
Mathematical Modelling and Analysis http://mma.vgtu.lt

Volume 23, Issue 2, 227–239, 2018 ISSN: 1392-6292

https://doi.org/10.3846/mma.2018.015 eISSN: 1648-3510

New Recursive Approximations for
Variable-Order Fractional Operators with
Applications

Mahmoud A. Zakya, Eid H. Dohab, Taha M. Tahac and
Dumitru Baleanud,e

aDepartment of Applied Mathematics, National Research Centre

Dokki, 12622 Giza, Egypt
bDepartment of Mathematics, Faculty of Science, Cairo University

Giza, Egypt
cDepartment of Mathematics, Faculty of Science, Beni-Suef University

Beni-Suef, Egypt
dDepartment of Mathematics, Cankaya University

Ankara, Turkey
eInstitute of Space Sciences

Magurele-Bucharest, Romania

E-mail(corresp.): ma.zaky@yahoo.com

Received September 2, 2017; revised February 2, 2018; accepted February 2, 2018

Abstract. To broaden the range of applicability of variable-order fractional differ-
ential models, reliable numerical approaches are needed to solve the model equation.
In this paper, we develop Laguerre spectral collocation methods for solving variable-
order fractional initial value problems on the half line. Specifically, we derive three-
term recurrence relations to efficiently calculate the variable-order fractional integrals
and derivatives of the modified generalized Laguerre polynomials, which lead to the
corresponding fractional differentiation matrices that will be used to construct the
collocation methods. Comparison with other existing methods shows the superior
accuracy of the proposed spectral collocation methods.

Keywords: spectral collocation methods, modified generalized Laguerre polynomials, vari-

able order fractional integrals and derivatives, Bagley-Torvik equation.

AMS Subject Classification: 42C05; 65D99; 35R11; 65N35.

�
Copyright c© 2018 The Author(s). Published by VGTU Press
This is an Open Access article distributed under the terms of the Creative Commons Attribution

License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribu-

tion, and reproduction in any medium, provided the original author and source are credited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/442400613?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
ISSN: 1392-6292
https://doi.org/10.3846/mma.2018.015
mailto:ma.zaky@yahoo.com
http://creativecommons.org/licenses/by/4.0/


228 M.A. Zaky, E.H. Doha, T.M. Taha and D. Baleanu

1 Introduction
The variable-order fractional (VO-F) operators [8,17], which are generalizations
of constant-order fractional operators [23], open up new possibilities for robust
mathematical modeling and simulation of diverse physical problems in science
and engineering, such as modeling of diffusive-convective effects on the oscilla-
tory flows [15], linear and nonlinear oscillators with viscoelastic damping [8],
processing of geographical data using VO-F derivatives [9], constitutive laws
in viscoelastic continuum mechanics [16], signature verification through vari-
able/adaptive fractional order differentiators [21], anomalous diffusion prob-
lems [10, 24] and chloride ions sub-diffusion in concrete structures [22]. The
VO-F operators can be employed to depict the variable memory of systems [12].

The VO-F operators are nonlocal with singular kernels, which makes the
VO-F models complicated. Hence, the solution of VO-F models are also more
complicated. Numerical computation of the VO-F operators is the key to
understand the behavior and physical meaning of the VO-F models. Fu et
al. [10] applied the method of approximate particular solutions to VO-F diffu-
sion models. Cao and Qiu [7] proposed a second order numerical approxima-
tion via the VO-F weighted and shifted Grünwald-Letnikov formula to VO-F
Riemann-Liouville derivative, and used it to solve VO-F ordinary differential
equations. Zayernouri and Karniadakis [25] introduced fractional spectral collo-
cation methods for linear and nonlinear VO-F differential equations. Atangana
et al. [3] developed the Crank-Nicholson scheme to handle the time VO-F tele-
graph equation. Bhrawy et al. proposed accurate spectral collocation methods
for VO-F differential equations such as Schrödinger equation [6], Galilei invari-
ant advection diffusion equations [1], diffusion equation [24] and cable equa-
tion [5]. Moghaddam et al [13, 14] developed accurate and robust algorithms
for approximating VO-F derivatives and integrals. Tayebi et al [20] proposed
an accurate and robust meshless method based on the moving least squares
approximation and the finite difference scheme for the numerical solution of
VO-F advection-diffusion equation on two-dimensional arbitrary domains.

In this paper, we focus on the computation of the VO-F integrals and deriva-
tives of the modified generalized Laguerre polynomials. Applications of the
constructed computations are illustrated to compute the VO-F Caputo deriva-
tive. Besides, using the modified generalized Laguerre polynomials as the basis
functions, we develop Laguerre-Gauss collocation methods to solve fractional
differential equations of variable and constant orders on the half line.

This paper is organized as follows. Section 2 presents the fundamentals of
VO-F operators and properties of the modified generalized Laguerre polyno-
mials. Numerical algorithms for calculating the VO-F integral and the Caputo
derivative are presented in Sections 3 and 4, respectively. The applications of
the algorithms are illustrated in Section 5. Numerical examples are presented
in Section 6, and the conclusion is drawn in the last section.

2 Preliminaries and fundamentals

In this section, we concisely point out some definitions of the VO-F operators [8,
12,17]. We then collect some important properties of the modified generalized
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Laguerre polynomials [4]. Assume that u(x) = 0 for x < 0.

1. The following VO-F integral operator was proposed in [17]

0I
%(x)
x [u] := x 7→ 1

Γ (%(x))

∫ x

0

(x− r)%(x)−1u(r)dr, x ≥ 0. (2.1)

2. In [12] several definitions were proposed. The first is identical to (2.1).
The next one, is

0I
%(x)
x [u] := x 7→

∫ x

0

(x− r)%(r)−1

Γ (%(r))
u(r)dr, x ≥ 0.

3. The following operator was introduced in [12]

0I
%(x)
x [u] := x 7→

∫ x

0

(x− r)%(x−r)−1

Γ (%(x− r))
u(r)dr x ≥ 0. (2.2)

The VO-F Caputo derivative could now be defined, as in the case of constant
order [17], as follows

C
0 D

%(x)
x := 0I

n−q(x,r)
x ◦ dn

dxn
,

where q(x, r) = %(x), q(x, r) = %(r) and q(x, r) = %(x− r), in cases (2.1)–(2.2).
Thus, we obtain, respectively:

1. The type I: left Caputo fractional derivative of order %(x)

C
0 D

%(x)
x u(x) =

1

Γ (n− %(x))

∫ x

0

u(n)(r)dr

(x− r)%(x)−n+1
. (2.3)

2. The type II: left Caputo fractional derivative of order %(x)

C
0 D

%(x)
x u(x) =

∫ x

0

1

Γ (n− %(r))

u(n)(r)dr

(x− s)%(r)−n+1
.

3. The type III: left Caputo fractional derivative of order %(x)

C
0 D%(x)x u(x) =

∫ x

0

1

Γ (n− %(x− r))
u(n)(r)dr

(x− r)%(x−r)−n+1
,

where n − 1 < %(·) < n ∈ N. Such operators have been used by researchers,
for examples, Coimbra et al. [8, 18] employed the first type in the modeling
of viscous-viscoelastic oscillator. Ingman and Suzdalnitsky [11] used the sec-
ond type in the modeling of viscoelastic deformation process. Atanackovic and
Pilipovic [2] used the third type in generalization of Hamilton’s principle. Sun
et al. [19] introduced a comparative investigation of constant-order fractional
derivative and the first two types of VO-F derivatives in characterizing the
memory property of systems. However, the differences between the three types
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in applications are still not clear. There are other definitions of VO-F deriva-
tives [2]. In this paper, we will focus our attention on the first type of VO-F
integrals and derivatives, i.e. q(x, s) = %(x).

The operator C0 D
%(x)
x satisfies the following property (n−1 < %(x) ≤ n ∈ N)

C
0 D

%(x)
x xγ =

 0, γ = 0, . . . , n− 1,
Γ (γ + 1)

Γ (γ + 1− %(x))
xγ−%(x), γ = n, n+ 1, . . . .

Next, let us introduce some properties of the modified generalized Laguerre
polynomials [4]. Let Λ = {x | 0 < x < ∞} and χ(x) be a certain weight
function on Λ in the usual sense. Define

L2
χ(Λ) = {y | y is measurable & ||y||χ <∞},

which is a Hilbert space, equipped with the following inner product and norm:

(u, y)χ =

∫
Λ

χ(x)u(x)y(x) dx, ||y||χ = (y, y)
1
2
χ .

In principle, the generalized Laguerre polynomials are suitable for the ap-
proximation of functions with growth at infinity. We now recall some properties

of the generalized Laguerre polynomials L
(θ,β)
i (x).

Let χ(θ,β) = xθe−βx, θ > −1, and β > 0, ∂xv(x) = ∂
∂xv(x). The corre-

sponding generalized Laguerre polynomials of degree i are defined by

L
(θ,β)
i (x) =

1

i!
x−θeβx∂ix(xi+θe−βx), i = 0, 1, 2, . . . .

They are the eigenfunctions of the Sturm-Liouville problem

∂x(χ(θ+1,β)(x)∂xv(x)) + λ
(β)
i χ(θ,β)(x)v(x) = 0, 0 < x <∞

with the corresponding eigenvalues λ
(β)
i = iβ. They fulfill the following three-

term recurrence relations:

L
(θ,β)
0 (x) = 1, L

(θ,β)
1 (x) = −βx+

Γ (θ + 2)

Γ (θ + 1)
,

L
(θ,β)
i+1 (x) =

2i+ θ + 1− βx
i+ 1

L
(θ,β)
i (x)− i+ θ

i+ 1
L

(θ,β)
i−1 (x), i ≥ 1

(2.4)

and

L
(θ,β)
i (x) = L

(θ+1,β)
i (x)− L

(θ+1,β)
i−1 (x) = 1

β (∂xL
(θ,β)
i (x)− ∂xL(θ,β)

i+1 (x)). (2.5)

The m-th derivative of a generalized Laguerre polynomial satisfies the relation

∂mx L
(θ,β)
i (x) = (−β)mL

(θ+m,β)
i−m (x).

The generalized Laguerre polynomials form a complete L2
χθ,β (Λ)-orthogonal

system,(
L

(θ,β)
i (x),L

(θ,β)
j (x)

)
χ(θ,β)

= γ
(θ,β)
i δi,j , γ

(θ,β)
i =

Γ (i+ θ + 1)

βθ+1Γ (i+ 1)
,

where δi,j is the Kronecker symbol.
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3 Approximation to the variable-order fractional integral

The main goal of this section is to develop a new algorithm to approximate the
VO-F integral of a given function.

Let u ∈ L2
χθ,β (Λ) and N be a positive integer, then, we can expand it in

terms of generalized Laguerre polynomials as

u(x) ' uN (x) =

N∑
i=0

`
(θ,β)
i L

(θ,β)
i (x).

If uN (x) is an orthogonal projection of u(x), then `
(θ,β)
i can be determined by

the orthogonality of {L(θ,β)
i (x)}. If uN (x) is the interpolation of u(x) on the

generalized Laguerre-Gauss points {xθ,βN,i}Ni=0, then `
(θ,β)
i can be determined by

`
(θ,β)
i =

1

γ
(θ,β)
i

N∑
j=0

u(x
(θ,β)
N,j )L

(θ,β)
i (x

(θ,β)
N,j )χ

(θ,β)
N,j , (3.1)

where χ
(θ,β)
N,j are the corresponding weights. In this paper, we assume that

uN (x) is the interpolation of u(x).
Therefore, for any n − 1 < %min < %(x) < %max < n, the VO-F integral

0I
%(x)
x u(x) can be approximated by

0I
%(x)
x u(x) ≈ 0I

%(x)
x uN (x) =

1

Γ (%(x))

∫ x

0

(x− t)%(x)−1uN (t)dt =
1

Γ (%(x))

×
N∑
i=0

`
(θ,β)
i

∫ x

0

(x− t)%(x)−1L(θ,β)
i (t)dt =

N∑
i=0

`
(θ,β)
i L̂

(%(x),θ,β)
i (x),

where

L̂
(%(x),θ,β)
i (x) =

1

Γ (%(x))

∫ x

0

(x− t)%(x)−1L(θ,β)
i (t)dt.

Next, we develop a recurrence formula to calculate the %(x)th-order frac-

tional integral of L
(θ,β)
i . From (2.4), we can easily get

L̂
(%(x),θ,β)
0 (x) =

x%(x)

Γ (%(x) + 1)
, L̂

(%(x),θ,β)
1 (x) =

x%(x)

Γ (%(x) + 1)
− βx%(x)+1

Γ (%(x) + 2)
.

For i ≥ 1, we have

L̂
(%(x),θ,β)
i+1 (x) =

1

Γ (%(x))

∫ x

0

(x− t)%(x)−1L(θ,β)
i+1 (t)dt =

1

Γ (%(x))

1

i+ 1

×
∫ x

0

(x− t)%(x)−1 ×
[
(2i+ θ + 1− βt)L(θ,β)

i (t)− (i+ θ)L
(θ,β)
i−1 (t)

]
dt

=
1

i+ 1

{
(2i+ θ + 1− βx)L̂

(%(x),θ,β)
i (x)− (i+ θ)L̂

(%(x),θ,β)
i−1 (x)

+
β

Γ (%(x))

∫ x

0

(x− t)%(x)L(θ,β)
i (t)dt

}
.
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We can verify from formula (2.5) that for i ≥ 1,

L̂
(%(x),θ,β)
i+1 (x) =

1

i+ 1

{
(2i+ θ + 1− βx)L̂

(%(x),θ,β)
i (x)− (i+ θ)L̂

(%(x),θ,β)
i−1 (x)

+
1

Γ (%(x))

∫ x

0

(x− t)%(x)
(
∂tL

(θ,β)
i (t)− ∂tL(θ,β)

i+1 (t)
)
dt
}

=
1

i+ 1

{
(2i+ θ + 1− βx)L̂

(%(x),θ,β)
i (x)− (i+ θ)L̂

(%(x),θ,β)
i−1 (x)

+
1

Γ (%(x))

[
(x− t)%(x)

(
L

(θ,β)
i (t)− L

(θ,β)
i+1 (t)

)]x
0

+ %(x)
(
L̂

(%(x),θ,β)
i (x)− L̂

(%(x),θ,β)
i+1 (x)

)}
=

1

(i+ %(x) + 1)

{
(2i+ θ + %(x) + 1− βx)L̂

(%(x),θ,β)
i (x)

− (i+ θ)L̂
(%(x),θ,β)
i−1 (x)− x%(x)

Γ (%(x))

(
L

(θ,β)
i (0)− L

(θ,β)
i+1 (0)

)}
.

Hence, for i ≥ 1, we get the following recurrence relation

L̂
(%(x),θ,β)
i+1 (x) =

1

(i+ %(x) + 1)

{
(2i+ θ + %(x) + 1− βx)L̂

(%(x),θ,β)
i (x)

− (i+ θ)L̂
(%(x),θ,β)
i−1 (x)− x%(x)

Γ (%(x))

(
L

(θ,β)
i (0)− L

(θ,β)
i+1 (0)

)}
.

So, L̂
(%(x),θ,β)
i (x) can be calculated by the following formula

L̂
(%(x),θ,β)
0 (x) =

x%(x)

Γ (%(x) + 1)
, L̂

(%(x),θ,β)
1 (x) =

x%(x)

Γ (%(x) + 1)
− βx%(x)+1

Γ (%(x) + 2)
,

L̂
(%(x),θ,β)
i+1 (x) =

1

(i+ %(x) + 1)

{
(2i+ θ + %(x) + 1− βx)L̂

(%(x),θ,β)
i (x)

− (i+ θ)L̂
(%(x),θ,β)
i−1 (x)− x%(x)

Γ (%(x))

(
L

(θ,β)
i (0)− L

(θ,β)
i+1 (0)

)}
, i ≥ 1. (3.2)

Therefore, 0I
%(x)
x u(x) can be approximated by

0I
%(x)
x u(x) ≈ 0I

%(x)
x uN (x) =

N∑
i=0

`
(θ,β)
i L̂

(%(x),θ,β)
i (x), (3.3)

where L̂
(%(x),θ,β)
i (x) is given by (3.2), and `

(θ,β)
i is given by (3.1).

Remark 1. When %(x) = % = constant, then the operator of VO-F integral
is reduced to corresponding integral of constant order and the approximation
relation (3.3) reduces to

0I
%
xu(x) ≈ 0I

%
xuN (x) =

N∑
i=0

`
(θ,β)
i L̂

(%,θ,β)
i (x).
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4 Approximation to the variable-order fractional Caputo
derivative

In this section, we describe how to use the generalized Laguerre polynomi-
als to numerically approximate the VO-F derivative in the Caputo sense of a
given function u(x), x ∈ Λ. The computerized mathematical algorithm is based
on the numerical approximation of the VO-F integral derived in the previous
section.

Suppose that uN (x) is the approximate polynomial of u(x), which can be
expressed by

uN (x) =

N∑
i=0

`
(θ,β)
i L

(θ,β)
i (x), x ∈ Λ.

Let n−1 < %min < %(x) < %max < n ∈ N, we approximate the VO-F derivative
C
0 D

%(x)
x u(x) by the generalized Laguerre polynomials as

C
0 D

%(x)
x uN (x) =

1

Γ (n− %(x))

∫ x

0

(x− t)n−%(x)−1∂nt uN (t)dt

=
1

Γ (n− %(x))

N∑
i=0

`
(θ,β)
i

∫ x

0

(x− t)n−%(x)−1∂nt L
(θ,β)
i (t)dt

=

N∑
i=0

`
(θ,β)
i (−β)n

( 1

Γ (n− %(x))

∫ x

0

(x− t)n−%(x)−1L(θ+n,β)
i−n (t)dt

)
=

N∑
i=0

`
(θ,β)
i (−β)nL̂

(n−%(x),θ+n,β)
i−n (x),

where L̂
(n−%(x),θ+n,β)
i−n (x) = 0 for 0 ≤ i ≤ n− 1.

Therefore, the VO-F derivative of u(x) can be approximated by

C
0 D

%(x)
x uN (x) =

N∑
i=0

`
(θ,β)
i (−β)nL̂

(n−%(x),θ+n,β)
i−n (x) =

N∑
i=0

`
(θ,β)
i D

(%(x))
i,n,θ,β(x),

which alternatively may be written in the matrix form:

C
0 D

%(x)
x uN (x) = L(θ,β)D

(%(x))
n,θ,β (x) (4.1)

with L(θ,β) =
[
`
(θ,β)
0 , `

(θ,β)
1 , . . . , `

(θ,β)
N

]
,

D
(%(x))
n,θ,β (x) =

[
D

(%(x))
0,n,θ,β(x), D

(%(x))
1,n,θ,β(x), . . . , D

(%(x))
N,n,θ,β(x)

]T
,

where n− 1 < %min < %(x) < %max < n ∈ N and

D
(%(x))
i,n,θ,β(x) =

1

Γ (n− %(x))

∫ x

0

(x− t)n−%(x)−1∂nt L
(θ,β)
i (t)dt

= (−β)nL̂
(n−%(x),θ+n,β)
i−n , i ≥ n

and D
(%(x))
i,n,θ,β(x) = 0 for 0 ≤ i ≤ n− 1.

Math. Model. Anal., 23(2):227–239, 2018.
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5 Applications of the algorithms

After the construction of the VO-F differentiation matrix of Caputo type (4.1),
we now use the generalized Laguerre spectral collocation method together with
the generalized Laguerre operational matrix of VO-F derivative to solve the
following VO-F differential equation:

a(x)u′(x) + b(x)C0 D
%(x)
x u(x) + c(x)u(x) = f(x), x ∈ Λ,

u(0) = u0,
(5.1)

where 0 < %min < %(x) < %max < 1, a(x), b(x), c(x) and f(x) are real-valued
functions. A special case of (5.1) occurs when %(x) = % = 1

2 , corresponding
to the fractional Basset equation. This model represents a classical problem in
fluid dynamics in the scope of an unsteady motion of a particle that accelerates
in a viscous fluid under the action of gravity.

Suppose that uN (x) is the approximate solution of u(x) and xi (0 ≤ i ≤ N)

is the generalized Laguerre-Gauss nodes of L
(θ,β)
N+1(x). Now, using (4.1) then it

is easy to write

a(xi)L(θ,β)D
(1)
1,θ,β(xi) + b(xi)L(θ,β)D

(%(xi))
1,θ,β (xi) + c(xi)L(θ,β)D

(0)
0,θ,β(xi) = f(xi),

uN (0) = u0, i = 0, 1, . . . , N − 1. (5.2)

Let us denote F = [f(x0), . . . , f(xN−1), u0]. Then (5.2) is equivalent to the
following matrix equation

L(θ,β)E = F,

where

E = (eij) =


a(xj)D

(1)
i,1,θ,β(xj) + b(xj)D

(%(xj))
i,1,θ,β (xj),+c(xj)D

(0)
i,0,θ,β(xj),

0 ≤ i ≤ N, 0 ≤ j ≤ N − 1,

Γ (i+ θ + 1)

Γ (1 + θ)i!
, 0 ≤ i ≤ N, j = N.

For the following fractional initial value problem

a(x)u(m)(x) + b(x)C0 D
%(x)
x u(x) + c(x)u(x) = f(x), x ∈ Λ,

u(0) = u0, u′(0) = v0, (5.3)

where 1 < %min < %(x) < %max < 2, m = 1 or 2, we can also get the algebraic
equation of the form like (5.2), where F = [f(x0), . . . , f(xN−2), u0, v0] and

E = (eij) =



a(xj)D
(m)
i,m,θ,β(xj) + b(xj)D

(%(xj))
i,2,θ,β (xj),+c(xj)D

(0)
i,0,θ,β(xj),

0 ≤ i ≤ N, 0 ≤ j ≤ N − 2,

Γ (i+ θ + 1)

Γ (1 + θ)i!
, 0 ≤ i ≤ N, j = N − 1,

D
(1)
i,1,θ,β(0), 0 ≤ i ≤ N, j = N.
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In our implementation, these systems have been solved using the Mathematica
function FindRoot with zero initial approximation.

A special case of (5.3) occurs when m = 2 and %(x) = % = 3
2 , corresponding

to the fractional Bagley-Torvik equation. The fractional Bagley-Torvik equa-
tion is important for modeling the motion of a thin rigid plate immersed in a
Newtonian fluid.

6 Numerical examples

In this section we present three numerical examples to illustrate the accuracy
and efficiency of the algorithms presented in the previous sections. The first
one is introduced to test the accuracy of the formula (4.1).

Example 1. Let u(x) = ex, x ∈ [0, 1]. Now we numerically calculate the VO-F

derivative C
0 D

%(x)
x u(x), n− 1 ≤ %(x) ≤ n.

The analytical form of the VO-F derivative of u(x) is given by

C
0 D

%(x)
x ex = ex

(
1− Γ (n− %(x), x)

Γ (n− %(x))

)
.

In Tables 1 and 2, we list the maximum absolute errors (AEs) between the
exact solution u(x) and the approximate solutions uN at different constant-
and variable-orders, respectively.

Table 1. The maximum AEs at different constant fractional orders for Example 1.

N (θ, β) % = 0.2 % = 0.5 % = 0.8 % = 1.2 % = 1.5 % = 1.8

10 (1,3) 7.93−3 1.46−2 3.36−2 1.10−1 1.78−1 3.62−1
20 1.53−5 3.45−5 9.72−5 4.10−4 8.24−4 2.07−3
40 3.07−11 8.49−11 2.93−10 1.61−9 4.00−9 1.25−8
80 4.88−15 6.21−15 5.77−15 7.32−15 1.55−14 1.37−14

10 (2,6) 2.93−6 6.04−6 1.55−5 5.76−5 1.06−4 2.48−4
20 1.09−12 2.73−12 8.64−12 4.13−11 9.46−11 2.73−10
40 1.33−15 2.66−15 2.67−15 1.77−15 3.10−15 2.66−15
80 1.33−15 2.66−15 2.67−15 1.77−15 3.10−15 2.66−15

Example 2. Consider the following VO-F Bagley-Torvik equation

u′′(x) + C
0 D

%(x)
x u(x) + u(x) = f(x), x ∈ (0, L],

u(0) = 0, u′(0) = 1.

The exact solution is u(x) = sinx.

Table 3 displays the maximum AEs of the proposed method at %(x) = 3
2 and

%(x) = 9+sin(x−10)
5 for different chooses of θ, β and N . Figure 1 shows the

logarithmic graphs of the AEs at %(x) = 9+sin(x−10)
5 , N = 25 and different

chooses of θ = β.

Math. Model. Anal., 23(2):227–239, 2018.
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Table 2. The maximum AEs at different variable orders for Example 1.

(θ, β) N %(x) = 9+sin t
10

%(x) = 3+tanh t
2

(2,4) 10 4.648× 10−3 1.833× 10−2

20 4.556× 10−7 2.598× 10−6

30 2.282× 10−11 1.625× 10−10

40 5.329× 10−15 7.688× 10−15

(3,6) 10 9.862× 10−5 4.228× 10−4

20 1.013× 10−10 6.287× 10−10

30 3.997× 10−15 3.552× 10−15

40 3.997× 10−15 3.552× 10−15

0 1 2 3 4 5

-16

-14

-12

-10

-8

x

L
o
g
1
0
H
A
E
L

Θ=J=10

Θ=J=8

Θ=J=6

Θ=J=4

Θ=J=2

Figure 1. Logarithmic graphs of the AE at %(x) =
9+sin(x−10)

5
, N = 25 and various

choices of θ = β for Example 2.

Example 3. Consider the following VO-F Bagley-Torvik equation

u′′(x) + C
0 D

%(x)
x u(x) + u(x) =

Γ (4)

Γ (4− %(x))
x3−%(x) + x3 + 7x+ 1, x ∈ (0,

π

2
],

u(0) = u′(0) = 1.

The exact solution is u(x) = x3 + x+ 1.

In this example, we consider two cases, %(x) = 1.5 and %(x) = 1 + 0.5 |sinx|,
x ∈ [0, π2 ]. Table 4 displays a comparison between the M- and IM-algorithms
[13,14] by means of the maximum AEs.

7 Conclusions

In this paper, an efficient three-term recurrence relation to calculate both VO-
F integrals and derivatives of the modified generalized Laguerre polynomials
was developed. Spectral collocation methods were developed to solve VO-F
differential equations. The results of this paper expand the application of
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Table 3. The maximum AEs at L = 1 for Example 2.

%(x) N θ = 0, β = 1 θ = 2, β = 4 θ = 3, β = 6

3
2

5 5.546× 10−3 2.916× 10−4 1.427× 10−4

10 4.485× 10−4 1.431× 10−7 9.038× 10−9

15 8.845× 10−6 3.675× 10−11 9.313× 10−12

20 8.133× 10−6 2.166× 10−13 2.220× 10−15

9+sin(x−10)
5

5 8.318× 10−3 2.666× 10−3 1.231× 10−3

10 2.515× 10−3 3.854× 10−6 1.179× 10−7

15 1.771× 10−4 2.721× 10−9 7.242× 10−11

20 5.418× 10−6 1.0522× 10−12 2.742× 10−14

Table 4. Comparison of the maximum AEs for Example 3 with θ = β = 10 and two cases
of %(x), x ∈ [0, π

2
].

%(x) M-algorithm IM-algorithm Collocation method

h=0.02 8.16× 10−3 1.15× 10−3 N=3 5.77× 10−15

1.5 h=0.01 4.27× 10−3 4.29× 10−4 N=4 4.57× 10−15

h=0.005 2.18× 10−3 1.56× 10−4 N=5 4.44× 10−15

h=0.02 7.22× 10−3 1.53× 10−4 N=3 4.88× 10−15

1+0.5 |sinx| h = 0.01 3.70× 10−3 5.57× 10−5 N=4 3.10× 10−15

h=0.005 1.86× 10−3 1.93× 10−5 N=5 2.77× 10−15

the Laguerre-Gauss collocation methods to VO-F problems. The suggested
algorithms can be used also for solving VO-F fractional partial differential
equations. Hence, the method is promising for VO-F differential equations.
However, the analysis of the scheme is a challenging problem deserving further
study.
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