Searches for New Physics in ATLAS

on Behalf of the ATLAS Collaboration

Aspen, January 20, 2010

- Supersymmetry
 - "Classic" searches: sensitivity at 10 TeV
 - Gauge mediated SUSY signatures with τ 's
- String balls
- High-p_T hadronic decays
 - Tops
 - R-parity violating SUSY

"Classic" SUSY Searches

- Main production mode: squarks and gluinos
- Decay chains lead to
 - Hard jets
 - MET (R-parity assumed to be conserved)
 - Leptons (maybe)
- SUGRA or pMSSM

pMSSM = MSSM + no new CP-violation + minimal flavor violation + first 2 sfermion generations degenerate

 $\Rightarrow 19 \text{ parameters left}$ (JHEP 0902:023,2009)

Inclusive Search

- Classify events according to #jets & #leptons
- Selections:
 - Leading jet $p_T > 100 \text{ GeV} (180 \text{ GeV} \text{ if } 2 \text{ jets})$
 - Other jets $p_T > 40 \text{ GeV} (50 \text{ GeV} \text{ if } 2 \text{ jets})$
 - MET > 80 GeV; if no leptons: MET > $0.3/0.25/0.2 \times M_{eff}$ (for 2/3/4 + jets)
 - $M_{eff} = \Sigma$ (jet,lepton p_T 's) + MET
 - Cuts on $\Delta \phi$ (jets, MET) & transverse sphericity
- \bullet Use a cut on M_{eff} distribution to set limits
 - + M_T cut in the single lepton channel

• Sample distributions

Same-Sign Dileptons

- Low backgrounds \rightarrow good early search
- Require two jets ($p_T > 40$ GeV), two SS leptons (20/10 GeV), MET > 50 GeV
- Backgrounds from data using signal & control regions

Gauge-Mediated SUSY Breaking

- Originally boosted by CDF eeqqMET event
 - Now more popular again, often nLSP not "bino"
 - Can lead to Z's, h's, but also τ 's (and lifetimes could be long)

• Again, many jets expected (production of squarks and gluinos)

- Two jets with $p_T > 100/50 \text{ GeV}$
- At least one hadronic tau $p_T > 20 \text{ GeV}$
 - Likelihood based on calorimeter & tracking variables (incl. IP)
- MET > 60 GeV
- $\Delta \phi$ (leading jet, MET) > 0.2

String Balls

- Below the threshold for black holes, can produce highly excited string states, "string balls"
 - "Evaporate" by thermal emission like black holes → multiple high p_T jets, leptons, photons, ...
 - Build M from $\vec{p} = \Sigma \vec{p}_i$ (all objects) + MET

• Require $M > M_{thr} = 3 M_S$ (for different choices of M_S)

• Then ask for a high p_T lepton (100/50 GeV):

Gustaaf Brooijmans

• Optimize cuts on H_T , lepton p_T for each threshold

New Resonances

- In Randall-Sundrum models with all particles in the bulk, excitations of the gauge bosons are very promising channels for discovery
 - Couplings to light fermions are small, but large coupling to top, W_L, Z_L which are produced with p >> m
- In RPV SUSY, high-p_T LSP can decay to collimated quarks
- High mass WW scattering,

Hadronic Decays

- Decay hadrons reconstructed as a single jet
 - But even if it looks like a single jet, it originates from a massive particle decaying to three hard partons, not one
- If measure each of the partons in the jet perfectly, would be able to:
 - Reconstruct the "originator's" invariant mass
 - Reconstruct the direct daughter partons
- But
 - Quarks hadronize \rightarrow cross-talk
 - Detector can't resolve all individual hadrons
 - LHC calorimeters have fine granularity

• Jet mass: invariant mass of all jet constituents

High p_T top quarks from Z' (m=2,3 TeV) decays

- Jet mass not sensitive to jet structure
 - Multiple techniques to exploit this
 - Here use k_{\perp} splitting scales

Small Jets inside 0.4 Topo

J. M. Butterworth, B. E. Cox, and J. R. Forshaw, Phys. Rev. D65 (2002) 096014

kr Splitting States

- k_T jet algorithm is much better suited to understand jet substructure than cone:
 - Cone maximizes energy in an $\eta x \phi$ cone
 - k_T is a "nearest neighbor" clusterer

$$y_{2} = \min\left(E_{a}^{2}, E_{b}^{2}\right) \cdot \theta_{ab}^{2} / p_{T(jet)}^{2}$$
$$Y \text{ scale } = \sqrt{p_{T(jet)}^{2} \cdot y_{2}}$$

- Can use the k_T algorithm on jet constituents and get the (y-)scale at which one switches from $1 \rightarrow 2$ ($\rightarrow 3$ etc.) jets
 - Scale is related to mass of the decaying particle

Variables

Gustaaf Brooijmans

- Background estimate in search for tt resonance
 - ℓ +jets, 1 fb⁻¹ at 14 TeV: QCD well below irreducible tt!

m = 2 TeV	$y_L > 0.6$	$y_L > 0.9$	$y_L > 1.2$
QCD multijet $(J5 + J6 + J7)$	1.9 ± 0.5	0.7 ± 0.2	0.16 ± 0.04
${ m SM}~tar{t}$	$17.1 \pm 0.8 \pm 2.6$	$11.1 \pm 0.7 \pm 1.7$	$3.1\pm0.4\pm0.5$
Total	19 ± 2.8	11.8 ± 1.9	3.3 ± 0.6
m = 3 TeV	$y_L > 0.6$	$y_L > 0.9$	$y_L > 1.2$
QCD multijet $(J5 + J6 + J7)$	0.5 ± 0.2	0.2 ± 0.1	0.07 ± 0.03
SM $t\bar{t}$	$2.3\pm0.1\pm0.3$	$1.4\pm0.1\pm0.2$	$0.52\pm0.07\pm0.08$
Total	2.8 ± 0.4	1.6 ± 0.2	0.6 ± 0.1

• Search for RPV SUSY (10 TeV): after 2D cut in y₁₂ vs y₂₃

Conclusions

- We know something is on the horizon
 - Hopefully more than just a Higgs boson
- ATLAS gearing up for
 - "Classic" searches, but also
 - New signatures
 - Only small sampling given here
- LHC will start exploring uncharted territory soon
 - Does not need much data to extend Tevatron reach, at least in some areas

SUSY Benchmark Points

Point	m_0 (GeV)	m1/2 (GeV)	A0(GeV)	tan(β)	sgn(µ)	x-sec (pb)	DC1	Rome	CSC
Coannihilation (SU1)	70	350	0	10	+	7.43 (a)		Y	Y
Focus Point (SU2)	3550	300	0	10	+	4.86 (a)		Y	Y
Bulk (SU3)	100	300	-300	6	+	18.59 (a)	Y	Y	Y
Low Mass (SU4)	200	160	-400	10	+	262 (b)		Y	
Scan (SU5.1)	130	600	0	10	+	0.44 (b)		Y	
Scan (SU5.2)	250	600	0	10	+	0.40 (b)		Y	
Scan (SU5.3)	500	600	0	10	+	0.31 (b)		Y	
Funnel (SU6)	320	375	0	50	+			Y	Y
Coannihilation (SU8.1)	210	360	0	40	+	6.44 (a)			Y
Coannihilation (SU8.2)	215	360	0	40	+	6.40 (a)			Y
Coannihilation (SU8.3)	225	360	0	40	+	6.32 (a)			Y

Some references

- ATLAS "CSC" book (14 TeV), January 2009
 - <u>http://cdsweb.cern.ch/record/1125884?ln=en</u>
- Other studies, incl. more recent 10 TeV:
 - <u>https://twiki.cern.ch/twiki/bin/view/Atlas/AtlasResults</u>