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Abstract

This research investigated the effects of prolonged low workload on operator

performance in the context of controlling a network of unmanned vehicles (UxVs) in a
search, track, and destroy mission with the assistance of an automated planner. In

addition, this research focused on assessing the physical, social, and cognitive coping

mechanisms that operators rely upon during prolonged low workload missions. An

experiment was conducted to collect data for researching the impact of low workload in

human supervisory control of networked, heterogeneous UxVs. This research showed

that performance was not necessarily affected at the low end of the workload spectrum,

especially in the context of human supervisory control of networked UxVs. Given

varying levels of low taskload, operators tended to gravitate toward a common total

utilization (percent busy time) that was well above the required utilization. The
boredom due to the low taskload environment caused operators to spend the majority

of their time distracted; to a lesser degree, operators were more directed than divided in
terms of attention. More directed attention predicted higher operator performance,
especially in the tracking portion of the mission. Higher utilization predicted improved

operator performance in search and destroy tasks, but hindered the automation's ability
to track targets. Video gaming experience was a detriment to destroying hostile targets

in this long duration, low workload mission involving human supervisory control of

networked UxVs. Vigilance, shown by a decrement in amount of directed attention per

hour, decreased over the course of the mission duration. Top performers had higher

directed attention and coped with the boredom through extreme focus or use of

switching times to stay engaged in the mission. In comparison to a moderate workload

study, participants in this low workload experiment performed both better and worse.

Low workload did not necessarily cause a drop in operator performance.
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1 Introduction

1.1 Motivation

Expeditionary networks of unmanned vehicles (UxVs) are envisioned to be key

resources in persistent surveillance [1]. These heterogeneous, unmanned vehicles will

be highly autonomous. They will collaborate as a network of smart robots, equipped

with onboard computers and communication devices. The mission environment will be

dynamic and time-sensitive, requiring real-time, automated schedule replanning. A

pictoral representation of the vision for networked UxVs is shown in Figure 1.

Figure 1: Coordinated Operations with Networked UxVs [21

Automation is of utmost importance since computers provide the technological

capability of quickly analyzing and editing a mission plan while accounting for every



known mission constraint and requirement. However, computer optimization

algorithms are"brittle" since they only account for quantifiable variables coded in the

design of the system [3]. As a result, human judgment is an imperative part of the

human-machine system. In highly autonomous systems, humans must rise to the role of

human supervisory controllers. "Supervisory control means that one or more human

operators are intermittently programming and continually receiving information from a

computer that itself closes an autonomous control loop through artificial effectors and

sensors to the controlled process or task environment" [4].

Automation is designed to lower the operator's information processing demands

in order to improve situational awareness and increase performance. However, an

approach involving high levels of automation can be counterproductive [5]. As

automation directly controls the unmanned vehicles, humans can fall prey to "the

ironies and paradoxes of automation" [6]. It is said that the more reliable the

automation, the worse human operators perform in the monitoring task [6]. Increased

automation can lower an operator's workload too much, leading to mental underload,

which can cause a decrement in vigilance, or sustained alertness, and lead to boredom.

It has been shown that boredom produces negative effects on morale, performance, and

quality of work [7]. Unfortunately, as increased automation shifts controllers into

system management positions, loss of vigilance, monotony, and boredom are likely to

proliferate [8].
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1.2 Operational Benefit

Although today's military employs a team of people to operate a single UxV,

advances in automation technology seek to invert the ratio of operators to UxVs so that,

in the future, one human operator will be able to control multiplue UxVs [9]. The vision

is to have a single operator controlling land, air, and sea vehicles of all different types

from the same supervisory control interface. As human supervisory control of UxVs

becomes more prevalent, networks of vehicles equipped with collaborative autonomy

will become reality [10]. This research hopes to provide future system designers with an

assessment of the impact that low workload has on supervisory control of multiple

UxVs.

To this end, a long duration, low workload study was conducted using a

multiple UxV simulation. This human supervisory control experiment involved a

search, track, and destroy mission scenario. The mission was designed to be a realistic

situation with a dynamic environment full of moving emergent targets, including some

hostiles. The simulation specifically involved a high level of automation in order to

induce boredom. This simulation mimics real world Unmanned Aerial Vehicle (UAV)

missions, which involve low workload and range from 8 to 12 hours.

In addition to providing research support for future multi-UxV objectives, this

study applies to a myriad of domains where boredom is prevalent in current

operations. For instance, UAV Predator pilots face vigilance and boredom issues due to



long duration, low workload missions. The aviation world also suffers from these

problems, as in the Northwest Airlines incident of 2009 where the pilots overshot their

destination by 150 miles due to loss of vigilance and situational awareness [11]. This

research also applies to scenarios such as air traffic control in low traffic situations,

transportation system monitoring, and process control supervision. Already, the

prevalence of human-machine systems has caused increased interest in vigilance

research [12].

This long duration, boredom research in the context of networked UxVs is

invaluable because, despite the growing need for boredom and vigilance research [13],

there is a shortage of research on this topic [14, 15]. The occurrences of vigilance

degradation and boredom are not well understood, and neither are their outcomes [16].

Literature reviews on these topics are outdated [17, 18]. In light of current technological

advances and the necessity of boredom research on vigilance tasks, it is even more

important to update research on this topic.

1.3 Thesis Organization

Chapter 1, Introduction, outlines the motivation and operational benefit for this

research.

Chapter 2, Background, provides information on workload, vigilance, boredom, and

fatigue, and their implications on unmanned vehicle operations. It also

details the research questions and hypotheses of this thesis.



Chapter 3, Experimental Evaluation, describes the procedures and design of the Low

Taskload, human-performance experiment used to test the hypotheses of this

research.

Chapter 4, Results and Discussion, presents the results of the analysis for each research

question immediately followed by discussion.

Chapter 5, Conclusion, states the findings of this study and provides recommendations

for future work.
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2 Background

The literature review presented in this chapter is the structure supporting the

experimental methodology of this research. The three pillars of this research are

workload, vigilance, and boredom. This chapter explains the theory behind low

workload with regard to performance and discusses the vigilance decrement associated

with low workload. Empirical evidence for measuring vigilance is presented, followed

by empirical evidence for measuring boredom. Pitfalls of boredom and fatigue are

discussed in the context of current unmanned aerial vehicle domains. Furthermore, this

chapter sets the stage for the experimental testbed used in this study by describing a

previous single-operator UxV experiment on moderate-level workload and

performance. This chapter culminates in the presentation of the five research questions

and hypotheses investigated.

2.1 Workload

Workload plays a pivotal role in the performance of a human-automation

system. Workload is an individual's perceived level of busyness, while taskload is the

amount of work imposed upon an operator [19]. Workload and taskload often go hand

in hand; however, a person who is easily overwhelmed may perceive a moderate

taskload as high workload. The Yerkes-Dodson law, which explains the link between

workload and performance, is now discussed as a motivating factor for this research to



determine whether performance, in fact, declines in a parabolic fashion as workload

decreases.

2.1.1 Yerkes-Dodson Law

The Yerkes-Dodson law describes the relationship between workload and

performance as shown in Figure 2. The Yerkes-Dodson "law" nominally depicts a drop

in operator performance when the operator is over-worked or under-worked.

good

C

0

poor

low moderate high
Workload

Figure 2: Graphical representation of the Yerkes-Dodson Law

Although the Yerkes-Dodson law, created in the year 1908, originally related arousal to

performance [20], the law has been extended to incorporate workload in the place of

arousal [21, 22]. A relationship similar to the Yerkes-Dodson curve suggests that the

drop in operator performance during low arousal is due to human complacency, while

the drop in performance during high arousal is a result of overload [23].



Research shows that operators controlling multiple UxVs perform significantly

worse under high operational tempos [24] [25] [26]. A metric that objectively describes

an operator's workload is utilization, or percent busy time. It has been shown that

performance significantly degrades when supervisory control operators are tasked

beyond 70% utilization [24] [27] [28]. Although a general consensus recognizes that

performance drops off according to the Yerkes-Dodson law at high levels of workload,

little is known about whether the low end of workload actually mirrors the same

plummet in performance, particularly in the context of supervisory control of multiple

UxVs in a highly autonomous system.

The Yerkes-Dodson law is notional, and steep drops in performance have only

been reported for high workload [24]. It has been argued that the Yerkes-Dodson

measure of workload, or arousal, is lacking in three areas: predictive capability, clarity,

and unitary construct [22, 29]. Thus, the Yerkes-Dodson curve has serious drawbacks

for predicting performance. Several sources claim that the connection between

workload and performance is much more complex than an over-simplified, inverted "u-

shape" curve suggests [30-32].

This thesis research seeks to determine the validity of the Yerkes-Dodson

relationship between performance and low workload. A long duration, low workload

experiment using a networked UxV supervisory control simulation was conducted to

measure performance among three groups of varying taskload. This experiment was



designed to compare performance across three low levels of workload, assuming that

taskload corresponds with workload.

2.2 Vigilance

Vigilance is denoted as a state of being alertly watchful, especially to avoid

danger, and is often required in a military, supervisory control context. The human

tasks of monitoring and decision making for a networked UxV system can be

considered controlled processes, which are described as serial tasks requiring effort

under an individual's direct control [33]. It is known that vigilance decrement is an

inherent part of controlled processing [34]. Some researchers refer to vigilance

decrement as a decrease in attentional capacity, which is a result of overload from high

mental workload [35-37]. However, other researchers state that vigilance decrement is

caused by attentional withdrawal from low workload [38-40]. This research focuses on

vigilance associated with low workload.

2.2.1 Measuring Vigilance

Measuring vigilance may include objective, physiological, and subjective

instruments [41]. Vigilance can typically be measured objectively according to four

manifestations of how quickly people can detect critical events: (1) target detection rate,

or hit rate, (2) non-target detection rate, or correct rejection rate, (3)failure to detect targets

rate, or omission rate, and (4) incorrect identification of non-targets as targets rate, or false

alarm rate [42]. UxV operations of the future, which include highly autonomous



systems, will require sustained vigilance due to the need for prolonged monitoring and

persistent surveillance. Vigilance research suggests that a performance trade-off exists

between active and passive sustained monitoring [42].

For example, on such study involved a passive, sonar target detection

environment with target tones sounding in a noise background at a mean rate of 10 per

minute, and irrelevant probe tones playing at intervals of 2 to 4 seconds [43].

Participants listening for sonar target tones were asked to make false detections of

irrelevant probes. During the 28-minute test session, the participants' response rates

fluctuated for minutes at a time, indicating a long-term change in performance.

Response rates of the false detections declined after only 2 to 3 minutes of task

performance, and subsequent response rates stayed below 70 to 80% of initial rates.

According to the study, it was shown that averaged false detections of the frequent,

irrelevant probe tones provide an accurate estimate of alertness level. However,

measuring detection frequency and accuracy is not the best representation of vigilance.

Nevertheless, similar studies measure vigilance using operator detection times.

Two studies on air traffic control (ATC) en route monitoring determined that the time to

detect conflicts and the frequency of missed traffic conflicts increased significantly over

the course of just two hours [44, 45]. This degradation in vigilance over a 2-hour period

justifies the need to perform studies with even longer vigilance tasks. For example, the



average shift length of a UAV pilot is 12 hours for the US Air Force and 8 hours for the

US Army.

Cerebral blood flow has been linked to vigilance performance. When parts of the

brain become metabolically active, the by-product of mental exertion, carbon dioxide

(C02), increases [46]. The human body subsequently reacts by speeding up the blood

flow in that area to remove the waste gas. A previous Transcranial Doppler sonography

study showed that cerebral blood flow velocity significantly declined linearly over time

as participants performed vigilance tasks involving signal detections in the auditory

and visual realms [46]. In addition, participants experienced a general reduction of

responsiveness in vigilance tasks during four 10-minute tests. The decline in vigilance

and cerebral blood flow suggests that information processing resources are not

replenished as quickly as they are consumed over long periods of time.

Similarly, it has been shown that the electroencephalographic (EEG) power

spectrum changes accompany minute to minute fluctuations in alertness [47]. Fifteen

subjects participated in a dual-task simulation of visual and auditory sonar target

detection. Each subject performed three 28-minute sessions. Accurate, non-invasive,

nearly real-time estimates of an operator's global vigilance were measured with EEG

recorded from only two central scalp sites. Data from sessions where at least 25 lapses

in target detection were recorded was compared against EEG measurements. Power

spectra were sorted by local error rate, and EEG power was correlated with changes in

24



error rate. The results showed that a monotonic relationship exists between minute-

scale changes in performance and the EEG spectrum. This research showed that

changes in alertness can be measured by EEG power spectrum changes.

Although vigilance has been measured using detection rates and physiological

signals, it has been suggested that most vigilance studies have been conducted in strict

laboratory environments with far more stimulus events than are realistic [48]. Instead,

the number of concurrent operator tasks needs to be minimized for researchers to

discover subtle changes in operator behavior [48]; that is, the experimental setting needs

to promote boredom. Others have noted that measuring vigilance in low workload

experiments is actually linked to boredom measurement [49]. Rather than measuring

vigilance through response times and physiological recordings, this research focuses on

measuring vigilance through performance-based and attention-based measures of

boredom, discussed next.

2.3 Boredom

Boredom can be a major problem in the supervisory control setting because

people become under-stimulated to the point where sustaining mental effort is

impossible. There is evidence to suggest that task underload results in operator

performance degradation [50]. It has been suggested that boredom encompasses two

components: cognitive and affective [51]. The cognitive component comes from an

operator's perception of the task at hand. If the task seems unimportant or non-



challenging, the operator becomes cognitively disinterested. The affective component of

boredom relates to the operator's emotional perception. Feelings of frustration,

dissatisfaction, melancholy, and distraction represent the affective side of boredom [51].

The following subsections describe the impact that boredom has on operator

performance in human supervisory control tasks and present methods for identifying

boredom. Additionally, boredom proneness as it relates to crew selection and the

unmanned aerial vehicle domain is discussed.

2.3.1 Measurable Performance Impact of Boredom

Performance degradation can be measured as a function of boredom. Air traffic

controllers in low taskload environments, such as en route monitoring of aircraft, can be

susceptible to boredom, unlike the busy terminal operators. Studies on ATC monitoring

tasks showed that participants reporting high boredom were more likely to have slower

reaction time and worse performance than participants reporting low boredom [52]

[53]. Similarly, participants who reported higher subjective, task-related boredom also

had slower reaction times. People recognize when they are bored, as shown by the

participants' boredom reports matching their slow reaction times.

Furthermore, a study of American air traffic controllers showed that a high

percentage of system errors due to controller planning judgments or attention lapses

occurred under low traffic complexity conditions [54]. Consequently, system designers



need to make an effort to prevent boredom and avoid complacency of controllers in

order to sustain vigilance in low workload conditions [55].

Specific factors influencing boredom and monotony have been examined in the

context of ATC. It has been suggested that task characteristics (e.g. repetitiveness, traffic

density) may interact with individual influence (e.g. personality, experience, age) and

work environment in a way that causes monotony and boredom [16]. This research was

a first step in examining monotony from a perspective of individual factors in the hopes

of guiding crew selection, training, and understanding of how individual factors affect

critical states [16]. In the same way, the research of this thesis seeks to identify

participants' characteristics that influence boredom in a low workload environment.

2.3.2 Identifying and Measuring Boredom

People show expressions through channels of communication, such as body

language, facial expressions, tone of voice, and posture, to name a few. Characterizing

and recognizing the human emotion of boredom is essential for diagnosing workload

issues in the context of futuristic UxV operations. In a previous study, a three-

dimensional optical flow tracking system was used to rate participants' boredom levels

as they watched a stream of boring videos [56]. Two judges watched footage of

participants watching these boring videos. The judges watched videos of a participant's

head and shoulders, and had two screens of footage showing the participant's left and

right sides, respectively. The two judges identified events as a team, and then



individually rated whether the event showed any change in attention state. The judges'

boredom ratings were analyzed in conjunction with head position data to objectively

identify boredom events. A similar video coding methodology was used in another

study [57]. Slumping posture from the head position data in conjunction with judges

ratings of boredom from the participants' facial expressions indicated when boredom

was occurring.

Video coding shows that humans deal with boredom in different ways. Some

individuals are more prone to boredom than others. Personality, attention span, and

personal interests can affect whether people become bored easily. A study showed that

subjects with low boredom proneness outperformed high boredom prone subjects and

reported less boredom in a flicker detection vigil [58]. Taking into account boredom

proneness could improve crew selection of monitoring tasks.

2.3.3 Boredom in Unmanned Aerial Vehicle Domains

Persistent surveillance is accompanied by persistent, boredom-inducing tasks.

Boredom is prevalent in unmanned aerial vehicle operations, amid rare and short

moments of critical, hostile situations. An ex-A-10 pilot flying Predators is

"likely to seek out action, for example, by monitoring the banter on the

secure chat rooms used by commanders to communicate in battle. 'Highly

skilled, highly trained people can only eat so many peanut M&Ms or

Doritos or whatnot,' he said. 'There's the 10 percent when it goes hot,



when you need to shoot to take out a high-value target. And there's the 90

percent of the time that's sheer boredom- 12 hours sitting on a house

trying to stay awake until someone walks out [59]."'

2.3.4 Fatigue

Fatigue impacts long duration missions, manifested as a lack of mental alertness,

regardless of the level of workload being expended throughout the mission. Fatigue,

like boredom, becomes a primary problem in supervisory control of multiple

unmanned vehicles. Fundamentally, fatigue is driven by a chronic lack of sleep.

However, a relationship exists between boredom and fatigue.

In a Predator operations study, "graphical analysis of subjective boredom ratings

found 92 percent of pilots reported 'moderate' to 'total' boredom" [60]. It is interesting

that a study focused on researching fatigue also showed high ratings of subjective

boredom. The boredom caused slower responsiveness, which resulted in problems with

performance and crewmember morale.

Merely limiting flying time of shift workers proved to be a poor safeguard

against fatigue. Even a four-hour work shift still resulted in fatigue and boredom [60].

The harmful effects of fatigue and boredom must be investigated before futuristic,

highly-automated operations of multi-UxV control become reality.



2.4 Empirical Evidence for Possible UxV Vigilance Problems

A previous study that attempted to examine the impact of moderate workload in

supervisory control of multiple UxVs yielded unexpected results that suggest vigilance

and boredom could be significant factors in such an environment. This experiment was

conducted using the Onboard Planning System for Unmanned vehicles Supporting

Expeditionary Reconnaissance and Surveillance (OPS-USERS) test bed [61]. The

simulation allowed a single operator to supervise multiple autonomous UxVs in a

search, track, and destroy mission. The operator was assisted by an automated planner

for scheduling the UxVs' search, track, and destroy tasks. In addition, a decision

support tool allowed the operator to alter automation-driven schedules and approve

desired plans. As will be discussed in detail, even in a moderate workload study, there

was evidence to suggest that vigilance could be a problem in supervisory control of

multi-UxVs.

The objective of the operator was to command multiple, heterogeneous UxVs for

the purpose of searching the area of responsibility for hidden targets, tracking targets,

and approving weapons launches [26]. The UxVs in this experiment included two

rotary-wing Unmanned Aerial Vehicles (UAVs), one Unmanned Surface Vehicle (USV),

and a Weaponized Unmanned Aerial Vehicle (WUAV). Once a target was found, the

user designated the target as hostile, unknown, or friendly, and assigned it a priority

level. One or more UxVs continually revisited hostile targets to track their positions



until the WUAV was able to destroy the hostiles. Operators were required to approve

all weapon launches from the WUAV. Unknown targets were also revisited as often as

possible, tracking the targets' movements. Provided with intelligence via a chat box, the

operator could re-designate unknown targets as hostiles or friendlies. The operators

could create search tasks, given unsearched locations on the map, for UxVs to explore.

The operators spent much of the mission time monitoring the system, while the auto-

planner prompted replanning sessions for re-evaluating the unassigned tasks that

needed to be scheduled.

2.4.1 Experimental Apparatus

The interface details can be found in Appendix A. Figure 3 shows the top layer

display of the human-computer interface (HCI) that was used for this study. This top

layer display, known as the Map Display, shows symbols representing the UxVs, search

tasks, loiter tasks, and targets.

A birds-eye view of the mission area is shown with representational symbols of

UxVs, targets, tasks, etc. The symbols correspond with Military Standard 2525 [62].

These symbols include: UxV symbols that represent the four vehicles moving over the

map; search task symbols, which are markers on the map that represent an operator-

designated location for the UxVs to explore in search of hidden targets; target symbols

such as hostiles, unknown targets, and friendlies found roaming the map that are to be

tracked; and loiter symbols, or points on the map for the weaponized vehicle to
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Figure 3: Map Display

hover over while waiting to destroy the next hostile target. The upper right-hand corner

of the Map Display is equipped with a mini map that shows the symbols for UxVs,

search and loiter tasks, and targets as they appear on the map. Since the Map Display

can be zoomed in, it is convenient to glance at the mini map for a quick view of the

overall picture. This feature can be turned off by un-checking the mini map box above

the mini map itself.

The UxV timeline at the bottom of the Map Display gives temporal event

information for the next five minutes into the future, indicated in military time. Green

bars in the interface indicate times of refueling, and blue bars indicate times of

performing a task. The letter of the task (whether a search task or target-tracking task)

...... ...... .............. .. .........



appears in the blue bar. White space indicates vehicle idle time or travel time between

tasks. The timeline moves to the left as time progresses.

The lower left-hand corner of the Map Display portrays a performance plot,

shown in Figure 4. The automation analyzes the current schedule, predicts mission

performance by the end of the mission time, and calculates a score. The score is

calculated based on a non-dimensional cost function that accounts for task priority and

completion, target tracking, hostile target destruction, and coverage area. The red score

represents the automation's predicted score. The blue score represents the actual score

attained by the human-automation system. When the predicted score surpasses the

0
CL

Figure 4: Performance Plot

actual score, the auto-planner is proposing that better performance could be achieved if

the operator accepts the proposed plan. On the other hand, when the actual

performance exceeds the predicted curve, the human operator has changed the tasking

in a way that results in better system performance than the automation predicted [63].

The performance plot moves to the right as the score changes over time.



The command center sends intelligence information to the operator via the chat

message box located in the lower right-hand corner of the map display. The chat

message box shown in Figure 5 gives important information dictating priority levels for

targets. Chat messages are accompanied by an auditory tone common to modem-day

instant messaging programs. In addition, the chat box outline blinks until the operator

acknowledges the received message by clicking in the chat box. Sometimes chat

messages require responses to questions, such as, "How many targets have been

found?" The operator must type the answer in the message input window and click

"send."

Command Center: Hostile targets in the
western half of the map are Medium
Priority.
Command Center: How manytargets
have been found?
Mission Operator: Three

message input -- - - Send button
window send

Figure 5: Chat Message Box

2.4.2 Operator Tasks

The main tasks for the operator include: creating/editing/deleting search tasks,

identifying targets, replanning, and destroying hostile targets.



2.4.2.1 Search

A primary mission objective is to search uncharted territory. The UxVs

automatically search the area of interest using their own onboard computer search

algorithm, which is an A* search method. However, it has been shown that systems

with human operators are better than purely automated systems at ensuring the entire

map area is covered in the search [26, 631. The operator can create a search task at a

particular location by right clicking the location on the map, which brings up the search

task creation window, shown in Figure 6. The operator designates the priority level and

temporal requirements of the search task. The operator can also create loiter tasks using

the search task creation window. Right clicking an existing search task allows the

operator to edit using the same window.

Use this same window to
create or edit a WUJAV

SearchvAVL? Loiterask (the stop sign
Desgrnate osindow of possibstait times symbol). Select the WUAV

Drag the ends of the Priority Loiter checkbox.
timeline to specify
window of
opportunity for
when the task NDesignate the priority

shoul begn. L level by clicking the

Useul thisn saewndwt

appropriate button.
DeTgat the priority is used by
the auto-planner to
add the task to the
schedule.

Figure 6: Search Task Creation Window



2.4.2.2 Identify Targets

The UxVs have automatic target detection capability in the futuristic scenario of

the OPS-USERS simulation. The target identification window pops up automatically

when one of the UxVs discovers a target. For experimental purposes, the target

identification task was simplified to recognizing the target symbols rather than

analyzing actual imagery. The operator must pan through the target identification

window until the target symbol becomes visible. The operator then classifies the target

symbol as hostile, unknown, or friendly and designates a priority level of high,

medium, or low priority using intelligence information from the chat message box.

Figure 7 shows the sequence of target identification.

U~n~w~i UAkOW dRlMj Unknown Fr~ndly

Low

Figure 7: Target Identification Window Sequence
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2.4.2.3 Approve Weapons Launch

When a target is identified as hostile, it must be destroyed by the WUAV while being

tracked by the UxV that found it. Operator approval must be given before the WUAV is

allowed to destroy a hostile target. The missile launch approval window shown in

Figure 8 pops up automatically when the WUAV sights the hostile target for

destruction.

Figure 8: Missile Launch Approval Window

The operator must pan the screen for a direct view of the target and click the red

"approve launch" button to destroy the target.

2.4.2.4 Replan

* The automation prompts the operator to replan by approving new UxV

schedules. However, the operator can also initiate the replanning. Given the current

schedule, the automation's proposal, and potentially changing mission priorities, the



operator can change UxV schedules via the replan display. The replan display is a

decision support tool known as the Schedule Comparison Tool (SCT), shown in

Figure 9. The green "replan" button at the bottom left corner of the Map Display shown

in Figure 3 allows the user to view the SCT.

All mission objectives, including search tasks and targets to be tracked and/or

destroyed, are either assigned or unassigned via the SCT. The gray areas around the

black "assign" triangle in the SCT display the tasks not yet assigned to any UxVs.

Operators are able to click and drag unassigned objectives into the central "assign" area,

essentially querying the automation about whether the particular objective can be

assigned. Sometimes not all tasks can be assigned. Subsequently, the new assignment of

a task can cause other tasks to become unassigned. Tasks that can no longer be assigned

pop out of the black "assign" area and move to the gray area of unassigned tasks.

The three geometrical forms at the top of the SCT are configural displays and

show three schedules. The dark gray form on the left is the current schedule being

carried out by the UxVs. The green form on the right is the newest proposed schedule

from the automated planner. The blue schedule in the center is the working schedule

that results from the user querying the automation to assign particular tasks. Thus, the

proposed schedule represents a highly automated solution; the working schedule

promotes a more collaborative effort between the human and computer, which has been



shown to improve operator performance and situational awareness in similar complex

settings [65-67].

Figure 9: Schedule Comparison Tool

Each configural display is composed of two parts: an upper rectangle and a lower

rectangle separated into three bars. The configural display is shown in Figure 10. The

top rectangle represents the map area that will be covered for a given schedule. The

more colorful the area, the better searched the map will become using that schedule.

The bottom hierarchy of bars shows the percentages of high, medium, and low priority



tasks to be completed for a given schedule. The more color-filled a bar appears, the

more of that task priority is being done. When a task is assigned, the corresponding

bar changes shape with a ghosting effect in order to visually draw attention to what has

changed. The white overlay shown in the high priority bar of Figure 9 is the result of

the ghosting effect. This white overlay depicts the previously smaller percentage of high

priority tasks being assigned.

Figure 10: Configural Display

2.4.3 Moderate Workload Experimental Results

The original study of moderate workload on the OPS-USERS testbed yielded

interesting results that motivated this research on low workload. The moderate

workload replan interval experiment assessed operator workload and performance in

three automation-generated replan intervals. Specifically, the rate at which the operator

was required to collaborate with the automation using the SCT was modulated over
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three experimental trials. The intervals for replanning were 30 seconds, 45 seconds, and

120 seconds. The order was counterbalanced across the test sessions for thirty-three

participants [26].

This study showed that people performed better when they worked with the

automation's prescribed replanning rates, rather than ignoring the automation and

operating under their own discretion for when to replan [63]. The interesting result

from this experiment that motivated this thesis research is that even though participants

who consistently responded to the automation's replan prompts, deemed consenters,

were unable to maintain the automation's prompted replanning rate at the lowest

interval of 120 seconds; that is, the consenters of the experiment replanned more often

when the automated replan interval fell below a comfortable threshold of workload.

This finding shows that humans have difficulty maintaining low levels of workload,

and further research was needed for the low workload scenario of this simulation.

2.5 Research Questions

The five research questions this thesis seeks to answer aim to explore different

facets of the overall question: how do people behave under long duration boredom?

This study is retrospective in nature, and these research questions are provided in order

to approach the research in a specific, measurable way. A hypothesis was devised for

each research question to help guide the analysis, but not limit it. These questions are as

follows:



1. Does the Yerkes-Dodson curve hold true for low workload?

It has already been shown that high workload does cause performance to

plummet, and the Yerkes-Dodson curve is valid for high workload conditions [24] [25]

[26]. However, the amount of research conducted in long duration, low workload

environments for human supervisory control is small [14, 15]. Persistent surveillance

tasks and sustained monitoring tasks are common in human supervisory control

settings. With these jobs becoming ever more prevalent as automation increases, the

effect of sustained low workload on performance needs to be understood [13]. Does low

workload really cause performance in supervisory control to plummet as the Yerkes-

Dodson curve suggests? It is hypothesized that low workload data from this experiment

will show that the Yerkes-Dodson law is not correct for low workload.

2. How does low taskload aff ect operator utilization?

This research seeks to identify how participants react to low system requirements

of taskload. Will participants become disinterested and let their interactions with the

interface fall below the required amount to perform tasks? Will participants

overindulge in interacting with the system in order to stay alert? In this study,

participants have the freedom to interact with the system as much or little as they

please. This experiment is a unique opportunity to learn about human nature by

studying human-system interaction levels under low workload conditions. It is



hypothesized that taskload, modulated by replan interval in this low workload study,

will have a positive relationship with utilization, or total interactions with the system.

3. How does the low workload environment aff ect operator attention?

Knowing how low workload affects performance and utilization is not enough.

Understanding attention allocation is key to discovering the toll that sustained low

workload takes on human operators. It is hypothesized that operators will spend most

of their time in divided attention (coping with boredom by multitasking), some of their

time completely distracted (due to boredom), and the least amount of their time in

directed attention (because of low workload and disinterest).

4. Can performance be predicted in a low workload environment?

Being able to predict performance in persistent surveillance tasks could be a

tremendous benefit to the supervisory control domain. Predicting performance could

lead to preventing vigilance decrements and fatal errors before they happen. In order to

predict performance, attention allocation as it relates to utilization and performance will

be investigated. Perhaps performance can be predicted knowing how focused a person

is apt to be. It is hypothesized that operators with higher percentages of directed

attention will perform better, as predicted by statistical models.

5. Does vigilance decrease over time?

Vigilance decrements are often associated with long duration, supervisory

control tasks. But does this phenomenon really occur? It is important to research what



really happens to an operator's sustained alertness in the context of a multiple UxV

mission setting, since this scenario is the future of unmanned vehicle operations. The

literature review revealed that current measures of vigilance create an unrealistic

testing environment, and a boredom study is needed to discover subtle changes in

behavior and effectively assess vigilance [48]. Accordingly, it is safe to assume that

vigilance can be measured by attention state changes from hour to hour. It is predicted

that operators' amounts of directed attention per hour will decrease with each

subsequent hour. It is hypothesized that, in this way, vigilance will decrease over time.

These research questions stem from the three pillars of the background

presented in this chapter: workload, vigilance, and boredom. The following chapter

describes the methodology for answering these research questions and creating an

overall assessment of the impact that low workload has on supervisory control of

networked unmanned vehicles.



3 Methodology

This chapter describes the long duration, low taskload human performance

experiment used to test the research hypotheses detailed in the previous chapter.

Thirteen groups of 3 participants endured a 4-hour experimental session acting as

independent operators engaged in supervisory control of networked UxVs. The

simulation was a search, track, and destroy mission conducted on the OPS-USERS

testbed detailed in Chapter 2. This chapter discusses participant information, the

apparatus, testing procedures, and experimental design.

3.1 Participants

Thirty-nine participants were tested 3 at a time. Complete test data was collected

for 30 participants, which included 11 females and 19 males. Data from 9 of the

participants was incomplete or unusable because of system software failures. Forty-

three percent of the participants had military experience. Participant age ranged from

19 to 32 with a mean of 23 years of age and a standard deviation of 3 years; this age

range is typical of current unmanned vehicle operators in the military. Each participant

was classified as either a "gamer" or "non-gamer" based on their video gaming

experience revealed in the demographic survey. Participants who played games more

than once a week were considered gamers. Each participant signed a consent form,

shown in Appendix B.



Sixteen of the 39 participants originally participated in the moderate workload

study discussed in Chapter 2. The remaining 23 participants received equivalent

training on the moderate workload testbed. New participants learned about the

interface via the self-paced tutorial used for the moderate workload experiment and

participated in a mock-experiment on the moderate workload testbed for a total of

approximately 1.5 hours. This training was performed to ensure consistency of practice

among all participants for this long duration, low workload study.

3.2 Apparatus

This section focuses on the modifications made to the OPS-USERS system for

converting it to a long duration, low taskload scenario. The test session for this

experiment lasted 4 hours, as opposed to the 10-minute session in the moderate

workload study [26]. Each participant only performed one 4-hour test session for a

given replan interval. Each operator workstation included two 17-inch Dell TFT LCD

monitors connected to a Dell Dimension tower containing a Pentium D 2.80GHz CPU

and 2.00 GB ram. The interface was displayed on the left monitor with the right monitor

being open for participant prerogative use.

To make the workload lower than the moderate workload study, the unmanned

vehicles moved 10 times more slowly across the map. It took almost an hour for a

vehicle to move from one side of the map to the other, which appeared extremely slow

since it only took a couple of minutes for a vehicle to traverse the map in the moderate
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workload study. The scenario also had only 4 hidden targets to find in the 4-hour

mission, unlike the 10 targets in the ten-minute moderate workload scenario. Moreover,

the participants were prompted to replan only once every 10 minutes, 20 minutes, or 30

minutes, depending on their issued replan interval, as opposed to every 30 seconds, 45

seconds, or 120 seconds in the moderate workload scenario. All of these modifications

to target number, vehicle speed, and replan interval were done in an effort to center the

participants' workload around 10% utilization, unlike the 70% utilization goal in the

moderate workload scenario. The target utilizations for the three replan interval groups

were 15%, 10%, and 5%.

An additional way of maintaining low operator taskload throughout the entire

session was to ensure that the 4 targets could not be found all at once. One of the 4

targets was "uncloaked" at the beginning of each hour. Thus, if an operator was able to

use his or her vehicles to search the entire map area within the first hour, only one

target would be found and identified, leaving the other 3 targets hidden until their

future "uncloaking" times. This "uncloaking" activity ensured consistently low

workload for operators throughout the 4-hour study. The participants were unaware

that targets remained hidden and only emerged later in the simulation.

3.3 Experimental Procedure

The 4-hour, low workload test session was prefaced by pre-experiment

paperwork, including consent forms, demographic and training surveys. Participants



were tested 3 at a time, but each performed separate simulations. Participants were

knowingly videotaped during the test session to capture behaviors exhibited

throughout the study, as shown in Figure 11. Workload and performance metrics were

collected automatically by the simulation without interrupting the participants.

3.3.1 Paperwork and Practice

Participants completed a demographic survey, which can be found in Appendix

C. Details about the demographic results can be found in Appendix D. After completing

the paperwork prior to the experiment, participants completed a self-paced, refresher

tutorial and were allowed to ask questions. Following the self-paced refresher tutorial,

all three participants completed an interactive practice session during which they

practiced all of the tasks that would be required during the four-hour test session.

Participants could practice as long as needed to feel comfortable with the interface,

usually about 10 minutes. After practicing, each participant filled out an exit form that

illustrated his or her confidence level in understanding the interface and mission

scenario. The exit survey for interface understanding can be found in Appendix E. The

overwhelming majority of participants answered "confident" or "very confident" (with

only 6 of 39 feeling "somewhat confident") and indicated they understood the interface

functionalities. Any problem areas were covered again. After all questions were

answered, the test session commenced.



3.3.2 Test Session

Three participants were tested at a time in a mock command and control center

shown in Figure 11. All operators' scenarios were independent of one another; i.e., there

was no need or opportunity for collaboration designed into the scenarios. Because of the

long duration of the study, three participants were tested at a time, both to reduce

overall experiment time and to provide possible sources of distraction. Unmanned

vehicle operating environments typically contain multiple personnel who are often

responsible for dissimilar tasks, so this environment was representative of typical

command and control centers. Each participant assumed supervisory control of their

own set of 4 heterogeneous, unmanned vehicles in their own territory.

Figure 11: Three Subjects in the Test Room
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Participants assumed limited control over the UxVs, assigning search and target-

tracking tasks to the system network but not to particular UxVs. This lack of direct

control was identical to that of the moderate workload experiment discussed in Chapter

2. Participants employed a weaponized unmanned aerial vehicle to destroy hostile

targets. The underlying automation concurrently analyzed the mission as it progressed

and proposed new plans at predetermined intervals. The participants viewed these

proposals via the SCT interface shown in Figure 9, which allowed them to edit and

accept the new plans.

Potentially distracting material was available to the participants during the

experiment, such as internet access via one of the workstation interfaces that was not in

use, magazines, refreshments, anything the participants had with them in their

backpacks (including cell phones or books), and each other. Refreshments were

provided to the participants, and the same food varieties were served to all participants.

Participants could bring their own lunches if they so desired. Each set of 3 participants

was left alone in the mock command and control room during the study. However,

participants were knowingly videotaped for the duration of the study. In addition,

screen capture software was used to record the interface interactions. The test

administrators remained in an adjacent room and came into the test room 4 separate

times to check on the participants throughout the study duration. During the

experiment, participants could leave the test environment to go to the restroom at any



time; in this case, the test administrator paused the simulation in order to preserve the

participant's data. Upon return, the experiment administrator informed the participant

that the scenario remained stable and uneventful during his or her absence, and the

participant resumed the simulation. Participants only left the room to go the restroom.

Thirty minutes prior end of the simulation, the timeline grayed-out, indicating that no

future events were visible as the simulation came to a close.

Following the test session, participants filled out a survey, where they indicated

how busy they felt, their confidence in the actions they took, and how well they felt they

performed. The post-experiment survey can be found in Appendix F. They also

indicated whether they were distracted or not, and listed any distractions they

encountered during the test session. Participants were compensated $125 for their

efforts and were also eligible to win a $250 Best Buy gift card for the best performance.

3.4 Experimental Design

This long duration, low taskload simulation was designed to investigate low

workload as it relates to operator performance. Taskload was controlled by simulation-

prompted events that required major decision making. The experiment was originally

designed to be statistically evaluated using a One-way Analysis of Variance (ANOVA)

model with 3 factor levels represented by the 3 replan intervals.



3.4.1 Independent Variable

The independent variable for this experiment was the replan interval, or the rate

of how often the participant was prompted to collaborate with the automation in

schedule decision making. Each participant was given a fixed replan interval of either

10 minutes, 20 minutes, or 30 minutes; these replan intervals were intended to induce

utilization levels of 15%, 10%, and 5%, respectively. This prediction was estimated

based on the previous study and pilot testing of the low taskload scenario.

3.4.2 Dependent Variables

The dependent variables include objective workload, objective performance

metrics, subjective self-rated performance metrics, and attention state metrics obtained

via video data.

3.4.2.1 Workload Metrics: Utilization

Utilization, or percent busy time, has been used to detect subtle changes in

workload during time-pressured scenarios, similar to this OPS-USERS experiment, in

which the operator has multiple objectives to perform [24, 64]. Utilization is measured

by calculating the ratio of the total service time for all events to the total mission time.

In this experiment, utilization accrues anytime the operator is in the SCT window,

target identification window, search task window, missile launch approval window, or

reading or answering a chat box message. Three types of utilization are explored in this

study: (1) required utilization, or the percentage of mission time the operator spends
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performing mandatory tasks required by the system; (2) self-imposed utilization, or the

percentage of mission time the operator spends doing tasks that are the operator's

prerogative; (3) total utilization, which is also the sum of required and self-imposed

utilization. In addition, a self-rated busyness 5-point Likert metric was collected as a

subjective measure of workload.

3.4.2.2 Performance Metrics

The following twelve dependent variables measuring various forms of

performance are classified into evaluation categories for human-automation

performance metrics [65]. Each dependent variable is organized by human supervisory

control metric class and described. The dependent variables for this experiment are

well-rounded since all metric categories are represented.

Mission Eff ectiveness

The mission effectiveness metrics are the three primary performance measures of

this experiment because they represent the key mission parameters of search, track, and

destroy.

- Target Finding Score: speed of finding targets and quantity of targets found.

Target finding score is calculated as follows:

Zi d -

(1)
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where

d = time to detect a target

a = time target was available to be found

F = number of targets found

i = a target that was found; 1 i 4

This equation yields scores ranging from 0 to 4, where a lower value is better.

Four is the worst possible target finding score. The target finding score is computed

using this equation when a participant finds between 1 and 4 targets. If the participant

finds no targets, that participant receives a score of 4.

- Target Tracking Percentage: percentage of time targets are tracked.

Target tracking percentage is calculated as follows:

ti
(2)

where

t = total time a target was tracked

a = time target was available to be tracked

i = a target that was found; 1 i 4

This equation yields percentages between 0% and 100%, where 100% is the best

possible continuous target tracking percentage. If a participant finds no targets, that

participant receives a target tracking percentage of 0%.
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- Hostile Destruction Score: speed and quantity of hostile destructions.

Hostile destruction score is calculated as follows:

d-
z=1-

D a(3)

where

d = time to destroy a hostile

a = time hostile was available to be destroyed

D = number of hostiles destroyed

i = a hostile that was destroyed; 1 i 2

This equation yields scores ranging from 0 to 2, where lower is better. Two is the

worst possible hostile destruction score. The hostile destruction score is computed using

this equation when a participant finds between 1 and 2 targets. If the participant

destroys no hostiles, that participant receives a score of 2.

Human Behavior Efficiency

Each of the following metrics represents information processing efficiency:

- Average Prompted Search Reaction Time: average time to create a search task

after chat box prompting

- Average Chat Reaction Time: average time to answer a chat box question

- Average Replan Reaction Time: average time to click on the blinking replan

button when prompted by the automation



Human Behavior Precursors

The following cognitive precursors measure situational awareness:

- Chat Accuracy: percentage of correct answers to chat box mission awareness

questions

- Prompted Search Accuracy: percentage of correctly placed prompted search

tasks

Collaborative Metrics-Human/Automation Collaboration

Each of the following metrics falls into the collaboration with automation

category because they represent extra, operator-driven events that involve interaction

with the automation. The participants chose to interact with the automation more than

required, which indicated desire to collaborate with the automation.

- Number of Search Tasks Created: total operator-created search tasks

- Extra Search Tasks: total operator-generated search tasks; not chat box prompted

- Extra Replans: total operator-generated replans; not prompted by the automation

- Extra Target Edits: total operator-generated uses of the target identification

window

3.4.2.3 Attention State Metrics

Video data provided a means of measuring the participants' attention states at all

times during the experiment test session. Each participant's time was categorized into

percentage of time spent in (1) directed attention, or appearing focused on the interface;
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(2) divided attention, or multitasking while still paying attention to the interface; and (3)

distracted attention, or doing anything other than monitoring or interacting with the

simulation interface. The attention states are further subcategorized into physiological,

social, or cognitive. The criteria for video coding the participants' time into these

categories are as follows:

1). Directed Attention

The participant appears focused and is only monitoring or interacting

with the interface and not doing any other task.

2). Divided Attention

The participant has eyes on the interface screen, but multitasks in the

following ways.

2p). Physiological diversions (examples: yawning, eating, fidgeting,

stretching, and scratching)

2s). Social diversions (examples: talking, glancing at each other)

2c). Cognitive diversions (playing Minesweeper or flash games on the

same screen as the simulation interface)

3). Distracted Attention

The participant is not paying attention to the interface at all.

3p). Physiological distractions (examples: sleeping, eating a meal without

looking at the interface)



3s). Social distractions (examples: discussions with participants' backs

turned to the computer)

3c). Cognitive distractions (reading a book, using the internet or other

applications on the second screen, checking email and phone messages

without looking back at interface)

Video coding software was used to take notes on how each participant allocated

his or her attention throughout the 4-hour test session. The instant a participant began

performing a particular action, a time-stamped note was taken to categorize the action

into one of the aforementioned attention states. The video coding method produced

100% agreement across 3 raters for 5/30 video files due to the objective, rule-based

rubric. The time between time stamps was counted as the amount of time the

participant was in that particular attention state.

3.5 Methodology Summary

The OPS-USERS testbed was altered to create a long duration, low taskload

scenario. Experimental data was collected for 30 participants of ages comparable to

military unmanned vehicle operators, including metrics of workload, performance,

video data, and demographic data, which included a self-assessment of gaming

experience and comfort level with computer programs. Three participants performed

their supervisory control missions at the same time in a simulated control room that

had possible distractions, including each other. The independent variable for
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controlling the experiment was the replan interval, which was the time participants

were prompted to evaluate a plan generated by the automation. The primary

performance metrics focused on search, track, and destroy speed and quantity. Other

performance metrics included reaction times and accuracies to prompted events. Extra

instances of interacting with the automation were also measured to gauge self-imposed

types of workload. The results of this experiment will be discussed in the next chapter.
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4 Results and Discussion

This chapter discusses the impact of the long duration, low workload experiment

on operators' utilization, attention, and performance. The statistical results from the

analysis are provided, followed by discussion. This chapter addresses the five research

hypotheses: (1) the performance of operators at low workload will not follow the

Yerkes-Dodson curve; (2) taskload will have a positive, linear relationship with

utilization; (3) boredom will affect attention state by decreasing directed attention; (4)

directed attention will improve performance; and (5) vigilance will decrease over time.

Each of these five hypotheses corresponds to the five main research questions. In

addition, a top performer analysis is discussed. Finally, a performance comparison is

made between this low workload experiment and the previously-discussed moderate

workload study. Overall, this study seeks to determine how human subjects behave

under long duration boredom in a multi-UxV mission.

4.1 Utilization

The first two research questions investigated in this study involve utilization, or

the percent busy time, excluding monitoring time. The Yerkes-Dodson curve predicts

that performance degrades as workload decreases [20]. The first research question

sought to determine whether the Yerkes-Dodson curve prediction is accurate,

specifically in human supervisory control situations of low workload. It was

hypothesized that the performance curve will become horizontal as the curve



approaches the lowest workload. The second related research question considered how

taskload affects operator utilization, the workload metric. It was hypothesized that

taskload would affect utilization with more taskload causing higher utilization.

To test both of these utilization hypotheses, the experimental control for

workload involved 3 levels of required utilization, modulated by the independent

variable, replan interval. Participants replanning at the 10-minute replan interval were

required to replan twice as often as the 20-minute interval group and three times more

frequently than the 30-minute interval group. The 30-minute replan interval was

designed to produce operator utilizations around 5%; the 20-minute replan interval was

predicted to result in operator utilizations close to 10%; and the 10-minute replan

interval was designed to place operator utilization at 15%.

Even though participants were grouped into 3 different levels of workload, an

interesting result occurred; regardless of the fact that some participants were given

more taskload than others, they all gravitated to the same narrow range of utilization:

an average of 11.4% with a standard deviation of 3.36%. A non-parametric test, the

Kruskal-Wallis test, showed that utilization was not statistically different across the 3

replan intervals (X2 = 0.135, p = 0.935). Hence, utilization was not dependent on replan

interval. Due to the extremely low workload nature of the study, participants interacted

with the simulation as much as they pleased, regardless of the lower required

utilization controlled by certain replan intervals.
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Since the replan interval groups did not have significantly different utilizations,

the low workload end of the Yerkes-Dodson curve was neither confirmed nor

disconfirmed by the experimental design for this research. Figure 12 shows the average

utilization and overall performance for all 30 participants. The overall performance
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Figure 12: Utilization versus Performance

metric is based on target finding score (Equation 1) summed with hostile destruction

score (Equation 3) and normalized so that a higher performance value is better with 8

being the highest possible score. The search and destroy performance metrics were

chosen to represent participant performance because the system performance in these

tasks depends most on operator interactions. Target tracking is highly automated and is

not included in measuring human performance. The data in Figure 12 did not confirm

....................... .... .........................



the inverted "u-shape" curve for utilization versus performance as the Yerkes-Dodson

curve suggests, due to the large variability in performance scores.

A deeper investigation of utilization was necessary to determine why operators

gravitated to a common utilization in the long duration, low taskload environment. All

participants purposely over-utilized themselves by interacting with the system more

than the mission requirements dictated. This over-utilization may be due to the extra

cognitive capacity that the participants had during the low workload scenario. The

important aspect of this finding is that utilization can be categorized into two

subcategories of utilization: required utilization and self-imposed utilization.

Required utilization is the percentage of time a participant was required to spend

interacting with the simulation, based on replan interval, number of search tasks

created that were prompted by the command center, number of targets found that

required identification, and number of hostiles destroyed that required operator

approval. Each participant's required utilization was specific to the replan interval

independent variable. However, even participants who were required to replan at the

same intervals had different required utilizations because each participant had a

slightly different situation based on how many targets they found, how many hostiles

they destroyed, and how long they spent performing each event.

In contrast, self-imposed utilization is the percentage of time a participant

interacted with the interface by doing activities that were not required by the mission.
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Self-imposed utilization activities include extra replanning, creating participant-

generated search tasks, and additional uses of the target identification window for

editing target designation.

On average, participants were required to be 1.87% utilized (s.d. 0.49%), yet the

average total utilization was 11.4% (s.d. 3.36%). The average self-imposed utilization

was 9.53% (s.d. 3.33%), which is five times more utilization than required by the mission

scenario.

As with total utilization, participants gravitated toward the same level of self-

imposed utilization. The Kruskal-Wallis test showed that self-imposed utilization was

not statistically different across the three replan intervals ()2 = 0.439, p = 0.803).

However, the three different replan intervals caused significantly different required

utilization (x2 = 16.579, p < 0.001). The 10-minute interval group had an average of 2.41%

required utilization (s.d. 0.46%), the 20-minute interval group had an average of 1.69%

required utilization (s.d. 0.14%), and the 30-minute interval group had an average of

1.58% required utilization (s.d. 0.36%). The bar chart in Figure 13 shows the average

amount of total utilization, categorized into self-imposed and required utilization, for

each of the three replan intervals.

The 10-minute interval group had the highest required taskload and the 30-

minute interval group had the lowest required taskload. In effect, the independent

variable caused different levels of required utilization, but not total utilization. The



hypothesis that taskload will affect utilization only holds true for required utilization (X2

= 16.579, p <0.001), but not for total utilization (x2 = 0.135, p = 0.935) or self-imposed

utilization (Xy = 0.439, p = 0.803).. Rather, because participants engaged in self-imposed

utilization, the total utilization was not affected by replan interval. At low taskload,
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operators created extra work for themselves. This finding shows that humans do not

comfortably operate at low workload and that they crave at least a moderate level of

workload to sustain their attention.

4.2 Attention

The third research question investigated how the low workload environment

affected operator attention. The associated hypothesis predicted that operators would

spend most of their time in divided attention (in an effort to continue paying attention

but coping with the boredom by multitasking), some of their time completely distracted

(due to boredom), and the least amount of their time in directed attention (because of

low workload and interest).

As described in Chapter 3, directed attention is the amount of time that

participants directed their attention toward the interface. Divided attention represents

time that the participants spent multitasking physically (such as eating or stretching),

socially (such as talking over their shoulder or quickly glancing at one another), or

cognitively (such as playing Minesweeper on top of the interface). All divided attention

state subcategories involve participants maintaining visual contact with the interface

and paying attention to the mission in some capacity. Anytime the participants were

not looking at the interface is considered distracted in one of three categories: physically

(such as sleeping or going for a snack), socially (such as talking to each other or on the

phone with their backs toward their interfaces), or cognitively (such as reading, texting,
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playing games, checking email, or browsing the internet). All of these coping actions

occurred at least once.

Video coding analysis showed that participants spent an average of 34% (s.d.

15%) of their time in a directed attention state, 22% (s.d. 13%) of their time in a divided

attention state, and 44% (s.d. 20%) of their time distracted. Figure 14 illustrates the

average attention allocation of participants during the long duration, low workload

experiment.

Figure 14: Attention State Allocations

The non-parametric Friedman test showed that these three percentages of

attention allocation are statistically different (x2=8.267, p = 0.016). Three more tests were

run on this attention allocation data to determine the pairwise comparisons, making the

family-wise error value a = 0.026 for significance. The aforementioned Friedman test



met this threshold for significance. The Wilcoxon Signed Ranks test was used compare

the attention states. The results are shown in Table 1.

Table 1: Attention State Pairwise Comparisons

Attention State Comparison Z p
Directed > Divided -2.828 0.005
Distracted > Divided -3.260 0.001
Distracted > Directed -1.656 0.098

The pairwise comparisons involving divided attention are clearly statistically

significant because they not only meet the a = 0.1 for non-parametric testing but also the

family-wise error a = 0.026. On the other hand, the comparison between distracted and

directed attention only meets the a = 0.1 significance level for non-parametric testing.

Overall, it is seen that participants spent significantly different amounts of time among

the three primary attention states.

These attention state allocation results did not match the hypothesis that

participants' attention would be allocated in order from highest to lowest: divided,

distracted, and then directed. In fact, directed attention was not the lowest amount of

attention; divided attention was the least likely, and participants spent the least amount

of time multitasking. While enduring such a long duration, low workload simulation, it

is surprising that participants were able to spend so much of their time in directed

attention toward the simulation. The $250 Best Buy gift card reward enticed the

participants to put forth more effort than expected in this boredom study. However,



participants were distracted for the majority of the time, and divided attention in

multitasking was the least likely attention state.

The descriptive statistics of the sub-categories of the 3 attention states are shown

in Table 2.

Table 2: Attention State Descriptive Statistics

Attention State N Minimum Maximum Mean Std. Deviation
Divided Socially 30 .00 .10 .03 .03
Divided Physically 30 .03 .55 .17 .13
Divided Cognitively 29 .00 .13 .01 .03
Distracted Socially 30 .00 .29 .09 .09
Distracted Physically 30 .00 .18 .06 .05
Distracted Cognitively 30 .04 .59 .29 .15
Total Directed 30 .10 .75 .34 .15
Total Divided 30 .09 .55 .22 .13
Total Distracted 30 .07 .79 .44 .20
Valid N (listwise) 29 1_1_1___ 1

Overall, participants spent more time in a distracted state than any other

attention state. The mode distraction subcategory was cognitively distracted with a

mean of 29% (s.d. 15%). Participants were much more likely to be using their cell

phones, doing homework, checking their email, or reading a book than talking to each

other, eating, or sleeping. Second to distracted attention was purely directed attention

with a mean of 32% (s.d. 15%). Below directed attention, the subcategory of "divided

physically" was most prevalent, with a mean of 17% (s.d. 13%). When multitasking,

participants stretched, shifted in their seats, and snacked much more than talking or

playing a cognitive game while still looking at the interface. Examining how



participants allocated their attention tells a great deal about how a long duration, low

workload mission affects the human operator.

Performance can be predicted from attention allocation. The fourth research

question asked whether performance can be predicted by attention states in a low

workload environment. The hypothesis was correct in that participants with more

directed attention performed better. The scatter plot in Figure 15 illustrates the positive

trend between directed attention and performance in search and destroy tasks.
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Figure 15: Directed Attention versus Performance

There is a marginally significant correlation between directed attention and

performance (Spearman's p = 0.372, p = 0.056). This finding is important because it

shows that performance in long duration, low workload environments can be improved

with higher levels of directed attention. In addition, directed attention is highly



correlated with total utilization (Pearson's p = 0.434, p = 0.017), as shown in Figure 16.

Thus, in a low taskload environment, more utilization, or workload, may be the key to

more directed attention, and hence, better performance.
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Figure 16: Utilization versus Directed Attention

4.3 Performance

The fourth hypothesis, discussed in the previous section, supposed that

performance could be predicted in the low workload environment. To further

investigate this performance prediction, three linear regressions were calculated, one for

each of the 3 primary performance metric categories: search, track, and destroy. These

linear regression models were generated using the backward selection method. The

predictor variables include total utilization, percent directed attention, and gaming



level. The model coefficients and significance levels are shown in Table 3 and will be

discussed in the following sections for each primary performance metric.

Table 3: Linear Regressions

Performance R2 Po
Metric

Target Finding .254 P = 0.906
Score p <.001
Target Tracking .189 p = 0.998
Percentage p <.001

Hostile Destruction .326 p 1.177

Score p =.032

Directed Gaming
Attention Level

N/A N/A

p = 0.131 N/A
p = .049

N/A [3=0.518
p =.038

The corresponding Kolmogorov Smirnov tests for normality and Levene tests for

homoscedasticity are detailed in Appendix G.

4.3.1 Search Performance Prediction

The target finding score metric incorporates the speed and quantity of targets

found, as detailed in Chapter 3. A lower target finding score indicates better

performance.

The linear regression model for target finding score suggested that total

utilization is the only predictor variable that influences a person's target finding ability.

The model for target finding is represented mathematically in Equation 4,

y = 0.906 - 4.282u (4)

where y represents target finding score and u depicts total utilization (p =0.007). This

model shows that a 1% increase in total utilization lowers the target finding score by



0.04, thereby improving target finding since a lower score is better. This result suggests

that more interaction with the simulation in a low workload scenario improves search

performance.

Target finding score correlated with hostile destruction score (p = 0.593, p =

0.001). Participants who found many targets and found them quickly also destroyed

many hostiles quickly. These search and destroy metrics go hand-in-hand and are more

dependent on the human operator than the automation. Targets must be identified by a

human operator just as weapons approval must be made by a human operator. On the

other hand, target tracking does not necessarily require human interaction with the

system to be accomplished. The auto-planner schedules the UxVs to track targets

automatically, while the human operator can monitor and approve these schedules.

However, the act of tracking a target is not a discrete event in which the human

operator participates. The next section on target tracking illustrates how more

participant interaction hinders target tracking and simultaneously augments target

finding and hostile destruction.

4.3.2 Track Performance Prediction

The target tracking percentage metric is calculated by dividing the total amount

of time a participant's UxVs track the emergent targets by the total amount of time the

targets were available to be tracked. Before a target has been discovered, it cannot be

tracked. The amount of time from target finding to the end of the simulation therefore



represents the total time a target was available to be tracked. Target tracking was done

automatically by the UxVs. Once a target was designated by the operator as unknown

or hostile, the auto-planner put the target into the queue to be tracked automatically.

Target tracking is primarily left up to the automation after the operator identifies an

emergent target and accepts a schedule that assigns that target in the SCT. Target

tracking involves revisiting the moving target often enough that the target does not

become "lost." A lost target is one that is not found again at its last known location nor

at its projected location based on the targets last known velocity vector and time since

target sighting. The average number of targets participants lost was 0.93 (s.d. 1.2

targets).

The linear regression for target tracking percentage showed that a participant's

total utilization and percentage of directed attention both predict the system's ability to

track targets, as shown in Table 3. The model for target tracking is

y = 0.998 - 0.637u + 0.131d (5)

where y represents target tracking percentage, u stands for total utilization, and d

depicts the directed attention state. The first significant predictor of target tracking is

total utilization with p = 0.048. A 1% increase in total utilization results in a 0.637

percent decrease in target tracking. The more a participant interacted with the

simulation, the worse the target tracking became since the automation is not left alone



to operate optimally in target tracking. This interruption caused a lag in automated

target tracking assignments to the UxVs, decreasing the target tracking percentage.

The second predictor of target tracking is percent directed attention with p =

0.049. A 1% increase in percent directed attention causes a 0.131 increase in percent

target tracking. Even though tracking is considered primarily automation-driven,

having an operator intently monitor the system to make sure targets are not becoming

lost ameliorates target tracking.

The extra target edits variable was not included in the linear regression because

it correlates with the predictor variable total utilization (p = 0.392, p = 0.035). The

correlations of extra target edits show that participants who over-interacted with the

system by editing targets beyond the system requirements had worse target tracking.

Target tracking works best when the automation is left alone, yet monitored by a

human supervisor. Although target tracking is automated, directed attention

nonetheless assists the system in not losing targets because a human operator can

intervene with search tasks according to the situation. However, directed attention

improves target tracking percentage less than 1/5 as much as a lack of utilization does.

However, the overall mission would be impossible without the necessary operator

interactions for destroying hostile targets, as discussed in the next section. A balance

must be struck for overall mission performance; although operator interaction via

utilization hinders target tracking, it advances both the search and destroy tasks.



4.3.3 Destroy Performance Prediction

The hostile target destruction metric is calculated similarly to the target finding

score. Hostile destruction score incorporates the speed and quantity of hostiles

destroyed. A lower hostile destruction score indicates better performance.

The linear regression for hostile target destruction is predicted by total utilization

and gaming level. The model is:

y = 1.177 - 9.055u + 0.518g (6)

where y is the hostile destruction score, u represents total utilization, and g signifies

gaming level. The first significant predictor variable for hostile destruction is total

utilization (p = 0.015), just as for target finding score. A 1% increase in total utilization

results in a 0.09055 decrease in hostile destruction score, which is an improvement. The

more interaction participants have with the simulation, the faster all the hostiles can be

destroyed. Thus, keeping the human interacting with the system is key to good

performance in hostile destruction.

The second predictor variable for hostile destruction score is gaming level (p =

0.038). An increase in experience level from non-gamer to gamer results in a 0.518

increase in hostile destruction score, which is a large decrement in hostile destruction

performance. This finding suggests that gamers are not well-suited for long duration,

low workload missions in supervisory control because of their conditioned need for

stimulus. The task of approving weapons launches mimics the exciting missions of



video games; however, when combined with a low workload environment, the task of

approving weapons launch does not bring out the best performance in gamers.

Extra replanning events also correlated with improved hostile destruction (p = -

0.432, p = 0.025). Extra replans involve more interaction with the system, or total

utilization, and increase hostile destruction performance. Extra replanning was not

included in the linear regression because it correlates with total utilization (p = 0.577, p =

0.001). In addition, hostile destruction score correlated strongly with target finding

score (p = 0.593, p = 0.001). Participants who found many targets quickly also had a

tendency to destroy many hostiles quickly.

In terms of information processing and situational awareness, hostile destruction

performance negatively influenced attending to automation-prompted search tasks.

Hostile destruction score correlated negatively with increased prompted search task

average reaction time (p = -0.396, p = 0.046). In addition, hostile destruction performance

correlated with poorer prompted search task accuracy (p = 0.408, p = 0.035). Participants

were so focused on destroying a hostile target that they neglected their duties of quickly

and accurately creating search tasks when prompted.

4.4 Attentional Eff ects on Operator Behavior

Correlations among performance metrics other than search, track, and destroy

tasks present some interesting research findings. First, attention state affects utilization,

and therefore performance. Total directed attention correlated with extra search tasks (p
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= 0.509, p = 0.004) and extra replans (p = 0.580, p = 0.001) just as total divided attention

correlated with extra search tasks (p = 0.453, p = 0.012) and extra replans (p = 0.374, p =

0.042). Oppositely, total distraction correlated negatively with extra search tasks (p = -

0.684, p < 0.001) and extra replans (p = -0.689, p < 0.001), since a participant cannot

interact with the interface when they are not looking at it. These correlations make it

clear that attention state does, in fact, affect behaviors that add to utilization.

The directed and distracted attention states correlated with utilization that

influenced performance. Total utilization correlated with total directed attention (p =

0.434, p = 0.017). Self-imposed utilization correlated negatively with total distraction (p =

-0.406, p = 0.026). The more utilization a participant self-imposed, the less likely they

were to be completely distracted. One way for participants to have less distracted

attention and possibly more directed attention was to engage in self-imposed

utilization. More directed attention led to higher utilization and better performance,

whereas self-imposed utilization prevented distraction.

This long duration, low workload study showed that performance in creating

search tasks and chat messaging suffered, even with increasing utilization. As discussed

previously, increasing total utilization improved performance in the primary mission

tasks of search and destroy. Interestingly, chat response accuracy negatively correlated

with total utilization (p = -0.498, p = 0.005). The more a participant interacted with the

system, the less accurate their responses were to the command center situational



awareness questions. It is surprising that a low workload study with such a low average

total utilization (11.4%, s.d. = 0.03) could show a decrease in situational awareness as

utilization increases. In addition, even at a low workload setting, participants' reaction

times slowed with increasing levels of required utilization. Required utilization

correlated with prompted search average reaction time (p = 0.439, p = 0.015) and chat

average reaction time (p = 0.502, p = 0.006), which suggests that the more the required

utilization increased, the worse the reaction times became. Conversely, in the

previously discussed moderate workload study, increasing utilization did not

significantly correlate with worsened reaction times. The poor performance in reaction

times only occurred in the low workload study. Malleable attentional resource theory

explains that performance often suffers in situations of mental underload [66], and the

lengthened reaction times and worsened chat response accuracies of this low workload

experiment illustrate this point. Ordinarily, a decrease in task performance constitutes a

limit in mental capacity. However, the low taskload imparted on participants and the

low levels of utilization measured show that they were clearly not overloaded, but

perhaps the boredom did cause their mental capacity to be filled.

Other correlations demonstrated that participant behaviors in different tasks

could cause a snowball effect of good performance. Prompted search task average

reaction time and accuracy, while different metrics of different categories (e.g.

information processing and situational awareness), were strongly correlated (p = -0.801,



p < 0.001); this is a positive correlation because a lower reaction time is better.

Participants created prompted search tasks with equal measures of speed and accuracy.

If participants attended to the task quickly, they were also likely to be accurate.

Likewise, participants who made copious amounts of extra search tasks were also likely

to engage in many extra replans, as shown in the correlation between extra replans and

extra search tasks created (p = 0.914, p < 0.001). Extra search tasks and replans all

increased total utilization, which was shown to improve performance.

4.5 Vigilance Degradation

The final research question considered whether vigilance degrades over time in a

long duration, low workload mission involving human supervisory control of

networked UxVs. It was hypothesized that directed attention would degrade over time.

This hypothesis was supported. A Repeated Measures General Linear Model showed a

significant difference in directed attention across hour intervals (F = 21.953, p < 0.001).

Tukey pairwise comparisons showed a statistical difference at the a <0.05 level in

directed attention between all hour intervals, except the comparison between the third

and fourth hour. The second hour was also only marginally different from the fourth

hour (p = 0.066). The p values for all comparisons can be referenced in Appendix H.

Figure 17 shows the estimated means plot of how vigilance decreases overtime. The

error bars show standard error. Note that hours 3 and 4 are not statistically different,



even though the amount of directed attention appears higher in hour 4. Directed

attention starts out high and decreases, eventually flatlining from hours 3 to 4.
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Figure 17: Estimated Means Plot for Vigilance Degradation

4.6 Research Question Summary

This research showed that performance does not necessarily decrease with low

workload, especially in the context of human supervisory control of networked UxVs.

Given varying levels of low taskload, operators tended to gravitate toward a common

total utilization that was well above the required utilization. The boredom caused by

the low workload environment caused operators to spend the majority of their time in

distracted attention, followed by directed attention, and the least amount of time



multitasking in divided attention. More directed attention predicts higher operator

performance, especially in the tracking portion of the mission.

Higher utilization predicts improved operator performance in search and

destroy tasks, but hinders the automation's ability to track targets. Gaming experience

was a detriment to destroying hostile targets in this long duration, low workload

mission. Vigilance, shown by a decrement in amount of directed attention per hour,

decreased over the course of the mission duration. The descriptive statistics for all data

gathered can be found in Appendix I. Sources of error are listed in Appendix J. The next

section describes the coping mechanisms of the top performers.

4.7 Top Performer Analysis

This section describes the top 8 performers and gives insight into how

participants coped with the low workload in order to outperform the majority of

participants. The top 8 performers were identified as having a standard deviation of at

least 1 below the mean performance score, where a lower performance score is better.

Figure 18 shows the mean as a solid line and one standard deviation below the mean as

a dashed line.

Performance score is based on the target finding score and hostile destruction

score, which were detailed in Chapter 3. Although the mission involves all three

categories of search, track, and destroy, only search and destroy truly measure human

performance, whereas the track metric is a better measure of automation
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Figure 18: Top Performer Selection

performance. Thus, the target finding and hostile destruction score were represented in

the total performance score. Since target finding score is on a scale from 0 to 4 and the

hostile destruction score is on a scale from 0 to 2, the hostile destruction score was

doubled to be on an equivalent scale as the target finding score. These two scores were

summed to obtain the performance score where lower is better. The top 8 performers'

scores ranged from a high score of 0.23 and a low score of 0.59.

These participants were analyzed to further understand how humans can

succeed in a long duration, low workload mission. Six of the 8 top performers were

non-gamers, whereas only 2/8 were gamers. It is interesting that the 2 gamers of the top

performers were both female. Six of the 8 top performers had military experience, and
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only 2/8 were not in the military. It is interesting that so many top performers were in

the military since only 43% of participants overall had military experience.

The top performers included 4 males and 4 females. Thirty-six percent of all

females who participated in this long duration, low workload experiment were top

performers. Only 21% of males who participated in this experiment were identified as

top performers. Future research should be conducted to validate whether women are

better at sustained alertness tasks.

The winner of the experiment was a 19-year-old female college student with no

military experience who does not play video games. It can be immediately deduced that

this description of the top supervisory controller of networked UxVs does not match

current stereotypes of the military's UxV pilots for search, track, and destroy missions.

The winner, the youngest participant, had a total utilization of 15.2%, although she was

only required to be 1.6% utilized. In the post-experiment survey, she reported feeling

busy, self-rating a 3 out of 5 busyness level. Of all the top performers, the winner felt

the busiest. It is interesting that the winner had a neutral perception toward UxVs and

also indicated a low comfort level with using computer programs. Her

conscientiousness helped her. She had a middle-of-the-road self-rated confidence score

of 3 out of 5, although most of the top performers felt very confident with a median self-

rated confidence of 4 out of 5. The winner's self-rated performance was "good," or 4 out

of 5, like most of the top performers. One of the top performers did indicate a self-rating
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of excellent performance (5 out of 5). Appendix K shows the demographic and post-

experiment survey data for the top performers. Figure 19 shows a bar graph of top

performers' self-rated confidence and self-rated performance with the performers listed

in order of performance.
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Figure 19: Confidence and Performance Self-Ratings

The characteristic of the winner that set her apart was her extremely high

amount of directed attention; she appeared focused 75% of the time, whereas the

average amount of directed attention for all the top performers was 41% (s.d. = 20%),

and the overall average of directed attention was only 34% (s.d. = 15%). Thus, the top

performers' average directed attention was higher than the overall average 34% (s.d.=

15%). However, 3 of the top performers had below average directed attention, at 31%,

21%, and 17%, yet still managed to be ranked as top performers. The attention state
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descriptive statistics are shown in Table 4, listed in decimal form. The attention state

values represent the percentage of time the participants spent in each state.

Table 4: Attention State Descriptive Statistics for Top Performers

N Minimum Maximum Mean Std. Deviation

Divided Socially 8 .00 .07 .02 .02
Divided Physically 8 .03 .25 .14 .08
Divided Cognitively 8 .00 .06 .01 .02
Distracted Socially 8 .01 .19 .05 .06
Distracted Physically 8 .03 .18 .07 .05
Distracted Cognitively 8 .04 .59 .29 .21
Total Directed 8 .17 .75 .42 .19
Total Divided 8 .09 .26 .17 .07
Total Distracted 8 .12 .70 .41 .20
Valid N (listwise) 8 1 _1_1

The top performers operated in different types of social environments. For

instance, the winner of the experiment was in a test room that was completely silent

because her group members were seemingly introverted like herself. She hardly spoke a

word and remained almost entirely focused on the mission simulation. One of her

group members fell asleep for nearly half an hour, and neither of her group members

were top performers.

A different example shows two of the top performers were in the same test

session together, a session in which an intense political debate was going on for a large

portion of the mission duration, approximately 120 minutes. One participant became a

top performer by ignoring the two group members engaged in the political debate and

quietly focusing on the mission (with 41% of her time in directed attention) or by



keeping herself alert by reading a book (with 36% of her time in divided attention). The

other top performer from that same test session engaged in the political debate the

whole time and spent nearly 40% of the time distracted from the mission by talking

with the third group member with his back to the computer interface. However, this

participant performed extremely well in spite of the high distraction level, and in fact,

he was the second place performer of the study. He was able to accomplish excellent

performance despite his high distraction in the political debate since he still spent 45%

of the time in directed attention, attending to his simulation at frequent intervals during

the debate. On average, he attended to his mission 42 times per hour during the

political debate, or approximately 84 times during the two-hour debate. The effects of

these switching times, going back and forth between the low workload mission and

intense debate, was an effective strategy for him in dealing with boredom.

The third group member, who was the instigator of the social debate, was not a

top performer because she did not attend to her mission much at all while talking.

Whenever the other debater would switch from their discussion to attend to his

interface, she would also look away as is the social pattern when someone a person is

conversing with directs his attention elsewhere. However, instead of attending to her

own mission, the third group member looked at a project on her personal laptop. In

essence, the third group member had two sources of distraction, whereas her debate

partner only switched between the debate and his mission.
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All in all, about half of the top performers were in social environments where the

participants conversed throughout the mission, and the other half operated in rooms

that had a quiet atmosphere of silent tension. It did not matter which type of

environment a participant ended up fostering or being subjected to; a participant could

be a top performer whether by talking or being quiet, depending on how they attended

to their mission. Either the talking or the silence could have been a coping mechanism.

Participants may have been using two different types of attentional mechanisms

to cope with their boredom environment: endogenous and exogenous attention.

Endogenous attention involves actively self-sustaining attention on a task one considers

important. This typically top-down controlled mechanism requires attentional [49]

effort. On the other hand, exogenous attention is an automatic attraction of attention

that comes from an outside stimulus or change in stimulus. Exogenous attention [49]

functions in a bottom-up manner and is not under a person's voluntary control. Both of

these attentional orientations [49] were manifested in this study and helped participants

perform the mission. People's different personality types and attentional dispositions

may have influenced the way in which they allocated their attention to complete the

experiment mission. Personality characteristics could be a facet of future work for

understanding how human supervisory controllers cope with low workload. Table 5

provides information concerning the top 8 performer's characteristics, where the



category "Social" indicates whether the test group was one that had social interaction as

opposed to silence.

Table 5: Top Performer Characteristics

Rank Score Directed Divided Distracted Utilization Female Military Social Gamer

1 0.23 75% 13% 12% 15%

2 0.28 45% 18% 37% 15%

3 0.31 51% 26% 23% 16%

4 0.41 31% 26% 43% 7%

5 0.46 56% 9% 35% 13%

6 0.51 21% 9% 70% 12%

7 0.51 17% 15% 69% 9%

8 0.59 41% 23% 36% 17%

The defining factor for top performers was either showing exemplary discipline

to focus on the mission or else employing strategic switching times between distractions

and the mission. Three top performers had below average directed attention and still

came out on top because of effective switching times, like the second place winner. It is

interesting that this second place winner scored so closely to the first place winner, only

differing by 0.05 out of an 8.0 performance scale with 0.0 being the best. The second

place winner was the opposite type of person as the first place winner in that he was

one of the oldest participants at age 28, male, with military experience, although not a

gamer. Instead of using extreme focus to complete the mission, he used switching times

between distractions and the mission. It is also interesting that the third place winner

scored even closer to the second place winner, only differing by 0.03 out of an 8.0



performance scale. The third place winner was similar to the first place winner in terms

of a highly focused strategy. The third place winner also reported feeling busy during

the low workload mission. The first and third place participants were both females and

the only two to report feeling "busy," while all other participants reported "not busy"

or "idle." These first and third place winners outperformed the rest of the participants

even with a higher perceived workload.

Overall, this analysis suggests that participants were able to be top performers

even though they were distracted on average 43% of the time. In other words,

distraction is not necessarily detrimental to mission performance. This research

suggests that participants with very high levels of focused attention showed exemplary

performance; in addition, participants with moderately high distraction also performed

well because of employing effective switching times.

4.8 Performance Comparison with a Moderate Workload Study

In order to determine how well participants in the long duration, low workload

experiment performed relative to other multi-UxV studies, a comparison was made

between this experiment and the previous replan interval experiment discussed in

Chapter 2. The previous experiment researched moderate levels of workload, ranging

from 30% to 70% utilization, whereas the utilizations in this experiment ranged from 5%

to 18%. The 31 data points for the moderate workload experiment were taken from the

45-second replan interval dataset, given this was the best performance condition, and



all 30 data points were used from the low workload study. The performance

comparison was made in terms of target finding score and hostile destruction score, the

two primary human performance metrics detailed in Chapter 3. These metrics take into

account speed and quantity of targets found and hostiles destroyed. In order to

compare the two studies, the scores in both of these categories were normalized to the

same scale with scores ranging between 0 and 1, where 1 is the best possible score. The

target finding score comparison shows that under low workload participants are able to

achieve the highest target finding scores as well as the lowest target finding scores.

Figure 20 shows these results. The data for target finding appear similar for both

studies.
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Figure 20: Low Workload versus Moderate Workload in Target Finding



The hostile destruction score comparison shows the same trend; low workload

brings both the highest and lowest performance scores, but with more variance in the

data. Figure 21 shows the comparison for hostile destruction.
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Figure 21: Low Workload versus Moderate Workload in Hostile Destruction

The data appears clustered at discrete levels of performance. This clustering is

primarily due to dividing the speed ratio by the integer number of hostiles destroyed.

Participants fell into three distinct groups of high, medium, and low performance. Table

6 shows the mean attention allocation of each group. There is a trend of increasing

performance with increasing directed attention and decreasing distracted attention.
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Table 6: Attention Allocation of Hostile Destruction Groups

Hostile Destruction Directed Divided Distracted
High Performance 38% 21% 41%
Medium Performance 34% 21% 45%
Low Performance 24% 20% 56%

The maximum number of hostiles that could have been destroyed in the low

workload experiment was 2, while a total of 5 hostiles could have been destroyed in the

moderate workload experiment. As shown in the low workload data, 5 participants

destroyed 0 hostiles during the 4-hour mission. However, in the moderate workload

data, the worst 4 performers destroyed one hostile. On the other hand, no participants

in the moderate workload experiment were able to destroy all 5 available hostiles, but

over one third of participants in the low workload study were able to achieve the

mission objective of destroying all hostiles.

As seen in both the search and destroy data sets, participants can achieve the

highest performance as well as the lowest performance under long duration, low

workload conditions of the multiple UxV supervisory control scenario. The moderate

workload environment appears more predictable, but compared to the low workload

environment, neither the best nor the worst possible performance is achieved.

This comparison between workload levels and performance brings this research

discussion full circle, back to the first research question of whether the Yerkes-Dodson

curve holds true for low workload. It can be seen that, while the worst possible
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performance can occur during low workload, that is not as likely. Therefore, according

to this research, the parabolic drop in performance at low workload suggested by the

Yerkes-Dodson curve was not confirmed as the model for how operators perform in a

low workload, supervisory control environment. Perhaps the automation made up for

times when the participants could not focus on the mission, and the distractedness of

the participants actually helped sustain alertness. The majority of the data showed that

mediocre and even exemplary performance can be achieved at low workload. However,

this is not to say the participants enjoyed the low workload environment. Their survey

comments and pained looks in the video data demonstrated the extreme boredom and

tedious nature associated with the low workload environment. Despite the hardships of

the long duration, low workload experiment, one third of participants still exceeded the

performance of the moderate workload experiment in destroying hostiles. This research

finding suggests that excellent performance can be achieved amid tedious conditions of

long duration, low workload missions.
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5 Conclusion

This research revealed that a low workload environment for supervisory control

of decentralized heterogeneous unmanned vehicles impacts operators' vigilance and

attention state. This experiment provided a unique environment for participants to

perform a complex supervisory control task while allowing them to react to the

boredom environment in their own way. This research was able to simultaneously

gather objective performance data in a realistic search, track, and destroy UxV mission

and capture the natural boredom behaviors induced by the grueling simulation.

Humans have to employ coping mechanisms to surmount the boredom of prolonged

low workload. Low workload has a way of bringing out the best performance in people,

while bringing out the worst in others.

This research determined that the Yerkes-Dodson curve, which predicts that

performance plummets at low workload, does not hold true for low workload in

supervisory control of networked UxVs. People subjected to low workload can perform

equally well if not better than operators working at moderate workload.

This researched also uncovered results that were not foreseen. Incrementing

lower levels of taskload does not necessarily decrease operator utilization, or percent

busy time. This experiment discovered that participants self-imposed interactions with

the human-computer system when subjected to a low taskload scenario. Under these

conditions, operators displayed directed attention toward their assigned work only a



third of the time. Moreover, the operators hardly multitasked, perhaps because dividing

their attention requires the extra effort of doing more than one thing at once. This low

workload environment caused vigilance to degrade over time, as shown by the

decreasing directed attention, especially during the second half of the mission.

This research brought to light key characteristics that can predict performance in

a prolonged supervisory control mission under low workload. Video gamers are

predicted to be poor performers in a low workload supervisory control environment

because they are conditioned to the need for constant stimuli. In a long duration, low

workload mission, increasing utilization predicts better performance in the search and

destroy tasks of supervisory control of networked UxVs. High directed attention can

predict good mission performance, even in the track task, which is mainly automated.

Lastly, this research provides evidence contrary to the common belief that

distraction is harmful to mission performance. It was shown that the majority of the top

performers had a high percentage of distraction time. Distraction can be a method for

keeping the mind and body engaged and alert. When used in conjunction with effective

switching times, distraction can help operators attain top performance.

5.1 Possible Solutions

The concept of automated adaptation can be considered a solution to the

detriments of low workload. It has been shown that implementing certain automation

adaptation with certain levels of operator workload enhances performance [67].



Adaptive aiding can be implemented in times of high operator workload to help the

operator cope with high workload. On the other hand, adaptive task allocation can also

be implemented at low levels of operator workload for the purpose of bringing the

operator up to a comfortable workload in order to improve performance [67]. Adaptive

automation may help mitigate the harmful effects of low workload discovered in this

study, but more research is needed to determine how to use effective adaptive

techniques.

5.2 Additional Future Work

A high workload experiment could be conducted to add to the low workload

and moderate workload studies previously discussed. In that way, a full range of

performance data spanning low, moderate, and high workload could be plotted to

make a complete assessment of the Yerkes-Dodson relationship of performance to

workload.

Future work can also be conducted to model human interaction with multiple

UxVs in low workload conditions. The goal would be to have a model that accounts for

boredom and spikes in workload in order to predict operator performance. Switching

time research needs to be conducted in order to implement the performance aid of

switching times into the human performance model. This future research will assist in

the design of smart decision support tools that can increase vigilance and performance

of operators in supervisory control domains with low workload. The research of this



thesis paves the way for future research on modeling boredom in supervisory control of

networked UxVs.
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Appendix A: Interface Details

This Appendix describes the OPS-USERS interface.

A.1 UxV Symbols

The UxV symbols displayed in the map view are depicted in the following table.

Table 7: UxV Symbols

Vehicle Range and Radar Primary Image
Type Fuel Footprint Mission

USV 1 Ship that Medium Large Search and
Unmanned runs along Track
Surface the river
Vehicle

UAV 2 Fixed-wing Small Rectangular Search and
Unmanned airplane due to Track
Aerial mounted
Vehicle camera

UAV 3 Helicopter Small Rectangular Search and
Unmanned due to Track
Aerial mounted
Vehicle camera

WUAV Helicopter Large Large Detect and

Weaponized Destroy
Unmanned Hostiles
Aerial
Vehicle

A.2 Refueling Base

The UxVs refuel themselves automatically at the base location symbol.
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Figure 22: Refueling Base

A.3 Search Task Symbols

Search tasks can be added to the mission. A "search" task designates a location

for a UxV to go to in search of a target.

* Color shows priority level.

e The letter to the right of the search task identifies it (this is its name).

0 The number to the left of the search task symbol indicates which UxV is assigned

to perform the search task (note than search task F is unassigned).

High Priority Medium Priority Low Priority

Figure 23: Search Task Symbols

For example, the search task on the left is called search task D. UAV 3 is assigned

to travel to the location on the map where this search task symbol resides. UAV 3 will

search the area at the search task location and during the transit to the location.
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A.4 Target Symbols

The UxVs must periodically track or revisit the targets that have been found. The

Weaponized UAV must destroy hostile targets. The shape and color of the target

symbols is a dual coding of their representation to benefit colorblind operators.

" Red diamonds are hostile targets.

" Yellow clovers are unknown targets.

* Blue rectangles are friendlies and are not tracked.

. The letter on the right identifies the target.

* The character on the left indicates which UxV is assigned to the target (for

example, the Weaponized UAV is assigned to destroy hostile target D shown in

Figure 24).

High Priority Medium Priority Low Priority

2B

Figure 24: Target Symbols

According to the center symbol, UAV 2 will track Unknown Target B. UAV 2 will

travel to the location where this target symbol is positioned on the map and begin

following the target. If UAV 2 has another task to perform or must go back to base to

refuel, the computer algorithm will calculate an estimated new position for the target

based on the target's last known position and velocity.
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Flags attached to the target symbols designate priority level. The color and

location of the flag is a dual coding of its representation to benefit colorblind operators.

" Red vertical flag on top of the target symbol specifies high priority.

" Orange horizontal flag beside the target symbol specifies medium priority.

* Yellow downward flag below the target symbol specifies low priority.

" Friendlies do not have a priority level flag because they do not need to be

tracked.

" Figure 25 shows some example priority level-designated targets.

2B
2 AF

Figure 25: Target Priority Flags
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A.5 Loiter Symbols

The Weaponized UAV does not search or track targets. The WUAV can only

detect targets and destroy hostile targets. The WUAV can be sent to loiter, or hover over

a particular position, while waiting to destroy hostile targets. The loiter symbol for the

WUAV resembles a stop sign. The color indicates priority level.

High Priority Medium Priority Low Priority

O O B
Figure 26: Loiter Symbols

A.6 Target Identification Sequence

Initially the target symbol may not be visible within the target identification

window. The participant must click and drag over the area within the window to pan

for the target symbol. Subsequently, the participant can click the appropriate target

designation button to identify the target symbol as hostile, unknown, or friendly. If an

unknown target is found, the target must first be marked as unknown. However, the

designation can be edited later as more information arises from the chat box. Once the

target has been identified, the system allows the participant to choose a priority level

for the emergent target. The command center provides information on the priority

levels of emergent targets based on the location of target discovery. This priority level

information is disseminated via the chat message box. Figure 27 depicts this sequence
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of target finding, panning to observe the target symbol, identifying the target, and

designating a priority level.

-44 Un~nbhl FNA lyi Untnown i

Figure 27: Target Identification Sequence

A.7 Destroyed Hostiles

Destroyed targets appear as black symbols on the Map View. These destroyed

target symbols remain on the map for the duration of the simulation to indicate the

destruction sites.

Figure 28: Destroyed Hostile Target Symbol
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Appendix B: Consent to Participate Form

CONSENT TO PARTICIPATE IN
NON-BIOMEDICAL RESEARCH

Long Duration, Low Workload Missions for Heterogenous Unmanned Vehicle Teams

You are asked to participate in a research study conducted by Professor Mary

Cummings PhD, from the Aeronautics and Astronautics Department at the

Massachusetts Institute of Technology (M.I.T.). You were selected as a possible

participant in this study because the expected population this research will influence is

expected to contain men and women between the ages of 18 and 50 with an interest in

using computers. You should read the information below, and ask questions about

anything you do not understand, before deciding whether or not to participate.

* PARTICIPATION AND WITHDRAWAL

Your participation in this study is completely voluntary and you are free to

choose whether to be in it or not. If you choose to be in this study, you may

subsequently withdraw from it at any time without penalty or consequences of any

kind. The investigator may withdraw you from this research if circumstances arise

which warrant doing so.

* PURPOSE OF THE STUDY

The purpose of this research is to see what the effect is of a long duration, low

workload scenario in the context of piloting multiple, highly autonomous, unmanned

vehicles in the setting of a populated control room.

* PROCEDURES

If you volunteer to participate in this study, we would ask you to do the

following things:

e Participate in training on the video game-like interface via the refresher tutorial,

as you are already familiar with the interface from the previous OPS-USERS

experiment. Complete a fifteen-minute practice session where control a team of

simulated unmanned vehicles. The vehicles you will control will be assigned

with the task of finding, identifying, and tracking targets in an area of interest,
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destroying hostile targets, and collaborating with the auto-planner to replan
schedules.

* Participate in a four-hour long testing session where you will experience a long
duration, low workload mission. You will work alongside two other participants
to simulate a populated control room, and you will each have your own
workstations with your own vehicles and territory to control

e You will be rewarded a score for the trial based on the number of targets you
successfully find, how long they are successfully tracked thereafter, the
percentage of the total area of interest is searched, and number of hostile targets
destroyed.

" All testing will take place at MIT in room 35-220.
e Total time: 4 hours and 45 minutes

* POTENTIAL RISKS AND DISCOMFORTS

There are no anticipated physical or psychological risks in this study.

* POTENTIAL BENEFITS

While you will not directly benefit from this study, the results from this study
will assist in the design of interfaces for human-UV systems.

* PAYMENT FOR PARTICIPATION

You will be paid $125 to participate in this study which will be paid upon
completion of your debrief. Should you elect to withdraw in the middle of the study,
you will be compensated for the hours you spent in the study. An additional $250 Best
Buy Gift Card will be awarded to the participant with the high score.

* CONFIDENTIALITY

Any information that is obtained in connection with this study and that can be
identified with you will remain confidential and will be disclosed only with your
permission or as required by law. You will be assigned a subject number which will be
used on all related documents to include databases, summaries of results, etc.

* IDENTIFICATION OF INVESTIGATORS

If you have any questions or concerns about the research, please feel free to
contact the Principal Investigator, Mary L. Cummings, at (617) 252-1512, e-mail,
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missyc@mit.edu and her address is 77 Massachusetts Avenue, Room 33-311,
Cambridge, MA, 02139. The investigators are Christin Hart and Vicki Crosson. They
may be contacted at (617) 253-0993 or via email at chart@mit.edu and viccro@mit.edu.

* EMERGENCY CARE AND COMPENSATION FOR INJURY

If you feel you have suffered an injury, which may include emotional trauma, as
a result of participating in this study, please contact the person in charge of the study as
soon as possible.

In the event you suffer such an injury, M.I.T. may provide itself, or arrange for
the provision of, emergency transport or medical treatment, including emergency
treatment and follow-up care, as needed, or reimbursement for such medical services.
M.I.T. does not provide any other form of compensation for injury. In any case, neither
the offer to provide medical assistance, nor the actual provision of medical services
shall be considered an admission of fault or acceptance of liability. Questions regarding
this policy may be directed to MIT's Insurance Office, (617) 253-2823. Your insurance
carrier may be billed for the cost of emergency transport or medical treatment, if such
services are determined not to be directly related to your participation in this study.

* RIGHTS OF RESEARCH SUBJECTS

You are not waiving any legal claims, rights or remedies because of your
participation in this research study. If you feel you have been treated unfairly, or you
have questions regarding your rights as a research subject, you may contact the
Chairman of the Committee on the Use of Humans as Experimental Subjects, M.I.T.,
Room E25-143B, 77 Massachusetts Ave, Cambridge, MA 02139, phone 1-617-253 6787.

SIGNATURE OF RESEARCH SUBJECT OR LEGAL
REPRESENTATIVE

I understand the procedures described above. My questions have been
answered to my satisfaction, and I agree to participate in this study. I have been given a
copy of this form.

Name of Subject
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Name of Legal Representative (if applicable)

Signature of Subject or Legal Representative Date

SIGNATURE OF INVESTIGATOR

In my judgment the subject is voluntarily and knowingly giving informed
consent and possesses the legal capacity to give informed consent to participate in this
research study.

Signature of Investigator Date
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Appendix C: Demographic Survey

111

1. Subject number:

2. Age:

3. Gender: M F

4. Occupation:

if student, (circle one): Undergrad Masters PhD

expected year of graduation:

5. Military experience (circle one): No Yes If yes, which branch:

Years of service:

6. Give an overall rating of your past two nights of sleep.

Poor Fair Good Great

7. Rate your health in terms of nutrition and exercise in the past week.

Poor Moderate Good

8. How often do you play computer games?

Rarely Monthly Weekly A few times a week Daily

Types of games played:

9. Rate your comfort level with using computer programs.

Not comfortable Somewhat comfortable Comfortable Very Comfortable

10. What is your perception toward unmanned vehicles?

Intense dislike Dislike Neutral Like Really Like



Appendix D: Demographic Results

In a demographic survey, participants were asked to rate their gaming

experience, computer comfort level, and perception toward unmanned vehicles. The

demographic survey can be found in Appendix C. Participants indicated their

frequency of playing video games on a five-point Likert scale from "rarely plays

games" to "daily gamer." Participants can essentially be grouped into two video

gaming categories: gamers and non-gamers, where gamers played at least weekly and

non-gamers only played games monthly or rarely. Thus, one third of participants were

gamers and two thirds were non-gamers. Table 8: Gaming Demographics shows the

category of gamer versus non-gamer associated with each level of gaming frequency in

addition to the number of participants who indicated that Likert scale level.

Table 8: Gaming Demographics

Gaming Frequency Rarely Monthly Weekly Multi-weekly Daily
Gaming Level Non-gamer Non-gamer Gamer Gamer Gamer
Number of Participants 11 9 7 3 0

The computer comfort level 4-point Likert scale rating ranges from not

comfortable to very comfortable. The vast majority of participants indicated a high

comfort level with using computer programs, as shown in Table 9.

Table 9: Computer Comfort Level Demographics

Computer Comfort Level Not Comfortable Somewhat Comfortable Very
Comfortable Comfortable

Number of Participants 1 4 12 13
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The five-point Likert scale for perception toward unmanned vehicles ranges

from "intense dislike" to "really like" with a neutral category in the middle. Overall

participants either liked unmanned vehicles or felt neutral; these demographics on UxV

perception show a shift since the previous experiment with a very similar pool of

subjects (some of whom changed their mind about UxVs). These results are shown in

Table 10.

Table 10: Perception Toward UxVs Demographics

Perception toward UxVs Intense Dislike Dislike Neutral Like Really Like
Moderate Workload Study 0 1 37 43 17
Low Workload Study 3 0 20 8 0
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Appendix E: Pre-experiment Skill Survey

1. How confident were you about the actions you took?

Not Confident Somewhat Confident Confident Very Confident Extremely Confident

2. How did you feel you performed?

Very Poor Poor Satisfactory Good Excellent

3. How busy did you feel during the practice mission?

Extremely Busy Busy Not Busy Idle

4. Do you understand how to create search tasks?

No Somewhat Yes

5. Do you understand how to use the target identification window?

No Somewhat Yes

6. Do you understand how to approve a weapon launch on hostile targets?

No Somewhat Yes

7. Do you understand how to use the Schedule Comparison Tool (SCT)?

No Somewhat Yes

8. Do you understand that you must accept a plan in order for the unmanned
vehicles to perform new search, track and destroy tasks?

No Somewhat Yes

9. Do you understand that, while in the Schedule Comparison Tool, you have the
option to cancel without accepting a plan?

No Somewhat Yes

114



Appendix F: Post-experiment Survey

1. How confident were you about the actions you took?

Not Confident Somewhat Confident Confident Very Confident Extremely Confident

Comments:

2. How did you feel you performed?

Very Poor Poor Satisfactory Good Excellent

3. How busy did you feel during the mission?

Idle Not Busy Busy Very Busy Extremely Busy

4. Did you feel distracted? Yes No

If so, please list some of the items or activities that distracted you

from the mission:

5. Other comments:
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Appendix G: Linear Regression Coefficient Tables

Test of Homogeneity of Variances

Levene
Statistic df1 df2 Sig.

Target Finding Score 1.891 2 24 .173
Hostile Destruction Score .861 2 24 .435
Target Tracking 4.063 2 25 .030
Percentage I III

Tests of Normality

Kolmogorov-Smirnov(a)

Statistic df Sig.

Target Finding Score .154 26 .116
Hostile Destruction Score .188 26 .019
Target Tracking
Percentage .319 26 .000

G.1 Target Finding Score

Coefficients

1 Unstandardized Standardized
Model Coefficients Coefficients t Sig.

B Std. Error Beta B Std. Error
1 (Constant)

Total Directed
Total Divided
Total UT
Gaming

2 (Constant)
Total Divided
Total UT
Gaming

3 (Constant)
Total UT
Gaming

4 (Constant)
Total UT

.530

.330

.395
-4.920

.184

.601

.415
-4.206

.153

.715
-4.275

.139

.906
-4.282

.252

.366

.394
1.644

.105

.239

.392
1.435

.098

.214
1.437

.098

.170
1.466

Dependent Variable: Target Finding Score

.183

.172
-.579

.319

.181
-.495
.264

-.504
.241

-.504

2.099
.902

1.004
-2.992
1.759
2.519
1.059

-2.931
1.553
3.341

-2.975
1.424
5.341

-2.920

.048

.377

.326
.007
.092
.019
.301
.008
.134
.003
.007
.167
.000
.007
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G.2 Target Tracking Percentage

Coefficients

Unstandardized Standardized
Model Coefficients Coefficients t Sig.

B Std. Error Beta B Std. Error

1 (Constant) .998 .031 31.858 .000
Total Directed .131 .063 .427 2.074 .049
Total UT -.637 .307 -.427 -2.078 .048

Dependent Varable: Target Tracking Percentage

G.3 Hostile Destruction Score

Coefficients

Unstandardized Standardized
Model Coefficients Coefficients t Sig.

B IStd. Error Beta B Std. Error
1 (Constant)

TotalFocused
TotalDivided
TotalUT
Gaming

2 (Constant)
TotalFocused
TotalUT
Gaming

3 (Constant)
TotalUT

Gaming
a Dependent Variable: H

1.227
-.296
.068

-8.405
.491

1.245
-.293

-8.424
.489

1.177
-9.055

.518
ostileDestructionScore

.635

.920

.990
4.136
.264

.567
.899

4.037
.256
.517

3.475
.236

-.067
.012

-.405
.348

-.067
-.406
.347

-.437
.367

1.933
-.322
.069

-2.032
1.863
2.196
-.326

-2.087
1.908
2.276

-2.606
2.190

.066

.750

.946

.054

.076

.038

.747

.048

.069

.032
.015
.038
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Appendix H: Hourly Pairwise Comparisons

Pairwise Comparisons

Measure: MEASURE1

Mean 95% Confidence Interval for
Dierence Differencea

(l) factor1 (J) factor1 (i-J) Std. Error Sig." Lower Bound Upper Bound
1 2 .129* .030 .000 .067 .192

3 .195* .032 .000 .130 .261
4 .175* .028 .000 .117 .233

2 1 -.129* .030 .000 -.192 -.067
3 .066* .023 .008 .019 .113
4 .046 .024 .066 -.003 .095

3 1 -.195* .032 .000 -.261 -.130
2 -.066* .023 .008 -.113 -.019
4 -.020 .020 .327 -.061 .021

4 1 -.175* .028 .000 -.233 -.117
2 -.046 .024 .066 -.095 .003
3 .020 .020 .327 -.021 .061

Based on estimated marginal means
*. The mean difference is significant at the .05 level.
a. Adjustment for multiple comparisons: Least Significant Difference

adjustments).
(equivalent to no

Factor comparisons represent the four hour mission duration: hours 1, 2, 3, and 4.
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Appendix I: Descriptive Statistics

N Minimum Maximum Mean Std. Deviation

Required Utilization 30 .01 .03 .02 .00
Self Imposed Utilization 30 .03 .15 .10 .03
Total Utilization 30 .05 .18 .11 .03
Performance Score 27 .23 5.3 2.2 1.6
Target Finding Score 27 .12 1.3 .43 .28
Hostile Destruction Score 27 .01 2.0 .88 .69
Target Tracking Percent 28 .80 1.0 .97 .05
Number of Search Tasks Created 30 57 340 190 68.
Replan Avg Reaction Time 27 1.7 27 8.6 7.1
Prompted Search Avg Reaction Time 30 10. 30. 21. 6.9
Chat Avg Reaction Time 28 3.0 48 19 11
Chat Accuracy 30 .33 1.0 .89 .20
Prompted Search Task Accuracy 30 .25 1.0 .73 .23
Extra Search Tasks 30 42 330 180 68
Extra Replans 30 46 370 190 74
Extra Target Edits 29 .00 12 4.0 3.6
Number of Targets Lost & Found 29 .00 4.0 .93 1.2
Age 30 19 32 23. 3.0
Sleep Self Rating 29 1 4 2.6 .78
Health Self Rating 30 1 3 2.6 .57
Gaming Level 30 1 2 1.3 .48
Gaming Experience 30 1 4 2.1 1.0
Computer Comfort Level 30 1 4 3.2 .81
UxV Perception 30 2 5 3.7 .79
Self Rated Confidence 30 3 5 37 .55
Self Rated Performance 30 2 5 3.7 .61
Self Rated Busyness 30 1.0 3.0 1.9 .56
Divided SociallyDirected with poor posture 30 .00 .10 .03 .03
Divided PhysicallyDivided Socially 30 .03 .55 .17 .13
Divided CognitivelyDivided Physically 29 .00 .13 .01 .03
Distracted SociallyDivided Cognitively 30 .00 .29 .09 .09
Distracted PhysicallyDistracted Socially 30 .00 .18 .06 .05
Distracted CognitivelyDistracted Physically 30 .04 .59 .29 .15
Total DirectedDistracted Cognitively 30 .10 .75 .34 .15
Total DividedTotal Directed 30 .09 .55 .22 .13
Total DistractedTotal Divided 30 .07 | .79 .44 .20
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Appendix J: Sources of Error

If this experiment were to be repeated, certain aspects of the study could be

controlled better. Perhaps a psychological profile could be conducted before the

experiment to cross-reference personalities with boredom coping mechanisms. Video

footage that simultaneously shows a clear close-up of each operator's face as well as the

distraction material they are engaging could result in more accurate video coding. One

video source served as the footage for all three participants in each test session, and a

clearer view of each participant and their surroundings could be attained with separate

cameras focusing on each participant.

A more stable simulation would improve the testing environment. Nine of 39

participants' data had to be discarded because of simulation crashes, and the system

failures interrupted the test session each time. In addition, more controlled movement

of the hidden targets could have been achieved to ensure all participant scenarios were

equivalent in terms of hidden hostile targets uncloaking and quantity. A more robust

automated planner would remove participant frustration with the automation and

make for a more controlled study. All of these sources of error could be accounted for in

order to improve the validity of independently verified results.
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Appendix K: Top Performer Demographics

Rank Age Sleep Self-rating Health Self-rating Computer Comfort Level UxV Perception

1 19 2 2 2 3

2 28 3 2 3 5

3 23 3 3 1 3

4 23 2 3 3 4

5 23 4 2 2 3

6 23 3 3 3 4

7 23 3 3 4 5

8 23 3 2 3 4

Rank Confidence Self-rating Performance Self-rating Busyness Self-rating

1 3 4 3

2 4 3 2

3 4 4 3

4 3 4 2

5 4 4 1

6 4 4 2

7 4 5 2

8 3 4 2
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