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Abstract

This thesis introduces the Information-rich Rapidly-exploring Random Tree (IRRT),
an extension of the RRT algorithm that embeds information collection as predicted
using Fisher information matrices. The primary contribution of this trajectory gener-
ation algorithm is target-based information maximization in general (possibly heavily
constrained) environments, with complex vehicle dynamic constraints and sensor lim-
itations, including limited resolution and narrow field-of-view. Extensions of IRRT
both for decentralized, multiagent missions and for information-rich planning with
multimodal distributions are presented. IRRT is distinguished from previous solution
strategies by its computational tractability and general constraint characterization.
A progression of simulation results demonstrates that this implementation can gener-
ate complex target-tracking behaviors from a simple model of the trade-off between
information gathering and goal arrival.
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Chapter 1

Introduction

1.1 Motivation

The use of unmanned systems has been identified as a key factor in increasing the

frequency, persistence, safety, and robustness - and decreasing the risk and cost -

of intelligence, surveillance, and reconnaissance (ISR) missions [3]. Most currently

operational unmanned systems involve human interaction at the teleoperation and

path planning levels. However, as the frequency and duration of unmanned operations

increases, the need for greater levels of autonomy will have to be realized.

Mobile ISR missions are predicated on information collection via sensor measure-

ments [1, 2]. Accordingly, the quality of individual measurements along a mobile

agent's planned trajectory could have a significant impact on the mission-level per-

formance. As sensor measurements are generally subject to noise, and the quality of

an individual measurement is a function of both the noise realization and the state at

which the measurement is received, the ability to plan paths that best utilize onboard

sensing can dramatically improve performance. In the context of ISR missions, it is

desirable that plans be both informative and efficient, whereby a tradeoff between in-

formation collection and mission duration is effected. Moreover, planned trajectories

must comply with such mission parameters as sensor limitations (e.g., small field-

of-view), environmental constraints (e.g., cluttered space), and dynamic constraints

(e.g., the collection platform).



This thesis presents a new online algorithm for information-rich path planning.

As elucidated in Section 1.3, the distinction between many information-rich planning

problem formulations is evident in the constraint characterizations considered. In

order to solve problems germane to real-world applications, which consider sensor

limitations, environmental constraints, and dynamic constraints, this thesis explores

the design and implementation of path planning algorithms that incorporate general

constraint characterizations.

1.2 Problem Statement

The general problem addressed in this thesis is as follows: A vehicle with nonlinear

dynamics must traverse a bounded, non-convex environment from a start state to a

goal state while minimizing the path distance and maximizing the information gain

of point features that are stationary in the environment. While the solution pro-

posed is sufficiently abstracted and amenable to this general problem, we shall focus,

for demonstrative purposes, on specific target localization problems. The selected

vehicles are Dubins cars and quadrotor helicopters, carrying a sensing platform of

one camera (i.e., a monocular bearings-only sensor) with a limited field-of-view. The

sensor is used to estimate the 3D locations of stationary targets in the environment,

a subset of R3 . The target classification problem, in which the existence of a target

in the sensor field-of-view is inferred, and the data association problem, in which

individual targets are correctly distinguished from a group, are beyond the scope of

this thesis.

1.3 Previous Work

In the past several decades, many formulations of the information-rich path planning

problem have been considered. While the problem titles are endemic to particular

research communities, the problem formulations can be roughly distinguished ac-

cording to their inherent constraint characterizations. This section briefly reviews



the previous, relevant work in the areas of sensor delivery, sensor placement, heuris-

tic path shape design, analytical solutions, receding horizon optimization, POMDPs,

and sample-based methods.

The field of sensor delivery involves problems in which target visitation is either a

constraint or is rewarded. Examples of sensor delivery problems include the periodic

revisitation of ground targets by a fixed-wing UAV with a downward facing vision

sensor [65], and data exfiltration from isolated sensor nodes by a traveling data col-

lector. Vehicle dynamic constraints are often embedded in the problem. However, the

sensor model is constrained such that informative paths consist of visitation at some

radius and then departure. Klesh et al. propose a problem in which a team of UAVs

with omni-directional range sensors must receive at least one bit of information from

targets whose positions are known [29]. It can be shown that the problem is a form

of the Traveling Salesman Problem with vehicle dynamic constraints and visitation

radii specified by individual target signal strengths. The optimal placement of sen-

sors for particular parameter estimation problems has also been explored [17, 44, 451.

Sensor placement problems can be considered a limiting case of the general trajec-

tory generation problem for multiple agents. Such sensor placement problems do not

incorporate sensor motion constraints but allow for information-theoretic treatment

of the (potentially time-varying) parameter estimation process.

Early problem formulations in trajectory design demonstrate the utility of plan-

ning informative paths that mitigate possible observability loss. Speyer et al. il-

lustrate that proportional homing missile control with bearings-only sensing leads

to observability loss in the estimation process [64]. By quantifying the trajectory

information content using the Fisher information matrix (FIM), the authors eschew

the need to predict the estimation covariance in the trajectory design optimization.

The metric used in [64] is the trace of the FIM; later works similarly examine in-

formation richness in bearings-only sensing problems using the FIM determinant, or

approximations thereof, in the cost function [38-40, 46].

While the above problems are solved via numerical optimization, several analytical

solutions exist that use the FIM to quantify trajectory information collection in an



optimal control framework. Such solutions seek to maximize, for example, a lower

bound on the determinant of the FIM [42] or the log det of the final FIM [49]. Analytic

solutions yield optimal paths for very simple problems but are difficult to scale to more

complicated scenarios (e.g., dynamics of order higher than two).

Given a prior distribution on the target location, one solution to both the information-

rich trajectory generation problem and the persistent surveillance problem involves

precomputing and maintaining some heuristic path shape near the target estimate.

This class of methods is motivated by the operational observation, in the case of

bearings-only sensing, that agents following paths with certain shapes, e.g., circles,

ellipses, and spirals, tend to perform well in steady state. Barber et al. propose flight

path optimization by finding an optimal altitude and radius for a circular trajectory

above a stationary target [7]. Rafi et al. similarly analyze circular trajectories at a

fixed altitude to track a constant velocity target, in the process optimizing the circle

radius [52]. While these heuristically constrained trajectories capture the physical

and geometric intuition of bearings-only target tracking, that of reducing range and

maximizing orthogonality of measurements, the solutions are essentially ad-hoc and

naive with respect to inherent constraints in the problem; for example, the effects

of visibility loss or dynamic/environmental infeasiblity are ill-addressed within the

heuristic path shape framework.

Recent research has also considered trajectories constructed by performing receding-

horizon control online. This class of solution strategies can be partitioned into

discrete-space and continuous-space planners, and into single-step and multiple-step

planners. The advent of discrete-space, information-rich planners coincided with

attempts to solve a core robotics problem, simultaneous localization and mapping

(SLAM), in which a vehicle must localize itself using measurements of features reg-

istered in a feature map of the environment, which is both constructed and refined

online. Several prominent papers have addressed the SLAM-oriented problem of plan-

ning a vehicle path through the environment to maximize the information gain in a

temporally local sense [10, 13, 66]; these strategies can be summarized as greedy,

next-best-view methods that perform steepest ascent on the information value.



Realizing the need for information-theoretic multi-step planners [27], Sim and Roy

presented a global planner for the SLAM framework which performs multi-step plan-

ning as a pruned graph search [61]. There have since been a number of multiple-step-

ahead planners. Ryan et al. provide a formulation of cooperative search and track

in the multi-step, receding horizon framework [59]. The solution generated therein

attempts to minimize the expected conditional entropy. An upper bound on the coop-

erative information gain based on pairwise mutual information approximations is used

to enable decentralized control. This pairwise-node approximation is revisited more

rigorously by Hoffman and Tomlin in [24]. Watanabe et al. present a stochastically

optimized, n-step-ahead guidance design for monocular vision-based UAV control ap-

plications [70]. The algorithm minimizes an expected cost that includes the guidance

error and control effort expended on sensor manuevers. The derivation provided is

specific to the use of a 2D vision sensor and an extended Kalman filter to perform

tracking of a single target.

Ristic and Gunatilaka present an algorithm for detection and subsequent infor-

mation gain-driven control of a sensing agent for the purpose of estimating the pa-

rameters of a radiological point source [56]. The control vectors, which are selected

via a multiple-step receding horizon maximization of the Fisher information gain,

maneuver the observer and limit its exposure to radiation. The source detection

and parameter estimation are executed jointly in a particle filter, though until the

detection threshold is met, the measurements are taken on a parallel sweeping (collo-

quially, "lawnmower") search. Ristic et al. extend [56] to enable parameter estimation

of multiple radioactive sources, the number of which are also estimated [57]. By spec-

ifying information gain in terms of the R'nyi divergence between the current and

future posterior densities, the need for parallel sweeping before detection is obviated.

Moreover, the presented extension permits the use of multiple observers whose mea-

surements are reported back to, and whose control vectors are sent from, an assumed

centralized data fusion and control center.

Several continuous-space, receding-horizon planning strategies for generating information-

rich trajectories have also been considered. Frew uses the determinant of the target



estimation error covariance as the objective function in a trajectory-generating opti-

mization for 2D ground robots with limited field-of-view [16]. Grocholski et al. in-

troduce a decentralized, coordinated control algorithm for multiple sensor platforms

that uses the log det of the Fisher information matrix as an objective function [19].

Individual agents act locally by performing steepest ascent on the information value,

but share only measurement-derived data relevant to the estimation process. Choi

adopts this paradigm, quantifying the information reward in terms of continuous-

time mutual information for adaptive sampling problems with weather forecasting

applications [11]. Ousingsawat and Campbell formulate a receding horizon optimal

control problem that attempts to maximize information, quantified using the FIM,

while avoiding risk zones and satisfying terminal location and time constraints [47].

However, the results therein are limited to simple constraint sets: an omnidirectional

sensor performs 2D target estimation, vehicles are modeled as point masses, and

risk zones are elliptical. An extension of this work [48] uses the low-order receding

horizon optimization results of [47] to form the heuristic foundation of a centralized

task assignment algorithm for multiple agents gathering information about station-

ary targets. The task assignment, solved using a large mixed-integer linear program

(MILP), requires each target to be visited simultaneously by a pair of agents spaced

900 apart on the target's circular risk zone. Though the benefit of an additional sensor

in collecting information is apparent, the extrapolation of [47] requiring agent-pair

visitations is difficult to justify for all scenarios. In the case of stationary targets,

the temporal correlation of measurements between multiple agents is uninformative;

therefore, in the sense of efficiency, it is unclear whether two agents momentarily vis-

iting the target 900 apart can gather more information with less overall cost than one

agent flying a 90' arc. Additionally, this algorithm does not appear to be robust to

changes in the estimated target location due to sensing actions, nor does it account

for relevant sensor constraints.

Ponda [51] uses the A-optimality condition of the FIM as the objective function

to optimize the trajectory of a fixed-wing aircraft with a perfectly gimballed camera.

The selection of a gimballed camera, together with the absence of obstacles, assumes



the target to be visible from the entire flight space. In reality, the existence of local

minima in regions of sensor occlusion limit the effectiveness of such a method. While

many works embed a small set of apt constraints - Frew considers limited field-of-

view sensing limitations, and Ponda explicitly handles vehicle dynamic constraints

- receding-horizon optimization strategies are not extensible to the combination of

sensor limitations, environmental constraints, and dynamic constraints.

When generality is desired, the Partially Observable Markov Decision Process

(POMDP) framework is widely acknowledged to be the most principled way of solv-

ing information-rich planning problems. Le Ny and Pappas describe mobile sensor

trajectory optimization to improve estimation of a stochastic, multidimensional Gaus-

sian Markov random field [41]. If the measurement process is linear in the estimation

states, the Kalman filter can be shown to be optimal, with which the trajectory opti-

mization problem is a deteriministic optimal control problem. The optimal solution

is computationally expensive; Le Ny and Pappas propose a suboptimal, non-greedy

trajectory optimization scheme based on forward value iteration. Recent research

has also considered belief-space planning for both the target tracking problem and its

inverse problem, that of localizing a vehicle through sensor measurements of perfectly

known targets in a prescribed environment. He et al. use the Belief Roadmap (BRM)

to plan vehicle trajectories that maximize the self-localization capability of a hovering

vehicle operating in GPS-denied environments [21]. Using a prior map of the envi-

ronment and the associated measurement samples for a laser range finder, a graph

of the covariance propagation between samples can be formed, from which the BRM

efficiently selects trajectories that mitigate egomotion drift and aid knowledge of goal

arrival. Roy and He use so-called "semi-conditional" planning as a forward-search

in the POMDP framework to facilitate target tracking [20, 58]. While the POMDP

framework has shown promising results for simple vehicle models, POMDP solutions

are currently intractable for vehicle models with complex dynamics.

Finally, we note the work of Kwak and Scerri, which uses a priority queue to

expand high-reward nodes from a tree structure, but is generally restricted to overhead

sensing of a precomputed 2D cost map [36].



Recall the motivation for this thesis, for which dynamic, sensing, and environmen-

tal constraints must be satisfied while performing localization on stationary targets.

Previous research has used solution strategies that are either not amenable to the

whole of these constraints or, by adopting very general constraint characterizations,

are rendered intractable for use, for example, on vehicles with complex dynamic mod-

els. This thesis, whose contributions are described in the following section, addresses

such a shortcoming in the literature, fulfilling the need for an online motion plan-

ner that, while sacrificing optimal performance, is extensible to general constraint

characterizations.

1.4 Thesis Contributions

This thesis introduces the Information-rich Rapidly-exploring Random Tree (IRRT),

an extension of the RRT algorithm [37] that embeds information collection as pre-

dicted using Fisher information matrices [14). A further extension of IRRT for multi-

agent missions is also presented. The primary contribution of this trajectory genera-

tion algorithm is target-based information maximization in arbitrary (possibly heav-

ily constrained) environments, with complex vehicle dynamic constraints and sensor

limitations, specifically, limited resolution and narrow field-of-view. As IRRT is a

sample-based planner, feasible solutions can be easily generated in real-time, and the

planner effectiveness scales with the available computational resources. Simulated

results have demonstrated that IRRT can produce complex target-tracking behav-

iors from a simple model that trades off information gathering and goal arrival. The

flexibility to plan informative trajectories under general cost functions and feasibility

constraints distinguishes the presented solution strategy for planning information-rich

trajectories from the previous research.

The structure of this thesis is as follows. Chapter 2 briefly reviews measures of

information gain for stochastic systems. Chapter 3 motivates the selection of closed-

loop Rapidly-exploring Random Trees as the baseline planning algorithm upon which

IRRT is built; the chapter continues with the algorithmic development of IRRT.



Chapter 4 presents a progression of simulation results demonstrating the utility of

IRRT in constrained, information-rich planning problems. An extension of IRRT

to multi-agent, decentralized scenarios is developed in Chapter 5, and simulation

results are presented. A further extension of IRRT that permits multimodal prior

and posterior distributions is developed and demonstrated in Chapter 6. Summary

analysis is offered, and future work suggested, in Chapter 7.
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Chapter 2

Information-Theoretic Measures

In this chapter, several well-studied information-theoretic measures [12] used to quan-

tify the value of observation sequences are briefly reviewed. Entropic information and

divergence measures are both applicable to general Bayesian estimation processes, the

latter having rich connections to information geometry. Despite these strengths, en-

tropic information and divergence measures both require suitable approximations of

the posterior distributions, a computational burden that can become intractable sev-

eral just a few timesteps into the future. An alternative measure is then described

in the Fisher information framework, with several key results that make Fisher infor-

mation an attractive metric for quantifying the estimation uncertainty reduction in

plans of suitably long duration.

2.1 Bayesian Decisions

Before proceeding to the discussion of information measures, some basic concepts

of Bayesian decision theory are reviewed. Consider the random variable X, with

realization x, that describes an uncertain state drawn from the alphabet X. Prior to

any observations, the knowledge or belief about x is captured entirely by the prior

distribution px(-). Observations, which can also be modeled as random variables

Z with realizations z, can be used to update the belief by forming the posterior



distribution pxiz(-) according to Bayes Rule, i.e.,

pzlx(zlx)px (x)
pxiz(xlz) - (2.1)

ZaEXpZX(zja)px(a)
in the discrete case and

PXIZ(XlZ) - Pzlx(zlx)px(x)
fxpzx(zla)px(a) da

in the continuous case, where the likelihood distribution pzlx(|-) is derived from the

given observation model. Based on these distributions, a Bayes engine generates a

decision 6(.), referred to as "hard" if the result is an estimate k(-) of x and "soft"

if the result is a distibution q(-) that describes the relative likelihood of different

elements of X based on the observed data. This section will proceed by focusing on

soft decisions. Ideally, the Bayes decision engine would produce the distribution

1a = x
q(a) - (2.3)

0 otherwise,

which would identify the realized x with certainty. However, as x is unknown, it is not

generally possible to construct such a q(-) from only the provided data. The Bayes

decision instead minimizes the conditional expectation over realizations x of some cost

criterion C (x, 6(.)) given the data z. As many cost criteria exist, the selection of an

appropriate cost criterion is a natural question. Towards this end, several properties

of cost functions are introduced for the discrete case; the continuous case is analogous

and merely involves replacing the summations with the appropriate integrals.

Definition 1. A cost function C (., -) is proper if

pxiz(.Iz) argmin E [C(x,q)IZ = z] for all z. (2.4)
{q(.):Za q(a)=1}

Definition 2. A cost function C (-, .) is local if there exists a function # : X x R - R

such that C(x, q) = #(x, q(x)) for all x.



Proper cost functions yield the true posterior belief pxIz. Local cost functions

assess the quality of the estimated belief q only in terms of the probability assigned

to the actual outcome.

Consider the log-loss criterion

C(x, q) -A log q(x) + B(x), (2.5)

where A > 0 and B(.) is arbitrary. It is clear that through the use of the log function,

the log-loss criterion emphasizes distributions q(.) that are "peaky," in the sense of

being heavily concentrated within portions of their respective supports. While many

alternative cost criteria may be considered, it has been shown that when the alphabet

X consists of at least three values (IXI ;> 3), then the log-loss is the only local, proper

cost function [9]. Because B(-) is for any realized x a constant in the cost function,

and A is a relative weighting term thereof, we may proceed in describing the Bayesian

information measures assuming, without loss of generality, that A = 1 and B(.) = 0.

2.2 Entropic Information

As the log-loss cost criterion is proper, the expectation of the cost achieves pxIz. In

the absence of observations, pxiz = px, the so-called prior cost is

min E [C(X, q)] = E [C(X,px)]
q(-):E q(a)=1

- -E [log px (x)]

- px(a)logpx(a)
aEX

H H(X), (2.6)

where H(X) is called the entropy [60], or self-information, of X. Entropy is a measure

of the average randomness or uncertainty in X, with "peaky" distributions having

lower entropy than more uniform distributions. When base-2 logarithms are used in

the computation, the units of entropy are bits, and the entropy conveys the number



of bits necessary to communicate X.

Upon observing Z = z, the posterior

loss criterion, with resulting cost

probability distribution minimizes the log-

q(min E [C(X, q)|Z = z] =E (C(X, pxlz)|Z = z]
q()Ea q (a)=

-E [log pxlz(xjz)IZ = z]

- Pxiz(xIz) logPxiz(xlz)
a6%

A H(XIZ = z). (2.7)

Taking the expectation of (2.7) over the set of possible observations yields the average

posterior cost

E [C(X,pxlz)] E [E [C(X,pxiz(X|Z))IZ = z]]

=- Pz(z)H(XIZ = z)

- Zpx,z(a, b)logpxlz(ajb)

A H(XIZ),

where H(XIZ) is called the conditional entropy of X given Z. The results above can

easily be extended for k observations by forming the set ZK = {Zk, Zk-1, ... , Z1 .

The log-loss cost reduction associated with processing observation z is exactly the

difference between the prior and posterior costs

AE [C(X, q)] = H(X) - H(XIZ) A I(X; Z), (2.9)

which is referred to as the mutual information between X and Z. The mutual infor-

mation can be equivalently expressed as

I (X; Z) = px,z(a, b) log px'z(a, b) (2.10)
a,b PX (a)pz(b)

(2.8)



It is straightforward to verify that

0 < H(X|Z) < H(X), (2.11)

the implication being that conditioning never increases uncertainty as measured by

entropy. From this result, the nonnegativity of mutual information is also implied.

Moreover, mutual information is a symmetric measure, i.e.,

I(X; Z) = H(X) - H(XIZ) = H(Z) - H(ZIX) = I(Z; X). (2.12)

2.3 Divergence Measures

Divergence measures are one way to quantify the difference between two probability

distributions. For example, in the event that the true belief p(-) cannot be imple-

mented, and one must approximate the belief as q(-), the approximation loss can be

characterized as

AE [C(X, q)] = --E [log q(X)] + E, [log p(X)]

= E[p(X) = DKL(pj-q)(
q(X)

where

DKL (P IIq) p(a) log p(a (2.14)
aGX< q(a)

is called the Kullback-Leibler (KL) divergence of q(-) from p(-) [22]. It is alternatively

referred to as the information divergence of q(-) from p(-) or the relative entropy of

q(.) with respect to p(.). Despite often being referred to in the sense of a distance

metric, the KL divergence is a non-symmetric measure of the difference between two

probability distributions, and D(p| Iq) $ D(q Ip) in general. There exist many relevant

connections between KL divergence (relative entropy) and the entropic information



measures; of chief import is the property

I(X; Z) = DKL(PX,Z IIPXPZ) (2.15)

= EPX [DKL (PZ|X IPZ) (2.16)

= EPZ [DKL (PX|Z pX)] (2.17)

which explains mutual information as an expectation of the KL divergence.

One generalization of the KL divergence is the Renyi divergence [54], defined as

Dc,(p||q) = 1 ln p -(x)q1 -(x), (2.18)

where a > 0 is a parameter that determines how much one emphasizes the tails of

the distributions p(-) and q(-) in the metric. The selection of the parameter a serves

as an additional degree of freedom over the KL divergence, which can be recovered

from the Renyi divergence in the limit as a -+ 1. Moreover, the selection of a = 0.5,

which corresponds to the Hellinger affinity [50], has been reported to outperform the

KL divergence in scenarios where the minor differences in the distribution tails must

be stressed [22, 23].

In the sensor management literature, divergence measures are used to quantify

the information gain between the prior distribution and some posterior distribution

following an observation sequence [22, 31, 32, 57]. The generality of divergence mea-

sures, with their rich connection to information theory [12], recommends their use

in difficult hybrid estimation problems. However, computation of the required poste-

rior distributions becomes prohibitive as the estimation horizon increases past several

timesteps.

2.4 Fisher Information

This section introduces Fisher information and reviews several key properties that

make it a suitable metric for information collection. Whereas in previous sections a



soft decision in the form of a probability distribution q(-) was generated by a Bayes

decision device, we begin this section by characterizing hard decisions in the form of

an estimator k(.) of the realized x. Although Fisher information was first defined

in the non-Bayesian framework,1 the review hereafter proceeds with the continuous

Bayesian form.

In formulating the estimation problem, attention must be restricted to the class

of estimators whose evaluations depend only on the data and not on x, which is

unknown; such estimators are called valid. One must further require that the estimate

be unbiased, i.e.,

bk(x) - E [k(z) - x] = 0, Vx E X. (2.19)

Estimators satisfying both requirements are said to be admissible.

General statements can be made about the performance of the entire class of ad-

missible estimators. One such statement involves the well-known Cramer-Rao bound,

which, when it exists, gives a lower bound on the covariance of any admissible esti-

mator i for x. It is the basis of the information inequality

P = Ex {i(z) - x] [i(z) - x]T} > J(x- 1 , (2.20)

where P is the estimation error covariance matrix (for unbiased ()) and J(x) is called

the Fisher information matrix (FIM), its inverse J(x)-1 being the matrix Cramer-Rao

Lower Bound (CRLB). In the multivariable case, the FIM may be computed as

J(x) = E {[V" log P(x, z)] [V" log p(x, z)]T (2.21)

= E {-V, [V" log p(x, z)]T , (2.22)

where V, is the gradient operator with respect to x, and the second equality holds

'It is unnatural in some estimation problems to consider a prior distribution px(.). In such cases,
x is modeled as an unknown, non-random parameter.



in general only if the regularity condition

E [V. log p(x, z)] = 0 (2.23)

is satisfied.

The CRLB holds only if some weak regularity assumptions on p(x, z) are satisfied

and the Fisher information can be computed. It is clear from (2.21)-(2.22) that the

Fisher information cannot be computed in all problems, for example, when the density

p(x, z) is not strictly positive for all x and z. The Fisher information can also be

interpreted as a measure of curvature: it measures, on average, the "peakiness" of

log p(x, z) as a function of x. This is most apparent in the scalar form of (2.22),

J(x) = -E log P(x, z). (2.24)
(8X2

As such, the larger J(x) is (in a matrix norm sense), the better one expects to be able

to resolve the value of x E X from the observations, hence, the smaller one would

expect P to be.

When an estimator satisfies the Cram6r-Rao bound with equality, it is called

efficient and must be the (unique) minimum-variance, unbiased (MVU) estimator.

The converse is, however, not true: even when the CRLB exists, it is sometimes not

possible to meet the bound for any x, let alone all x.

The calculation of the FIM according to (2.22) presents an implementation chal-

lenge whereby the number of computations necessary to form the FIM increases as

each new measurement is processed. What is instead sought is a recursive FIM up-

date law which utilizes previously computed FIMs and whose computational demand

does not increase with the number of measurements taken. Tichavsky et al. present

such a method, and its key results are reviewed here [55, 68].

Let k* and P * denote the estimate and covariance matrix at the kth time step af-

ter processing measurement Zk. The information inequality (2.20) can now be written



Pff = E { [k" - x] [kq, - X] T > - , (2.25)

where Jk is the FIM computed at the kth time step. The recursive FIM update

relationship introduced in [68] takes the form

Jk+1 = D 2 - D2 1 (Jk + D11) D12 (2.26)

where

D" = -E {Vx LVx, log p(xk+l|xk]T

D -E { k [Vxk+l logp(xk+1 |xk

D -E {Vxksl [Vxk log p(xk+1|xk]T [D [ ] T,

D22 = -E {Vxsl Vxksl log]p(xk 1 |xT

- E {Vxk+l [Vxk+, log p(zk+ 1 xk+ 1 ]T

Certain models afford considerable simplification of the above Dk quantities. Con-

sider the nonlinear-Gaussian system model

Xk+1 = f(xk) + Wk, Wk ~ N(0, Qk), (2.27)

Zk = h(Xk) + Vk, vk - N(O, Rk), (2.28)

where f(x) and h(x) are the nonlinear process and measurement models, respectively,

and Wk and Vk are uncorrelated, zero-mean Gaussian white sequences with covari-

ances Qk and Rk, respectively. Defining Fk A Vxkf(xk) and H A Vxkh(xk) as the

Jacobians with respect to the estimation state of the process and observation models,



it can be shown that the Dg' matrices are simply

D = FTQ-IFk, (2.29)

D 2 = -F Q-, (2.30)

D -= -Q- 1 Fk, (2.31)

Q 1 + Hl+1R-ilHk+1. (2.32)

Substitution into (2.26) and application of a matrix inversion lemma yield the recur-

sive equation

Jk+1 = (Qk + FkJ-FT)' + H[+1 Rk4 1 Hk+1. (2.33)

To initialize the recursion (2.33), one evaluates the FIM using (2.21) and the prior

distribution p(xo), i.e.,

Jo = E {[VXO log p(xo)] [VXO log p(xo)]}. (2.34)

If the prior is Gaussian with mean x and covariance PO, the above reduces to

Jo = Po71 . (2.35)

Recall that Fisher information, with its connection to the CRLB, applies to any

admissible estimator and provides performance bounds on the estimation process.

Therefore, Fisher information is a suitable objective function for optimization solu-

tions that attempts to improve estimation performance. The relative ease with which

the information content of temporally distant measurements can be quantified fur-

ther recommends the FIM as a metric in proactive, real-time planning algorithms.

Fisher information will be revisited in Section 3.4.1 in the context of quantifying the

information content of measurement sequences taken along planned trajectories.



Chapter 3

Information-rich RRT

This chapter details the algorithmic development of the Information-rich Rapidly-

exploring Random Tree (IRRT), an extension of the closed-loop RRT [15, 34] that

uses the Fisher Information framework for quantifying trajectory information content.

The selection of closed-loop RRT as a baseline is motivated by the successive utility

of sample-based planning methods (Section 3.1), of Rapidly-exploring Random Trees

(Section 3.2), and finally of closed-loop RRT (Section 3.3). The IRRT algorithm,

as presented in Section 3.4, preserves the beneficial properties of closed-loop RRT

while allowing the planner to be both cognizant of and proactive toward information

collection.

3.1 Sample-Based Planning Methods

Trajectory planning algorithms are an integral facet of mobile autonomous agents.

Over the last several decades, a myriad of path planning algorithms has been proposed

to varying effect. Many surveys, for example [18], summarize the notable entries in the

field. There does not appear to be a general path planning algorithm that performs

well for all problems. In fact, many planning algorithms adopted in practice are

highly specialized to the particular problem addressed. What is sought is a class of

planning algorithms for which extensibility to multiple problem types and tractability

are balanced.



Currently, the predominant path planning algorithms for robotic systems can be

classified as roadmap, cell decomposition, potential field, or sample-based methods;

they differ primarily in their desciptions of the free state space. Roadmap methods, by

fitting a graph to the state space, reduce the problem to a graph search. Similarly, cell

decomposition methods seek to partition the free space into convex polyhedrons in a

graph, which is subsequently searched. While roadmap and cell decomposition meth-

ods are viable approaches in low-dimensional configurations spaces, robotic systems

often live in high-dimensional configuration spaces with many points of actuation or

degrees of freedom. Extensions of roadmap or cell decomposition methods to arbi-

trary dimensions are not generally tractable. Potential field-based methods, which

use weighted potential functions to impart a simulated force on the vehicle, are easily

extensible to arbitrary dimensions and are computationally lightweight. However, the

tuning of the individual potential functions is not intuitive, and, despite the efforts

of randomization algorithms such as the Randomized Path Planner [8], the existence

of local minima remains a persistent issue in the potential field approach.

Sample-based methods approximate the connectivity of the free space Xfree by

sampling configurations in Xfree and attempting various edge connections that are un-

obstructed. The quality of the Xfree connectivity approximation scales with the avail-

able computational resources; unlike optimization- or mathematical programming-

based methods, there is not a fixed time cost associated with generating a feasible

solution. Therefore, sample-based methods afford a beneficial tradeoff between the

extensibility to high-dimensional planning problems and the associated computational

intensity. A well-studied, sample-based planning algorithm called the Probabilistic

Roadmap (PRM) [28] enables planning in high-dimensional configuration spaces, such

as in linked manipulator or cellular docking applications.

3.2 Rapidly-exploring Random Trees (RRTs)

Thus far, solution generation in arbitrary dimensions has been a stated requirement.

As the intention of this thesis is to develop information-rich planning algorithms for



mobile autonomous agents, particularly aerial, ground, and underwater vehicles, we

further require the planner to be capable of generating dynamically feasible trajec-

tories. To this end, the framework of the Rapidly-exploring Random Tree (RRT)

is pursued. First introduced by LaValle in [37], the RRT is noted for being well

suited for high-dimensional planning problems involving nonholonomic constraints in

nonlinear dynamical systems.

The fundamental operation in the standard RRT algorithm [37] is the incremental

growth of a tree of dynamically feasible trajectories, rooted at the system's current

state, through simulations of the system's prediction model. A node's likelihood of

being selected to grow the tree is proportional to its Voronoi region for a uniform sam-

pling distribution, yielding a natural bias toward rapid exploration of the state space.

Because the path cost and constraint evaluations are performed trajectory-wise, the

RRT algorithm can easily handle complex constraints that may cause optimization-

based approaches to become computationally intractable [37]. Finally, as a sampling-

based algorithm, the RRT planner performance scales with the available computa-

tional resources, avoiding the exponential growth in computational complexity often

found in information-based planning approaches.

3.3 Closed-loop RRT (CL-RRT)

This section reviews the real-time closed-loop RRT (CL-RRT) algorithm, proposed by

Frazzoli [15] and derived in detail by Kuwata et al. [33-35]. The CL-RRT algorithm

adds a path-tracking control loop in the system's RRT prediction model, such that

RRT sampling takes place in the reference input space rather than in the vehicle

input space. If the system executes a chosen path using the same prediction model,

any deviations are propagated using the same closed-loop dynamics, resulting in more

accurate trajectory tracking than with open-loop prediction [43]. The algorithm runs

in real-time, continuously growing a tree of feasible trajectories. At the end of each

phase of tree growth, the best feasible trajectory is selected for execution, and the

process repeats. The two primary operations of the algorithm, tree expansion and



Algorithm 1 CL-RRT, TREE EXPANSION
1: Take a sample Xsamp from the environment
2: Identify the nearest node Nnear using mixture of EXPLORATION and OPTIMIZATION heuristics
3: T(t + k) <- final state of Nnear
4: while Y(t + k) E Xfree and Y(t + k) has not reached Xsamp do
5: Use reference law to generate T(t + k)
6: Use control law to generate u(t + k)
7: Use prediction model to simulate x(t + k + 1)
8: k <- k + 1
9: end while

10: for each feasible node N generated do
11: Update cost estimates for N
12: Add N to T
13: end for

Algorithm 2 CL-RRT, EXECUTION Loop
1: t <- 0
2: Initialize tree T with node at x(0)
3: while x(t) $ Xgoal do
4: Update the current state x(t)
5: Propagate the state x(t) by At -+ T(t + At)
6: while time remaining for this timestep do
7: CL-RRT, TREE EXPANSION
8: end while
9: Use cost estimates to identify best feasible path 'P, <- {Nroot,... , Ntarget}

10: Apply best feasible path, if one exists
11: t -- t + At
12: end while

the execution loop, are reviewed next; more detailed treatments of these algorithms

have been considered in recent papers[34, 43].

3.3.1 Tree Expansion

The tree expansion algorithm, which attempts to add one or more nodes to the tree

T, is described in Algorithm 1. Similar to the basic RRT algorithm [37], a sample

xsarnp is generated in a metric space X (line 1), and the node Nncar in the tree T

that is "nearest" by some metric (c.f. Section 3.4.2) is identified (line 2). A forward

simulation is then generated for this node, beginning at the final state of the parent

node, Nnca, (line 3), until the trajectory has become infeasible or has reached the

sample Xsamp (line 4).

In traditional open-loop RRT, one or more candidate input sequences U(t) may be

generated in the forward simulation to yield a terminal state near Xsamp. In closed-
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Figure 3-1: Block diagram of CL-RRT.

loop RRT, a closed-loop representation of the vehicle dynamics is instead used to

generate trajectories. Consider the block diagram of CL-RRT given in Figure 3-1.

The inputs to the prediction model are xsamp and Nnea,., which are compared to

form a simple reference trajectory r(t) (line 5), then passed through a virtual vehicle

controller to form the input sequence U(t) (line 6). As in the standard (open-loop)

RRT, vehicle dynamic constraints are automatically satisfied by forward simulation, in

this case forming the closed-loop state response sequence T(t) (line 7). Environmental

constraints can then be queried for T(t) to determine whether the trajectory is feasible.

From this forward simulation, one or more feasible nodes New, may be generated.

After computing the cost estimates for these nodes (line 11), which are used in the

execution loop, the new nodes are added to T.

3.3.2 Execution Loop

For environments which are dynamic and uncertain, the RRT tree must keep growing

during the execution cycle to account for changes in the situational awareness [15].

Furthermore, given the extensive computations involved to construct the tree, as much

of the tree should be retained as possible, especially in real-time applications [67]. Al-

gorithm 2 shows how the algorithm executes some portion of the tree while continuing

to grow it.

The planner updates the current best path to be executed by the system every

..................................................



At seconds. During each cycle, the current state is updated (line 4) and propagated

to the end of the planning cycle (line 5), yielding T(t + At). The tree root is set to

the node whose trajectory the propagated state is following; this node's trajectory is

committed and must be followed. The remaining time in the cycle is used to expand

the tree (lines 6-8). Following this tree growth, the cost estimates are used [15] to

select the best feasible' path in the tree (line 9); the nature of these cost estimates is

discussed further in Section 3.4.3. Assuming at least one such feasible path exists2,

it is selected and executed by the vehicle (line 10).

3.4 Information-rich RRT (IRRT)

An extension of the CL-RRT algorithm that enables information-rich path planning

is now described. By determining the anticipated measurement sequence along paths

in the tree, the path information contribution can be quantified in the Fisher informa-

tion framework. The embedding of information metrics in the tree allows for nearest

node heuristics and cost functions that explicitly consider information in both the

tree growth and execution phases. This section details the information quantifica-

tion subroutine and introduces the information-based nearest node heuristic and cost

function.

3.4.1 Information Quantification

In this section, the single-agent Fisher information quantification JN of node N is

developed. For scenarios where multiple agents collect information, the algorithm

presented here is extended in Section 5. The following discussion is also restricted to

the case where the prior distribution pXf (xf) and posterior distribution Pxf lz, (xj I Zk)

are modeled as Gaussians. Multi-modal distributions are discussed in Chapter 6.

'It is worth noting, though outside the scope of this thesis, that a lazy check can be used to

reduce the computation time spent checking the tree for feasibility [34]. In this framework, the

environmental constraints are queried by CL-RRT once for each node when created, and again only

whenever the path is selected as the best in the tree to execute.
2The CL-RRT algorithm may be made safe by requiring that the system only execute paths for

which the vehicle can remain in a safe state in the absence of additional nodes[34].



Figure 3-2: Block diagram of IRRT. The red shaded box denotes the typical CL-RRT
functionality. The green shaded box denotes the IRRT extension to CL-RRT.

Measurement Pose Sequences

As information collection is predicated on a measurement sequence, quantification of

trajectory information content begins by predicting the measurement pose sequence

along that trajectory. Recall that the closed-loop RRT algorithm generates, for each

node N, an anticipated state sequence T(t) that is notably accurate with respect to the

true state sequence. This accuracy is of benefit not only to the constraint satisfaction

of CL-RRT, but also the accuracy with which the measurement pose sequence along

a node can be predicted.

Consider a single node N with m measurements, and let the time of the k-th

measurement along N be denoted as tk. Figure 3-3 illustrates the simple case of a

single sensor with visibility constraints. Generally, as these measurements may arrive

from different sensors, we form the list of all measurement times t = (ti, t 2 , ..., tm) and

the list of all measurement poses Al = (p, P2, ... , pm) by interleaving the respective

lists generated for each sensor.

Therefore, consider a single sensor ( in the set of sensors Zq onboard agent q. If

the measurement process is periodic with known frequency f , then the measurement
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Figure 3-3: Diagram of the path measurement sequence along a single node. The navy
blue circles denote elements of the anticipated state sequence. The measurement poses

AIk are interpolations of the state sequence, where the color of the triangle symbolizing
the vehicle orientation is green if the target f is visible by the sensor at timestep k,
or red if the target is outside of or obstructed in the sensor's (yellow) field of view.

interarrival time

T 1 (3.1)

is deterministic. If the measurements arrive in a stochastic fashion, the time interval

used in the pose prediction is the expected value of the measurement interarrival time,

i.e.,

T( = E [tk+1 - tk]. (3.2)

With the knowledge that the last measurement from ( on the parent node occurred

at time t'C, the list tC = (ti, t( t() can be formed using the relationship

t6 = t'C + kT(, k = 1,-.., mC( (3.3)

until t exceeds the time duration T(NINparent) of the node, where Nparent is the

parent of node N.

The list of measurement times for sensor ( is merged into a sorted map from all

sensor times to the corresponding sensor. Let tk denote the k-th such measurement

time, (k the associated sensor, and tk the measurement pose, which can be interpo-



lated from T(t). Suppose that tk E [t', t"], where t" - t' = Tim. Then the interpolated

pose yk at the k-th measurement is

Pk = (1 - a)Rq(t') + axq(t"), (3.4)

where a = (tk - t')/Tsim, and Tsim is the simulation timestep used to generate the

discretized representation of 7(t).

Fisher Information Application

The Fisher Information framework discussed in Section 2.4 is now used to quantify

the node's information content based on the anticipated measurement pose sequence

MA = (= 7i,...,I m)

Information is always defined with respect to a certain estimation process. In

general, the goal is to determine the value of an unknown (potentially time-varying)

quantity x via estimation from (noisy) measurements Zk from sensor (k. Consider

a feature f with an unknown state xj that one must attempt to estimate. In this

section, we restrict our attention to the discrete-time model

Xf,k+1 =p(tk+1, tk)Xfk + Wk (3.5)

Zf,k = h (Pk, Xf,k) + vk, (3.6)

where 4Dp(tk+1, tk) is a (linear) state transition matrix for feature f, h is a (generally

nonlinear) function of the measurement pose p1k and the true feature state Xf,k at

timestep k, and w and v are uncorrelated, zero-mean, white Gaussian sequences,



with

EwwT1{Qk, j=k

0, otherwise

E [vkv] = j=k (3.8)
0, otherwise

E [wkvf] = 0, Vk, j. (3.9)

The matrices Qk > 0 and Rk > 0 are referred to as the process and sensor noise

covariance matrices, respectively.

Systems with discrete-time models of the form

Xf,k+1 - (Df (tk+1, tk)Xf,k + Wk (3.10)

Zf,k = HkXf,k - vk, (3.11)

are called linear- Gaussian systems because both the transition and measurement

models are linear, and the additive white sequence is Gaussian. For such systems,

recall from Section 2.4 that Fisher Information Matrix (FIM) recursion can be written

as

Jk+1 (Qk - 4k+1|kJk k+1|k) 1 + HjI1R-4 Hk+1. (3.12)

The linearity assumption on the observation system can be relaxed by utilizing the

linearized FIM as an approximation of the CRLB inverse. Consider again systems

with discrete measurements z that are nonlinear in both the target state xf and

measurement pose p, and are thus of the form

Zk = h(pk, Xf) - Vk, (3.13)

where v is a vector of zero-mean, white Gaussian sequences. Henceforth, we will

approximate the FIM by defining H to be the Jacobian of the nonlinear measurement



function, i.e.,

Hk( 0k,5 ) O (3.14)
OXk4=1k, Xf-Okf~

Note that the assumption of Gaussian noise is retained, a limitation that is relaxed

in Chapter 6.

In the case of time-varying features, the recursion in (3.12) can be used to in-

crementally quantify the nodes of a tree structure containing trajectories. How-

ever, information quantification for multiple agents or sensors in the presence of dy-

namic targets remains cumbersome. The following further assumes stationary targets

(Qk = 0,< 4k = 0, Vk); dynamic targets are deferred for future work (c.f. Section 7.2).

While this is not an inherent restriction on the solution algorithm presented in this

work, it is an assumption which nevertheless simplifies the form of the tree-based

information quantification, which now utilizes the recursion

Jk+1 = Jk + H7T+ 1R4Hk+1. (3.15)

Equation (3.15) suggests that information metrics for a particular path in the tree

can utilize the additivity of FIMs for measurements of that path's constituent nodes.

Therefore, one need only specify how an individual node contains an increment of

Fisher Information; operations involving tree expansion (Section 3.4.2) and path se-

lection (Section 3.4.3) can act recursively on the tree. Throughout, it is understood

that the node Nj whose information is quantified is the child of a previously quantified

node Ni.

The assumption of Gaussianity on the measurement noise is a requirement of a

broader assumption that the posterior distribution can be well approximated by a

single Gaussian. Another such requirement is that the prior distribution is Gaus-

sian, by which the root node Nroot of the tree can be initialized by using the actual



information matrix, i.e.,

Jroot (f) = Pf (t)1 (3.16)

where

Pf(t) =E [(xf - f(t))(xf - f(t))'] (3.17)

is the error covariance matrix for target f at that instant t. For each target f, the

FIM Jj (kf) of a child Nj is formed by a recursive update from its parent Ni

Ji (if) =Ji(xf) + 3 v(070 Xf, )HT(0k, Xf)R -Hk 07k, kf), Vf E F, (3.18)
k=1

where m is the number of measurements along the path segment, E is the environment

representation, and v is a binary-valued function capturing the success/occlusion of

a measurement. In this way, the tree FIMs are populated and can be recomputed,

e.g., after target location estimates have been updated.

In the presented approach, the cost associated with information for target f at

node Ni is specified as the A-optimality condition on the FIM,

I-i(xf) = trace(Ji-'(xf)), (3.19)

which has been shown to be better suited than other FIM optimality conditions for

the 3D target tracking case [51]. In the multi-sensor or multi-target case, convex

combinations of the FIM A-optimality costs

i = I:Wfli(f), Wf = 1 (3.20)
f E.F f EjF

with relative weights Wf can be used to bias information collection, e.g., towards

mission-critical targets. Summation of the A-optimality costs is consistent with the

nature of the multi-objective problem. Moreover, it should be noted that simply sum-

ming the FIMs (and not the associated A-optimality costs) over all targets at a given



Algorithm 3 IRRT, TREE EXPANSION

1: Take a sample xsamp from the environment
2: Identify the nearest node Nnear using mixture of EXPLORATION, OPTIMIZATION,

and INFORMATION heuristics
3: T(t + k) -- final state of Na,
4: while Yi(t + k) C Xfree and T(t + k) has not reached xsamp do
5: Use reference law to generate T(t + k)
6: Use control law to generate U(t + k)
7: Use prediction model to simulate Y(t + k + 1)
8: k - k + 1
9: end while

10: for each feasible node N generated do
11: Update cost estimates for N
12: Compute simulated measurement poses AI
13: Compute FIM ising (3.15)
14: Add N to T
15: end for

measurement pose is imprudent; for example, two targets with singular FLMs could in

their sum form a nonsingular FIM, thereby masking the momentary unobservability

of each target's estimation process.

The ability to simulate expected measurement poses is used in two ways to extend

the CL-RRT algorithm for information gathering. First, these expected measurements

are used to bias tree growth toward regions of high information gain. Second, the

vehicle selects paths from the tree that minimize a cost function which explicitly con-

siders information, in addition to path cost and remaining cost-to-go. Both extensions

are discussed below in detail.

3.4.2 Tree Growth

This section considers the tree expansion algorithm for IRRT, an extension of CL-

RRT tree expansion (Algorithm 1) which incorporates the predicted collection and

utilization of information while growing the tree. The IRRT tree expansion algorithm

is presented in Algorithm 3, with the modifications (in red) discussed below.

The nearest node selection scheme alternates between a collection of heuristics to

identify the node(s) nearest to a sample [15]. In the CL-RRT algorithm (Algorithm

1, line 2), one of two heuristics are probabilistically selected, depending on whether



Algorithm 4 IRRT, Execution Loop
1: t<-0
2: Initialize tree T with node at x(O)
3: while x(t) 0 xgoal do
4: Update the current state x(t) and target estimates Xf Vf
5: Propagate the state x(t) by At -+ z(t + At)
6: while time remaining for this timestep do
7: IRRT, TREE GROWTH
8: end while
9: Update FIMs throughout T using (3.15)

10: Use information-based cost metric to identify best feasible path,
P, <- {Nroot, . . ., iNtarget}I

11: Apply best feasible path, if one exists
12: t - t + At
13: end while

or not a feasible path to the goal has been found. The EXPLORATION heuristic

* = argmin N (XsamplNi) (3.21)

uses a simple time metric (XsamplNi) (e.g., Dubins distance divided by average speed)

from the candidate node Ni to the sample xsamp, biasing the tree growth toward

unexplored regions of the environment. The OPTIMIZATION heuristic

i argmin -i(Xsamp lNi) + oTT(NilNoot), aT C [0, 1) (3.22)

uses both the simple time metric f and accumulated path duration T(NiINoot) from

the root Nroot to Ni, weighted by a, to bias tree growth towards lower-cost paths[15].

The relative weight aT C (0, 1) "rewards progress" toward the goal, with higher values

of aT corresponding to less tolerance of suboptimal paths. The likelihood of each

heuristic being used depends on the current tree, favoring the OPTIMIZATION metric

when at least one path to the goal has been found and the EXPLORATION metric

otherwise [33].

To facilitate the addition of information-maximizing paths to the tree, the IRRT

algorithm devotes a significant fixed percentage of its nearest node operations (Al-

gorithm 3, line 2) to an additional, information-based heuristic. This INFORMATION

heuristic selects the node that will yield the greatest reduction in the combined in-



formation/distance cost when connected to the sample, specifically by approximating

the information gain along a simplified reference path connecting the sample Xsamp to

a nearest-node candidate Ni. The heuristic first approximates the expected number

of measurements 7n along the path by multiplying path duration by sensor sampling

frequency, then discritizes the path into m' segments, each with weight Ak and mea-

surement pose Pk, k E {1,... , m'}. The approximate trajectory FIM J81 Jif) at the

sample xsamp for each target f as a result of taking the connecting tree path is given

by

JSIi Oif) Ji (cf ) + - YZAk 1(AXf , ) H'k, ik.f ) R- 1H(I ) ZAk1
k=1 k=1

(3.23)

where Ji(kf) is the FIM for target f at the nearest-node candidate Ni. For each such

JSIi(kf),

53 w trc (k~f)) wy 1 (3.24)
feF feF

Thus, the index i* of the candidate node yielding the greatest reduction in the com-

bined distance/A-optimality cost is

i = argmin # (xsamplNi) + aTT(NilNroot) + arlsli, r E [0, 1), (3.25)

where ar E R+ is a user-specified information weighting parameter to be described

in the next section.

Whenever new feasible nodes New are generated for the tree, the predicted mea-

surement poses A are stored within the node (line 12). These measurement poses are

used to compute the FIM based on the current target estimates Xf Vf, both when the

node is created (line 13) and whenever the best path is selected, as discussed next.



3.4.3 Path Selection

This section considers the path selection algorithm for IRRT, an extension of the

CL-RRT execution loop (Algorithm 2) which incorporates information-gathering into

the selection of paths to execute. The provided formulation allows the vehicle to

achieve the dual objectives of gathering a desired amount of information about some

target(s) and arriving at a goal state xgoal, giving the operator the freedom to specify

the relative importance of these tasks. The IRRT execution loop is presented in

Algorithm 4, with the modifications (in red) discussed below.

Given a tree of feasible trajectories, the algorithm must periodically identify the

"best" path for the vehicle to execute, in terms of some cost metric [15), from the

root Xroot. Since every node in the tree is connected to the root via a single path,

it is sufficient to iterate over the individual nodes to identify a cost-minimizing "tar-

get node" Ntarget, implicitly defining the path {Nroot, ... , Ntarget}. In the CL-RRT

algorithm, the cost metric used (Algorithm 2, line 9) typically depends on whether

or not a feasible path to the goal has been found. If at least one node has feasibly

reached the goal, the node Ni among that set which minimizes the total path duration

T(NilNroot) is selected. If no feasible path to the goal has been found, any number of

cost metrics might be appropriate, such as minimizing the remaining distance to the

goal [15].

In the IRRT algorithm, a single, multi-objective cost metric is used (Algorithm 4,

line 10), which considers both progress toward the goal and the value of information

collection. This cost function here takes the form

C(Ni) = aTT (NiINroot) + T* (Ni) + arii, (3.26)

where T(NilNroot) is the simulated time to travel from the root node Nroot to node

Ni, T*(Ni) is the lower-bound cost-to-go (e.g., Euclidean or Dubins length divided

by average speed) from Ni to the goal, and 1i is the information-related cost com-

ponent. The weights a and a, can be adjusted to reflect the relative importance of

information gathering and of following minimal-time paths to the goal. To ensure all



recent measurements are taken into account, the latest target estimates are measured

at the beginning of each execution loop (line 4), which are then used to update the

FIM of each node in the tree (line 9). Though this FIM update is performed on the

entire tree on each pass, this is a computationally efficient operation compared to

other aspects of the algorithm, such as constraint evaluation.

Of particular note with this cost function is that it can be shown to result in

"smooth" mission-level behaviors, in the sense that negligible churning between infor-

mation collection and goal directedness exists. Rather, the planner is always conscious

of the inherent tradeoff and will generate behaviors that, for example, conclude mis-

sions by manuevering to collect information while remaining relatively close to the

goal. It should also be noted as a limitation of IRRT, and RRTs in general, that

mission-critical requirements like maximum allowable duration and/or minimum re-

quired information collection are not well handled; it is difficult enough to find, let

alone guarantee that one could find, a feasible solution to such requirements in finite

time. Despite this, IRRT can be shown through simulations in Chapter 4 to perform

well empirically under a number of previously prohibitive general constraints.
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Chapter 4

IRRT Scenarios

This chapter presents simulation results demonstrating the effectiveness of the IRRT

algorithm in managing the competing objectives of information-gathering and prompt

goal arrival in real-time, while satisfying a complex constraint set. Results are or-

dered so as to present a progression in capability. The initial scenario is used as a

demonstrative example of how the algorithm exhibits simple information-gathering

behaviors, consisting of a single holonomic vehicle estimating a single target with-

out sensing constraints in an uncluttered environment. In the subsequent scenarios,

more complex extensions to the problem (in line with Section 1.2) are considered,

including non-holonomic vehicles, limited-field-of-view sensing, cluttered obstacle en-

vironments, multiple targets, and finally three dimensional flights. Even subject to

these constraints, which render many existing approaches in the literature intractable,

the IRRT algorithm generates paths with emergent information-gathering character-

istics.

Some basic analysis is provided to illuminate the trade-off between information-

gathering and goal arrival that is taking place. Towards describing the statistical

performance of IRRT, an extensive comparison of CL-RRT and IRRT, each with

various heuristics, is also provided.



4.1 Simulation Overview

Before proceeding to the simulation results, a brief overview of the simulation envi-

ronment and software is provided.

The IRRT algorithm as presented in Section 3.4 has been implemented in real-

time Java with the modular RRT-Sim software package developed by the author and

Brandon Luders at the MIT Aerospace Controls Laboratory. RRT-Sim retains the

object-oriented paradigm of its development language in allowing one to plan multiple

open-loop, closed-loop, or information-rich RRTs for vehicles with modular dynamic,

reference, and sensor models. The environment model is similarly modular, and the

obstacle space can be constructed from arbitrary polyhedrons and spheres. Vehicles

may be simulated in software or controlled over the network in the RAVEN testbed

[26]; so far, RRT-Sim has been used in physical demonstrations for a diverse array of

wheeled and aerial robots.

While the IRRT algorithm as presented admits a comparable level of abstractness,

the scenarios of this chapter will, for demonstrative purposes, focus on bearings-

only sensing of fixed targets whose unknown three-dimensional position is estimated

using an extended Kalman filter (EKF). Some remarks are in order. The use of

bearings-only sensing is motivated only by the intention of providing intuitive, ge-

ometric insights into the performance of IRRT. Furthermore, as IRRT is concerned

with minimizing the Cramer-Rao Lower Bound on the estimation error covariance,

and not explicitly the perfomance of particular estimators, we eschew discussion of

the implementation issues inherent in more recent filtering solutions (e.g., of particle

filters [55]). Comparison of EKF and particle filter implementations and their impact

on the selection of information-rich paths is given, e.g., in [51].

The EKF used is now briefly described. Recall from Section 3.4.1 that the target

dynamics are assumed to be linear, while the measurement process remains nonlinear.

It is further assumed that the process and measurement noises are additive. Therefore,



the system dynamics for each target f are

X =kk-1Xk-1 + Wk-1 (4.1)

Zk = h(xk) + vk (4.2)

where kilk_1 is the (linear) state transition matrix between timesteps k - 1 and k,

h is the nonlinear measurement function, and Wk_1 and Vk are uncorrelated, zero-

mean, white Gaussian sequences with respective covariance matrices Qk-1 and Rk.

The filter equations for the EKF are divided into a prediction phase

iC G kk1X (4.3)

i= h ((4.4)

P =@kkk_1Pk1k-1 + Qk-1, (4.5)

a linearization phase

Hk =O , (4.6)

and an update phase

Kk = P H[ [HkPH[ +Rk] 1  (4.7)
Xk Xk - (48

:k( = ifKe z g (4.8)

Pk" = PkE - PkE HkT (HkgPkEH + Rk ] -1Hk Pe. (4.9)

For any kth measurement, the relative vector between target f and agent q is denoted

by

rk A rx ry rT Xq - X. (4.10)

In a target-centric frame translated (but not rotated) from a global coordinate frame

common to all agents, the azimuth angle # and elevation #, as shown in Figure 4-1,
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Figure 4-1: Diagram of the the azimuth # and elevation # between the vehicle and
one target [51). The axes are assumed to be parallel to those of a global coordinate
frame common to all agents in the scenario.

are exactly

/3=tan- (4.11)
rY

# tan- 2 Y2 (4.12)

Therefore, the (nonlinear) measurement model is

tan-
h(Xf,k) = n rz

tan- r
(4.13)

for which the Jacobian is

Hk

(rx2+r2+r2) 2+Y

r-yrz

(rx2+r2 +r2) 2 +r.2

In practice, since the true position xf of target f is unknown, the linearized mea-

surement matrix H, and by extension the Fisher information matrices, are computed

0

(rX2+r2 +r2

(4.14)



using the estimate if. That is, the above linearization is evaluated for

ik = Xq - Xf. (4.15)

All simulations were performed on an Intel 2.53 GHz quad-core laptop with

3.48GB of RAM. The vehicle's current path is selected from the tree at a rate of

4Hz; the tree capacity is specified to be 2000 nodes. A 10cm buffer is also placed

around the vehicle for safety reasons. All (bearings-only) sensors are assumed to have

a measurement rate of 15 Hz.

4.2 Quadrotor Scenario

Consider a quadrotor unmanned aerial vehicle (UAV) navigating through an obstacle

environment at a fixed altitude while tracking a stationary aerial target at significantly

higher altitude. We assume for now that the onboard sensor has an unobstructed

view of the target at all times (Figure 4-2(a)); any obstacles in the environment

still obstruct motion but do not provide visual occlusion. An onboard sensor makes

periodic bearing (heading and inclination) observations of the aerial target, which

are passed through the EKF to reduce uncertainty in the target's location. The

UAV's objective is to gather information about the target through measurements

while efficiently traveling to some goal location; the relative importance of these

tasks is governed through the weights in the cost function (3.26).

In this scenario, the 40-cm UAV begins at xq(to) = (1.5, 1.0, I. 0 )T m with an

unobstructed path to the goal at xg = (0.0, 1.0, 1.0 )T m, but also uncertain knowledge

of a target located at xf = (0.0, -1.75, 4.O)T m beyond a single obstacle (Figure 4-

3). For this scenario, we have selected a, = 0.5 and a = 6000 sm-2. A "carrot"

reference law moves the reference toward the next waypoint at a fixed rate of 0.3

m/s; an LQR control law is then used by the quadrotor to track this reference. The

agent begins with equal uncertainty of the target in all directions (P(to) = 8.013 m2 ),

but as bearing measurements are taken, the longest axis of the uncertainty ellipsoid
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Figure 4-2: (a) Diagram of the quadrotor UAV scenario. As the UAV navigates at a
fixed altitude below that of the aerial target, the onboard sensor has an unobstructed
view of the aerial target. (b) Dubins car diagram with a pointed monocular vision
sensor.

aligns with the camera axis. This agrees with the intuition that with a bearings-only

sensor, the greatest degree of uncertainty is in the range estimate to the target.

An example trial of the scenario is depicted in Figure 4-3. Whereas the basic RRT

algorithm would direct the UAV straight to the goal, the paths chosen here represent

the value of deviating from a minimal-time path to gather target information. The

initially selected plan (Figure 4-3(a)) specifies a path that moves the sensor in a

direction orthogonal to the current line-of-sight and, by virtue of using bearings-only

sensing, the largest axis of the uncertainty ellipsoid. As the target estimate evolves

and converges toward the true target location (Figures 4-3(b-c)), the planner identifies

paths that lower the total cost by both decreasing range to the estimated target

location and increasing the number of measurements (by successively lengthening the

path). As information is gathered, the information cost component of (3.26) becomes

sufficiently small that the total cost is optimized by returning to the goal; at this

point, the planner begins selecting successively shorter paths to the goal (Figures 4-

3(d-e)). After 20 seconds have elapsed, the vehicle has collected sufficient information

on the target and arrives at the goal (Figure 4-3(f)). From a simple cost tradeoff in

(3.26) between path length and uncertainty, complex target tracking behavior for the

autonomous UAV has emerged naturally.
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Figure 4-3: Snapshots of a typical trajectory for a simulated quadrotor navigating
toward a goal while tracking an aerial target. The vehicle (magenta diamond, high-
lighted in blue in (a)) starts at top-right, and attempts to gather information about
the target (green, bottom-center) and reach the goal waypoint (cyan, top-center)
while avoiding obstacles (black). Relative uncertainty in the target location is rep-
resented with a gold ellipse, with the current estimate denoted by a gold star. The
vehicle's line-of-sight to the target is denoted with either a green or red line (not seen
in this figure); the former denotes positive visibility, the latter a loss thereof. The
current RRT tree is marked in magenta, but is suppressed after (a) in the interest
of clarity. The vehicle's currently selected path is emphasized in black, where the
magenta dots correspond to nodes. All timestamps are in seconds.



4.3 Dubins Car Scenario

This scenario considers a more complex problem formulation, specifically by consider-

ing non-holonomic vehicle dynamics and sensing constraints. Consider a small Dubins

car agent traversing an obstacle-free environment while esimating the location of a

stationary aerial target. As opposed to the previous example, the agent's monocular

sensor is limited to a field of view of 400 in each of the horizontal and vertical axes.

The sensor is yawed 900 (out the driver's left side) and pitched up by 600 from the

horizontal plane (Figure 4-2(b)); thus the agent must achieve a proper combination

of lateral distance and heading to see the target.

In this scenario, the 20-cm car begins at xq(to) (-2.5, -3.5, I.0)T m with an

unobstructed path to the goal at xg = (-2.5, 3.5, I.O)T m, but also uncertain knowl-

edge of a target located at xf = (0.0, 0.0, 2.O)T m. For this scenario, we have selected

a, = 0.5 and al = 8000 sm-2. The car is assumed to move at a fixed velocity of 0.4

m/s; a variation of the pure pursuit reference law [35] is applied for steering control,

assuming forward direction only. Note that this vehicle model could also be used to

represent a fixed-wing vehicle operating at a fixed velocity and altitude.

A typical trajectory generated by a trial of this secenario is given in Figure 4-4.

The agent quickly plans a winding path that both anticipates measurements about the

estimated target position and reaches the goal (Figure 4-4(a)). The uncertainty ellip-

soid is markedly elongated in the line-of-sight direction, indicating large uncertainty in

depth. As the estimate improves (Figures 4-4(b-d)), the planned path tightens around

the estimated target position, in order to take an extended sequence of measurements

at close range. Given the relatively high value of a,, the path ultimately loops itself

(Figure 4-4(e)) in order to take additional measurements before finally turning toward

the goal (Figure 4-4(f)). Though the vehicle states where measurements can be taken

were never explicitly defined, the IRRT algorithm is able to identify these regions and

execute a path which spends significant time gathering useful measurements within

those regions.
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Figure 4-4: Snapshots of a simple Dubins car simulation with side mounted camera
navigating toward a goal while tracking one aerial target. See Figure 4-3 for a full
legend; the field of view is denoted by the magenta pyramid. The RRT tree has been
suppressed for clarity.

4.4 Complex Dubins Scenario

Consider now the full problem statement as outlined in Section 1.2 for the Dubins car,

extending the previous example. A Dubins car agent traverses a cluttered environ-

ment S (a bounded, nonconvex subset of R 3) while estimating the location of multiple

targets, all sufficiently above E. Its monocular sensor is mounted on the driver's left

side, pitched up by 600 as before, and has horizontal and vertical fields of view of 600

each. In this scenario, the 20-cm car begins at xq(to) = (2.5, -3.5,1 i.O)T m with an

unobstructed path to the goal at xg = (-2.5, 3.5, I.O)T M.



The presence of a cluttered obstacle environment presents several challenges over

the previous example for the planning algorithm. First, the vehicle must be able to

maintain feasibility by avoiding these obstacles; this is itself a challenging problem,

since the vehicle moves at a fixed speed and thus cannot safely come to a stop.

Second, obstacles in the environment can provide occlusion between the sensor and

the targets, greatly complicating the representation of the region of vehicle states

where the target(s) are observable. Whereas most heuristic approaches would have

to adjust the path in an ad hoc manner to achieve feasibility and visibility, these

characteristics are embedded naturally in the IRRT algorithm.

An example trial of the scenario is depicted in Figure 4-5; here the RRT trees have

been left visible to demonstrate how the set of feasible paths evolves over time. Due to

anticipation of occlusion between the sensor and targets, the planner selects paths that

result in long periods of visibility. The agent initally plans to move toward the goal

and then loiter in its vicinty, occasionally making distant measurements of the targets

(Figure 4-5(a)). As the agent approaches the goal, the tree identifies a path which is

able to take a better set of measurements while still avoiding obstacles (Figure 4-5(b)).

As the target locations are made more precise, subsequent snapshots show the agent

carefully moving through the obstacle field, attempting to take closer measurements

while ensuring a safe return trajectory to the goal is available (Figures 4-5(c-e)).

When the vehicle has gathered enough information with respect to its cost function,

it expeditiously plans a path to the goal through a tight corridor (Figure 4-5(f)).

4.5 Analysis

Before proceeding to more complex examples, it is instructive to analyze how effective

the IRRT algorithm is in gathering information along its path, and how that capacity

is weighed against the objective of reaching the goal. In this section, we revisit the

complex Dubins scenario considered in Section 4.4, with particular focus on reduction

in target uncertainty over time.

Figure 4-6 plots the value of the information A-optimality cost, (3.19), for the
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Figure 4-5: Snapshots of a complex simulation of a Dubins car with side mounted
camera navigating toward a goal while tracking two aerial targets. See Figure 4-3 for
a full legend; the field of view is denoted by a magenta pyramid. The RRT tree is
left visible in all figures to demonstrate how the tree evolves over time; for clarity,
the vehicle is represented in blue here.
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complex Dubins scenario trial shown in Figure 4-5 as a function of time. The colored

bars at the bottom of the figure correspond to the time intervals during which each

target is visible for measurement by the agent. It is apparent that reduction in the A-

optimality occurs when the targets are visible, with the slope of the curve depending

on which targets are visible. As Target 2 is more visible in the opening phase of the

mission, there is a diminishing return associated with taking data on this target later

in the mission, as compared with that of Target 1.

Another important consideration is the effect of varying ar, a user-specified pa-

rameter, on the trade-off between uncertanity reduction and final path length. To

evaluate its impact, we performed multiple simulations of the complex Dubins sce-

nario for different values of ar, recording the final A-optimality and path duration

at the conclusion of each simulation. Seven values of a1 were considered, a, = 10 ,

where b = {-1, 0, 1, . .. , 5}. Note that as b -+ -oo, ar -- 0, approximating the stan-

dard, information-naive RRT algorithm. For each value of b, 25 trials were performed,

consisting of 5 trials on the same 5 instances of the complex Dubins scenario, each

with a randomized (feasible) obstacle arrangement and initial target estimate.

Figure 4-7 shows the resulting relationship between average mission duration and

average terminal A-optimality as a function of ar, which increases from b = -1 at

bottom-right to b = 5 at top-left. As expected, as a increases the final A-optimality

decreases, at the expense of a longer final path. For the lowest values of ar, the

algorithm essentially behaves as standard RRT, ignoring the target in pursuit of the

goal. As a, increases, the A-optimality value becomes relatively more important

when selecting paths, and the algorithm will opt to select longer paths which take

more measurements of the target.

4.6 Three-Dimensional Scenario

The IRRT formulation can be applied in any number of dimensions; the following

scenario demonstrates the capability of IRRT to design information-rich paths for

a vehicle operating in a realistic, fully three-dimensional environment. Consider a
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Figure 4-6: Comparison of the information A-optimality cost versus time for the
complex Dubins scenario as shown in Figure 4-5. The colored bars at the bottom
of the figure correspond to the time intervals during which each target is visible for
measurement by the agent.
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Figure 4-7: Comparison of average mission duration versus average terminal infor-
mation A-optimality cost. Data points are parameterized by the relative information
cost weighting term from (3.26) with values a, - 10b, b = {-1, 0, .. ., 5}. Each data
point corresponds to one value of b, with b = -1 at bottom-right and b = 5 at top-left.
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quadrotor UAV agent navigating through an obstacle environment to track a sta-

tionary aerial target. Unlike the first scenario, the agent is free to change both its

altitude and heading. In this sense, the RRT is actually sampling in four dimensions,

three for position and one for heading. The agent's monocular sensor is mounted on

the vehicle's front, parallel to the ground, so it may be advantageous for the agent to

change its heading to gain a vantage point for the target.

In this scenario, the agent begins on one end of a hallway at xq(to)= (0.75, 5.25, 3 .O)T m,

with an unobstructed path to the goal at xg = (5.25, 5.25, 1.0)T m. However, the agent

also seeks to gather information on a target at xf = (2.0, 1.0, 2.O)T m, which is located

in a room off the hallway and behind a cluttered region of obstacles.

An example trial of the scenario is depicted in Figure 4-8. The agent begins with a

path directly to the goal (Figure 4-8(a)), but the planner then identifies a path which

gives the agent sufficient time to rotate and peer into the doorway (Figure 4-8(b));

upon doing so, the agent views the target. Now possessing more accurate knowledge

of the target, the planner decides to send the agent into the room and underneath

the obstacles (Figure 4-8(c)) to get a much closer view of the target behind them

(Figure 4-8(d)). The planner then seeks to return the agent to the goal, and after

some wandering succeeds in doing so (Figures 4-8(e-f)).

4.7 INFORMATION Heuristic Comparison

Having characterized the influence of the user-specified parameter a, on the mission

duration and terminal average uncertainty in Section 4.5, it is natural to inquire

into the utility of the INFORMATION heuristic. More precisely, it is desired that the

performance sensitivity to pr, the probability of selecting this heuristic to use as the

nearest node metric, be understood.

Towards this end, consider the following scenario (Figure 4.7). The environment,

which is identical for all trials, consists of an axis-aligned box in the first octant of R'

with dimensions (10.0, 10.0, 6 .0 )T m. The cube is populated by 12 randomly generated

box obstacles whose placements are uniformly sampled within the environment, and
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Figure 4-8: Snapshots of a typical trajectory for a simulated yawed quadrotor navi-

gating toward a goal while tracking an aerial target in three dimensions. The vehicle

(magenta diamond) attempts to gather information about the target (estimate and

uncertainty in gold) and reach the goal waypoint (cyan) while avoiding obstacles.

The agent's field of view is denoted by the magenta pyramid. The vehicle's current

reference path is denoted by magenta dots.
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Figure 4-9: Scenario for the INFORMATION heuristic comparison.

whose lengths and widths are uniformly selected from the intervals (0.4, 0.6] m and

[0.25, 0.4] m, respectively.

The first target is located at xf, = (1.0, 1.0, 3.0O)T m with initial estimate :if, (to)=

(1. 2, 4, 3.4) T m. The second target is located at xf2 = (6.0, 1.0, 3.0O)T m with ini-

tial estimate :f2(to) = (5.7, 0.6, 3.4)T m. Both target covariances are initialized as

Pf (to) =o213, o-=3.0 m

The agent is a Dubins car with diameter 0.2 m, initial position x0 = (0.5, 9.0,1.)

mn, initial yaw #bfq = 0 rad, and goal position X Jq = (9. 1, 9. 0, 1. 0) T m. The onboard

monocular (bearings-only) sensor, which operates at 15 Hz and has 60' vertical and

horizontal fields of view, is yawed 90' counterclockwise from the front of the car and

pitched up 30' from the plane. Simulated bearing measurements are corrupted by a

zero-mean, additive white Gaussian noise sequence with a standard deviation of 5'.

The parameters of the cost function (3.26) are set to a = 0.5 and az = 3000 sm--2

for all agents.

For each value of p, E 0.0, 0.1, 0.3, 0.5, 0.7}, 100 trials were executed. The sta-

tistical results are given Figure 4-10 and Table 4.1. Defining the mission-level cost



Table 4.1: Tabulated performance of the INFORMATION heuristic comparison. The
total cost is computed as c = At + aziterm, where At is the mission duration, term
is the final A-optimality cost, and a, = 3000 sm-2

pr-
Metric 0.0 0.1 0.3 0.5 0.7

median 78.84 79.42 78.50 82.17 84.26
Mission Duration [s] mean 80.26 80.69 79.44 83.00 87.15

std 11.90 11.87 11.29 14.31 15.84

Terminal Information median 5.00 3.72 4.01 3.82 3.56
-3 mean 5.14 3.92 4.10 3.94 3.59

std 1.52 1.14 1.12 1.20 0.87
median 93.61 91.16 91.67 93.09 95.42

Total Mission Cost [s] mean 95.67 92.44 91.74 94.83 97.91
std 11.04 10.98 10.57 12.88 14.81

as

c = At + ailterm, (4.16)

where At is the mission duration, Iterm is terminal average uncertainty (A-optimality),

and a, is the same information cost weight used in (3.26), the general trends with

increasing pr are increasing At and decreasing Iterm. The data suggests a significant

reduction, on the order of 20%, in the mean Iterm as a result of increasing p, from 0

to 0.3. Though this reduction typically comes at the expense of an increased At, the

difference in mean durations between pr = 0 and pi - 0.3 is slightly negative, though

not statistically significant. The mean cost is the most appropriate indicator of which

pr value is best suited for the particular scenario. Within statistical significance, the

results presented match the intuition of Section 3.4.2 that the overall performance can

be improved by embedding information at both the path selection and tree growth

levels. Moreover, the INFORMATION heuristic can only be selected for a fraction of the

time, so as to better allow the other heuristics, EXPLORATION and OPTIMIZATION,

to impose their respective biases.
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Chapter 5

Multiagent IRRT

In this chapter, the IRRT algorithm as previously stated in Chapter 3 is extended for

multiagent missions with decentralized planning and information collection. The as-

sumptions that enable this extension are briefly reviewed in Section 5.1. The full mul-

tiagent IRRT algorithm is then described in Section 5.2. Simulation results provided

in Section 5.3 demonstrate the utility of IRRT in constrained, multiagent scenarios.

5.1 Assumptions

The main assumptions of this extension involve the communication capabilities and

requirements. Each agent in a network Q is assumed to be graph-connected to all

other agents, though any two agents need not be adjacent or share a particular edge.

To limit the necessary communication between agents, each agent is assumed to

be executing a local information filter which pre-processes measurements by that

agent and sends out only the information contributions over the network. A class of

decentralized estimators exists for which the locally produced estimates exactly match

those produced by a hypothetical central filter with access to all measurements. An

example of such a decentralized estimator can be found in [53]. For the purposes of

information gain prediction, it is further assumed that the parameters of each agent,

e.g. dynamic and sensor models, are known to all other agents at the beginning of,

and are not changed during, the mission.



5.2 Algorithm

The algorithm is described in terms of the relationship between one agent and the

rest of the network. Consider that agent q E Q grows a tree T] using IRRT (c.f.

Section 3.4.2) and periodically selects its most favorable path p[q], defined as the

minimal-cost feasible path in TM[] (c.f. Section 3.4.3). The general path Pq is Simply

the sequence of nodes (Noot, ..., Ni) beginning at the root node Nroot and terminating

at node Ni, where the interstitial elements of the sequence are determined by the

lineage of Ni. Due to the nature of the cost function (3.26), the cost C Dq of a

path P('] is exactly the cost C(Ni) associated with terminal node Ni. Although the

nodes of p[q] encode the entire reference state sequence, simulated state sequence,

and measurement sequence, agent q need only transmit the waypoints, or terminal

reference states, of each node. The other agents q' E Q then use the known parameters

of q to reconstruct through forward simulation the nodes of p.q]. The ability of CL-

RRT to reconstruct from sparse waypoint data the complex trajectories generated

by individual agents affords a considerable reduction in the necessary communication

bandwidth.

The obstacle space Xob,(t) now includes both the static obstacles in the environ-

ment and the time-parameterized, dynamic obstacle associated with each agent q

along Plq]. Though static obstacles are checked for feasibility when growing the tree

T[q', Vq' e Q, the time-parameterized swept space of other agents is only enforced

in the so-called "lazy check" step of CL-RRT (c.f. Section 3.3.2). Growing the tree

through portions of the swept space of other agents can be justified in light of the

tendency for agents to replan during the course of the mission; once a part of the

swept space is freed, the planner may quickly select feasible paths that improve the

plan cost. Once P?[q has been announced, and until it is overwritten by agent q with

a lower cost path, all other agents must select their respective paths to be feasible

with respect to P[]. Conversely, at the time of selection, the feasibility of ?P*1 was

enforced with respect to * Vq' E Q.
Because of revisions to the obstacle space Xeb,(t) due to replanning, a principled



Algorithm 5 Token Exchange Algorithm for Multiagent CL-RRT, Agent q
1: Initialize Xob,(t) with static obstacle set

2: plqie , 0
3: p* +- 0

4: for all q' E {Q\ q} do

5: PP1  0
6: end for
7: repeat
8: if q is the token holder q* then
9: Form replan path P*[l1 feasible w.r.t. Xbsb(t)

10: Announce waypoints of P141* to the network

11: [q4 e - Pfq]ED

12: P +-o0
13: else
14: if token holder q* has announced a new path then
15: Xobs(t) +- Xbs(t) \ PcI
16: P[4l <- reconstructed plan of q*

17: Xend (t) - Xos (t) U p
18: end if
19: end if
20: Form candidate replan path l'1* feasible w.r.t. Xosb(t)

21: Compute cost reduction ACel +- C (Plq]()- C (p Ie)
22: Send AClel to token holder q*
23: if q is the token holder q* then

24: Determine next token holder q* + argminq , ACE4

25: Relinquish token to q*
26: end if
27: until the mission terminates

method is needed to decide which agent in the network is next allowed to announce

its best path. The approach taken here is in line with the token-exchanging algorithm

as described in, for example, [69] and reformulated in Algorithm 5. The algorithm

can be summarized succinctly as follows. The agent that can best improve its own

path cost via replanning receives a token, announces its best path to the network, and

relinquishes the token to the agent with the next best cost improvement. Each agent

need only transmit its expected cost improvement (a single number) at any time to

become a candidate for token holder. It is important to note that Algorithm 5 gives

a sketch of the algorithm as seen

Under the assumptions of Section 5.1, agent q will receive the entirety of the

information collected from other agents q' E {Q \ q}. The implication is that at time



to, the information concerning target is encapsulated by

Jo(xf) = Pf (to) = E [(xf - Xf (to))(xf - Xf (to))'] , (5.1)

and when all agents have completed executing their respective plans, the terminal

information is

Jterm(Xf) - Jo(xf) + AJ (xf; Pj4I), (5.2)
qGQ

where AJ(xf; P) denotes the matrix increment in Fisher Information for target f as

a result of the measurement sequence along the path P. Therefore, agent q, when

computing the path information in TM, initializes the root node with information

Jroot (if) = Jo(if) + AJ (if; P . (5.3)
q'E{Q\q}

The agent's planner then uses the tree-embedded information metrics as described

in previous sections. In this manner, agents will tend to select paths which gather

information with respect to other agents' paths, resulting in naturally cooperative

behaviors.

A basic assumption made in the decentralized, multiagent extension to IRRT is

that a single agent q can anticipate the benefit of the measurement sequences q

for all Vq' E Q. However, following replanning to form pq] , no guarantee exists

that the other agents will continue executing the previously announced paths. In

fact, it is likely that any agent will replan based on both the evolution of target

estimates and the decisions of other agents. The mitigation of information-loss due

to an individual agent replanning its path is beyond the scope of this work. Such

mitigation likely would require time-based information discounting which takes tree

diversity into account, and will be considered in future work.



5.3 Simulation Results

5.3.1 Single Target Scenario

Consider a team of two Dubins agents, collectively tasked with taking measurements

of an aerial target. Each agent plans its own paths while using IRRT with decentral-

ized (but, recall, identical) estimates. Each agent has a monocular sensor, mounted

on the vehicle's front and pitched up 250 from the plane, with 500 horizontal and

vertical fields of view; the sensors are assumed to be identical. A target is placed at

Xf = (0.0, 1.0, 2 .O)T m. The mission consists of planning a path for the two agents

with starting positions

x1 [ 0.0 -3.8 1.0 m x[2] = 0.0 -3.0 1.0 m

and goal positions
T 1

X1= 0.0 3.0 1.0 m X[21 = 0.0 3.8 1.0 m,

to minimize the individual agent cost functions, subject to a[ = a - 1900 sm-

An example trial for a such a scenario is depicted in Figure 5-1. Initially, in Fig-

ure 5-1, the target position estimate is close to the true value, but the highly eccentric

uncertainty ellipse is directed along the line-of-sight from both vehicles (Figure 5-

1(a)). Recall that the path planning modules are decentralized but assume a central

measurement processing module for quantifying the information content of agents'

paths. Based on the evolving target estimate, the vehicles individually plan paths

that increase the difference in bearing between the two measurement sets subject to

the other agent's announced plan. Specifically, the path selected (Figures 5-1(b-d))

is one that balances deviation from the centerline (which forms the minimal-time

path for each) with time spent triangulating the target. As the joint maneuver is

sufficiently information-rich, when the target leaves the line of sight of both vehicles

(Figure 5-1(e)), the remaining path segments connecting each agent to the goal are

followed (Figure 5-1(f)).
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Figure 5-1: A multiagent Dubins scenario with sensor constraints. Each agent plans
paths that minimize the goal arrival time and maximize the shared information. The

ability for both agents to simultaneously take measurements from disparate measure-
ment poses, as in (c) and (d), is considered favorable by the cost function of each

agent's path planning module.



5.3.2 Multitarget Scenario

A three-agent, eight-target scenario is now considered. Specifically, the performance

of multiagent IRRT is compared for two planning modes. In both modes, agents

report measurements to a decentralized information filter, consistent with the as-

sumptions of Section 5.1. The modal distinction arises from the treatment of plan

information contributions of agents in the network. In the non-cooperative mode,

when an individual agent plans its path, the plan information contribution of all

other agents in the network is ignored. Alternatively, in the cooperative mode, an

individual agent fully utilizes, as in the algorithm developed in Section 5.2, the plan

information contribution of the other agents in the network.

The scenario environment, which is identical for all trials, consists of an axis-

aligned box in the first octant of R3 with dimensions (20, 20, 6 )T m. The cube is

populated by 20 randomly generated box obstacles whose placements are uniformly

sampled within the environment, and whose lengths and widths are uniformly selected

from the intervals [0.5, 1] m and [0.25, 0.5] m, respectively.

The true positions of the eight targets are given in Table 5.3.2. The initial estimate

for each target f is random for each trial and is generated by perturbing the true

poisitions according to

if (0) = xf + d1 , df ~A (0, oxI3), d = 0.5 m. (5.4)

All target covariances are initialized as Pf(0) = oa2 3, o = 2.0 m.

Each agent is a Dubins car with a diameter of 0.8 m and a monocular (bearings-

only) sensor. The components of the initial and goal states for each agent are specified

in Table 5.3.2. The sensor, which operates at 15 Hz and has 600 vertical and horizontal

fields of view, is yawed 900 counterclockwise from the front of the car and pitched

up 30' from the plane. Simulated bearing measurements are corrupted by a zero-

mean, additive white Gaussian noise sequence with a standard deviation of 5'. The

parameters of the cost function (3.26) are set to a = 0.5 and a, = 3000 sm-2 for all

agents.
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Figure 5-2: Sample non-cooperative multiagent IRRT scenario. (a) Each agent, ignor-
ing the plan information content of the other agents, plans a circuitous path through
the environment to collect information from all targets. (b) The resulting state history
of the three agents at mission termination.
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Figure 5-3: Sample cooperative multiagent IRRT scenario. (a) Each agent, accounting
for the plan information content of the other agents, plans an efficient, information-
rich path through the environment to cooperatively collect information from all tar-
gets. (b) The resulting state history of the three agents at mission termination.
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Table 5.1: Multiagent scenario: target positions.

Target Xf [m] yf [im] Zf [m]

1 10.0 5.0 3.0
2 5.0 15.0 3.0
3 17.0 9.0 3.0
4 10.0 10.0 3.0
5 13.0 18.1 3.0
6 5.0 8.0 3.0
7 13.6 13.6 3.0
8 2.0 18.0 3.0

Table 5.2: Multiagent scenario: agent initial and goal states.

Agent $' [rad] xj [m] yJ [m] z [m] x [M] yg [in] z [M]

1 0.0 1.5 1.0 1.0 15.0 10.0 1.0
2 3.1 19.0 17.5 1.0 5.0 10.0 1.0
3 0.0 1.5 12.0 1.0 11.7 19.0 1.0

The qualitative behavior of the non-cooperative and cooperative modes is illus-

trated in Figures 5-2 and 5-3, respectively, for example trials. Typically, agents in

the non-cooperative mode commit to path plans that are significantly longer than

those selected by agents in the cooperative mode. While measurements taken by

all agents reduce the uncertainty (hence, information cost) apparent to a particular

agent, the inability to anticipate the plan information contribution of other agents

leads each agent to selecting a (possibly circuitous) path for the purposes of collecting

information from all targets.

Recall that in the IRRT algorithm, the relative weighting between the information

collection and path duration is a.. Thus, in order to assess the mission performance,

a mission-level cost C = d + arlterm is specified, where d is the mission duration

and I is the terminal A-optimality cost. A network of agents that plan in the non-

cooperative mode typically gathers more information over the course of a mission, but

does so at the expense of significantly longer mission durations. One would, therefore,

expect the resultant mission-level cost to be higher in the non-cooperative mode. To

better quantify this statement for multiagent IRRT, a randomized algorithm, the



Table 5.3: Tabulated results of the batch multiagent IRRT comparison of the co-
operative and non-cooperative planning modes. The total cost is computed as
C A at + ariterm, where At is the mission duration, Iterm is the final A-optimality
cost, and a, = 3000 sm- 2

Metric Cooperative Non-cooperative

median 74.29 97.11
mean 75.63 98.00

Mission Duration [s] std 14.35 15.93
IQR [63.96, 85.63] [87.6, 106.8]

median 5.02 2.99
Terminal Information mean 5.20 3.15
Cost [10-3 M2 ] std 1.50 0.79

IQR [4.11, 5.92] [2.59, 3.62]

median 88.36 105.07
mean 91.23 107.46

Total Mission Cost [s] std 12.92 14.56
IQR [80.77, 99.86] [97.69, 115.90]

performance of the non-cooperative and cooperative modes are compared over a set

of 100 trials of each. The statistical results can be found in Table 5.3 and in Figure 5-

4. As expected, the cooperative mode generally outperforms the non-cooperative

mode, where the severity of underperformance in the latter is a function the scenario

and mission parameters, particularly the information cost weight a, in (3.26).
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Figure 5-4: Boxplot of the batch multiagent IRRT scenario. (a) The mission duration
for the cooperative multiagent IRRT mode is significantly shorter, on average, than
that of the non-cooperative mode. (b) The extended duration of non-cooperative
missions generally results in more information collected, (c) though the overall cost
may yet be adversely affected.



Chapter 6

IRRT with Gaussian Mixture

Models

In this chapter, we relax the Gaussian assumption on the prior distribution pxf (xf)

of unknown feature vector xf and the posterior distribution Px Iz (xj I Z) of xf given

the measurement sequence Z. Though many particle filtering techniques have been

developed to approximate general posterior distributions [55], the associated compu-

tational complexity currently bars approximations that are temporally distant. The

approach pursued here is concurrent with the Gaussian mixture model framework,

which seeks to approximate the posterior distribution with a "small" number of Gaus-

sian basis functions. By "small," it is meant that the number of bases nG is between

two and twenty, in contrast to the number of particles (on the order of 103) usually

employed in particle filtering implementations.

To simplify the notation of this chapter, we will refer to only a single target whose

true position is estimated by a single agent. The parallelization to multiple targets

is exactly as in Section 3.4, and the extension to multiple agents follows a nearly

identical derivation to that offered in Chapter 5. Furthermore, both probability mass

and density functions will be denoted by p(.); distinction between the two will be

apparent from the context.

The chapter proceeds by reviewing the static multiple-model form of the Gaussian

sum filter (Section 6.1), applying the filtering methods to the information quantifica-



tion step of IRRT (Section 6.2), and offering simulation results for select multi-modal

problems (Section 6.3).

6.1 Gaussian Sum Filter

The Gaussian sum filter, first proposed in [6] and later pursued in [4, 62, 63], approx-

imates the posterior distribution p(xklZk) by a Gaussian mixture, a weighted sum of

nG Gaussian density functions. Specifically,

nG

p(xkIlZk) e pGSF (Xk I k = k,i NV (xk,i; Rk,i, Pk,i) (6.1)
i=1

ng

subject to Wk, = 1 (6.2)
i= 1

Wk,i > 0, Vi. (6.3)

The individual Gaussians in (6.1) are essential basis functions parameterized by means

Rk,i and covariances Pk,i. The participation of each basis function in forming the

approximate posterior pGSF(XklZk) is governed by its weight Wk,i. The constraints

(6.2)-(6.3) guarantee that pGSF(XklZk) is a valid probability distribution (i.e., it is

nonnegative and integrates to unity). Note that although (6.3) is not strictly required,

extra measures must be taken to ensure the nonnegativity of the distribution function

over its support [30].

Various forms of the Gaussian sum filter are distinguished by their methods for

computing the constituent weights Wk,i, means Rk,i, and covariances P,i online. The

approach followed here is that of the static multiple-model estimator (SMME) [4],

which is used in problems where the system follows one of nG possible (nonlinear)

models, though it is not known which model is correct. The SMME is comprised of

a bank of nG nonlinear filters, each matched to a particular model. Typical choices

for these so-called matched filters are extended Kalman filters (EKFs) or unscented

Kalman filters (UKFs).

Let i denote the index of the filter in the bank. Each filter is initialized with a



mean ic~i, covariance PO, and a weight wo,j. Thereafter, when a new measurement Zk

arrives at time step k, it is disseminated to and individually processed by each of the

nG filters, yielding locally updated estimates kc and covariances P'. In composing

the mixture model of (6.1), the mean Xk,i and covariance P,i of each Gaussian are

selected as

Xk,i := i (6.4)

Pk, := Pk". (6.5)

Next, for each filter, the innovation ik,i A Zk - zk,i and innovation covariance Sk,j -

E [ik,iT] is computed. At this point, each filter reports Rk,i, Pki, ik,i, and Sk,j to a

fusion center reponsible for updating the weights Wk,i and forming the mean Xk and

covariance Pk for the Gaussian mixture model.1

The mixture mean is simply a weighted sum of the constituent means

nG

Xk Wk,ik,i- (6-6)
i=1

The covariance may be computed as

nG

Pk Wk,i [Pk,i + (Rk,i - Xk)(Rk,i - k)] (6.7)
i=1

The weights are then updated in two steps. The conditional likelihood

/k,i = M (ik,i; 0, Sk,i) (6.8)

that filter i captures the correct Gaussian distribution is computed and used as a

'The use of the e and ( notation is not neccessary for the mixture mean and covariance, as these
quantities are not propagated between time steps and are formed directly from the post-measurement
mean and covariance of the constituent models.



Algorithm 6 Static Multiple-Model Estimator (SMME)
1: forZi= 1,.., nG do
2: Initialize iO, Per4, wi,,
3: end for
4: Zo <- 0
5: for k = 1, 2, ... do
6: Approximate p(xktZk_1) using (6.1)
7: Zk- Zk1 U Zk
8: fori = 1, . ., nG do
9: Perform measurement update using zk, i C, and P" -> >:, P"

10: Xk,i +--:ki

11: Pki <- P'0

12: Form innovation ik,i and innovation covariance Sk,i
13: end for
14: Compute mixture mean Xk using (6.6)
15: Compute mixture covariance Pk using (6.7)
16: Update weights according to (6.8)-(6.9)
17: end for

sub-weighting factor in updating the filter weights Wk,i via

Wk,i/k,i
Wk+1,i - -nG '(69)

Ej=1 Wk,j~k,j

The general procedure is given in Algorithm 6.

6.2 Application

The general SMME of Algorithm 6 is now applied to the information quantification

sub-problem of IRRT when the prior or posterior distributions are approximated

by Gaussian mixture models. As computational complexity at each time step is a

fundamental concern for roadmap-based methods, the constituent filters of the SMME

are implemented as EKFs. The EKF equations are split among a propagation phase

<DE) ikj_1,X D*_, (6.10)

ie hi (k ) (6.11)

Pki <-l1 P _k1,i k1,- + Qk_1,j, (6.12)



a linearization phase

Hk,i = Oi ,(6.13)

and an update phase

iki z (6.14)

Kk,= P" H[ [Hk,iPi.H[i + Rk,i] 1 (6.15)

@ + i (6.16)

P P® - P" HT [H P® H + R]-j H ,i (6.17)
k,i k~i k, i k,i k, T k, l p®]

Sk,- Hki P) HT + (6.18)

where for the ith matched model, <Dkik-1,i is the (linear) state transition matrix from

time step k to k + 1, hi is the (nonlinear) measurement model, Hk,i is the linearized

measurement matrix, and Qk-1,i and Rk,j are the process and sensor noise covariance

matrices. The local estimate Rki := ik,i, covariance Pk,i := P , innovation iki, and

innovation covariance Sk,j are reported to a fusion center as in (6.6)-(6.9).

Consider a single agent quantifying the tree information content about a single

target. 2 Assume the quantification occurs at time step k, at which time the estimate

Xk,i, covariance Pk,i, and relative weight Wk,i are known for each of the nG filters. As

the Gaussian sum filter attempts to model the prior and posterior distributions as a

Gaussian mixture, the information quantification step should capture the covariance

reduction in the constituent models due to sensing along paths in the tree. The basic

idea is to maintain nG FIMs in each node. Because the prior distribution is modeled

as a Gaussian mixture, the FIM at root node for each mode i is initialized as

Jrooti P-1. (6.19)

Thereafter, the recursive update of the FIM JN,i for node N and mode i follows (3.18).

The node information cost IN, which is required in both the cost function (3.26)

and the INFORMATION nearest node heuristic (3.24), uses the total node CRLB J,'

2The extensions to multiple agents and targets are straightforward and closely follow the deriva-
tions in Sections 3.4 and 5.2, respectively.



Towards calculating Jn,' an approximate lower bound on the CRLB is pursued.

Recall (6.7), repeated here as

nG

Pk Wk,i [Pk,i + (Rk,i - Xk) (Rk,i - Xk)T]

i= 1

It is apparent that

Pk',i (xk,i - Xk)( Xk,i - Xk) ; 0. (6.20)

Therefore,
nG

Pk > ZWk,iPk,i. (6.21)
i= 1

By fixing the weights wk,i to their values at time step k when the information quan-

tification query began, an estimate of the Cramer-Rao Lower Bound is

J -= Wk,iJji. (6.22)

Note that this approach necessarily neglects two quantities that cannot be predicted:

the evolution in weights Wk,i (according to the innovation processes) and the difference

(Rk,i - Rk) between the constituent model means Xk,i and the mixture mean Xk.

In order to mitigate the effects of a diverging filter on the mixture model, heuristics

for zeroing the weight must be employed. One such heuristic is suggested in [5].

Another heuristic, as in [25], compares the largest eigenvalues of the current and

initial covariance matrices for each model, zeroing the model weight if the former

exceeds the latter multiplied by a constant. Compactly, the heuristic is

Wk,i := 0 if max A (P) > a max A(Po,j), (6.23)

where the ratio a is typically chosen to be a ~ 3. To avoid computing the eigenvalues



of the covariance matrices, a similar heuristic can be implemented as

Wki := 0 if trace(P9i) > a trace(Po,j). (6.24)

One caveat is of note in characterizing the performance of IRRT in the presence

of multi-modal distributions. As mentioned in Section 3.4.1, given a target model,

the information content of a node is quantified from the set of successful anticipated

measurements, where success is determined by the anticipated visibility/occlusion of

the point coinciding with the model mean. Intuitively, if a model mean is located at a

particular point whose (affirmative) visibility is anticipated, then the absence of the

target in the field of view when directed at that point should provide some "negative

information" on the correctness of particular target models. However, measurements

are only delivered to the filter, and, hence, model weights are only redistributed, when

the actual target is visible to the sensor. To account for "negative information," one

would require an additional inference algorithm that operates on the disparity between

anticipated visibility and absent measurements. The design of such an algorithm is

both complex and outside the scope of this thesis.

6.3 Simulation Results

As aforementioned, Gaussian mixture models are often used to approximate multi-

modal prior distributions. In the following scenario, the prior distribution on the

position of a single stationary target can be well approximated by two Gaussian

modes whose relative contributions to the mixture model comprise a single param-

eter in the scenario. Moreover, one of the modes is "correct," in the sense that its

mean is based on a perturbation from the true target position, and the remaining

mode is fictitious. This situation arises in practice when, for example, sources report

a single target to be located in mutually exclusive zones. The degree to which the

mixture model captures the modal correctness will, along with the geometry of the

problem, be demonstrated to significantly influence the performance of multimodal



IRRT. In fact, the multimodal IRRT performance is reminiscent of multitarget IRRT,

yet an agent can often be led to waste time searching for a false target mode. Since

the Gaussian sum filter, upon finally discovering the target, converges to the single

correct mode, scenarios involving multiple targets or multiple agents, while providing

no fundamental challenge to the planner, do not as effectively illustrate the central

issues of multimodal IRRT. Therefore, simulation results for a simple single-target,

single-agent scenario are now provided.

Consider an empty, axis-aligned box environment in R3 whose bounding vertices

have coordinates (-3.0, -4.0, 0 .0 )T m and (6.0, 4.0, 6 .0 )T m. Within this environment,

a Dubins car agent with initial position x(0) = (-1.0, -3.8, 1 .0 )T m and heading

0(0) = 7r/2 rad must arrive at the goal position xg = (4.6, 2.0, 1.0)T m. The car is

equipped with a monocular (bearings-only) sensor, which operates at 15 Hz, has 600

vertical and horizontal fields of view, is yawed 90' counterclockwise from the front of

the car, and is pitched up 300 from the plane. Simulated bearing measurements are

corrupted by a zero-mean, additive white Gaussian noise sequence with a standard

deviation of 8'. The parameters of the cost function 3.26 are set to a = 0.5 and

az = 2500 sm 2 .

The true target location is xf = (0.5, -1.0, 3 .0 )T m. The mean of the "correct"

mode (with index, say, i = 1) is generated at time step k = 0 by randomly perturbing

the true target position according to

20,1 = xf + df, df ~ N (0, oI3), od= 0.5 m. (6.25)

A fictitious mode associated with a second model (with index i = 2) is initialized

as xo, 2 = (-0.5, 2.0, 2 .0 )T m. Both models are initialized with covariance matrices

Po,j = 13 M2.

Recall from (6.22) that the model weights wi directly influence the information

quantification step of multimodal IRRT. Therefore, an agent may select a path based

on some anticipated information gain that, due to a poor initial weight distribution,

is little realized. The scenario described above is simulated in Figures 6-1, 6-2, and



6-3 for the weight ratios 9:1, 5:5, and 1:9, respectively, between the correct and

incorrect models. In general, the lower the weighting on the correct model, the worse

the mission-level performance; this observation is often tempered by the geometry

of the problem. In Figure 6-1, the initial weightings on the correct and fictitious

modes are 0.9 and 0.1, respectively. The initial plan calls for a close pass on the

heavily weighted mode, whereupon early measurements of the target all but eliminate

the fictitious mode. In Figure 6-2, the prior weighting is equal for the correct and

fictitious modes. As a result, the agent plans paths that ration measurements between

the two modes. In this particular example, measurements on the true target do not

occur until the agent has moved in a direction away from the goal, after which its

best course of action is to make several turns and close passes around the targets.

Finally, in Figure 6-3, the initial weightings on the correct and fictitious modes are

0.1 and 0.9, respectively. While the initial plans all but ignore the correct mode,

focusing largely on the fictitious mode, a measurement of the true target taken at

close range is enough to effectively snap to the correct mode. Conditioned on this

short measurement sequence, the vehicle ammends its plan to a close sweep near the

target and directed towards the goal.



(b)

Figure 6-1: Multimodal IRRT scenario with a favorable prior. The mixture model
is a composition of two modes, each with a mean (gold star) and (gold) uncertainty
ellipse. The correct mode, near the true target position (green dot), is weighted at
0.9 in the prior. The fictitious mode in the top left is mostly transparent, owing to
its comparatively lower weight of 0.1. (a) The initial plan calls for a close approach
on the high-weight mode, followed by an orthogonalizing straight-line trajectory that
only observes the low-weight mode near termination. (b) Upon observing the true
target, uncertainty ellipse of each mode loses volume, yet the fictitious mode begins
converging to the correct mode. (c,d) Having converged to a single-mode, the planner
ammends its path so as to gather more information as the vehicle approaches the goal.



(c) (d)

Figure 6-2: Multimodal IRRT scenario with a symmetric prior. The mixture model
is a composition of two equally weighted modes. (a) The initial plan calls for one
close approach and one distant triangulation maneuver for each mode, with an ap-
proximately equal amount of time spent observing each. (b) The plan is ammended
to a "lawnmower" pattern that alternates between looking at either of the modes. (c)
Having observed the true target, the estimate converges to a single mode. (d) The
vehicle drives a path around the target so as to gather information on the way to the
goal.
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Figure 6-3: Multimodal IRRT scenario with an unfavorable prior. The correct mode,
near the true target position, is weighted at 0.1 in the prior, while the fictitious
mode in the top left is initialized with weight 0.9. (a) The initial plan pays little
concern for the correct mode, with only sporadic visibility of the mean (transparent
gold star). (b) Upon unexpectedly observing the true target at (fortunately) close
range, the uncertainty ellipse shrinks significantly and the fictitious mode collapses.
(c) Conditioned on the new target estimate, the vehicle ammends its path to perform
a quick, parallax-building maneuver near the target, (d) after which it proceeds to
the goal while keeping the target in sight.



Chapter 7

Conclusion

7.1 Summary

This thesis considers the problem of planning informative paths online and under

general constraints. This problem is motivated by mobile intelligence, surveillance,

and reconnaissance missions involving autonomous platforms, each with its own dy-

namic, sensing, and environmental constraints, performing localization on stationary

targets. Previous research has used solution strategies that are not amenable to the

whole of these constraints; for example, both single- and multi-step receding hori-

zon optimization techniques lack robustness to sensing occlusions, and heuristic path

shapes may be rendered infeasible by obstacles in the environment. Alternatively,

problem formulations that afford very general constraint characterizations also have

profound computational issues that currently render them intractable for use, for

example, on vehicles with complex dynamic models.

The primary contribution of this thesis is the Information-rich Rapidly-exploring

Random Tree (IRRT) algorithm, an extension of the closed-loop RRT algorithm that

embeds information quantification as predicted using Fisher information matrices.

In Chapter 2, various information-theoretic measures used in the information-rich

planning and sensor management literature were reviewed. The most general such

measures, conditional entropy, mutual information, and divergence, though capable

of examining entire probability distributions, require posterior distribution approxi-



mations, which may be intractable only several steps into the future. An alternative

is found in Fisher information, a measure of the information content in an observa-

tion about a particular stochastic process. Fisher information has a close relationship

to the Cramer-Rao lower bound (CRLB) on the estimation error covariance for un-

biased estimates. Therefore, Fisher information matrices (FIMs) may be used to

characterize, independent of the (admissible) estimator used, the potential informa-

tion richness of paths. For nonlinear process and sensing models subject to additive

Gaussian noise, a recursive form of the FIM may be used for long-duration paths.

For stationary targets, the recursion becomes simply additive.

Chapter 3 first motivates the selection of closed-loop RRT (CL-RRT) as a baseline

algorithm and then details the extension to IRRT. In this way, all the beneficial prop-

erties of CL-RRT are preserved while enabling and embedding information richness

at the planning level. As it is a sample-based algorithm, feasible solutions can be

easily generated in real-time, and the planner effectiveness scales with the available

computational resources. As in the open-loop RRT, path cost calculations and con-

straint evaluations are performed trajectory-wise, allowing CL-RRT to easily handle

complex constraints that may cause optimization-based approaches to become com-

putationally intractable. Furthermore, the path-tracking control loop of CL-RRT

permits accurate state prediction when following a specified path, with proven error

bounds on tracking performance. The IRRT extension uses this state prediction to

form the measurement pose sequence, the information content of which is quanti-

fied in the Fisher information framework. The embedding of information metrics in

the tree allows for nearest node heuristics and cost functions that explicitly consider

information in both the tree growth and execution phases.

Chapter 4 presents a progression of simulation results that demonstrate the typical

performance of IRRT in constrained scenarios. The scenarios involve either Dubins

cars or quadrotor helicopters, each carrying limited field-of-view monocular (bearings-

only) sensors, attempting to localize targets in the environment and to arrive at a goal

state. A mission-level analysis examines the mission duration and terminal average

uncertainty in the target estimates, as parameterized by the information cost weight,



and suggests the use of such parametric plots in selecting the cost weight based on

the mission profile. A separate analysis of the INFORMATION nearest node heuristic

reveals that the overall mission cost, a linear combination of mission duration and

terminal average uncertainty, can be reduced by embedding information collection at

the tree expansion level. The sensitivity of the mission duration, terminal average

uncertainty, and overall cost to the probability of selecting this heuristic is examined.

Extensions to IRRT for multiagent, decentralized planning and for planning in a

multimodal belief space are presented in Chapters 5 and 6, respectively. The addi-

tivity of FIMs for stationary targets is exploited in developing a method by which an

individual agent accounts for the anticipated information collection of other agents

in the network. A token passing algorithm that enforces order on agent replanning

is also provided. Simulation results demonstrate the level of cooperation between

agents in reducing the target uncertainty in both small, uncluttered environments

with a single target and large, cluttered environments with multiple targets. In order

to assess the benefit of cooperation among the agents, a comparison between a coop-

erative mode, in which agents share processed measurement data and anticipate team

information collection, and a non-cooperative mode, in which only the former occurs,

is performed. The network of agents in the non-cooperative mode performs worse on

a mission-level cost basis, collecting more information than in the cooperative mode,

but only by committing to more circuitous paths. Finally, the extension of IRRT

to multimodal beliefs is presented in the framework of the Gaussian mixture model

(GMM) and the static multiple model estimator (SMME). As the constituent models

of the GMM are Gaussian, the information quantification sub-routine of multimodal

IRRT is a generalization of that presented in 3.4.1, where the quantification occurs

for each model. The resultant information metric in the cost function is based on the

weighted sum of the model covariances, where the weights are taken from an SMME

that runs parallel to the planner. A simulation of multimodal IRRT for a single target

with two priors (one correct and one fictitious) demonstrates the influence of both

the prior weight distribution and initial estimate on the overall performance. Such a

problem is analogous to the multitarget problem in standard IRRT but is complicated



by the belief in a mode that is fictitious and from which no measurements arrive.

7.2 Future Work

The IRRT algorithm and two extensions thereof have been introduced in this thesis.

Preliminary simulation results provided in Chapter 4 and Sections 5.3 and 6.3 have

demonstrated the utility of IRRT in information-rich planning problems subject to

general constraints. However, several areas of further investigation must be pursued

before definitive statements about the general performance of IRRT can be made.

One area of future work involves the information quantification sub-problem. Re-

call that the Fisher Information calculation of Section 3.4.1 uses only the mean of

the estimation process to determine the anticipated visibility of the target at future

measurement poses. Specifically, the visibility was a binary-valued function of the

target position estimate, measurement pose, environment model, and sensor model,

but not the target estimate covariance. One could instead imagine, at the expense

of the computational efficiency, sampling the Gaussian target model to generate vis-

ibility candidate points; the visibility metric used in the information quantification

could then be the mean of the binary success value of the candidate points. The

interpretation of the visibility function would, thus, shift from a binary switch to a

coefficient on the individual Fisher Information matrices.

Another argument for the further embedding of the covariance in the planning

process involves the look-ahead nature of the IRRT, which was expressly designed to

not be limited to myopic behaviors. If a temporally long plan is selected due primarily

to the anticipated information content of measurements taken near the terminus of the

plan, then the possibility remains that the target estimate covariance is sufficiently

large, and the information collected will be far lower than what is anticipated. This

suggests that the agent should only commit to a long-term plan if it is confident that

the reward will be sufficiently large. In the case of measurements which occur at

temporally distant locations, a large amount of time will have been expended before

the agent realizes the actual reward. It remains to be seen if performing time-based



discounting on the trajectory Fisher information in the planning phase improves the

general performance; such discounting schemes could be parameterized, for example,

by a matrix norm on the error covariance. Similarly, as discussed in Section 5.2, the

trajectory information content of another agent in the network may be subjected to

time-based discounting, where the discount rate is a function of the path diversity in

a given agent's tree.

In Chapter 5, the extension of IRRT to decentralized, multi-agent scenarios was

presented. The fundamental assumption therein required the information content of

a measurement by any agent to be disseminated to the rest of the network via some

unspecified decentralized filtering algorithm. An extension of IRRT that incorporates

the communication constraints of the agents in the network and anticipates communi-

cation loss due to interference or attenuation would further the applicability of IRRT

to real-world autonomous intelligence, surveillance, and reconnaissance operations.

Finally, while this thesis has assumed the environment features to be stationary

targets, the extension to moving targets with linear dynamics would be straightfor-

ward and further utilize the multi-modal extension of Chapter 6, for example, in the

case of a ground target approaching an intersection.
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