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Abstract 
The ATLAS Level-1 Muon-to-Central-Trigger-Processor 

Interface (MUCTPI) receives information on muon candidates 
from the muon trigger sectors and sends multiplicity values to 
the Central Trigger Processor (CTP). The CTP receives the 
multiplicity values from the MUCTPI and combines them with 
information from the calorimeter trigger and other triggers of 
the experiment and makes the final Level-1 decision. The 
MUCTPI and CTP are housed in two 9U VME64x crates and 
are made of nine different types of custom designed modules. 
This paper will present the framework which is used for 
debugging, commissioning and operation of all modules of the 
MUCTPI and CTP. 

Testing of the modules has been considered right from 
design. Most types of modules contain diagnostic memories at 
the input of the module which can be used to capture incoming 
data or to inject data into the module. Testing of the modules 
can be achieved by capturing data at input of a down-stream 
module, by reading out data from a monitoring buffer, or by 
reading out monitoring counters. 

A layered software framework using C++ has been 
developed for configuring and controlling all modules and for 
testing them independently or grouped into complete sub-
systems. The lowest level uses the ATLAS VME library and 
driver. At the next higher level, a compiler translates a 
description of the VME registers from XML to C++ code. 
This code together with existing code for some components, 
e.g. HPTDC, DELAY25, and JTAG, is combined to the low-
level library of the module. A menu program provides access 
to all methods of the module low-level library. Generators 
create data for the test memories. Simulators calculate 
expected results. Generators, simulators and the low-level 
library are combined to a suite of test programs which cover 
the full functionality of the MUCTPI and CTP. The low-level 
library is also used by the control and monitoring programs 
which integrate the sub-systems into the ATLAS experiment 
control and monitoring framework. 

I. INTRODUCTION 
The ATLAS experiment at the Large Hadron Collider 

(LHC) at CERN uses a three-level trigger system. The Level-1 
trigger [1] is a synchronous system operating at the bunch 
crossing (BC) frequency of 40.08 MHz of the LHC. It uses 
information on clusters and global energy in the calorimeters 
and on tracks found in the dedicated muon trigger detectors. 
An overview of the ATLAS Level-1 trigger is shown in Figure 
1. The Level-1 central trigger consists of the Muon-to-Central-

Trigger-Processor Interface (MUCTPI), the Central Trigger 
Processor (CTP), and the Timing, Trigger and Control (TTC) 
partitions. 

 

 
Figure 1: Overview of the ATLAS Level-1 Trigger 

The MUCTPI [2] combines trigger information from the 
two dedicated muon trigger detectors, the Resistive Plate 
Chambers (RPC) in the barrel and the Thin-Gap Chambers 
(TGC) in the end-cap region. The CTP [3] forms the Level-1 
trigger decision (accept or reject) for every BC, and distributes 
it to the TTC partitions. It also receives timing signals from 
the LHC and fans them out to the TTC partitions. The TTC 
partitions perform the distribution of the timing, trigger and 
control signals to all sub-detector front-end electronics. In the 
ATLAS experiment there are about 40 TTC partitions. For a 
full overview see [4]. 

II. THE MUCTPI 
The MUCTPI [2] receives the muon candidates from all 

208 trigger sectors, calculates multiplicities for six 
programmable pT thresholds and sends the results to the CTP. 
It resolves cases where a single muon traverses more than one 
sector and thus avoids double counting. The MUCTPI sends 
summary information to the Level-2 trigger and to the data 
acquisition (DAQ). It identifies, in particular, regions of 
interest (RoI) for the Level-2 trigger processing. The MUCTPI 
can also take snapshots of the incoming sector data for 
diagnostics and accumulate rates of incoming muon 
candidates for monitoring. 
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The MUCTPI is implemented as a single-crate 9U VME 
system with three different types of modules and a dedicated 
active backplane as shown in Figure 2. 

 

 
Figure 2: Overview of the MUCTPI 

The octant module (MIOCT) receives the muon candidates 
from the trigger sector logic and resolves overlaps. The active 
backplane (MIBAK) performs the multiplicity summing, the 
readout transfer and the timing signal distribution. The CTP 
interface module (MICTP) receives timing and trigger signals 
from the CTP and sends multiplicities to the CTP. The readout 
driver module (MIROD) sends summary information to the 
Level-2 trigger and the DAQ. 

 

 
Figure 3: The MUCTPI in ATLAS 

A prototype of the MUCTPI was installed in the 
experiment in 2005. It provided almost full functionality and 
missed only some flexibility in the overlap handling. The 
MUCTPI has been upgraded incrementally to the final system. 
Figure 3 shows the setup in the experiment with 16 MIOCTs, 
the MIROD and the MICTP. The MICTP is currently the last 

prototype module which, although it provides full 
functionality, will soon be replaced by a new MICTP. The 
new MICTP is based on a more recent FPGA allowing all 
logic to be in a single device. It also uses the same PCB as the 
MIROD. This is useful for providing spares to the MUCTPI. 
Another complete and another partial MUCTPI are available 
in the laboratory as spares as well as for firmware 
modification and software development. 

III. THE CTP 
The CTP [3] receives, synchronizes and aligns trigger 

inputs from calorimeter and muon triggers, and others. It 
generates the Level-1 Accept (L1A) according to a 
programmable trigger menu. The CTP has, in addition, the 
following functionality: it generates a trigger-type word 
accompanying every L1A; it generates preventive dead time in 
order to prevent front-end buffers from overflowing; it 
generates summary information for the Level-2 trigger and the 
DAQ; it generates a precise time stamp using GPS with a 
relative precision of 5 ns and an expected absolute precision of 
25 ns after calibration; it generates other timing signals like 
the Event Counter Reset (ECR). The CTP can measure the 
timing of the trigger inputs which is very important during 
commissioning. It can take snapshots of the incoming trigger 
inputs for diagnostics and accumulate rates of incoming 
trigger inputs and internally generated trigger combinations 
for monitoring. 

 

     
Figure 4: Overview of the CTP 

The CTP is implemented as a single-crate 9U VME system 
with six different types of modules and three dedicated 
backplanes as shown in Figure 4. The machine interface 
module (CTPMI) receives timing signals from the LHC. The 
input module (CTPIN) receives trigger input signals, 
synchronizes and aligns them, and sends them to the Pattern-
In-Time (PIT) backplane using a switch matrix. The 
monitoring module (CTPMON) performs bunch-by-bunch 
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monitoring. The core module (CTPCORE) forms the L1A 
using Look-Up Tables (LUTs) and Content-Addressable 
Memories (CAMs), and sends summary information to the 
Level-2 trigger and the DAQ. The output module (CTPOUT) 
sends timing signals to the TTC partitions and receives 
calibration requests. The calibration module (CTPCAL) time-
multiplexes the calibration requests of the detectors and 
receives additional front panel inputs. The Pattern-In-Time 
(PIT) bus transports the synchronized and aligned trigger 
signals from the CTPINs to the CTPCORE and the CTPMON. 
The common (COM) bus contains timing signals. The 
calibration (CAL) bus transports the calibration requests from 
the CTPOUTs to the CTPCAL.  

The final CTP was installed in the experiment in 2006. 
Figure 5 shows the CTP with the CTPMI, three CTPINs, the 
CTPMON, the CTPCORE, four CTPOUTs, and the CTPCAL. 
There is an additional NIM-to-LVDS fan-in module for 
receiving NIM trigger signals and routing them to one of the 
CTPINs. Another two complete CTPs are available in the 
laboratory as spares as well as for firmware modification and 
software development. 

 

 
Figure 5: The CTP in ATLAS 

IV. TEST FRAMEWORK 

A. Principles and Architecture 
The problem of the test framework is the considerable 

number of different types of modules. In the CTP there are six 
different types, in the MUCTPI three. There are in total 
enough modules to populate two full systems of each type and 
a third partially. One of each system is installed in the 
experiment, the other two in the laboratory. The MUCTPI and 
CTP are also relatively complex: There is a large number and 
size of inputs. There are many parameters for configuration 
and processing. And there are many different use cases, in 
particular for testing of prototypes which requires a rapid 
evolution of the firmware and software, for testing of the 

modules which guarantees the quality of the production, and 
for operation which provides the integration into the 
experiment. 

The test framework is based on several principles. The 
VME interface is the same for all modules. This is true for the 
hardware whose design is a copy from module to module, for 
the firmware which is used like an IP block [5], and for the 
software, i.e. the VME drivers and libraries. The modules 
were also right from the beginning designed with diagnostic 
memories which can be used for input to capture data, or for 
output to inject data into the processing. The modules were 
also designed with readout facilities and counters. The event-
like readout is used for monitoring, and the counters which 
can be integrating or on a bunch-by-bunch basis allow 
counting of data or of the BUSY status at several stages of the 
processing. The entire test framework is based on the common 
software framework provided by the ATLAS Readout Driver 
Crate DAQ (RCD) [6]. This framework contains the ATLAS 
VME driver and library, contains many utilities for bit strings, 
modules, JTAG chains, menus, and components like the 
HPTDC and DELAY25 chips. The framework also provides 
access to the ATLAS TDAQ control system. 

 

 
Figure 6: The Framework Architecture 

The test framework is organised in several layers, see 
Figure 6. At the lowest layer is the Scientific Linux CERN 
(SLC). On top of that is the ATLAS RCD framework with its 
VME driver and library. On top of that are the module 
libraries for each type of module. These libraries are partly 
generated automatically from XML files and partly hand 
coded. They consist of C++ objects with methods for access of 
all functionality provided by any module. On top of the 
module libraries are PYTHON scripts which are used for rapid 
testing and menu programs which give full access to all 
functionality. Ancillary objects are generators for providing 
test data and simulators for behavioural simulation of the 
modules. On top of these are the test programs which provide 
a test suite for all modules and systems. On top of the ATLAS 
TDAQ control software is the high-level software which 
allows one to configure, control and monitor the modules in 
the experiment.   

B. Low-level Software 
The low-level software is based on the module libraries. 

Part of the module libraries can be generated in an automated 
way from XML code. The main idea is that a module’s VME 
map is described in an XML file in terms of a module, its 
blocks, the registers in the blocks, the fields in the registers 
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and the possible values for each field. An excerpt of such a 
description can be seen in Figure 7. A (pre-) compiler is then 
run over the XML file which generates C++ classes for bit 
string objects for all fields and registers and a C++ class for 
the module with read and write methods for all registers and 
fields using the bit strings. These methods can be used in test 
programs in a very simple and intuitive way. Future extensions 
foreseen to the tool are to add more detail, e.g. read-only, 
write-only, read-modify-write functions, and to add support 
for more complex parts of the VME map like memories and 
block transfers. 

 

 
Figure 7: Excerpt of a Module’s VME Map using XML 

The C++ class automatically generated by the XML 
compiler is augmented by code containing all higher level 
functions for sequences of operations as needed by the 
module. Then a menu program is developed from the module 
library which is based on a text-driven menu and provides 
access to all methods and thus all registers and fields of the 
module. The code of the menu program can easily be extended 
whenever new features are included into the module library. It 
is foreseen in the future to develop a tool to derive the menu 
automatically from the module library. There exists a menu 
program for each type of module which gives detailed and 
complete control over the module and which is intended to be 
used by an Level-1 central trigger expert. 

In addition to the menu program for each type of module 
there also is a generator for generating input data for single-
module and full-system tests. The patterns generated include 
counter-like patterns, walking ones, a toggling pattern, random 
data, and more complex data with lots of overlapping 
candidates for the MIOCT testing. Also for each type of 
module there is a simulator which uses the same configuration 
as the hardware module and which generates the expected 
output data from given input data. This can be used for 
comparison between observed and expected data in tests. The 
simulation includes, e.g. the overlap handling of the MIOCT 
modules, the data processing for readout and counters of the 
MIOCT, MICTP, MIROD, CTPIN, CTPCORE and CTPMON 
modules, as well as the complete trigger generation in the 
CTPCORE module. 

C. Test Suite 
Based on the module libraries, the generators, and simu-

lators there is a suite of tests programs for single-module and 
full-system tests. The single-module tests usually test register 
and memory access, and are based on read-write tests. There 

are also single-module initialisation programs which write a 
default configuration to the module and which read back the 
configuration if asked to do so. The more interesting tests 
concern several modules or full systems. They usually use data 
from the generator or a file to load into the modules, loop over 
the data, read back data from readout or counters and compare 
them to simulation. As an example, the “testCtpReadout” 
configures the CTP, loads the CTPIN test memories with data 
which will generate a L1A, starts the trigger generation by 
enabling the CTPIN test memories and removing the BUSY 
from the CTPMI, and reads the data from the CTPCORE 
readout FIFOs and compares them to the expected data from 
simulation. This tests the full chain from CTPIN memory and 
switching matrix, the PIT bus, the CTPCORE LUT and CAM 
processing, as well as the CTP timing. 

Other programs in the test suite are concerned with timing 
alignment which is very important for the Level-1 trigger and 
the experiment. Using data from the CTPIN test memories or 
the trigger inputs with a single candidate per orbit of the LHC 
the CTPIN, CTPMON, and CTPCORE BC Identifier (BCID) 
values can be aligned with respect to the BCID in the 
CTPCORE readout by using the BCID offsets at several stages 
in the processing. Similarly, using data from the MIOCT test 
memories or the muon sectors sending a test pattern, the 
MIOCT, MICTP and MIROD BCID values can be aligned 
with respect to the BCID in the MICTP using the BCID 
offsets in several stages in the modules as well as the MIOCT 
muon sector data pipelines. As a consistency check the 
MIOCT can capture the muon sector data in its test memory 
and compare the muon sector BCID offsets with the MIOCT 
BCID. 

D. High-level Software 
The high-level software provides integration of the 

MUCTPI and CTP into the experiment by supplying 
configuration, control, and monitoring to the ATLAS TDAQ 
control system [7]. 

The trigger configuration is taken from the ATLAS trigger 
database which stores the event selection strategy comprising 
the Level-1 trigger, Level-2 trigger, and Event Filter (Level-3 
trigger). The trigger tool is a graphical user interface which 
allows one to browse and edit all trigger menus in the trigger 
database. The trigger menu compiler automatically translates 
the high-level description of the Level-1 trigger menu to all 
necessary configuration files of the CTP for loading the 
CTPIN switch matrices and the CTPCORE LUTs and CAMs 
[8]. 

In order to be integrated with the ATLAS TDAQ control 
system each module type needs to be described in a schema in 
the ATLAS configuration database. Such a schema contains 
the full configuration data, except for the trigger configuration 
which comes from the trigger database. The schema also 
contains provision for describing the flow of data between 
modules. This allows for an automatic setup of the inputs of 
the BUSY (including S-Link XOFFs) and MUCTPI sectors. A 
plug-in for each module type into the standard RCD controller 
provides the dynamic aspect of control in the sense that during 

<module name=“MICTP” type=“A32” size=“0x00080000” … > 

  <block name=“Readout”> 

    <register name=“MultiplicityConfig” addr=“0x00000200”> 

      <field name=“RamEnable”  mask=“0x00000002”> 

       <value name=“DISABLED” data=“0x00000000”/> 

       <value name=“ENABLED” data=“0x00000002”/> 

    </field> 

…  
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setup the configuration of each module is read from the 
configuration database and written into the module using the 
low-level library. In order to organise the setup in logical sets 
some plug-ins span several modules, e.g. all active MIOCTs of 
the MUCTPI, all active CTPINs of the CTP or the BUSY 
monitoring of the CTP which reads from all CTP modules. 

E. Monitoring 
The monitoring of the MCUTPI and the CTP is based on 

the principle of a producer-consumer model: the producer of 
information is (part of) a plug-in controller which sends data 
to the ATLAS information service (IS) [9], a network-based 
information exchange system. The consumer reads data from 
the IS and analyses and presents the information, usually in 
the form of a graphical user interface developed using Qt. As 
an example, the display of the ATLAS MIOCT Monitoring 
GUI can be seen in Figure 8. It shows the status of all 
MIOCTs of the MUCTPI. 

 

 
Figure 8: The MIOCT Monitoring GUI 

 

 
Figure 9: The MIOCT Rate Monitoring 

Some regular monitoring tasks are run for data quality 
monitoring, e.g. the timing-in of the MUCTPI can be checked 
by reading the per-bunch counters of the MIOCTs and writing 

the data into histograms. In Figure 9 an example can be seen 
for a special run where the muon sectors sent a known test 
pattern. One can clearly see that one of the sectors is wrongly 
aligned in BCID. This was corrected in the configuration 
database and used from the next run onwards. 

V. SUMMARY 
The ATLAS Level-1 MUCTPI and CTP framework for 

testing and operation covers single-module and full-system 
testing, provides integration into the experiment, as well as 
many monitoring facilities. With these the ATLAS Level-1 
central trigger is ready for taking data with beam. 
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