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Abstract. A common problem in mathematical statistics is to check whether two
samples differ from each other. From modelling point of view it is possible to make
a statistical test for the equality of two means or alternatively two distribution func-
tions. The second approach allows to represent the two-sample test graphically. This
can be done by adding simultaneous confidence bands to the probability-probability
(P −P ) or quantile-quantile (Q−Q) plots. In this paper we compare empirically the
accuracy of the classical two-sample t-test, empirical likelihood method and several
bootstrap methods. For a real data example both Q−Q and P −P plots with simul-
taneous confidence bands have been plotted using the smoothed empirical likelihood
and smoothed bootstrap methods.
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1 Introduction

Many statistical applications deal with two groups of observations of the same
kind that originate from two possibly different model distributions. One of the
most common question in statistical applications is whether these two distri-
butions have different expectations. More specifically, let X1, X2, . . . , Xn1

and
Y1, Y2, . . . , Yn2

be two independent samples with distribution functions F1 and
F2 and expectations µ1 and µ2, respectively. In this case we wish to test the
hypothesis

H0 : µ1 = µ2 against H1 : µ1 6= µ2. (1.1)

The alternative hypothesis H1 can be set also to be one-sided (µ1 > µ2 or
µ1 < µ2) depending on the practical applications. Among the statistical meth-
ods dealing with the testing problem (1.1) we have to mention the classical
two-sample t-test, empirical likelihood method and different standard boot-
strap methods. The question is which method to use for a particular practical

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/442400619?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.3846/1392-6292.2010.15.137-151
http://www.vgtu.lt/mma/
mailto:valeinis@lu.lv


138 J. Valeinis, E. Cers and J. Cielens

problem under consideration. t-test is known to be a robust test although it is
based on a very restrictive assumption that the modelling distributions F1 and
F2 should be normal. Empirical likelihood and bootstrap methods are non-
parametric statistical methods, which do not have the restrictive assumption
of normality.

A common method to compare different tests dealing with the same problem
is to make empirical power comparison by Monte-Carlo simulations with respect
to different alternatives. In this paper we will alternatively compare empirical
coverage accuracy of pointwise confidence intervals for the parameter µ2 − µ1

for all methods mentioned above. For the chosen significance level α if the
confidence interval does not contain 0 then the null hypothesis (1.1) is rejected
at this level. Therefore confidence intervals for µ2 − µ1 not only contain the
answer to the testing problem, but also give an additional information where
the true parameter lies with some prescribed confidence (1− α).

One may also approach the two–sample problem from an alternative point
of view. We can test the hypothesis

H0 : F1 = F2 against H1 : F1 6= F2, (1.2)

which of course is stronger than (1.1). There are many statistical tests dealing
with this problem, among them most well-known are Kolmogorov–Smirnov,
Cramer–von Mises and Anderson–Darling tests. However, to check (1.2) we
propose to construct simultaneous confidence intervals for the probability –
probability (P −P ) or quantile – quantile (Q−Q) plot of the two distribution
functions. P − P plot is defined as the plot of the function {F1(F

−1
2 (y)) : y ∈

(0, 1)} and Q − Q plot is defined as {F−1
1 (F2(x)) : x ∈ R}. Obviously when

both distributions F1 and F2 are equal, the P − P and Q −Q plot should lie
on the 45-degree line. Adding simultaneous confidence intervals gives a formal
two-sample test. The procedure is:

1. Draw an empirical P − P or Q−Q plot.

2. Add simultaneous bands at some chosen confidence level.

3. If the diagonal y = x fits into the bands at every point do not reject the
null hypothesis.

Almost every statistical package provides a possibility to construct the em-
pirical Q − Q and P − P plots with pointwise confidence intervals. One of
our goals was to develop and implement a code in statistical package R for
constructing the simultaneous bands (the code is available on the author’s
homepage).

We construct simultaneous confidence bands using the smoothed empirical
likelihood and bootstrapped empirical P − P and Q − Q processes. Empiri-
cal likelihood, introduced by Owen, [18, 19] has nice properties, especially for
confidence intervals (see, for example, [11, 20]). It does not involve any pre-
scribed assumptions about the shape of intervals, which is fully determined by
the data. Moreover, it is Bartlett correctable in most cases. Thus a simple
correction for scale improves the coverage accuracy from order n−1 to n−2,
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where n denotes the sample size. For the mean difference corresponding to the
testing problem (1.1) the Bartlett correction has been investigated in [16] and
[17]. For two-sample problems in a general framework the empirical likelihood
method has been introduced by [22] and [24].

The order of quantile and distribution function in definition of P − P and
Q − Q plots make them quite different (see [9, 13]). If Y is a linear function
of X then its Q−Q plot will still be linear but with possible changed location
and slope. This property is not shared by P −P plots. On the other hand the
range of a P − P plot is always the same, i.e. a rectangle with the diagonal
connecting (0, 0) and (1, 1) which makes them comparable. When there is a
positive or negative shift between two samples, the P−P plot is above or below
the diagonal. This indicates a positive or negative treatment effect. According
to Holmgren [13] P − P plots, among other advantages, are to be preferred
when outliers are present.

The paper is organized as follows. In Sections 2 and 3 the empirical likeli-
hood method has been introduced in the one and two-sample cases, respectively.
Furthermore its smoothed version is defined in Section 4. Empirical P −P and
Q−Q plot processes are discussed in Section 5. Section 6 deals with the con-
struction of simultaneous confidence bands for P −P and Q−Q plot functions.
Finally, empirical coverage accuracy using Monte Carlo simulations is analyzed
in Section 7, where also a real data example is considered.

2 One–Sample Empirical Likelihood Method

First we will give a brief overview on the empirical likelihood function intro-
duced by Owen [18, 19] in the one-sample case. Let X1, X2, . . . , Xn1

be a
sample with some unknown distribution function F1. The empirical (or non-
parametric) likelihood function is

L(F ) =

n
∏

i=1

dF (Xi) =

n
∏

i=1

pi, (2.1)

where pi = dF (Xi) = P (X = Xi). The difference from the usual (parametric)
likelihood function is obvious. We do not assume any parametric form of the
density or distribution. Instead we model the data by discrete distributions
having positive atom probabilities on the data points. This is in fact also a
kind of parametric likelihood method – we model our data with the family of
multinomial distributions.

Obviously (2.1) is maximized by the empirical distribution function

F1n1
(x) = n−1

1

n1
∑

i=1

I(Xi ≤ x).

This motivates the usual statistical plug-in estimator technique. Often esti-
mators of parameters can be seen as estimators of some statistical functionals
T (F ). For example, the mean µ := E(X) =

∫

xdF1(x). The plug-in estimator
is T (F1n) which in case of the mean leads to the usual sample mean estima-
tor X̄ = n−1

1

∑n1

i=1 Xi. This is also a nonparametric likelihood estimator for
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the mean. Consider for simplicity the hypothesis testing for the mean in the
one-sample case, that is,

H0 : µ = µ0 against H1 : µ 6= µ0. (2.2)

For the hypothesis testing (2.2) the most powerful is the likelihood ratio test,
which is based on the likelihood function (see, for example, [5]). Analogously
let us define the empirical likelihood ratio R(F ) = L(F )/L(Fn) =

∏n
i=1 npi

and the profile empirical likelihood ratio function for the mean

RE(µ) = sup
{

n
∏

i=1

npi

∣

∣

∣
pi ≥ 0,

n
∑

i=1

pi = 1,
n
∑

i=1

piXi = µ
}

.

For the general case let us define the estimating function w1(X,∆) such that
EF1

(w1(X,∆)) = 0, where the parameter of interest ∆ ∈ R
d. In this case (2.1)

is maximized under the constraints

pi ≥ 0,

n1
∑

i=1

pi = 1,

n1
∑

i=1

piw1(Xi, ∆) = 0.

For the special case of hypothesis testing (2.2) we have w1(X,∆) = Xi − µ.
Therefore the maximization problem is determined by constraints on estimating
function w1(X,∆). If 0 is inside the convex hull of the points w1(X1, ∆),
w1(X2, ∆), . . . , w1(Xn, ∆) then the unique maximum exists (see, [21]).

Using the standard Lagrange multiplier method one can obtain

pi =
1

n1(1 + λ1w1(Xi, ∆))
,

where λ1 = λ1(µ) can be found as a solution of

n
∑

i=1

Xi − µ

n1(1 + λ1w1(Xi, ∆))
= 0.

Finally, Qin and Lawless [21] have shown under some smoothness assumptions
on the estimating function w1(Xi, ∆) that a nonparametric analogue of Wilk’s
theorem holds. Thus minus two multiplied by the logarithm of the likelihood
ratio statistic converges in distribution to the chi-squared distributed random
variable. More precise,

−2 logR(∆) = 2

n
∑

i=1

log(1 + λ1(∆)w1(Xi, ∆)) →d χ2
d, (2.3)

where the degree of freedom d denotes the dimension of the parameter ∆.
Similarly as in the case of likelihood ratio statistic in the parametric case we
can derive the confidence intervals for the true parameter ∆0. The confidence
interval will contain such ∆ values for which {R(∆) > c}, where c can be
determined from (2.3).

To conclude, the empirical likelihood method has no assumptions on un-
derlying distribution of population. The obtained confidence intervals are not
symmetric as usually obtained by standard methods but fully determined by
the data. For a recent review of the empirical likelihood methods see [20].
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3 Two–Sample Empirical Likelihood Method

Assume we wish to make statistical inference about the function ∆ := ∆(t) on
some interval T . Let θ0 be some univariate parameter associated with one of
the distributions F1 or F2 regarded as a nuisance parameter. When dealing
with the empirical likelihood method, it is common to assume that information
about true parameters θ0, ∆0 is available in the form

EF1
w1(X, θ0, ∆0, t) = 0, (3.1)

EF2
w2(Y, θ0, ∆0, t) = 0. (3.2)

This setup was introduced in [24] allowing to deal also with functions such as
P − P and Q − Q plots. If ∆0 = θ1 − θ0, where θ0 and θ1 are univariate
parameters associated with F1 and F2 respectively, we have exactly the setup
of [22] allowing to make inference for two-sample parameter differences. For
example, for the testing problem of two expectation equality (1.1) choose

θ0 =

∫

x dF1(x), ∆0 =

∫

y dF2(y)−
∫

x dF1(x).

We obtain (3.1) and (3.2) by taking

w1(X, θ0, ∆0, t) = X − θ0, w2(Y, θ0, ∆0, t) = Y − θ0 −∆0.

In the following we define the profile empirical likelihood ratio function

R(∆, θ) = sup
p,q

n1
∏

i=1

(n1pi)

n2
∏

j=1

(n2qj), (3.3)

where p = (p1, . . . , pn1
) and q = (q1, . . . , qn2

) are subject to restrictions

pi ≥ 0,

n1
∑

i=1

pi = 1,

n1
∑

i=1

piw1(Xi, θ,∆, t) = 0,

qj ≥ 0,

n2
∑

j=1

qj = 1,

n2
∑

j=1

qjw2(Yj , θ,∆, t) = 0.

A unique solution of (3.3) exists, provided that 0 is inside the convex hull of
the points w1(Xi, θ,∆, t)’s and the convex hull of the w2(Yj , θ,∆, t)’s. The
maximum may be found using the standard Lagrange multipliers method (see,

e.g. [20, 24]). Finally, define an estimator θ̂ = θ̂(∆) of the nuisance parameter
θ by minimizing (3.3) over θ for a fixed value of ∆:

θ̂(∆) = argmin
θ

{−2 logR(∆, θ)}. (3.4)

Assumptions (Qin and Lawless [22]). Assume that the partial derivatives

α1(Xi, θ,∆, t) =
∂w1(Xi, θ,∆, t)

∂θ
and α2(Yi, θ,∆, t) =

∂w2(Yi, θ,∆, t)

∂θ
exist.

Furthermore assume that:

Math. Model. Anal., 15(1):137–151, 2010.
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(i) θ0 ∈ Θ and Θ is an open interval;

(ii) EF1
w2

1(X, θ,∆, t) > 0, EF2
w2

2(Y, θ,∆, t) > 0, α1(X, θ,∆, t), α2(Y, θ,∆, t)
are continuous in a neighborhood of θ0, α1(X, θ,∆, t) and w3

1(X, θ,∆, t)
are bounded by some integrable function G1(X) in this neighborhood,
α2(Y, θ,∆, t) and w3

2(Y, θ,∆, t) are bounded by some integrable function
G2(Y ) in this neighborhood, and EF1

α1(X, θ,∆, t) and EF2
α2(Y, θ,∆, t)

are nonzero;

(iii) n2/n1 → k (as n2, n1 → ∞) and 0 < k < ∞.

Theorem 1. If assumptions (i)-(iii) are satisfied, then

−2 logR(∆0, θ̂) →d χ2
1, (3.5)

as n1, n2 → ∞, where →d denotes the convergence in distribution.

Proof. The same as the proof of Theorem 1 in [22]. ⊓⊔

The pointwise empirical likelihood confidence interval for fixed t ∈ T for
the true parameter ∆0 has the following form {∆ : R(∆, θ̂) > c}. The constant
c can be calibrated using Theorem 1.

4 Smoothed Empirical Likelihood for P − P and Q − Q

Plots

It has been shown in Valeinis [24] (see Section 5.3) that the empirical likelihood
method introduced in Section 3 is suitable also for P − P and Q − Q plots.
Let θ0 = F−1

2 (t) and ∆0 = F1(F
−1
2 (t)). In this case forms (3.1) and (3.2) are

satisfied by choosing

w1(X, θ0, ∆0, t) = I{X≤θ0} −∆0, w2(Y, θ0, ∆0, t) = I{Y ≤θ0} − t.

Furthermore, for Q −Q plots choose θ0 = F2(t), ∆0 = F−1
1 (F2(t)) and

w1(X, θ0, ∆0, t) = I{X≤∆0} − θ0, w2(Y, θ0, ∆0, t) = I{Y ≤t} − θ0.

Note, that indicator functions w1 and w2 are non-smooth. In order to apply
Theorem 1 we propose to use the smoothed empirical likelihood method.

The smoothed empirical likelihood method for quantile function in one sam-
ple case has been first introduced in [3]. It appears that by appropriate smooth-
ing of estimating functions w1, w2 the coverage accuracy may be improved from
order n−1/2 to n−1. Some recent papers have dealt with the smoothed method
in the two-sample case. For example, [4] deals with receiver operating char-
acteristic (ROC) curves, in [1] two-sample goodness of fit testing problem is
considered and finally [2] is devoted to copulas using the smoothed empirical
likelihood method.

For j = 1, 2 define Hj(t) =
∫

u≤t Kj(u) du, where Kj is a kernel function

(typically a density function). Further let Hbj (t) = Hj(t/bj), where b1 = b1(n1)
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and b2 = b2(n2) are bandwidth sequences, converging to zero as sample sizes
n1, n2 grow to infinity. Let p = (p1, . . . , pn1

) and q = (q1, . . . , qn2
) be two

vectors consisting of nonnegative numbers adding to one. Define further the
estimators

F̂b1,p(x) =

n1
∑

i=1

piHb1(x−Xi) and F̂b2,q(y) =

n2
∑

j=1

qjHb2(y − Yj). (4.1)

For this setting we define the profile two-sample smoothed empirical likelihood
ratio function for ∆ as

R(sm)(∆, θ) = sup
p,q

n1
∏

i=1

(n1pi)

n2
∏

j=1

(n2qj), (4.2)

with the smoothed estimating equation for P − P plots

w1(Xi, θ0, ∆0, t) = Hb1(θ0 −Xi)−∆0, w2(Yj , θ0, ∆0, t) = Hb2(θ0 − Yj)− t

and for Q−Q plots

w1(Xi, θ0, ∆0, t) = Hb1(∆0 −Xi)− θ0, w2(Yj , θ0, ∆0, t) = Hb2(t− Yj)− θ0.

Proposition 1. Under suitable conditions on bandwidth sequences b1 and b2
Theorem 1 holds for the function R(sm)(∆0, θ̂).

Remark 1. Conditions on bandwidth rates in Proposition 1 will be published
elsewhere. For some special cases the rates have been derived in several papers.
For example, for ROC curves and P − P plots see [4], for general structural
relationship models see [24].

5 Empirical P − P and Q−Q Processes

Let us denote the empirical distribution functions of the X and Y samples by

F1n1
(x) = n−1

1

n1
∑

i=1

I(Xi ≤ x), F2n2
(x) = n−1

2

n2
∑

j=1

I(Yj ≤ y),

respectively. The empirical quantile function is defined as F−1
1n1

(t) = inf{x :
Fn1

(x) ≥ t}. The classical Kolmogorov-Smirnov two-sample statistic for the
hypothesis (1.2) is defined as follows

KS =

√

n1n2

n1 + n2
sup

−∞<x<+∞
|F1n1

(x)− F2n2
(x)|. (5.1)

Under the null hypothesis

KS →d sup
0<t<1

|B(t)|,

Math. Model. Anal., 15(1):137–151, 2010.
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where B(t) is a Brownian bridge process. Hsieh and Turnbull [15] (see Theorem
2.2) showed that there exists a probability space on which one can define two

independent sequences of Brownian bridges B
(n1)
1 and B

(n1)
2 such that

sup
0<t<1

Pn1,n2
(t) := sup

0<t<1

√
n1|F1n1

(F−1
2n2

(t))− F1(F
−1
2 (t))| →d

sup
0<t<1

|B(n1)
1 (F1(F

−1
2 (t))) +

√
λ
f1(F

−1
2 (t))

f2(F
−1
2 (t))

B
(n2)
2 (t)|, (5.2)

where n1/n2 → λ as n1, n2 → ∞ and Pn1,n2
denotes the empirical P − P plot

process. For the empirical Q−Q plot process similar result holds,

sup
−∞<x<∞

Qn1,n2
(x) := sup

−∞<x<∞

√
n1|f1(F−1

1 (F2(x)))(F
−1
1n1

(F2n2
(x))

− F−1
1 (F2(x)))| →d sup

0<t<1
|B(n1)

1 (F2(x)) +
√
λB

(n2)
2 (F2(x))|. (5.3)

It is impossible to construct simultaneous bands from (5.2) and (5.3) because
the limiting distribution contains the unknown functions f1, f2 and F1, F2 which
have to be estimated. Thus the asymptotic behavior will heavily depend on
those estimators. As usual in such situations resampling methods have to be
used.

Bootstrap resampling method. Consider, for example, the supremum
statistic of P−P empirical plot process defined in (5.2) which we simply denote
by T . In order to make statistical inference (hypothesis testing or confidence
bands) we have to know the sampling distribution of the statistic. In particular
our interest is to find an appropriate 1−α quantile (for fixed α, typically equal
to 0.05 or 0.01) from the distribution which is a function of the sum of two
Brownian bridges and unknown quantities f1, f2, F1, F2. If we knew the true
underlying distributions F1 and F2 it would be sufficient to do Monte-Carlo
simulations. In this case we would have to replicate say N samples from the
population. Then we could form estimates for P (T ≤ p) by counting how many
of the Ti’s are ≤ p and dividing by N (as we know that the relative frequency
approximates the probability).

In case of unknown distributions in order to approximate the asymptotic
limiting distribution the usual nonparametric or empirical bootstrap method
proposes the following procedure. Let us draw B replicated samples with re-
placement from the initial data set with the probability n−1 of drawing each
separate observation. More formally this means that the bootstrapped resam-
ples X∗

1 , X
∗
2 , . . . , X

∗
n1

and Y ∗
1 , Y

∗
2 , . . . , Y

∗
n2

have been drawn from the empiri-
cal distribution functions F1n1

and F2n2
, respectively. Finally, we obtain the

bootstrapped test statistic values T ∗
1 , T

∗
2 , . . . , T

∗
B. We estimate the probability

P (T ≤ p) again by simple frequency-based estimate as mentioned before. That
is, by counting T ∗

i ’s, which are ≤ p and dividing by B.
The bootstrap resampling method introduced by Efron [8] in 1979 has ob-

tained nowadays a large applicability. According to Shao and Tu [23]: "because
of the availability of inexpensive and fast computing such computer-intensive
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methods have caught on very rapidly in recent years and are particularly appre-
ciated by applied statisticians". Moreover, the bootstrap method gives a better
approximation as the central limit theorem, which can be shown theoretically
using Edgeworth expansion methods, see [6, 7, 23].

In [14] as an alternative to nonparametric bootstrap method, the smoothed
bootstrap method has been used to construct simultaneous bands for ROC
curve defined as 1 − F1(F

−1
2 (1 − t)) for 0 ≤ t ≤ 1. Their results hold also

for P − P plots, which can be seen as a simple transformation from the ROC
curve function. Define the standard smoothed nonparametric estimators for
unknown distribution functions F1 and F2 as follows

F̂1n1
(x) =

1

n1

n1
∑

i=1

Hb1(x−Xi) and F̂2n2
(y) =

1

n2

n2
∑

j=1

Hb2(y − Yj)

with Hbj (t) the same as in (4.1).
The idea of the smoothed bootstrap is to draw independent random samples

X∗
1 , X

∗
2 , . . . , X

∗
n1

and Y ∗
1 , Y

∗
2 , . . . , Y

∗
n2

from F̂1n1
and F̂2n2

, respectively. The
empirical distributions of X∗ and Y ∗ are denoted by

F ∗
1n1

(x) = n−1
1

n1
∑

i=1

I(X∗
i ≤ x), F ∗

2n2
(y) = n−1

2

n2
∑

j=1

I(Y ∗
j ≤ y).

From Theorem 2.1 in [14] it follows that for a ROC P − P plot process Pn1,n2

with probability 1 holds

sup
x

∣

∣

∣

∣

P

(

sup
0<t<1

√
n1|F1n1

(F−1
2n2

(t))− F1(F
−1
2 (t))| ≤ x

)

− P ∗

(

sup
0<t<1

√
n1|F ∗

1n1
(F ∗−1

2n2
(t))− F1n1

(F−1
2n2

(t))| ≤ x

)
∣

∣

∣

∣

→ 0 (5.4)

as n1, n2 → ∞, where conditional probabilities for given initial data are denoted
by P ∗. Similar conclusion can be done for Q−Q plot processes.

6 Simultaneous Confidence Bands

Pointwise confidence intervals for P −P or Q−Q plots allow to make inference
only for these functions at a fixed point. That is the same as to construct
confidence intervals for some single parameter of interest, such as mean of the
sample. It is clearly preferable to know with, say, 95% confidence where the
whole true curve lies. However, using statistical packages such as R it is possible
only to add pointwise intervals for Q−Q plots, for example. We will consider
two methods for the construction of simultaneous bands.

To construct a simultaneous confidence region for ∆ defined in Section 3
over some interval (a, b), we will use the bootstrap confidence region without
losing the advantages of the automated shape-determination by the empirical
likelihood method. It means that we use empirical likelihood to set the shape
of the confidence bands and use the bootstrap to set the level. This method is
introduced in [10] and has been also used in [4] and [24].

Math. Model. Anal., 15(1):137–151, 2010.
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First method. Define the maximum smoothed empirical likelihood estima-
tor ∆̂,

∆̂ = argmax
∆

R(sm)(∆, θ̂),

where θ̂ = θ̂(∆) is defined in (3.4). For the construction of simulatenous bands
over some interval (a, b), first, choose an appropriate bootstrap critical value
c∗ such that

P (−2 logR∗(sm)(∆̂, θ̂) ≤ c∗ for a ≤ t ≤ b} = 1− α,

where R∗(sm) is the likelihood ratio function defined in (4.2) and calculated
for bootstrapped resamples X∗

1 , X
∗
2 , . . . , X

∗
n1

and Y ∗
1 , Y

∗
2 , . . . , Y

∗
n2

. Second, use
c∗ for the pointwise confidence bands from Theorem 1. Hence the bootstrap
confidence band C consists of curves R(sm)(·, θ̂) such that the corresponding
log likelihood ratio statistic stays below c∗ over the interval (a, b), that is,

C = {−2 logR(sm)(·, θ̂) : −2 logR(sm)(∆, θ̂) ≤ c∗ for a ≤ t ≤ b}.

Note that the estimator ∆̂ is based on the initial samples X1, . . . , Xn1
and

Y1, . . . , Yn2
.

Second method. For P − P plots equation (5.4) provides the bootstrap
approximation of the critical value c∗2 such that

P (F1n1
(F−1

2n2
(t))− c∗2n

−1/2
1 ≤ F1(F

−1
2 (t)) (6.1)

≤ F1n1
(F−1

2n2
(t)) + c∗2n

−1/2
1 , a ≤ t ≤ b) → 1− α,

as n1, n2 → ∞ on some interval 0 < a < b < 1 with 0 < α < 1. For Q−Q plot
processes a similar result is true.

7 Simulation Study and Applications

We have implemented the generalized two-sample empirical likelihood method
proposed by Valeinis [24] in statistical package R. Program codes will be avail-
able on the author’s website (http : //home.lanet.lv/ valeinis/index.html).

Table 1 shows comparative 95% coverage accuracies using the empirical
likelihood method, four standard kinds of bootstrap methods, and the two-
sample t-test. More specifically, we will use the percentile bootstrap (B.P.),
normal bootstrap (B.N.), basic bootstrap (B.B) and bias-corrected bootstrap
methods (see, for example, [6, 23]).

First, we compare two normal distributions N(0, 1) and N(1, 1) for which, as
expected, the t-test is better among other methods. Note, that both empirical
likelihood and the various bootstrap procedures produce acceptable coverage
accuracies, with the empirical likelihood having a slight edge. The coverage
accuracies using all methods quickly converges towards 0.95 in this case.

Further we examine a family of log-normal distributions logN(µ, σ2) with
increasing values of parameter σ2 and fixed µ = 0. Due to the asymmetry, log-
normal distributions are known to be problematic for the t-test. We find, that
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Table 1. 95% coverage accuracies for two-sample mean differences µ2 − µ1, comparing.
Empirical likelihood (E.L.), two–sample t-test, four bootstrap methods (B.N. – normal
bootstrap; B.B. – basic bootstrap; B.P. – percentile bootstrap; B.A. – bias–corrected
bootstrap). The coverage accuracies are based on 10,000 pseudorandom samples from
F1 and F2 for each combination of sample sizes n1 and n2.

F1, F2 n1 n2 E.L. B.N. B.B. B.P. B.A. t-test

F1 = N(0, 1)
F2 = N(1, 1)

15 15 0.933 0.919 0.922 0.920 0.917 0.951
20 20 0.940 0.930 0.931 0.930 0.928 0.952
30 30 0.944 0.934 0.936 0.935 0.934 0.950
50 50 0.947 0.940 0.941 0.941 0.940 0.951
100 100 0.952 0.949 0.951 0.952 0.949 0.954
20 30 0.939 0.937 0.937 0.937 0.937 0.948
30 20 0.940 0.935 0.938 0.934 0.934 0.951
20 50 0.937 0.936 0.937 0.935 0.934 0.950
50 20 0.940 0.934 0.937 0.937 0.934 0.951

F1 =
LogN(0, 0.5)

F2 =
LogN(0, 0.5)

15 15 0.922 0.935 0.941 0.927 0.911 0.958
20 20 0.923 0.934 0.941 0.927 0.908 0.954
30 30 0.937 0.940 0.949 0.940 0.925 0.955
50 50 0.940 0.941 0.947 0.939 0.928 0.950
100 100 0.945 0.945 0.950 0.943 0.937 0.949
20 30 0.935 0.941 0.949 0.938 0.925 0.956
30 20 0.927 0.935 0.942 0.932 0.915 0.950
20 50 0.930 0.934 0.936 0.931 0.919 0.945
50 20 0.932 0.935 0.941 0.934 0.920 0.949

F1 = LogN(0, 1)
F2 = LogN(0, 1)

15 15 0.878 0.941 0.958 0.908 0.855 0.969
20 20 0.892 0.947 0.961 0.921 0.868 0.966
30 30 0.911 0.950 0.962 0.929 0.885 0.963
50 50 0.919 0.948 0.961 0.933 0.897 0.956
100 100 0.931 0.950 0.961 0.938 0.910 0.955
20 30 0.902 0.947 0.963 0.924 0.877 0.963
30 20 0.903 0.944 0.957 0.924 0.874 0.959
20 50 0.890 0.923 0.938 0.907 0.864 0.937
50 20 0.895 0.924 0.938 0.909 0.873 0.939

F1 = LogN(0, 2)
F2 = LogN(0, 2)

15 15 0.767 0.967 0.983 0.899 0.780 0.986
20 20 0.784 0.967 0.983 0.902 0.786 0.983
30 30 0.811 0.969 0.984 0.906 0.796 0.982
50 50 0.833 0.970 0.984 0.916 0.816 0.977
100 100 0.858 0.967 0.982 0.921 0.828 0.973
20 30 0.788 0.963 0.980 0.896 0.780 0.978
30 20 0.790 0.963 0.980 0.897 0.784 0.976
20 50 0.796 0.945 0.965 0.877 0.777 0.956
50 20 0.792 0.943 0.965 0.873 0.770 0.954

the coverage accuracy for the empirical likelihood method converges towards
0.95 from below, quite in line with the performance of the percentile bootstrap
and the bias-corrected bootstrap. The t-test, however, performs very conserva-
tively in the two-sample case and seems to converge very slowly. Interestingly,
the same is true for the basic and normal bootstrap methods, which, in fact,
show no tendency to converge downwards to 0.95. While for practical pur-
poses a conservative test might be more appropriate in some cases, it must
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be noted, that conservativeness comes at a cost of wider confidence intervals.
For all methods when σ2 increases much more observations are needed to have
reasonable results.

Finally, we consider the wet drilling versus dry drilling data from [12]. In
this data example wet drilling times (where cuttings are flushed with water)
are compared to dry drilling times (the cuttings are flushed with compressed
air). The times are given in 1/100 of a minute, for a 5 feet segment. Six
series of drilling times for 5 feet segments were given for six drilled holes, three
of each wet drilled and three dry drilled. For our example we computed the
average segment times for each drilling depth with sample sizes n1 = n2 = 80.
The question is whether dry drilling (let µd denote the expected dry drilling
time) is faster then wet drilling (where µw denotes the expected wet drilling
time). Simple box plots suggesting slightly faster dry drilling times are shown
in Figure 1.
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Figure 1. Box-plots of the drilling data samples.

The estimated mean dry and wet drilling times are 805.53 and 943.81, re-
spectively, giving an estimate for the mean difference µw − µd equal to 138.3.
This strongly indicates that both samples differ from each other. To find out
whether this difference is statistically significant let us further test hypothesis
(1.1) for the equality of sample means. This can be done either using the two–
sample t-test, or by the empirical log-likelihood ratio statistic (3.5). Both tests
reject the null hypothesis with a p-value of < 0.0001.

Next, let us construct the 95% confidence interval for the parameter µw −
µd using the t-test, the empirical log-likelihood ratio statistic (3.5) and some
standard bootstrap methods. The results are summarized in Table 2. We
conclude that all methods produce similar intervals in our case. Confidence
intervals not only allow to assess the range of likely values of the difference of
means with a given confidence but also provide hypothesis testing for a given
significance level.

Next approach is to test hypothesis (1.2) about the equality of the sample
distributions F1 and F2, which is stronger than hypotheses (1.1) already dis-
cussed before. If the two mean values µ1 and µ2 differ also the null hypothesis
of F1 and F2 equality should be rejected, whereas there could be significant
differences in the structure of the data, still the mean values being equal. The
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Kolmogorov-Smirnov test (5.1) rejects H0 with a p-value < 0.0001.

Table 2. 95% confidence interval for µw − µd calculated using the empirical likelihood
method (E.L.); the two–sample t-test and four kinds of bootstrap (B.N. – normal
bootstrap; B.B. – basic bootstrap; B.P. – percentile bootstrap;
B.A. – bias–corrected bootstrap).

E.L. t-test B.N. B.B. B.P. B.A.

(84.1, 180.6) (94.6, 181.9) (96.3, 181.5) (95.5, 183.5) (95.1, 181) (93, 180.9)

Finally, we offer a graphical assessment of the distribution relationships
using P − P and Q −Q plots, shown in Figure 2. Coupled with simultaneous
confidence bands, theses graphs also allow for a graphical test of hypothesis
(1.2). The graphs show both the empirical versions of the plots, and their
smoothed counterparts, calculated using the empirical likelihood method. 95%
simultaneous confidence bands were constructed using both methods described
in Section 6. The diagonal y = x does not fit into the confidence bands. Thus
both plots allow to reject H0.
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Figure 2. Q − Q (a) and P − P (b) plots of dry drilling versus wet drilling. The plots
show the empirical versions together with the smoothed empirical likelihood estimates. Two
types of simultaneous 95% confidence bands were constructed using empirical likelihood and
empirical processes combined with the bootstrap methods described in Section 6.

A major advantage of the graphical testing method is that the graphs show
more details of the distribution differences. For example, from the P − P plot
graph we can see that the dry drilling time is stochastically less then that of
wet drilling, because the graph lies above the diagonal.

To construct simultaneous confidence bands using both empirical processes
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and empirical likelihood method one needs to find a suitable bandwidth pa-
rameter. Since both distributions of dry and wet drilling were fairly normal,
we used the standard rule-of-thumb procedure to select the smoothing param-
eter. Throughout, 10,000 bootstrap replications were performed. Using the
smoothed empirical likelihood method bands the selected bootstrap critical
values c∗ for the graphs were 7.55 and 7.59 for the Q−Q and the P − P plots
respectively. Furthermore using the second method (6.1) the bootstrapped
critical values were found to be 2.02 and 1.82.

Note, that while for the Q −Q plot the bands constructed using empirical
processes are narrower in the middle, they tend to go to infinity at both ends
of the graph. This is a consequence of the density function involved in the
definition of the empirical Q − Q process (5.3). This might indicate that the
use of empirical likelihood could be preferable here, since in many cases the
most ‘interesting’ data lies near the edges of the graph. For the P − P plot,
again empirical likelihood seems preferable, since the bands constructed using
it are narrower on the whole graph. A drawback of using empirical likelihood
method is the following. In order to calculate bootstrapped critical values
rather large samples are needed. Secondly, we have to cut ends of both P − P
and Q−Q plots, which has to be considered by each data example separately.

Our findings demonstrate that methods based on empirical likelihood are
comparable or in some cases even better than established (bootstrap) methods.
A further investigation of both practical and simulated data examples would
be of interest here. Moreover, the advantages of P − P plots over Q − Q
plots attributed by Holmgren [13] could be analysed further in the context of
graphical two-sample tests.
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