
Framework for Testing and Operation of the ATLAS Level-1 MUCTPI and CTP

R. Spiwoks a, D. Berge a, N. Ellis a, P. Farthouat a, S. Haas a,
J. Lundberg a, S. Maettig a, b, A. Messina a, T. Pauly a, D. Sherman a

a CERN, 1211 Geneva 23, Switzerland

b University of Hamburg, 20146 Hamburg, Germany

Ralf.Spiwoks@cern.ch

Abstract
The ATLAS Level-1 Muon-to-Central-Trigger-Processor

Interface (MUCTPI) receives information on muon candidates
from the muon trigger sectors and sends multiplicity values to
the Central Trigger Processor (CTP). The CTP receives the
multiplicity values from the MUCTPI and combines them with
information from the calorimeter trigger and other triggers of
the experiment and makes the final Level-1 decision. The
MUCTPI and CTP are housed in two 9U VME64x crates and
are made of nine different types of custom designed modules.
This paper will present the framework which is used for
debugging, commissioning and operation of all modules of the
MUCTPI and CTP.

Testing of the modules has been considered right from
design. Most types of modules contain diagnostic memories at
the input of the module which can be used to capture incoming
data or to inject data into the module. Testing of the modules
can be achieved by capturing data at input of a down-stream
module, by reading out data from a monitoring buffer, or by
reading out monitoring counters.

A layered software framework using C++ has been
developed for configuring and controlling all modules and for
testing them independently or grouped into complete sub-
systems. The lowest level uses the ATLAS VME library and
driver. At the next higher level, a compiler translates a
description of the VME registers from XML to C++ code.
This code together with existing code for some components,
e.g. HPTDC, DELAY25, and JTAG, is combined to the low-
level library of the module. A menu program provides access
to all methods of the module low-level library. Generators
create data for the test memories. Simulators calculate
expected results. Generators, simulators and the low-level
library are combined to a suite of test programs which cover
the full functionality of the MUCTPI and CTP. The low-level
library is also used by the control and monitoring programs
which integrate the sub-systems into the ATLAS experiment
control and monitoring framework.

I. INTRODUCTION
The ATLAS experiment at the Large Hadron Collider

(LHC) at CERN uses a three-level trigger system. The Level-1
trigger [1] is a synchronous system operating at the bunch
crossing (BC) frequency of 40.08 MHz of the LHC. It uses
information on clusters and global energy in the calorimeters
and on tracks found in the dedicated muon trigger detectors.
An overview of the ATLAS Level-1 trigger is shown in Figure
1. The Level-1 central trigger consists of the Muon-to-Central-

Trigger-Processor Interface (MUCTPI), the Central Trigger
Processor (CTP), and the Timing, Trigger and Control (TTC)
partitions.

Figure 1: Overview of the ATLAS Level-1 Trigger

The MUCTPI [2] combines trigger information from the
two dedicated muon trigger detectors, the Resistive Plate
Chambers (RPC) in the barrel and the Thin-Gap Chambers
(TGC) in the end-cap region. The CTP [3] forms the Level-1
trigger decision (accept or reject) for every BC, and distributes
it to the TTC partitions. It also receives timing signals from
the LHC and fans them out to the TTC partitions. The TTC
partitions perform the distribution of the timing, trigger and
control signals to all sub-detector front-end electronics. In the
ATLAS experiment there are about 40 TTC partitions. For a
full overview see [4].

II. THE MUCTPI
The MUCTPI [2] receives the muon candidates from all

208 trigger sectors, calculates multiplicities for six
programmable pT thresholds and sends the results to the CTP.
It resolves cases where a single muon traverses more than one
sector and thus avoids double counting. The MUCTPI sends
summary information to the Level-2 trigger and to the data
acquisition (DAQ). It identifies, in particular, regions of
interest (RoI) for the Level-2 trigger processing. The MUCTPI
can also take snapshots of the incoming sector data for
diagnostics and accumulate rates of incoming muon
candidates for monitoring.

Pre-processor

Cluster
Processor
(e/γ and τ/h)

Jet/Energy
Processor

(jets & energy)

End-cap Muon
Trigger (TGC)

Barrel Muon
Trigger (RPC)

Muon-CTP-Interface (MUCTPI)

Central Trigger Processor (CTP)

Detector Front-End/Read-out

...

Calorimeter Detectors

LTP

Busy

TTC

LTPIM

LTP

Busy

TTC

LTPIM

Muon Detectors

P
a
r
t
i
t
i
o
n

T
T
C

P
a
r
t
i
t
i
o
n

T
T
C

204

The MUCTPI is implemented as a single-crate 9U VME
system with three different types of modules and a dedicated
active backplane as shown in Figure 2.

Figure 2: Overview of the MUCTPI

The octant module (MIOCT) receives the muon candidates
from the trigger sector logic and resolves overlaps. The active
backplane (MIBAK) performs the multiplicity summing, the
readout transfer and the timing signal distribution. The CTP
interface module (MICTP) receives timing and trigger signals
from the CTP and sends multiplicities to the CTP. The readout
driver module (MIROD) sends summary information to the
Level-2 trigger and the DAQ.

Figure 3: The MUCTPI in ATLAS

A prototype of the MUCTPI was installed in the
experiment in 2005. It provided almost full functionality and
missed only some flexibility in the overlap handling. The
MUCTPI has been upgraded incrementally to the final system.
Figure 3 shows the setup in the experiment with 16 MIOCTs,
the MIROD and the MICTP. The MICTP is currently the last

prototype module which, although it provides full
functionality, will soon be replaced by a new MICTP. The
new MICTP is based on a more recent FPGA allowing all
logic to be in a single device. It also uses the same PCB as the
MIROD. This is useful for providing spares to the MUCTPI.
Another complete and another partial MUCTPI are available
in the laboratory as spares as well as for firmware
modification and software development.

III. THE CTP
The CTP [3] receives, synchronizes and aligns trigger

inputs from calorimeter and muon triggers, and others. It
generates the Level-1 Accept (L1A) according to a
programmable trigger menu. The CTP has, in addition, the
following functionality: it generates a trigger-type word
accompanying every L1A; it generates preventive dead time in
order to prevent front-end buffers from overflowing; it
generates summary information for the Level-2 trigger and the
DAQ; it generates a precise time stamp using GPS with a
relative precision of 5 ns and an expected absolute precision of
25 ns after calibration; it generates other timing signals like
the Event Counter Reset (ECR). The CTP can measure the
timing of the trigger inputs which is very important during
commissioning. It can take snapshots of the incoming trigger
inputs for diagnostics and accumulate rates of incoming
trigger inputs and internally generated trigger combinations
for monitoring.

Figure 4: Overview of the CTP

The CTP is implemented as a single-crate 9U VME system
with six different types of modules and three dedicated
backplanes as shown in Figure 4. The machine interface
module (CTPMI) receives timing signals from the LHC. The
input module (CTPIN) receives trigger input signals,
synchronizes and aligns them, and sends them to the Pattern-
In-Time (PIT) backplane using a switch matrix. The
monitoring module (CTPMON) performs bunch-by-bunch

 CTPMI

CTPIN 4 x 31

CTPMON

CTPCORE

CTPCAL

DAQ
LVL2

LHC

28 x

COM bus (common)
Timing

PIT bus
(Pattern In Time)
Trigger

CAL bus
(Calibration Requests)
Calibration

CTPIN 4 x 31

CTPIN 4 x 31

CTPOUT 5 x

CTPOUT 5 x

5 x

CTPOUT 5 x
LTP

MIBAK

+

+

CTP

DAQ
LVL2

+ MIOCT
. . .

13

•
•
•

MICTP

MIROD

MIOCT 13

MIOCT 13

•
•
•

16
x

Binary
Adder
Tree

Trigger
Readout

Timing

. . .

. . .

205

monitoring. The core module (CTPCORE) forms the L1A
using Look-Up Tables (LUTs) and Content-Addressable
Memories (CAMs), and sends summary information to the
Level-2 trigger and the DAQ. The output module (CTPOUT)
sends timing signals to the TTC partitions and receives
calibration requests. The calibration module (CTPCAL) time-
multiplexes the calibration requests of the detectors and
receives additional front panel inputs. The Pattern-In-Time
(PIT) bus transports the synchronized and aligned trigger
signals from the CTPINs to the CTPCORE and the CTPMON.
The common (COM) bus contains timing signals. The
calibration (CAL) bus transports the calibration requests from
the CTPOUTs to the CTPCAL.

The final CTP was installed in the experiment in 2006.
Figure 5 shows the CTP with the CTPMI, three CTPINs, the
CTPMON, the CTPCORE, four CTPOUTs, and the CTPCAL.
There is an additional NIM-to-LVDS fan-in module for
receiving NIM trigger signals and routing them to one of the
CTPINs. Another two complete CTPs are available in the
laboratory as spares as well as for firmware modification and
software development.

Figure 5: The CTP in ATLAS

IV. TEST FRAMEWORK

A. Principles and Architecture
The problem of the test framework is the considerable

number of different types of modules. In the CTP there are six
different types, in the MUCTPI three. There are in total
enough modules to populate two full systems of each type and
a third partially. One of each system is installed in the
experiment, the other two in the laboratory. The MUCTPI and
CTP are also relatively complex: There is a large number and
size of inputs. There are many parameters for configuration
and processing. And there are many different use cases, in
particular for testing of prototypes which requires a rapid
evolution of the firmware and software, for testing of the

modules which guarantees the quality of the production, and
for operation which provides the integration into the
experiment.

The test framework is based on several principles. The
VME interface is the same for all modules. This is true for the
hardware whose design is a copy from module to module, for
the firmware which is used like an IP block [5], and for the
software, i.e. the VME drivers and libraries. The modules
were also right from the beginning designed with diagnostic
memories which can be used for input to capture data, or for
output to inject data into the processing. The modules were
also designed with readout facilities and counters. The event-
like readout is used for monitoring, and the counters which
can be integrating or on a bunch-by-bunch basis allow
counting of data or of the BUSY status at several stages of the
processing. The entire test framework is based on the common
software framework provided by the ATLAS Readout Driver
Crate DAQ (RCD) [6]. This framework contains the ATLAS
VME driver and library, contains many utilities for bit strings,
modules, JTAG chains, menus, and components like the
HPTDC and DELAY25 chips. The framework also provides
access to the ATLAS TDAQ control system.

Figure 6: The Framework Architecture

The test framework is organised in several layers, see
Figure 6. At the lowest layer is the Scientific Linux CERN
(SLC). On top of that is the ATLAS RCD framework with its
VME driver and library. On top of that are the module
libraries for each type of module. These libraries are partly
generated automatically from XML files and partly hand
coded. They consist of C++ objects with methods for access of
all functionality provided by any module. On top of the
module libraries are PYTHON scripts which are used for rapid
testing and menu programs which give full access to all
functionality. Ancillary objects are generators for providing
test data and simulators for behavioural simulation of the
modules. On top of these are the test programs which provide
a test suite for all modules and systems. On top of the ATLAS
TDAQ control software is the high-level software which
allows one to configure, control and monitor the modules in
the experiment.

B. Low-level Software
The low-level software is based on the module libraries.

Part of the module libraries can be generated in an automated
way from XML code. The main idea is that a module’s VME
map is described in an XML file in terms of a module, its
blocks, the registers in the blocks, the fields in the registers

206

and the possible values for each field. An excerpt of such a
description can be seen in Figure 7. A (pre-) compiler is then
run over the XML file which generates C++ classes for bit
string objects for all fields and registers and a C++ class for
the module with read and write methods for all registers and
fields using the bit strings. These methods can be used in test
programs in a very simple and intuitive way. Future extensions
foreseen to the tool are to add more detail, e.g. read-only,
write-only, read-modify-write functions, and to add support
for more complex parts of the VME map like memories and
block transfers.

Figure 7: Excerpt of a Module’s VME Map using XML

The C++ class automatically generated by the XML
compiler is augmented by code containing all higher level
functions for sequences of operations as needed by the
module. Then a menu program is developed from the module
library which is based on a text-driven menu and provides
access to all methods and thus all registers and fields of the
module. The code of the menu program can easily be extended
whenever new features are included into the module library. It
is foreseen in the future to develop a tool to derive the menu
automatically from the module library. There exists a menu
program for each type of module which gives detailed and
complete control over the module and which is intended to be
used by an Level-1 central trigger expert.

In addition to the menu program for each type of module
there also is a generator for generating input data for single-
module and full-system tests. The patterns generated include
counter-like patterns, walking ones, a toggling pattern, random
data, and more complex data with lots of overlapping
candidates for the MIOCT testing. Also for each type of
module there is a simulator which uses the same configuration
as the hardware module and which generates the expected
output data from given input data. This can be used for
comparison between observed and expected data in tests. The
simulation includes, e.g. the overlap handling of the MIOCT
modules, the data processing for readout and counters of the
MIOCT, MICTP, MIROD, CTPIN, CTPCORE and CTPMON
modules, as well as the complete trigger generation in the
CTPCORE module.

C. Test Suite
Based on the module libraries, the generators, and simu-

lators there is a suite of tests programs for single-module and
full-system tests. The single-module tests usually test register
and memory access, and are based on read-write tests. There

are also single-module initialisation programs which write a
default configuration to the module and which read back the
configuration if asked to do so. The more interesting tests
concern several modules or full systems. They usually use data
from the generator or a file to load into the modules, loop over
the data, read back data from readout or counters and compare
them to simulation. As an example, the “testCtpReadout”
configures the CTP, loads the CTPIN test memories with data
which will generate a L1A, starts the trigger generation by
enabling the CTPIN test memories and removing the BUSY
from the CTPMI, and reads the data from the CTPCORE
readout FIFOs and compares them to the expected data from
simulation. This tests the full chain from CTPIN memory and
switching matrix, the PIT bus, the CTPCORE LUT and CAM
processing, as well as the CTP timing.

Other programs in the test suite are concerned with timing
alignment which is very important for the Level-1 trigger and
the experiment. Using data from the CTPIN test memories or
the trigger inputs with a single candidate per orbit of the LHC
the CTPIN, CTPMON, and CTPCORE BC Identifier (BCID)
values can be aligned with respect to the BCID in the
CTPCORE readout by using the BCID offsets at several stages
in the processing. Similarly, using data from the MIOCT test
memories or the muon sectors sending a test pattern, the
MIOCT, MICTP and MIROD BCID values can be aligned
with respect to the BCID in the MICTP using the BCID
offsets in several stages in the modules as well as the MIOCT
muon sector data pipelines. As a consistency check the
MIOCT can capture the muon sector data in its test memory
and compare the muon sector BCID offsets with the MIOCT
BCID.

D. High-level Software
The high-level software provides integration of the

MUCTPI and CTP into the experiment by supplying
configuration, control, and monitoring to the ATLAS TDAQ
control system [7].

The trigger configuration is taken from the ATLAS trigger
database which stores the event selection strategy comprising
the Level-1 trigger, Level-2 trigger, and Event Filter (Level-3
trigger). The trigger tool is a graphical user interface which
allows one to browse and edit all trigger menus in the trigger
database. The trigger menu compiler automatically translates
the high-level description of the Level-1 trigger menu to all
necessary configuration files of the CTP for loading the
CTPIN switch matrices and the CTPCORE LUTs and CAMs
[8].

In order to be integrated with the ATLAS TDAQ control
system each module type needs to be described in a schema in
the ATLAS configuration database. Such a schema contains
the full configuration data, except for the trigger configuration
which comes from the trigger database. The schema also
contains provision for describing the flow of data between
modules. This allows for an automatic setup of the inputs of
the BUSY (including S-Link XOFFs) and MUCTPI sectors. A
plug-in for each module type into the standard RCD controller
provides the dynamic aspect of control in the sense that during

<module name=“MICTP” type=“A32” size=“0x00080000” … >

 <block name=“Readout”>

 <register name=“MultiplicityConfig” addr=“0x00000200”>

 <field name=“RamEnable” mask=“0x00000002”>

 <value name=“DISABLED” data=“0x00000000”/>

 <value name=“ENABLED” data=“0x00000002”/>

 </field>

…

207

setup the configuration of each module is read from the
configuration database and written into the module using the
low-level library. In order to organise the setup in logical sets
some plug-ins span several modules, e.g. all active MIOCTs of
the MUCTPI, all active CTPINs of the CTP or the BUSY
monitoring of the CTP which reads from all CTP modules.

E. Monitoring
The monitoring of the MCUTPI and the CTP is based on

the principle of a producer-consumer model: the producer of
information is (part of) a plug-in controller which sends data
to the ATLAS information service (IS) [9], a network-based
information exchange system. The consumer reads data from
the IS and analyses and presents the information, usually in
the form of a graphical user interface developed using Qt. As
an example, the display of the ATLAS MIOCT Monitoring
GUI can be seen in Figure 8. It shows the status of all
MIOCTs of the MUCTPI.

Figure 8: The MIOCT Monitoring GUI

Figure 9: The MIOCT Rate Monitoring

Some regular monitoring tasks are run for data quality
monitoring, e.g. the timing-in of the MUCTPI can be checked
by reading the per-bunch counters of the MIOCTs and writing

the data into histograms. In Figure 9 an example can be seen
for a special run where the muon sectors sent a known test
pattern. One can clearly see that one of the sectors is wrongly
aligned in BCID. This was corrected in the configuration
database and used from the next run onwards.

V. SUMMARY
The ATLAS Level-1 MUCTPI and CTP framework for

testing and operation covers single-module and full-system
testing, provides integration into the experiment, as well as
many monitoring facilities. With these the ATLAS Level-1
central trigger is ready for taking data with beam.

VI. REFERENCES
[1] The ATLAS Collaboration, “The ATLAS Experiment at
the CERN Large Hadron Collider”, JINST 3 (2008) S08003.

[2] S. Haas et al., “The ATLAS Level-1 Muon to Central
Trigger Processor Interface”, Topical Workshop on
Electronics for Particle Physics, CERN-2007-007, November
2007.

[3] R. Spiwoks et al., “The ATLAS Level-1 Central Trigger
Processor (CTP)”, 11th Workshop on Electronics for LHC and
Future Experiments, CERN/LHCC/2005/038 265, November
2005.

[4] S. Ask et al., “The ATLAS Central Level-1 Trigger Logic
and TTC System”, JINST 3 (2008) P08002.

[5] R. Spiwoks, “The VMEbus Interface of the Central
Trigger Processor”, https://edms.cern.ch/document/428910.

[6] S. Gameiro et al., “The ROD Crate DAQ Software
Framework of the ATLAS Data Acquisition System”, IEEE
Trans. Nucl. Sci. 53 (2006) 907-911.

[7] The ATLAS Collaboration, “ATLAS High-level, Trigger,
Data Acquisition, Controls”, Technical Design Report,
CERN/LHCC/2003-022.

[8] R. Spiwoks et al., “Configuration of the ATLAS Trigger”,
11th Workshop on Electronics for LHC and Future
Experiments, CERN/LHCC/2005/038 269, November 2005.

[9] A. Corsu-Radu et al., “First-Year Experience from the
ATLAS Online Monitoring Framework”, 17th International
Conference on Computing in High-Energy and Nuclear
Physics”, http://cdsweb.cern.ch/record/1181482, March 2009.

208

http://cdsweb.cern.ch/record/1181482

