Detection Accuracy

The inherent trends in this data are best observed by a bar graph of the percent

correct versus the presence of trend information as seen in Figure 14 below.
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Figure 18: Detection accuracy results showing no significant effect for trend information

Since these percentages are fairly close together whether or not trend information

was present, no significant effect on detection accuracy was expected. Significant

effects were expected for both failure type and approach type because these factors are

important to how subjects differentiate between normal and failure conditions. Some

failure types and approach types have specific symptoms or characteristics that make

them easier or harder to detect which would give the failure and approach type

significant influence. A table of the initial Kruskal-Wallis tests performed is shown

below in Table 2.



Table 2: Factor Effects for Detection Accuracy Data (Significance: p<0.05)

Factor Trend Failure Approach Block Order
Type

Kruskal-Wallis Significance 0.622 0.000 0.018 0.806 0.010

As expected, trend information did not show a significant effect, while failure

type and approach type were both significant. While the block was not significant, the

order that participants saw the pairs of scenarios did have a significant effect which

suggests that participants learned to detect a certain failure/trajectory combination

better with time, i.e. they were more accurate at detection the second time they saw the

same conditions, shown in Figure 15.
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Figure 19: Results indicating a significant effect on decision accuracy for order

The regression model confirmed these Kruskal-Wallis results and also showed

which specific trajectories and failure types were significant over the others.
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Figure 20: Results showing the effect of failure type on detection accuracy

As for individual failures, thruster and valve failures were significantly easier to detect

accurately than the other types of failures. The shallow trajectory appears to have a

negative effect on detection accuracy, indicated by a negative coefficient estimate (B=-

0.489) for this trajectory type. The regression analysis agreed with the Kruskal-Wallis

tests that the trend information had no significant effect. The detailed table for binary

logistic regression, using a forward stepwise model is presented in Appendix G.

6.2.2.2 Diagnosis Accuracy

The diagnosis accuracy data shows a different trend as shown in the bar chart of

the percentage correct versus the presence of trend information in Figure 21 below.
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Figure 21: Diagnosis accuracy data showing a significant effect for trend information

The trend here implies a large difference between trend information conditions.

When trends are present, there are almost 10% more correct diagnoses, indicating that

trend information has a significant positive effect on diagnosis accuracy. Significant

effects for failure type and approach are expected, since some failures are intentionally

easier to detect and diagnose than others. A table showing the results of the Kruskal-

Wallis tests is shown below in Table 3.

Table 3: Factor Effects for Diagnosis Accuracy Data (Significance: p<0.0 5 )

Factor Trend Failure Approach Block Order
Type

Kruskal-Wallis Significance 0.000 0.000 0.092 0.079 0.079

As expected there were significant effects for both trend information and failure

type. Both the block and the order that the scenarios were presented were marginally



significant, indicating that for the diagnosis task specifically, there may be some

important learning effects over time.

A table of the regression results in Appendix G shows that two failure types,

thruster (B=-1.804) and pump failures (B=-1.101), had negative effects on accuracy, while

valve failures were easier to diagnose accurately. This is supported by the bar chart

below in Figure 22.

Pc 600%

Percent Correct

Figure 22: Results showing the effect of failure type on diagnosis accuracy

Pump and thruster failures are very similar in their symptoms and so this drop in

accuracy seems plausible. There are also significant two way interactions in the model

that suggest that history was significant in helping diagnose some failure types but not

others, specifically pump and valve failures.

6.3 Lens Model Achievement and Consistency Data



The achievement and consistency values were collected by running each

subject's data, with and without trend information separately, through the

implemented Lens model code. These two parameters are part of the implementation

output along with other Lens model parameters discussed earlier. This data was then

evaluated using a repeated measures ANOVA.

6.3.1 Detection Achievement and Consistency

The Lens model achievement data is shown below in Figure 23. There is no clear

trend which is supported by the lack of statistical significance for detection accuracy.
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Figure 23: Detection achievement data showing no effect for trend information

Below in Table 4 is the significance of trend information from a repeated

measures ANOVA on Lens model achievement, consistency and other parameters.

Table 4: Table showing the effects of trend information on Lens model output parameters for
detection (Significance: p<0.05)

Parameter Achievement Consistency Predictability Linear Unmodeled Skill
Knowledge Knowledge Score
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RM ANOVA 0.995 0.001 0.000 0.447 0.531 0.578

Significance

There was no significant effect on achievement, which is not surprising given

that achievement is similar to overall accuracy, and trend information did not make a

difference for detection accuracy. Consistency and environmental predictability on the

other hand did show significant improvement with the addition of trend information.

6.3.2 Diagnosis Achievement and Consistency

Given that trend information had a significant effect on diagnosis accuracy

significant effects for both achievement and skill score are expected. Since it also

seemed to improve operator judgment consistency for detection, it seems reasonable to

expect a significant effect for diagnosis as well which is predicated on detection. Figure

24 shows the achievement data.
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Figure 24: Diagnosis achievement data suggesting a possible effect for trend information



Table 5 shows the ANOVA results for the Lens model parameters for diagnosis.

Table 5: Table showing the effects of trend information on Lens model output parameters for

diagnosis (Significance: p<0.05)

Parameter Achievement Consistency Predictability Linear Unmodeled Skill
Knowledge Knowledge Score

RM ANOVA 0.170 0.032 0.054 0.153 0.474 0.177
Significance

It was surprising to find no effect on achievement and skill score. For consistency

there is still a significant effect, and so it seems that trend information improves a

subject's ability to apply the same diagnosis strategy consistently versus no trend

information. Environmental predictability was marginally significant, indicating that

trend information improves the overall predictability of this decision environment.

6.4 Detection False Alarm Data

The last question raised from the data concerned the number of false alarms. It is

important to evaluate whether trend information lowers the false alarm rate. In order

to answer this question, the number of false alarms for each participant with trend

information and without was calculated. Graphing these values as shown in Figure 25

below, suggests that there may be a significant effect on the number of false alarms.

Trend information actually produced an increase in the number of false alarms for 75%

of subjects.
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Figure 25: Results suggesting a trend towards increasing numbers of false alarms with trend
information

The full results of the ANOVA can be found in Appendix G. The effect of trend

information on the absolute number of false alarms was marginally

(p=0.082). Given the overwhelming majority of subjects who experienced a negative

trend, this is surprising. With more observations it is possible that this effect could

become significant, showing an overall negative impact on the false alarm rate.

6.5 Discussion

6.5.1 Detection

For detection trend information explicitly displayed to the subjects was helpful

in reducing detection latency. It did not make any significant difference on the accuracy

of detection or the occurrence of false alarms.

It is worth examining each of the results a little closer to understand what the

results might suggest on a larger scale. For detection latency, the original hypothesis
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was supported by a significant effect. Plots of the mean latency for each failure and

approach type shown below in Figure 26 indicate that trend information decreased

detection latency for all failure types for steep trajectories, and all failure types except

fuel leaks for both nominal and shallow trajectories. This was surprising for nominal

approaches since their fuel signatures are similar to a steep approach.
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Figure 26: Results showing the combined effects of trend information, approach, and failure type on
detection latency

Steep and nominal trajectories burn less fuel and have longer periods of time

where no burns occur which would make detecting a leak easier. Shallow trajectories,
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on the other hand, exhibit a large RCS burn at the very beginning of the section of the

trajectory that is being monitored and more burns in general. Although the subjects

were trained that this would occur, and reminded of it by the experimenter in practice,

this was often falsely detected as a leak early on in the experimental trials as they were

learning what constituted normal system behavior. Leaks also appear as more gradual

deviations from normal which would have encouraged subjects to watch the historical

information longer to confirm their suspicions before detecting the failure.

In terms of detection accuracy, the trends did not have an effect. This indicates

that participants can gain an accurate mental model of what "normal" looks like for this

task, and apply it, with or without the additional information. It does not improve their

ability to see and understand deviations from normal, just the time it takes for that to

occur. The deviations in system parameters would have been visible at the same time to

the subject whether they were monitoring the trend display or the primary flight

display, as long as they recognized the deviation in both cases, the accuracy would not

be affected.

For false alarms, though the effect was marginally significant, it is important to

look at the direction of that effect. A plot of the mean number of false alarms, shown in

Figure 27 suggests that the effect of trend information is negative. Subjects typically

had more false alarms with the trend information present than without it.
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Figure 27: Results suggest an increase in the number of false alarms with trend information present

This is not surprising given that in the trend information condition, subjects are

presented with the historical trends of each parameter on the flight display on a second

display of equal size. This is twice as much information as they have in the other

condition with only the primary flight display. Therefore, it is possible that there are

more "trigger" states which could cause them to see something they think isn't right

and declare that a failure has occurred even if that is not true. The additional

information could cause them to over analyze the data being presented and second

guess their default condition of normal. Also, because the failure rate in this

experiment must be so much higher than in a real world system in order to prevent

boredom and gather valuable decision data, the subjects are primed to look for a failure

condition, even though they know that normal scenarios are present. The importance

of this trend must be evaluated in light of the consequences of false alarms versus
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missed detections. There is a tradeoff between these two conditions in the sensitivity of

any detector. Higher numbers of false alarms can indicate simply that the detector is

more sensitive and should result in a corresponding decrease in missed detections

which can be equally problematic depending on the system and task at hand.

6.5.2 Diagnosis

It seems that historical trend information explicitly displayed to the subjects was

helpful in improving diagnosis accuracy. However, it did not make any significant

difference on the diagnosis latency.

The significant effect on diagnosis accuracy is expected because diagnosis is a

complex decision amongst several possible outcomes. Additional information that

explicitly displays the symptoms of a failure over time should be valuable to an

operator in correctly assessing whether or not the failure was of a particular type.

Accurate diagnosis requires the human to keep track of failure symptoms, and store

some sort of mental record of how the system parameters have evolved over time. The

trend display eliminates this extra cognitive effort, decreasing the possibility for error

and improving accuracy.

When trying to understand lack of effect on latency, it is helpful to begin by

looking at a plot that shows the mean latency with and without trend information for

each failure type and approach type shown below in Figure 28.
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Figure 28: Results of the combined effects of trend information, approach, and failure type on
diagnosis latency

Latency appears to get slower when historical information is provided for

shallow trajectories and some failure types on other trajectories. The majority of

subjects commented in post experiment interviews that they preferred the trend display

over the primary flight display because they felt like they better understood the

evidence available. It seems logical then that in order to make a more accurate

diagnosis, they would use this extra information and observe the system behavior for a

longer period of time to be certain before making a decision. However, if they observed

it for too long, the scenario time ended without them having made a decision and there
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was the risk of the operator getting "tunnel vision" and forgetting about other tasks and

constraints like time.

6.5.3 Lens Model Parameters

Lens model parameter data was derived by post processing the cue information

and inferred deviation information through the implementation of the Lens model both

with and without trend information present. This was done separately for both

detection and diagnosis. The two key parameters were achievement and decision

consistency, however other parameters that showed significant or marginally

significant effects also deserve consideration.

For detection, it is not surprising that there was no effect for achievement which

is effectively another measure of decision accuracy, since there was no effect for trend

information on detection accuracy. However the significant effects on consistency and

environmental predictability make a positive case for trend information. Increasing

judgment consistency is important for operator training, and indicates that if operators

could be trained to use the most accurate judgment strategy, then they could apply it

more consistently with trend information present. This improves system safety and

increases the likelihood of mission success.

The data from the Lens model for diagnosis showed significant effects for

consistency only. Predictability, linear knowledge, achievement, and skill score, were

all marginally significant. The improvements in consistency and predictability are
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valuable, if operators can be trained to utilize a more accurate judgment model, they

can predict the environment more accurately and more consistently. Since achievement

measures how well the human judge does at predicting the environment, this data

should have reflected similar results to the diagnosis accuracy data. It was surprising

that it was not significant. One possibility for this is that the regression model used in

the Lens model didn't have a sufficient amount of data to capture the full effect of the

trend information. For detection, because of the nature of the decision, there are a full

30 cases for each subject with and without trend information. This meets the rule of

thumb for 5 cases per cue used[33]. For diagnosis, because some cases were detected

and never diagnosed, there were often fewer cases and hence did not meet this

regression rule of thumb for many of the subjects, potentially yielding a less accurate

model.
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7 Conclusions and Future Work

7.1 Conclusions

A representation of the Lens model was selected to investigate the performance

impacts of displaying trend information to system operators in failure detection and

diagnosis. The experimental results revealed that the addition of trend information has

some human performance benefits for failure detection and diagnosis tasks.

While both speed and accuracy can be viewed as important performance metrics,

improving one side of this tradeoff while the other remains constant still yields overall

performance benefits. For detection, having trend information available yielded faster

decisions, but did not make operators more accurate. For diagnosis, the presence of

trend information led to slightly longer decision times, but made operators more

accurate at diagnosing the problem. These two significant results are important for

several reasons. First, because diagnosis is predicated on detection; the faster that a

failure can be detected, the sooner diagnosis, and the entire failure resolution process

can begin. Detection is the first step in the process, which suggests that faster detection

could lead to overall faster failure diagnosis and resolution. In general, the faster a

failure can be resolved, the smaller its impact on the overall mission and system

performance. Next, accurate diagnosis is critical to successful human failure resolution.

If a failure is incorrectly diagnosed, then incorrect procedures for resolving that failure

may be executed. This can lead to other emergent system problems and fail to resolve
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the failure condition. This could cause the abort of the mission or the loss of crew or

equipment. Therefore, it can be argued that the performance improvements in

detection latency and diagnosis accuracy which are achieved by explicitly providing

operator's trend information about spacecraft system states are valuable results. The

addition of trend information displays could improve the performance and safety of

spacecraft systems with humans as monitors.

One consideration in adding trend information is that it seems to produce a

trend toward higher numbers of false alarms. Although the increase was not

statistically significant, it resulted in a higher false alarm rate for 75% of experimental

subjects. This trend towards higher false alarm rates may outweigh the human

performance benefits in domains such as health care, where false alarm rates are a very

important consideration. For many mechanical systems however, such as spacecraft

systems, the improvements in detection latency and diagnosis accuracy outweigh the

possibility of higher false alarm rates.

Lastly, the Lens model was found to be a useful and generalizable decision

making model for human failure detection and diagnosis. The Lens model fulfills all

the basic modeling requirements for the project and provides more information about

the decision environment and decision strategy than any of the other decision making

models from literature that were considered. It was calibrated through human subject
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experimentation and expanded it its ability to incorporate an operator's perception of

dynamic trend information in their decision making process.

7.2 Future Work

The experimental results regarding the impact of trend information on operator

failure detection and diagnosis performance could also generate some interesting

avenues for future work. The trend towards increased false alarms was surprisingly

not significant and these ambiguous results could be further examined to understand

why this occurs. One possible explanation is that a higher false alarm rate is the result

of an increase in cognitive workload. An increase in the amount of information

available, in this case trend information, may increase the operator's workload because

they now have more information to monitor and process. This increase in cognitive

workload may be the cause of the noticeably higher false alarm rate when trend

information is present. Conversely, a higher false alarm rate may also perpetuate a

cycle by then increasing the operator's workload as they attempt to diagnose and

resolve failures that are not actually present.

The Lens model parameter results were also ambiguous. Parameter results, such as

achievement, did not show significance where the human performance counterpart did

show statistical significance for trend information. There are several possible

explanations for this work, but one of them could become an interesting space for

future work. It is likely that this was partially the result of the most valuable cues not
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being selected either for presentation to the operator or for inclusion in the model.

Another set of cues may have generated a better regression model and may have made

the performance impact, specifically on achievement, more clear. It would be valuable

to have a framework for selecting representative cues that could provide the best

descriptive model of the environment, which would then theoretically provide the best

possible set of information to the operator for decision making. This process is

currently mostly trial and error and often requires significant resources to conduct

multiple experiments and determine the best feasible combination of cues. However, a

representative set of cues is critical in order to get an accurate picture of the human

decision making performance provided by Lens model parameters.

The Lens model has been used for decades in judgment theory and decision making

research and is a feasible and robust model that has recently been extended to dynamic

decision making tasks. Future work could utilize this model, when integrated with

other models of human performance and system dynamics, to examine system failure,

human failure, and combinations of the two. These complex system models could

provide insight into the downstream effect on overall system reliability and

performance with operator input as components in the system. These complex system

models could then be used as early-stage design tools that can aid in the design of

intelligent complex systems, by allowing engineers to create hypothetical test cases to
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evaluate system tradeoffs that affect both the human operator and the electro-

mechanical system configuration.
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Appendix A: Lens Model Implementation Validation

The Lens model was implemented in Mathematica's MATLAB 2009a as a generic

m-file. This implementation platform will allow it to be plugged more easily into the

Simulink modeling component of MATLAB and integrated with existing system design

and analysis tools for use in later closed-loop human system modeling.

In order to validate the implementation of the model, a test case was generated

based on a paper published by Bisantz A. M., et al. (2000) that involved a Navy aircraft

identification task in a dynamic task environment. A secondary validation was to have

the actual implementation, mathematical assumptions, and validation results examined

by a mathematician and MATLAB expert.

The first validation involves running a test case of known work using the model

code and another statistical software tool (SPSS) for comparison of results. Bisantz, et al.

(2000) was one of the closest works in literature, using the Lens model, which claims a

dynamic task environment. It is valuable to generate similar case data and run the

mathematics of the model in both programs to see if the MATLAB model, a widely used

statistical software package called SPSS, and the paper results all agree on the model

coefficients and correlation outputs.

Naval Aircraft Identification Example

After mathematical validation, a test case from a known work was generated to

validate the model code. The goal was to create a synthetic data set that was coded
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according to the same logic and task scenario as the data presented in the paper and

then compare results using both computer aided tools, and the results presented in the

paper[13]. The authors coded the cues in their Lens model based on standardized data

values of five different variables that described an aircraft approaching an aircraft

carrier: range, radar, IFF, speed, and altitude. The data was coded in the following

way[13]:

" Radar: coded as -1,0, or 1 depending on whether the aircraft had a hostile,

ambiguous, or friendly radar signature. If the radar was not turned on or not

requested by the participant, it was coded as 0.
" Altitude: coded as 0 if the aircraft was flying at 27,000 ft or higher (indicative of

commercial or non hostile aircraft) and 1 if the aircraft was flying lower than

27,000 ft (indicative of a military or hostile aircraft)
* IFF: coded as -1,0, or 1 depending on whether the IFF signature was hostile,

ambiguous, or friendly. The IFF was coded as 0 if it was not requested by the

participant or if the aircraft was identified further than 150 nm out from the

aircraft when IFF is unavailable. If the IFF was not turned on and the aircraft

was within 150 nm of the ship, it was coded as -1 as all aircraft exhibiting this

behavior were hostile.
" Speed: coded as 0 if the speed was more than 600 kn and 1 if the speed was less

than 600 kn. Aircraft flying slower than 600 kn were generally commercial

airlines and friendly, while aircraft exceeding 600 kn were military with the

exception of helicopters.
" Range: coded as 0 if the aircraft was within 150 miles of the ship and 1 if it was

further out than 150 miles. This bit of data was only included because if an
aircraft was within 150 miles and did not have the radar on then it was
considered hostile.
Since there are five cues present, following a general rule of thumb for multiple

regression, 50 synthetic data cases were generated, 10 per cue, in order to ensure an

accurate representation of the judgment and environment using regression analysis[33].

Once the data creation was complete, a multiple regression analysis was conducted in
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SPSS in order to see what the regression coefficients would be. This was then compared

to the results presented in the Bisantz et all (2000) paper and the output of the MATLAB

model using the same data.

Table 6 shows the beta-weights for the fully correct case using each of the

different methods and compared to the values presented in the paper for comparison:

Table 6: Beta-weights calculated for synthetic validation case and compared to Bisantz, et al. (2000)

Cue SPSS MATLAB model Bisantz
Altitude 0.450 0.450 0.45
Speed -0.201 -0.202 -0.2
Range 0.047 0.048 0.05
IFF 0.207 0.207 0.21
Radar 0.353 0.353 0.35

The slight differences in outputs are attributed to rounding errors and also the

fact that the data set that was created will not have the same cue values as the actual

data from the documented.
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Appendix B: Graphical User Interface Details

B.1 User Interface Development

The user interfaces used in experimentation were designed to follow the current

display "convention" or standard industry practice for aviation, which is in a sense the

field "closest" to spacecraft design. This jump was considered to be acceptable since the

astronauts in command of a lunar lander would also be aircraft pilots and these types of

displays would be familiar to them. Modem aircraft displays have also already been

investigated in numerous human factors experiments in literature. Spacecraft displays

are often modification of aircraft displays to begin with.

The displays were designed to be as simple a representation of the critical

system information as possible. Two user interfaces, seen below in Figure 29: Primary

Flight Display shown to all subjects for each trial and Figure 30, were implemented: a

primary flight display and a display of system parameter trend information.
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Figure 29: Primary Flight Display shown to all subjects for each trial

Figure 30: Trend Information display with same system parameters represented, shown to subjects for
half of the trials

In order to truly test the effect of the additional benefit of trend information, all

information was represented equally on both displays. If there was a question of which

display had better resolution, the primary flight display was always favored to have

higher resolution since this was the current conventional display and the effect of
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display type or display resolution was not the research question. Green was selected as

the primary color on the display in order to provide a good visible contrast on the black

and grey background and also to avoid using colors such as red which are traditionally

used to indicate warnings and problems. The font used in all the displays is Verdana 9

pt. This was selected

Administration's Human

based on its recommendation in the Federal Aviation

Factors Standard as the best "readable" font for digital

displays.

B.2 Information Displayed

The information presented on the displays is dynamic and changes throughout

the scenarios according to data generated from a high fidelity lunar landing simulation

which was modified in a simplified linear fashion to reflect specific failures. There are

six system state parameters represented on both the primary flight display and the

trend information display which are: Altitude, Range, Pitch, Roll, Yaw, and Fuel

Quantity.

The purpose of the experiment is to investigate the use of dynamic trend

information in human decision making strategies. It is important here to make a

distinction between implicitly and explicitly displayed trend information. Implicitly

displayed information is not directly given to the operator as a numeric value but

instead is inferred as a result of watching the instantaneous values of a dynamic system

parameter vary over time. This information is said to be "achieved" since it is mentally
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derived from the value of a separate parameter which is continually changing.

achieved information must be saved in the operators working memory in order to

create the trend of what has happened in the system in the past. Explicitly displayed

information is information which is given to the operator visually. The trend behavior is

visually available to the pilot rather than inferred by watching the altimeter update its

value continuously. Let's use the altitude as an example. The altimeter provides

explicit information about the current value of the spacecraft's altitude. It also provides

implicit rate information because as the spacecraft descends, the pilot can watch the

values on the altimeter change and infer whether he is descending slowly, rapidly, or

holding a steady altitude based on this observation. Exactly how fast he is descending

would require a more exacting mathematical calculation, however implicit rate

information may still be useful in his understanding of the current state of the world.

Each of these pieces of information must be stored in the pilot's short term memory in

the order that they made the observations for the pilot to be able to recall that they were

approximately 200 meters higher approximately 4 seconds ago. If the operator is

provided with explicit trend information, this would be akin to having a profile view of

the current descent profile of the spacecraft. In the context of this experiment, one

display contains explicit trend information and one does not. Implicit trend

information is always available to the operator.

B.3 Variable Definitions
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Altitude: Altitude above the lunar surface is altitude relative to the surface in the

positive Z-direction (surface=0 meters), determined by a radar altimeter. The unit of this

measurement is meters. Altitude ranges from maximum values of approximately 1100

m for shallow trajectories to approximately 1700 m for steep trajectories.

Range: Range is the horizontal or ground distance from the spacecrafts current

location to the designated landing point in the positive X-direction. The designated

landing point is the reference point at 0 meters. The unit of this measurement is meters.

Shallower trajectories have longer ranges of 3800 m, while steeper trajectories have

much shorter ranges of 1600 m.

Pitch: Pitch is the measurement of backward-forward rotation around the Y-axis

of the spacecraft. It is measured in degrees with positive (increasing) pitch being

indicated to the pilot as backwards motion in the negative X-direction. During the

spacecraft's pitch over maneuver the spacecraft is essentially going from 90 degrees of

pitch, on its back to 0 degrees of pitch in preparation for the terminal descent to the

surface.

Roll: Roll is the measurement of rocking motion about the X-axis of the

spacecraft. It is measured in degrees with positive (increasing) roll being indicated to

the pilot as rocking to the right, in the positive Y-direction. In general roll should

remain approximately 0 and less than 2 degrees with the exception of one large roll
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towards the end of the trajectory in order to give the crew a visual view of the

designated landing point.

Yaw: This is essentially a "heading" measurement for the spacecraft. Yaw is the

measurement of left and right motion around the Z-axis. It is measured in degrees with

positive (increasing) yaw being indicated to the pilot as a swing to the right in the

positive Y-direction. In general roll should remain approximately 0 and less than 2

degrees with the exception of a large yaw motion coupled with the large roll in order to

view the designated landing site.

Fuel: This is indicated in the cockpit as fuel remaining and is a measure of the

weight amount of fuel remaining in the RCS fuel tanks in kilograms. The lander begins

its descent with a total of 460 kg of RCS fuel and requires at least half of this for the

return journey. Fuel should decrease in small and possibly irregular steps depending

on when the spacecraft guidance computer requires burns from different sets of

thrusters. Each thruster uses approximately a quarter kg of fuel for a normal firing to

correct minor attitude errors.
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Appendix C: Experimental Consent Forms and Training Materials

CONSENT TO PARTICIPATE IN
NON-BIOMEDICAL RESEARCH

The Effect of System Parameter Time History on Human Judgment Performance

You are asked to participate in a research study conducted by Professor John Hansman,
Ph.D, and Rachel Owen from the Department of Aeronautics and Astronautics at the

Massachusetts Institute of Technology (M.I.T.) The results of this study will be included

in Rachel Owen's Master's Thesis. You were selected as a possible participant in this
study because of your access to Draper Laboratory and your level of experience in the

experimental domains. You should read the information below, and ask questions
about anything you do not understand, before deciding whether or not to participate.

. PARTICIPATION AND WITHDRAWAL

Your participation in this study is completely voluntary and you are free to choose

whether to be in it or not. If you choose to be in this study, you may subsequently
withdraw from it at any time without penalty or consequences of any kind. The

investigator may withdraw you from this research if circumstances arise which warrant
doing so.

. PURPOSE OF THE STUDY

This study is designed to investigate how humans use explicitly displayed time history

information about system parameters in order to help them detect and identify a failure
in a system. It is critical that human operators be able to quickly and accurately detect
system failures in complex systems for safety and reliability. This research intends to
explore human judgment strategies and the effect of specific information on the
accuracy, timeliness and consistency of those judgment strategies.

. PROCEDURES

If you volunteer to participate in this study, we would ask you to do the following
things:

You will start by completing an informed consent form and a background questionnaire
that gathers basic demographic information. Next, you will complete a computer-based
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PowerPoint tutorial that outlines the experimental tasks, and explains the interfaces you
will be using. This tutorial should take approximately 15-20 minutes.

Next you will complete a short interactive practice session in the using the
computer software to ensure you are familiar with the protocol and the displays. The
practice session will be an active training in which you will be asked to detect a system
failure with the experimenter present so you can ask any questions they have regarding
the interfaces and relationships among the information presented.

For the experimental trial, you will be asked to monitor an automated landing
approach in a lunar lander simulator. Half of the trials will contain time history
information and half will not. You should use all the information available to you to
make a judgment about whether or not the system is operating correctly. You will be
asked to press a specific button on the interface to indicate when you detect any kind of
system failure. You will then do your best to identify the failure out of four possible
failures you learned during training. These two tasks must be completed as quickly as
possible.

You will then complete 60 full experimental task scenarios. An experimental
scenario lasts approximately 1 minute. There will be a 5-10 minute break after the first
30 scenarios. You may take additional breaks as you feel necessary. After the last set of
scenarios, you will take part in a post-experiment interview in order to gather feedback
about the experiment, your judgment strategies, and the task scenarios which will last
approximately 15 minutes.

This study will last approximately 2 hours depending on how quickly you choose to go
through the scenarios.

. POTENTIAL RISKS AND DISCOMFORTS

There are no anticipated physical or psychological risks in this study. There is the
potential discomfort of dry eyes due to your being asked to monitor a computer screen
for an extended period of time. You may take breaks whenever you feel it necessary.

. POTENTIAL BENEFITS

While there is no immediate foreseeable benefit to you as a participant in the study,
your efforts will help provide insight into human judgment strategies, and how
information can be used by operators and monitors of complex systems in detecting
system failures.

. PAYMENT FOR PARTICIPATION
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No financial payment will be given for your participation. You will not receive a charge
number but you will receive two free AMC movie tickets.

. CONFIDENTIALITY

Any information that is obtained in connection with this study and that can be

identified with you will remain confidential and will be disclosed only with your

permission or as required by law.
You will be assigned a subject number which will be used on all related documentation

to include databases, summaries, and results. Only one separate master list of subject

names and numbers will exist, password protected on the internal server at Draper

Laboratory accessible only to members of the research team.

There is a post-experiment interview which will require a separate consent form. Please

read and sign the attached document entitled "Consent to Participate in an Interview".

. IDENTIFICATION OF INVESTIGATORS

If you have any questions or concerns about the research, please feel free to contact the

student investigator, Rachel Owen, by telephone at (617) 258-4494 or via email at

rlowen@draper.com . Her MIT faculty sponsor is Professor John Hansman who may be

contacted at (617) 253-2271, email, rjhans@mit.edu, and his address is 77 Massachusetts

Avenue, Room 33-303, Cambridge, MA 02139

. EMERGENCY CARE AND COMPENSATION FOR INJURY

If you feel you have suffered an injury, which may include emotional trauma, as a

result of participating in this study, please contact the person in charge of the study as
soon as possible.

In the event you suffer such an injury, M.I.T. may provide itself, or arrange for the
provision of, emergency transport or medical treatment, including emergency treatment

and follow-up care, as needed, or reimbursement for such medical services. M.I.T. does

not provide any other form of compensation for injury. In any case, neither the offer to

provide medical assistance, nor the actual provision of medical services shall be

considered an admission of fault or acceptance of liability. Questions regarding this

policy may be directed to MIT's Insurance Office, (617) 253-2823. Your insurance carrier

may be billed for the cost of emergency transport or medical treatment, if such services

are determined not to be directly related to your participation in this study.
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. RIGHTS OF RESEARCH SUBJECTS

You are not waiving any legal claims, rights or remedies because of your participation
in this research study. If you feel you have been treated unfairly, or you have questions

regarding your rights as a research subject, you may contact the Chairman of the

Committee on the Use of Humans as Experimental Subjects, M.I.T., Room E25-143B, 77
Massachusetts Ave, Cambridge, MA 02139, phone 1-617-253 6787.

SIGNATURE OF RESEARCH SUBJECT OR LEGAL REPRESENTATIVE

I understand the procedures described above. My questions have been answered to my

satisfaction, and I agree to participate in this study. I have been given a copy of this

form.

Name of Subject

Name of Legal Representative (if applicable)

Signature of Subject or Legal Representative Date

SIGNATURE OF INVESTIGATOR

In my judgment the subject is voluntarily and knowingly giving informed consent and
possesses the legal capacity to give informed consent to participate in this research
study.

Signature of Investigator Date
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CONSENT TO PARTICIPATE IN INTERVIEW

The Effect of Rate Information Display on Human Judgment Performance

You have been asked to participate in a research study conducted by Rachel Owen from

the Department of Aeronautics and Astronautics at the Massachusetts Institute of
Technology (M.I.T.). The purpose of the study is to understand the effect of rate of

change information on the humans ability to make accurate and timely decisions. The

results of this study will be included in Rachel Owen's Master's thesis. You were

selected as a possible participant in this study because of your access to Draper
Laboratory and your level of experience in the experimental domains. You should read

the information below, and ask questions about anything you do not understand, before

deciding whether or not to participate.

* This interview is voluntary. You have the right not to answer any question, and to

stop the interview at any time or for any reason. We expect that the interview will take

about 15 minutes.

" You will not be compensated financially for this interview.

" Unless you give us permission to use your name, title, and / or quote you in any

publications that may result from this research, the information you tell us will be
confidential.

e We would like to record this interview on audio cassette so that we can use it for
reference while proceeding with this study. We will not record this interview without
your permission. If you do grant permission for this conversation to be recorded on
cassette, you have the right to revoke recording permission and/or end the interview at
any time.

This project will be completed by 30 June 2010. All interview recordings will be stored
in a secure work space until 1 year after that date. The tapes will then be destroyed.

I understand the procedures described above. My questions have been answered to my

satisfaction, and I agree to participate in this study. I have been given a copy of this
form.

(Please check all that apply)

[ ] I give permission for this interview to be recorded on audio cassette.
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[ ] I give permission for the following information to be included in publications
resulting from this study:

[ ] my name [ ] my title [ ] direct quotes from this interview

Name of Subject

Signature of Subject

Signature of Investigator

Date

Date _

Please contact Rachel Owen at rlowen@draper.com or (617)
or concerns.

258-4944 with any questions

If you feel you have been treated unfairly, or you have questions regarding your rights
as a research subject, you may contact the Chairman of the Committee on the Use of
Humans as Experimental Subjects, M.I.T., Room E25-143b, 77 Massachusetts Ave,
Cambridge, MA 02139, phone 1-617-253-6787
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Interview Materials:

The purpose of this interview is to thoroughly understand the decision making process

and information used to make that decision. We will randomly choose one scenario
from each of the experimental conditions. All questions posed by the experimenter will

be in quotations and all other actions will be italicized. After the subject responds,
follow on questions may be needed to clarify a subject's response; these questions

cannot be predicted, but their content w2ill only be about the specific decision making
process or display content. All experimenter and subject responses will be recorded.

Start the audio recording. Experimenter will state subject ID for coding responses.

"For this part of the experiment, we're going to select a subset of scenario from the
experiment and discuss your response and how you made your decision. We're also

going to discuss your response to the experiment and any external factors you thought

influenced your behavior. Before we begin it would be appropriate to let you know
that these responses are confidential and it would help us greatly if you would be as
honest as possible in order to help us understand and improve our judgment models."

Show subjects the scenario card and bring up the interface and simulation for that scenario.

Walk me through a scenario and what you were looking at, and thinking about as you made your

decisions. (24, 19,38)

- Can you tell me why you made the decisions you made (remind them what their

decision was, failure, no failure and where the failure occurred)?

- On a scale from 1-10, where 1=no clue and 10=absolutely certain, how confident

were you in your detection of a failure? Why?

- On a scale from 1-10, where 1=no clue and 10=absolutely certain, how confident

were you in your identification of that failure? Why?

- Which of the displayed information did you find most useful in making your

detection decision? Diagnosis?

- It seems like your general decision strategy was: (in non technical terms

the experimenter will summarize the decision strategy that the subject has

expressed). Would you agree?

- What difficulties did you face in the decision making process?

- Was there any other information you would have found particularly helpful in

aiding your decision?
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The following questions will be asked of each participant after the scenarios are discussed.

- How did you feel in terms of your overall accuracy, were you confident in your

decisions? Did you feel you had enough information to make the decision?

- Did you find the task to get easier over time? (learning)

- Did you find that you preferred one type of information over another for your

decision making?

- How did you cope with failure cases that looked very similar in both display

cases?

- At what point during the experiment did you feel comfortable with what was

considered "normal"?

- Did you feel like there were any limitations that prevented you from performing

your best?

Reminder: Please no discussion of any classified material in your responses.
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Training Materials:

Failure Detection and Identification
in the Lunar Lander

Experimental Domain

. Domain: Lunar Lander
- The experiment is investigating failure detection

and identification while monitoring a lunar
landing under automatic guidance and control
technology
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Your Task
You are an astronaut aboard a NASA mission to

the lunar surface. The spacecraft lands
autonomously using the auto pilot and guidance
computer. Your task is to monitor a portion of
the descent trajectoiy, alert the rest of the crew,
and initiate emergency procedures in the event
that there is a system failure at this point in the
mission.

Task Details
- You will be monitoring a one-minute segment of

the spacecraft's approach phase as it nears its
final descent to the lunar surface.

- The lunar lander can approach the surface in any
one of 3 ways
= Steep Trajectory
= Nominal Trajectory
= Shallow Trajectory

- You will see all three trajectory types during the
experiment
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Spacecraft Approaches
Braking Maneuver

Steep approach

Normal approach

Powered
Descent
Initiation
(PDI)

Pitch-over
Maneuver

Monitoring
this part of

th

Shallow approach

Braking Phase

Approach Phase
Terminal
Descent
Phase

Trajectory Details
- The pitch-over maneuver indicated on the diagram

is a steady pitch transition from a pitch of
approximately 6o degrees to an upright orientation
which is indicated by a pitch of approximately o
degrees.

- This is the orientation the spacecraft needs to
descend to the surface.

- There should be very little yaw and roll motion
throughout the trajectory other than normal
disturbances due to the environment.

Disturbances greater than 2 degrees may indicate a
system condition
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Possible System Failures
- Failures may occur in the spacecraft's fuel and

reaction control system (RCS) within the last critical
minute of the approach phase. It is this system and
its affects on the spacecraft that you will be
interested in observing.

- The reaction control system is a set of thrusters
positioned around the spacecraft that produce small
impulses and control its orientation or attitude in
space. It is fueled using a liquid methane and
nitrogen tetroxide mixture.

- The RCS system has 460 kg of total fuel. Only 230
kg of this is allotted for the descent portion of the
mission.

Possible RCS Failure Cases

- Two failures will be associated with the RCS fuel
system, and two with the actual thrusters
themselves

- Fuel System Failures:
- Fuel Leak
- Fuel Pump Failure

- Thruster System Failures:
o Thruster Failure-Stuck On
o Valve Failure

- Now to look at the RCS system configuration....
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Physical Thruster Configuration
- The spacecraft has 4 clusters of 4 RCS thrusters

positioned in a square configuration
. Thrusters are fixed and cannot tilt individually
. Failures can affect a single thruster or an entire cluster

+X

Widndows

clw

-X

RCS Ivuster reed

RtCS Jets

PN r

RCS Propulsion Schematic
This system is mission critical for both the spacecraft's descent to the
surface and the return to lunar orbit

NTC NTO j
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Key System Components
Thrusters, in clusters of 4
provide propulsion for
attitude adjustment Fuel lines transport

hydrazine to thrusters

Typical System Behavior

- Tlrusters are aligned around the spacecraft to ensure that proper angles
and attitude can be maintained. They typically fire on and off infrequently
or at long intervals to correct spacecraft drift.

- The RCS fuel system typically sees fuel decrease in very small short bursts
as thrusters are fired or fractions of a second to make small attitude
adjustments. Fuel levels usually decrease in small step increments with
wide intervals where no burns occur. Shallow trajectories come in closer to
the lunar surface and at a longer range and hence require significantly more
fuel burn initially than do steep trajectories. This does NOT necessarily
constitute a failure.

- Attitude for this portion of the trajectory should be largely centered around
zero for roll and yaw.

- Altitude and Range should be decreasing as the spacecraft descends and
moves towards its designated landing point.

- Shallow trajectories burn a large amount of fuel at the beginning and then
stabilize, steeper trajectories have a larger fuel burn towards the end of the
scenario. These are not fuel leaks.
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Possible RCS Failure Cases

. Two failures will be associated with the RCS fuel
system, and two with the actual thrusters
themselves

- Fuel System Failures:
Fuel Leak
Fuel Pump Failure

. Thruster System Failures:
Thruster Failure-Stuck On
Valve Failure

Fuel Leak
- Problem: A rupture has occurred somewhere in

a fuel line or valve that is allowing fuel to leak
out of the system

. Symptoms:
Thrusters and fuel pumps are functioning normally;
stable RCS output
As a result, spacecraft attitude remains stable and on
cOurSe

Fuel will decrease at a consistent rate which is faster
than normal. Even if thrusters are not firing, fuel level
will still be decreasing
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Fuel Pump Failure

- Problem: A fuel pump on one cluster has seized and
stopped working

- Symptoms:
An entire cluster of thrusters will no longer be firing
because no fuel is being provided to them
Attitude will be noticeably affected because one full cluster
of thrusters is non-functional. There will be changes in roll,
and yaw as the other thrusters overcompensate and correct
for the failed cluster
Fuel will actually decrease in a mostly normal pattern, with
a few additional burns commanded by the guidance
computer in order to correct the attitude deviations

Single Thruster Failure
- Problem: One thruster in a cluster of 4 is stuck

on, it is continuously firing
. Symptoms:

Fuel will continue to decrease linearly at a faster
than normal rate both because the thruster is
continually firing and it must be compensated for
by other thrusters
Spacecraft attitude will show a drift in the
direction of the thrust in either roll, or yaw, or
both, until control counteracts the failure
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Valve Failure
. Problem: A valve has created a series of random

pressure pockets that causes a thruster to provide
intermittent, (on/off), instead of consistent thrust.

- Symptoms:
" Attitude will slowly begin to show a subtle rocking

motion, or oscillation, in whatever axes the failed thruster
fires on and off.

Because this behavior is random and unpredictable, the control algorithm
will always be a step behind the failed thruster causing the magnitude of
the oscillation to increase

" Fuel will decrease faster than normal as the attitude
oscillation becomes bigger and more thrusters operating
for longer periods are necessary to correct the attitude

Display: Primary Flight Screen
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Key Display Components

Display Components: Avionics

- Time (s): Time remaining in the scenario is displayed by the
scenario clock in the upper left corner of the display.
Scenarios are 6o seconds long.

- Altitude (i): The current altitude, or vertical height above
the lunar surface, is represented by the green values on the
tape display as the tape moves accordingly behind the digital
display.

- Range (m): The range display is set up to function exactly
like the altimeter, but it provides information about the
horizontal distance to the target landing site.

- Fuel (kg): The fuel gauge is a bar graph of fuel. The value of
fuel remaining is displayed at the top of the gauge in the
header. It is an indication of the total amount of RCS fuel
remaining for the rest of the descent trajectory and also the
ascent to lunar orbit at mission completion, 230 kg is
necessary for the return journey.
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Display Components: Attitude Indicators
Attitude is represented in 3 dimensions: Pitch, Roll, and Yaw, all of
which are measured in degrees.

Pitch: Motion about the Y axis, tilting fonvards or backwards, positive pitch is
a backwards or -nose up" pitch

: Roll: Motion about the X axis, tilting side to side, positive rotation to the right
Yaw: Motion about the Z axis. sminging back and forth, positive rotation to the
right

Display Components: Failure Indicators

- Failure Alarm: The failure alarm is the grey button labeled
"Failure", and exists to alert the crew in the event of some
kind of system failure. You are responsible for pushing this
button whenever you detect a system failure.

- Emergency Procediure Selection Panel: Represented as
a set of grey buttons in the lower right corner labeled with all
possible failures. Detecting a failure is not sufficient for
mission success. Failures must be identified so they can be
solved. The crew is trainied on emergency procedures for each
of the given failure conditions. You are responsible for
identifying the failure condition so that the correct emergency
procedure can be implemented.
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Display: Time History of Parameters
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Display Components: Time History

- Time (s): The time shown on the horizontal axis is
the full scenario time, 6o seconds. The current time
is indicated by the last point drawn on the chart.
Time remaining in the scenario is shown by the
scenario clock.

- Paraieter Inforiiiation: The units for these
parameters will be the same as they are on the
original avionics display. The curve will be
generated from the values on the avionics display as
the scenario time moves forward such that
parameter behavior will be shown over time.

How Each Scenario Will Take
Place
Move to the Next Slide

139



Scenario Start

Failure Detection
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Failure Identification

End of Scenario
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End of Scenario

Important Things to Remember

- Time history information will only be given to you on half of
the experimental trials, these trials will all be grouped
together and may occur either first or second

- Failures can occur at any time during the scenario so remain
attentive, ensure you have enough evidence for your decision

- Just as failures do not occur on every mission in real life,
failures WILL NOT occur in every scenario, you must discern
this each time from the system performance

- Only one failure will occur in each scenario. You only need to
click the failure alarm and proper emergency procedure
ONCE. Emergency procedures simply identify the problem to
the crew, once you select an appropriate emergency
procedure, the simulation will terminate and you will move on
to the next scenario.
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Appendix D: Demographic Survey and Results

Demographic Questionnaire
Subject number:

Age:

Gender: M F

Are you color blind? No Yes

Occupation:

if student, (circle one): Undergrad Masters PhD

department:

expected year of graduation:

Military experience (circle one): No Yes

If yes, which branch:

Years of service:

Do you have any flight experience? No Yes

If yes, how many hours?

Do you have any experience in flight simulators? No Yes

If yes, please describe briefly:

Do you have experience in engineering or operating spacecraft systems ? No Yes

If yes, please describe briefly:

Level of Education, please list your degrees and subjects:
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Rate your comfort level with using computer programs.

Not comfortable Somewhat comfortable Comfortable Very Comfortable

Subject Demographics:

Total Number of Subjects: 28
Male: 19
Female: 9
No Color Blindness
Age Range: 23-57
Mean Age: 38
Military: 1
Students: 4
Pilots: 2
Flight Simulators: 5
Spacecraft Experience: 10
Education:

Bachelors: 28
Masters: 17
PhD: 5

Comfort with Computers: No participants circled less than "Comfortable"

The effects on performance (latency and accuracy) were investigated for the following

demographics: Gender, Students, Pilots/Flight Simulators, Spacecraft Experience. There

were no significant effects of these different demographic trends on performance.
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Appendix E: Detailed Analysis Results Tables and Plots

The statistical tables and results were computed in SPSS 15.0 statistical software

package. For each data type and each decision there are detailed descriptive statistics,

assumption checks and full ANOVA results tables.

E.1 Detection Latency

Descriptive Statistics for both the original latency and the cube root transform:

Descriptive Statistics

Std.
N Minimum Maximum Mean Deviation Variance Skewness Kurtosis

Std. Std.
Statistic Statistic Statistic Statistic Statistic Statistic Statistic Error Statistic Error

Latency 1109 .00 50.73 11.9204 7.94810 63.172 1.283 .073 2.071 .147
CubeLatency 1109 .00 3.70 2.1692 .51578 .266 -.118 .073 .357 .147
Valid N 1109
(listwise) 1 I I IIII III

Detection latency lacked both homogeneity of variance and normality when the

assumptions were verified, as a result, a cube root transform was applied in order to

meet these ANOVA assumptions.

Results of a Univariate ANOVA with five fixed factors: Trend information,

Failure type, Approach, the order the subjects saw scenarios (Order), and whether they

saw the trend information first or second (Block)

Tests of Between-Subjects Effects

Dependent Variable: CubeLatency

Type IlIl Sum
Source of Squares df Mean Square F Sig.
Corrected Model
Intercept
Trend

101.918(a)
4726.618

8.797

1.073
4726.618

8.797

5.636
24829.628

46.211

.000

.000

.000
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FailureType 18.774 3 6.258 32.874 .000
ApproachType 10.058 2 5.029 26.419 .000
Order .046 1 .046 .241 .624
Block .002 1 .002 .009 .924
Trend * FailureType 8.300 3 2.767 14.534 .000
Trend * ApproachType 6.056 2 3.028 15.905 .000
FailureType *
ApproachType 19.082 6 3.180 16.707 .000

Trend * FailureType *

ApproachType 5.262 6 .877 4.607 .000

Trend* Order .002 1 .002 .010 .919
FailureType * Order .376 3 .125 .659 .577
Trend * FailureType *
Order .951 3 .317 1.666 .173

ApproachType * Order .445 2 .223 1.169 .311
Trend* ApproachType *
Order 2.463 2 1.232 6.469 .002

FailureType *
ApproachType * Order 1.063 6 .177 .931 .472

Trend * FailureType *
ApproachType * Order 2.547 6 .424 2.230 .038

Trend * Block 1.638 1 1.638 8.604 .003
FailureType * Block 2.057 3 .686 3.602 .013
Trend * FailureType *
Block .390 3 .130 .683 .563

ApproachType * Block .276 2 .138 .724 .485
Trend * ApproachType *
Block .237 2 .119 .623 .537

FailureType *
ApproachType * Block .920 6 .153 .806 .566

Trend* FailureType *
ApproachType * Block .451 6 .075 .395 .883

Order * Block .163 1 .163 .857 .355
Trend * Order * Block .042 1 .042 .223 .637
FailureType * Order *
Block .544 3 .181 .953 .414

Trend* FailureType *.247 3 .082 .432 .730
Order * Block

ApproachType * Order *
Block .073 2 .036 .192 .826

Trend * ApproachType *
Order* Block .159 2 .080 .419 .658

FailureType *
ApproachType * Order * .188 6 .031 .165 .986
Block

Trend* FailureType *

ApproachType * Order * .795 6 .132 .696 .653
Block

Error 192.837 1013 .190
Total 5513.059 1109
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Corrected Total 1 294.755 1108 1
a R Squared = .346 (Adjusted R Squared = .284)

Marginal means plots that show the mean cube root latency for each combination

of failure type, approach type, and trend information (history), are useful in examining

significant effects. For example, there is a distinct difference for all failure types for

trend information on steep trajectories. This effect is not as clear for shallow and

nominal trajectories.

ApproachType - Steep

2.40-

E220
-

E210-

2.00-

1.80

2.75-

230-

LM225-

2.00-
E
lu

Lek Pump Tiuster V.ile
FailureType

ApproachType - Nominal

Leak Pump Tiut.er Va.ve

FallureType

History
- We Presot
- Presert

History
- Not Preset
- Prese03
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ApproachType = Shallow
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o2.00-
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Lea Pump~ Thruster Valve

FailureType

History
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E.2 Detection Accuracy

Descriptive Statistics:

Accuracy with Trend

Cumulative
Frequency Percent Valid Percent Percent

Valid Incorrect 160 9.5 19.3 19.3
Correct 670 39.7 80.7 100.0
Total 830 49.2 100.0

Missing System 857 50.8
Total 1687 100.0 1

Accuracy without Trend

Cumulative
Frequency Percent Valid Percent Percent

Valid Incorrect 172 10.2 20.2 20.2
Correct 678 40.2 79.8 100.0
Total 850 50.4 100.0

Missing System 837 49.6
Total 1687 100.0 1

Forward Likelihood Ratio Binary Regression:

Variables in the Equation

B [ S.E. JWald df Sig. Exp(B)
Step
1(a)

Step
2(b)

Valve
Constant
Thruster
Valve

1.508
1.200
1.502
1.772

.234

.065

.213

.236

41.343
344.457

49.918
56.392

.000

.000

.000

.000

4.516
3.322
4.489
5.884
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Constant
.936

Step Thruster
3(c) Valve

Shallow
Constant

Step Thruster
4(d) Valve

Shallow
Order
Constant

a Variable(s) entered on
b Variable(s) entered on

1.570
1.799
-.486
1.095
1.576
1.806
-.489
.343
.931

.070

.214

.237

.133
.084
.215
.237
.133
.128
.103

step 1: Valve.
step 2: Thruster.

c Variable(s) entered on step 3: Shallow.
d Variable(s) entered on step 4: Order.

178.640

53.655
57.736
13.414

169.027
53.915
58.012
13.481
7.135

81.821

.000

.000

.000

.000

.000

.000
.000
.000
.008
.000

2.549

4.804
6.043

.615
2.989
4.835
6.083

.613
1.409
2.536

E.3 Diagnosis Latency

Descriptive Statistics from a repeated measures ANOVA:

Descriptive Statistics

Std.
N Minimum Maximum Mean Deviation Variance Skewness Kurtosis

Std. Std.
Statistic Statistic Statistic Statistic Statistic Statistic Statistic Error Statistic Error

Age 28 23.00 57.00 37.8214 11.19211 125.263 .285 .441 -1.466 .858
Gender 28 .00 1.00 .6786 .47559 .226 -.809 .441 -1.456 .858
Trend 28 .96 8.23 3.0148 1.82849 3.343 1.284 .441 1.066 .858
NoTrend 28 .64 8.16 2.7908 1.94215 3.772 1.565 .441 1.877 .858
Valid N
(listwise) 28

A repeated measures ANOVA was conducted on the diagnosis latency data

because the independence of the observations could not be supported.

Multivariate Tests(b)

Effect Value F Hypothesis df Error df Sig.
Approach

Failure

Pillai's Trace
Wilks' Lambda
Hotelling's Trace
Roy's Largest Root
Pillai's Trace

.248

.752

.331

.331

.556

4.297(a)
4.297(a)
4.297(a)
4.297(a)
7.512(a)

2.000
2.000
2.000
2.000
4.000

26.000
26.000
26.000
26.000
24.000

.024

.024

.024

.024

.000
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Trend

Approach * Failure

Approach * Trend

Failure * Trend

Approach * Failure
* Trend

Wilks' Lambda
Hotelling's Trace
Roy's Largest Root
Pillai's Trace
Wilks' Lambda
Hotelling's Trace
Roy's Largest Root
Pillai's Trace
Wilks' Lambda
Hotelling's Trace
Roy's Largest Root
Pillai's Trace
Wilks' Lambda
Hotelling's Trace
Roy's Largest Root
Pillai's Trace
Wilks' Lambda
Hotelling's Trace
Roy's Largest Root
Pillai's Trace
Wilks' Lambda
Hotelling's Trace
Roy's Largest Root

.444

1.252
1.252
.005
.995
.005
.005
.498
.502
.994

.994

.004

.996

.004

.004

.318

.682

.466

.466

.400

.600

.666

.666

7.512(a)
7.512(a)
7.512(a)

.132(a)

.132(a)

.132(a)

.132(a)
2.484(a)
2.484(a)
2.484(a)
2.484(a)

.046(a)

.046(a)

.046(a)

.046(a)
2.796(a)
2.796(a)
2.796(a)
2.796(a)
1.666(a)
1.666(a)
1.666(a)
1.666(a)

4.000
4.000
4.000
1.000
1.000
1.000
1.000
8.000
8.000
8.000
8.000
2.000
2.000
2.000
2.000
4.000
4.000
4.000
4.000
8.000
8.000
8.000
8.000

24.000
24.000
24.000
27.000
27.000
27.000
27.000
20.000
20.000
20.000
20.000
26.000
26.000
26.000
26.000
24.000
24.000
24.000
24.000
20.000
20.000
20.000
20.000

.000

.000

.000
.719
.719
.719
.719
.047
.047
.047
.047
.955
.955
.955
.955
.049
.049
.049
.049
.169
.169
.169
.169

a Exact statistic
b Design: Intercept
Within Subjects Design:

Approach+Failure+History+Approach*Failure+Approach*History+Failure*History+Approach*Failure*History

Marginal means plots that indicate the effects on diagnosis latency of combinations of
trend information (history), failure, and approach types. There is no clearly different
effects for trend information for any one trajectory, though specific failure types show
differences, such as a leak, where history present seemed to make subjects consistently
slower.
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Approach = Nominal

Normal Leak Pump Thruster Valve

Failure

Approach = Shallow

Normal Leak Pump Thruster Valve

Failure

History
-- 1
-2

History
- 1
-2

E.4 Diagnosis Accuracy

Descriptive Statistics:

Accuracy with Trend

Cumulative
Frequency Percent Valid Percent Percent

Valid Incorrect 277 16.4 33.4 33.4
Correct 553 32.8 66.6 100.0
Total 830 49.2 100.0

Missing System 857 50.8
Total 1687 100.0

Accuracy without Trend

Cumulative
Frequency Percent Valid Percent Percent

Valid Incorrect 366 21.7 43.1 43.1
Correct 484 28.7 56.9 100.0
Total 850 50.4 100.0

Missing System 837 49.6
Total 1687 100.0

Forward Likelihood Ratio Binary Logistic Regression:
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Variables in the Equation

a Variable(s) entered
b Variable(s) entered

on step 1: Thruster.
on step 2: Pump.

c Variable(s) entered on step 3: HistPump.
d Variable(s) entered on step 4: HistValve.

E.5 Detection Achievement and Judgment Consistency and False Alarms

Descriptive Statistics from a repeated measures ANOVA:

Descriptive Statistics

N Minimum Maximum Mean Std. Deviation
Achievement 56 -.19 .96 .6160 .23043
Consistency 56 .39 .91 .7178 .11250
Valid N (listwise) 56

Marginal means plots of Lens model parameters achievement, decision

consistency, and skill score that indicate higher values with trend information present,

but not significantly.
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B S.E. Wald df Sig. Exp(B)

Step Thruster -1.049 .125 70.364 1 .000 .350
1(a) Constant .700 .058 145.956 1 .000 2.013
Step Pump -1.208 .130 86.669 1 .000 .299
2(b) Thruster -1.273 .130 95.883 1 .000 .280

Constant
1.009 .070 210.435 1 .000 2.743

Step Pump -1.962 .191 105.259 1 .000 .141
3(c) Thruster -1.230 .132 87.185 1 .000 .292

HistPump 1.430 .241 35.339 1 .000 4.181
Constant .997 .070 205.055 1 .000 2.711

Step Pump -1.840 .192 91.759 1 .000 .159
4(d) Thruster -1.101 .134 67.932 1 .000 .333

HistPump 1.442 .240 35.936 1 .000 4.227
HistValve 1.068 .245 19.017 1 .000 2.909
Constant .864 .074 137.406 1 .000 2.374
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Estimated Marginal Means of Skill Score
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False Alarms:

False alarms were examined using a one-sample T-test because they are

continuous data and met all the statistical assumptions. The results showed marginal

significance. With the mean value of false alarms being only 1.4 out of 60 trials.

One-Sample Statistics

Std. Error
N Mean Std. Deviation Mean

Difference 28 1.3929 4.08556 .77210

One-Sample Test

Test Value = 0

95% Confidence
Interval of the

Mean Difference
t di Sig. (2-tailed) Difference Lower Upper

Difference 1.804 27 .082 1.39286 -.1914 2.9771

E.6 Diagnosis Achievement and Judgment Consistency

Descriptive Statistics from a repeated measures ANOVA:

Descriptive Statistics

N Minimum Maximum Mean Std. Deviation
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Achievement 56 .12 .97 .6845 .22612
Consistency 56 .26 .79 .5822 .13371
Valid N (listwise) 56

Marginal means plots showing the direction of trends for achievement, decision

consistency and skill score. All of these seemed to increase, though not significantly

when trend information was present.
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Estimated Marainal Means of Skill Score
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Appendix F: Linear Multiple Regression Overview

The primary method for determining the judgment strategy and the

environmental state in the Lens model formulation is by multiple linear regression.

Multiple linear regression is a statistical technique that attempts to model the

relationships between variables in the complex context of real world data. This

mathematical model simplifies and organizes observed relationships so that

investigators can better understand the actual processes at work in the data. The model

relates a dependent variable, generally denoted Y, and multiple independent variables

denoted Xi where i = 1,..., n and, n represents the number of variables in the model[40].

A general two dimensional example which includes a regression trendline is found in

Figure 31 below.

20-

0 0

15-0-

10-15-

00

0 00 00

-20 0 20 40 60 80

Figure 31: Example of multiple regression plot with regression model trend line
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We find the formula for multiple linear regression twice in the Lens model

formulation above in the form, Y = reiXj + Ee . Linear regression models can be

useful for a number of applications but are largely used in prediction and forecasting

for data sets and circumstances where the linear additive model is a good fit. It is also

useful in determining relationships and sensitivity of a dependent variable to a set of

independent variables that can be manipulated.

In general to get a model that is considered accurate, the rule of thumb is that

five data points per independent variable, are necessary, and ten is better[33]. This

means that the operator must make that same decision in the same task environment,

given those same cues at least 5 times for each cue present to get a valid regression

model of their decision strategy and of the environment. Other rules of thumb have

been suggested. Norusis (2006) recommends 10 to 20 cases per independent variable. A

third rule of thumb is: N ;: 50 + 8m, where m is the number of independent

variables[51]. The bottom line appears to be, multiple regression requires a large

number of cases. This is true because multiple linear regression attempts to fit a trend

line, as shown in the figure above, to a set of data in multiple dimensions based on one

of any number of estimation procedures. The more data the estimator is given for each

independent variable, generally the more accurate the estimate of the regression

coefficient will be. If the sample size is not large enough there is a significant risk that

the model will be overfitted, which means it will not be generalizable to any another
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data sample but only applicable to the sample set that originally created it[40]. Though

there are many estimation methods, only one of these estimation procedures are

discussed below as that is the procedure used by the mathematical tools that were used

in the generation and post processing of the data for this thesis.

Ordinary Least Squares: (OLS) is the simplest estimation procedure used in linear

regression and thus a very common technique. It is conceptually

computationally straightforward. Ordinary least squares seeks to minimize the sum of

the squared difference between the observed and predicted values of the dependent

variable, or the residuals, of a data set and leads to a closed form analytical solution for

the estimated value of the regression coefficients. This method of coefficient estimation

produces coefficients that are considered unbiased and consistent as long as the

assumptions of linear regression are satisfied. This is the method used to compute the

regression coefficients in the MATLAB model of the Lens model that will be discussed

in future chapters. This is also the estimation method used by SPSS statistical software

which was used to all of the experimental data post processing.

This estimation procedure generates estimates for the regression coefficients.

There are two types of coefficients that are usually generated in regression analysis:

unstandardized and standardized. Unstandardized coefficients are the model

coefficients referred to in the Lens model formulation above as re,j and r, 1 . The

magnitude of these coefficients does not necessarily tell us how good they are at
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predicting the dependent variable because the size of the coefficient is dependent on the

units of measurement of that particular independent variable. This means that the

regression coefficients cannot be compared because they all have different units of

measurement. The standardized coefficients are referred to generally as "beta" weights

and are represented by fle,) for the environment and fl,for the judgment strategy. The

benefit to standardized coefficients is that they can then be compared to one another

outright. Standardized coefficients are the result of standardizing both the dependent

and independent variables to have a mean of 0 and a standard deviation of 1. The value

of the coefficients still depends largely on the other variables included in the model, but

they can now be compared to one another in the particular model in question. These

coefficients are restricted between -1 and 1 unless there are two or more correlated

independent variables in the model equation[40].

Linear regression employs a number of assumptions that must be satisfied in

order for this method to be used on a data set. These assumptions are:

- Independence of error terms: The independent variables and hence their

residuals are not correlated, each observation is independent of another.

- Linearity: There is a linear relationship between the dependent variable and the

independent variables.

- Normality: The error terms for each independent variable follow a normal

distribution

- Homoscedasticity: The error terms for each independent variable have the same

variance.

161



One other assumption that can be helpful to check for is multicollinearity. If the

goal of the regression analysis is either inference or predictive modeling, the

performance of ordinary least squares estimates can be poor if this trait is present,

unless the sample size is large. Multicollinearity is a statistical phenomenon where one

or more independent variables are highly correlated. This can result in the condition of

heteroscedasticity, and cause the regression assumptions to be violated[40].

In order to verify that each of these assumptions holds, there are a variety of tests

that must be performed on the data before any analysis with regression can be done.

The first step is generally to generate the residuals of the data which is simply the

difference between the observed and the predicted value of the dependent variable.

These are also dependent on the units of measurement of a given variable and so a truer

reflection of the error variance can be determined from standardizing or studentizing

the residuals.

Normality: The best way to asses normality of the residuals is to plot them in a

histogram. A histogram of the data will show the number of different pieces of data

that fall into different buckets. If this diagram is symmetric and generally mirrors the

shape of the normal distribution curve with the majority of the data values falling in the

center, the data can be assumed to be normal. See Figure 32 below for an example of a

normal histogram.
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Figure 32: Example normal histogram with distribution curve

Linearity: In order to determine if the variables have a linear relationship to the

dependent variable it is best to simply create a scatter plot of the residuals for the

dependent variable against the predicted values or observed values of the independent

variables or predictor variables in the regression equation. If the errors seem to be

distributed evenly above and below zero along the entire sample, the relationship is

probably linear. It is possible to visualize this by graphing the dependent variable and

each of the independent variables as well, but this will not give any indication other

than a best judgment about exactly how linear the relationship actually is. An example

of a data set which exhibits a linear relationship is shown in Figure 33 below.

163



1.0

0.5- *
0 .

150.0

-0.5 -

-1.0 -

-1.5-

-2.0 -
1 2 3 4 5 6

Figure 33: Plot of residuals vs. the independent variable for a data set that shows a likely linear

relationship

Homoscedasticity: The easiest way to check for equality of variance is to examine

the spread of the residuals over the range of the independent variable. If the spread of

the residuals seems to increase as the predicted values increase then the variance is

most likely unequal. A diagram of what a spread plot would look like is shown below

in Figure 34. A statistical test known as the Levene test may also be used to verify that

the variances the error terms of an independent variable are equal across all its factor

levels. If this statistical test is significant, the variances are unequal and the data violate

the assumptions for linear regression.
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Figure 34: Example spread and level plot for determining equal variance

Independence: Checking for independence requires that you plot residuals in the

order they were obtained if the observations were collected in a sequence. If there is a

pattern, there may be a violation of the independence assumption. The most

appropriate way to check for independence of observations however is using the Chi-

squared test. If the Chi-squared test results are significant, this means that the null

hypothesis that the variables are randomly correlated is rejected and the variables are

not independent[40].
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