Prospects for ElectroWeak Physics at LHC

M. Bellomo

on behalf of ATLAS and CMS Collaborations INFN Pavia and CERN

Aspen Particle Physics Conference

Aspen Center for Physics

January 17-23, 2010

Outline

- LHC and experiments
- Preliminaries for precision physics
 - ★ LHC 900 GeV collisions
 - ★ Standard Model as Standard Candle
- EW Physics measurements focus on 2010 data and prospects for high luminosity measurements
 - \star W and Z cross sections
 - ★ Drell-Yan differential shapes
 - \star W mass
 - ★ Di-boson studies
 - ★ Z forward-backward asymmetry
- Outlook

CERN-PH-EP/2009-023

Updated for 2010 winter conferences, 11/01/10, http://www.cern.ch/LEPEWWG

Large Hadron Collider (LHC)

- LHC key parameters
 - ★ p-p collisions at 14 TeV (x7 wrt Tevatron)
 - ★ design luminosity of 10³⁴ cm⁻²s⁻¹ (×100 wrt Tevatron)
 - ★ bunch crossing of 40 MHz,
 1GHz pp collisions
 - ★ Heavy particles production rates 10^{+3...-6} Hz (W,Z,top,H,SUSY,..) with high sensitivity to New Physics
- At regime: ~6x10⁶s of pp collision physics running per year
 - ★ ~0.6 fb⁻¹/year if L= 10^{32} cm⁻²s⁻¹
 - ★ ~6 fb⁻¹/year if L=10³³ cm⁻²s⁻¹
- Physics run 2010 starting mid February
 - ★ 3.5(5) TeV beam energy with the goal to integrate 100-200 pb⁻¹ ⇒ Standard Model re-discovering !

Channels (√s = 14 TeV)	Events 100 pb ⁻¹	Total statistics
$W \to \mu \upsilon$	10 ⁶	10 ⁴ LEP, 10 ⁶⁻⁷ TeVatron
$\textbf{Z} \rightarrow \mu \mu$	10 ⁵	10 ⁶ LEP, 10 ⁵⁻⁶ TeVatron
$tt \to WbWb \to \mu \upsilon \textbf{+} \textbf{X}$	104	10 ³⁻⁴ TeVatron
QCD jets p _T > 1 TeV	>10 ³	-

ATLAS & CMS detectors

	ATLAS	CMS		
Magnetic field	2 T solenoid + toroid (0.5 T barrel 1 T end-cap)	4 T solenoid + return yoke		
Tracker	Si pixels, strips + TRT σ/p _T ≈ 5x10 ⁻⁴ p _T + 0.01	Si pixels, strips σ/p _T ≈ 1.5x10 ⁻⁴ p _T + 0.005		
EM Calorimeter	Pb+LAr σ/E ≈ 10%/VE + 0.007	PbWO4 crystals $\sigma/E \approx 2-5\%/VE + 0.005$		
Hadronic Calorimeter	Fe+scint. / Cu+LAr (10λ) σ/E ≈ 50%/VE + 0.03 GeV	Cu+scintillator (5.8 λ + catcher) $\sigma/E \approx 100\%/VE + 0.05 \text{ GeV}$		
Muon	σ/p _T ≈ 2% @ 50GeV to 10% @ 1TeV (ID+MS)	σ/p _T ≈ 1% @ 50GeV to 5% @ 1TeV (ID+MS)		
Trigger	L1 + RoI-based HLT (L2+EF)	L1+HLT (L2 + L3)		

- General purpose detectors with complementary concepts
- For details see
 - ★ G. Aad et al (ATLAS Collaboration)J. Instrum. 3. s08003 (2008)
 - ★ S.Chatrchysn (CMS Collaboration) J. Instrum. 3. s08004 (2008)

First LHC data at $\sqrt{s} = 900$ GeV and $\sqrt{s} = 2.36$ TeV

First LHC data at $\sqrt{s} = 900$ GeV and $\sqrt{s} = 2.36$ TeV

Alignment with $Z \rightarrow \mu^+ \mu^{\scriptscriptstyle -}$

- Effect of misaligned detectors on muon reconstruction
 - \star high reconstruction efficiency
 - ★ major impact on momentum resolution
- Use Z boson mass constraint to derive misalignments parameters from data
 - ★ broader invariant mass spectrum with scale quite unaffected due to first order compensation of opposite charge effects

★ percent precision already after 1 day at 10³³ cm⁻²s⁻¹

Momentum/energy calibration from $Z \rightarrow II_{(I=e,\mu)}$

Ω_{fit}

arXiv:0901.0512; CERN-OPEN-2008-020 (14 TeV)

- Determination of momentum resolution/scale for muons
- Calorimeter inter-calibration and energy scale for electrons
 - fitting Z boson lineshape \star
 - Energy range about 20-80 GeV
 - Use peak **position** and **width** to get scale and resolution parameters
- Fitting the **invariant mass lineshape** after background subtraction
 - selection based on high-p⊤ tracks \star
 - few days of data taking at 10³³ cm⁻²s⁻¹
 - **Muon scale** can be estimated to about 1%
 - Electromagnetic scale known at 0.2% _ and **resolution constant term** at about 0.7%

W,Z to leptons cross sections

- Acceptance and PDFs uncertainties
 - ★ EW and QCD NLO modelling to get experimental acceptance (effects at 7-10%)
 - ★ At the EW scale LHC will explore low-x partons
 - 10⁻⁴<x<0.1 over measurable range (|y|<2.5)
 - ★ Scattering between sea quarks: gluon dominated

HERA and the LHC - A workshop on the implications of HERA for LHC physics CERN-2005-014, DESY-PROC-2005-001 arXiv:hep-ph/0601012v3 (14 TeV)

- ★ caveat on PDF assumptions
 - − s-sbar violations changes W/Z ratio ⇒ need W[±],Z differential shapes and ratios
- low-x gluon distribution determined by shape parameter $\lambda (xg(x) \sim x^{-\lambda})$
 - **★** BEFORE $\lambda = -0.199 \pm 0.046$
- 41% error reduction with 100 pb⁻¹

W,Z to leptons cross sections

• Signal selections

- ★ high-p⊤ leptons (>15-20 GeV)
 (+ missing energy for W)
- ★ Tracking (and Calorimeter) isolation
- ★ (QCD) background shapes and normalizations from data
 - like-signs and/or isolation
 rejected selections to get
 OCD onriched samples

arXiv:0901.0512; CERN-OPEN-2008-020 (14 TeV) ≥910 **ATLAS** -⊷Wev_ 10³ events / ---- QCD 50 pb⁻¹ Zee W e 10 10^{-2} 80 100 120 0 20 40 60 M_{TW} [GeV]

munechy vv width

Drell-Yan differential cross sections

W mass measurement

- SM masses of top quark, W and Higgs bosons are related through radiative corrections
- Precise measurements of M_{top} and M_W allow
 - \star consistency check of SM
 - \star give hints of new physics
 - \star constrain the mass of SM Higgs boson
- Up to date values¹
 - ★ $M_{top} = 173.1 \pm 0.6$ (stat) ± 1.1 (syst) GeV
 - \star M_W = 80.399 \pm 0.023 GeV
 - ★ $M_{H} = 87^{+35}_{-26} \text{ GeV} (68\% \text{ CL})$ $M_{H} < 157 (186) \text{ GeV} (95\% \text{ CL})^{2}$
- LHC 1 year at 10^{33} cm⁻²s⁻¹ \Rightarrow 6 fb⁻¹
 - ★ about 2.10⁷ W events selected per lepton decay
 with combined statistical sensitivity at 2 MeV
 - ★ challenge is on systematic uncertainties

 $^1\,186$ GeV limit when including the LEP-2 direct search limit of 114 GeV shown in yellow

Updated for 2010 winter conferences, 11/01/10, http://www.cern.ch/LEPEWWG

W mass measurement

- Early data analysis focus on $10-20 \text{ pb}^{-1}$ with expected statistical precision of 120 MeV
 - W transverse mass
 - lepton transverse momentum or energy \star
- Non trivial effects from det. smearing and pQCD
 - No analytic approach is possible \star ⇒ numerical methods and **template fits** are used

- Scaling observables from Z kinematics and correcting for detector effects
- In-situ calibration from Z events
 - \star scale, resolution and efficiencies

 χ^2 / ndf

p0

p1

p2

1818/38

(b)

1.02

Scale

1.01

 $7.5e+06 \pm 16.18$

-7.501e+06 ± 8.161

 $1.875e+06 \pm 4.045$

• Summary of estimated uncertainties in early data and prospects for higher luminosities

Contribution δm_W in MeV	ATLAS pτ e(μ)	ATLAS M _T e(μ)	ATLAS p _T e(μ)	ATLAS M _T e(µ)	CMS e(µ)	CMS e(µ)
Int. Luminosity (fb ⁻¹)	0.015		10		1	10
Statistics	120 (106)	61 (57)	2		40*	15*
Electromagnetic scale	110	110	4	4	10 (14)	2 (<10)
Hadron recoil, MET scale	-	200	-	5**	15 (38)	<10 (<20)
Resolution (efficiency)	5	5	1 (4.5 e, <1 µ)	1 (4.5 e, <1 µ)	5 (30)	2 (<10)
Backgrounds	3	3	2	2	10 (4)	2 (-)
Total experimental	114	230	6.5 (5)	7.5 (6.5)	40 (64)	<20 (<30)
PDFs (QCD, QED corr.)	25	25	3	2	20	<10
Total	167 (158)	239 (238)	7 (6)	8 (7)	25	<20

- Systematic uncertainties in **early data** (15 pb⁻¹) dominated by
 - ★ energy scale for electron channel (p_T based analysis)
 - **\star** recoil calibration for muon channel (M_T based analysis)
- Prospects for **higher luminosities** (1 to 10 fb⁻¹)
 - ★ improved constraints from Z analysis, better PDFs knowledge from LHC
 - \star combining information from both channels can give systematic uncertainties < 20 MeV
 - ★ clearly an ultimate fight against systematics to exploit as much as possible statistical power of LHC

* scaled to Z statistics, ** extrapolated from Tevatron

 ATLAS arXiv:0805.2093v2 [hep-ex] 13 Jun 2008
 arXiv:0901.0512; CERN-OPEN-2008-020

 CMS
 J. Phys. G: Nucl. Part. Phys. 34 (2007) 995–1579

Di-Boson production

- Studies of WW,WZ,ZZ,W γ ,Z γ productions in lepton/photon final states (rate_{LHC} \approx 100 · rate_{Tevatron})
 - ***** test **beyond Standard Model physics**, **TGC anomalous couplings**, **backgrounds** for Higgs/SUSY searches

Forward-backward asymmetry in $Z \rightarrow e^+e^-$

- A precision measurements of $\sin^2 \theta_{eff}$
 - ★ consistency of SM, indirect constraint on H mass and effects of new physics
- High statistics needed to be competitive with $\delta \sin^2 \theta_{eff} \approx 1.6 \times 10^{-4} (world-average)$
 - ★ studies for 100 fb⁻¹ with forward electrons preferred over muons due to calorimeter coverage
 - ★ backgrounds from di-jets, ttbar, W+X (γ -jet mis-id)

LHC physics already started in 2009, looking forward for an exciting 2010 !

- First data will be fundamental to **calibrate/understand** ATLAS & CMS detectors
 - ★ 900 GeV data confirms an already very good detector simulation
 - ★ W/Z production with lepton decays as "standard candles"
- "Re-discover" Standard Model electroweak physics measuring at $\sqrt{s} = 7(10)$ TeV
 - ★ Inclusive and differential cross section measurements
 - ★ More sophisticated measurements as W mass, di-bosons studies and Z forward-backward asymmetry will follow as statistic will increase (some preliminary measurements already w/ order 100 pb⁻¹)
 - ★ SM processes as backgrounds for New Physics ⇒ preparing the road to discoveries
- Theoretical predictions very often are limited by the PDF uncertainties
 - ★ At LHC gluon/sea interaction are dominant at low-x: explore new kinematical regions
 - ★ Current uncertainties (~4% on $\sigma_{W,Z}$ different sets agree within 7%, 1% on asymmetries) could be reduced using first LHC data