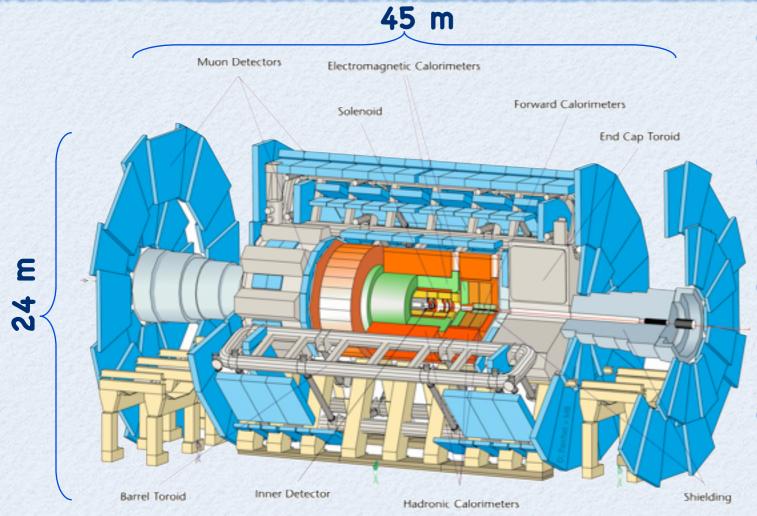


FERMIONS WITH NON-SM COUPLINGS AT ATLAS

V. Erkcan Özcan

University College London

On behalf of the ATLAS Collaboration


OUTLINE

- What is in this talk?
 - Heavy fermions with non-SM-like decays at ATLAS
 - Quarks with FCNC decays:
 Down-type isosinglets from E6GUT
 - Neutrinos with LFV decays:
 Majorana neutrinos from LRSM models
- What is not in this talk?
 - Heavy quarks with SM-like couplings are covered in talk by Daniel Whiteson.
- Everything at 14 TeV...

SOURCES

- Details on various aspects of what is in this presentation can be obtained from:
 - Expected Performance of the ATLAS Experiment Detector, Trigger, Physics, CERN-OPEN-2008-020 [arXiv:0901.0512].
 - The ATLAS Experiment at the CERN Large Hadron Collider, J. Instrum. 3 (2008) S08003.
 - Down type isosinglet quarks in ATLAS, R. Mehdiyev et.al., <u>Eur. Phys. J. C 54 (2008) 507</u> and references therein.
 - E₆ inspired isosinglet quark and the Higgs boson,
 S. Sultansoy & G. Unel, Phys. Lett. B 669 (2008) 39.

ATLAS DETECTOR

7000 tones

- Tracking and muon coverage: $|\eta|<2.5$
- Calorimeters with presamplers: |η|<1.8
- Forward calorimeters: 3.2<|η|<5.9

e/γ energy resolution

 $\sigma/E \approx 10-15\%/\sqrt{E} \oplus ~1\%$

Central jet energy resolution

σ/E ≈ 60%/√E ⊕ 3%

Missing $E_{x,y}$ resolution

 $\sigma \approx 0.55 \text{GeV} \times \sqrt{(\Sigma E_T)}$

Track inverse-P_T resolution

 $\sigma_{\{1/PT\}} \approx 35 \text{TeV}^{-1} \times (1 \oplus 50/P_T)$

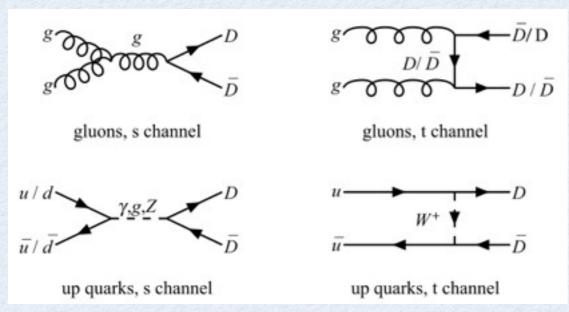
Muon system standalone momentum resolution (with no inner detector)

 $\sigma/P_T < 4-10\%$ up to 1 TeV

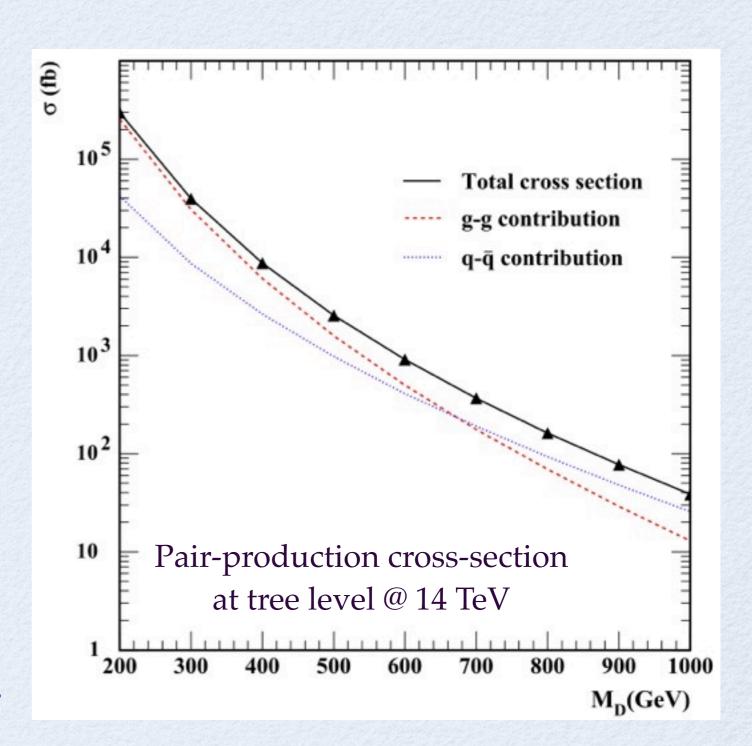
Backup slides: η dependence

ISOSINGLET QUARKS

- E6GUT: Isosinglet vector-like quarks (ISVLQ) with Q=±1/3
- Down-type ISVLQ for each SM family: D, S and B.
- Assume:
 - $m_D < m_S, m_B$
 - intra-family mixing >> inter-family mixing


 Lagrangian relevant to weak interactions of D:

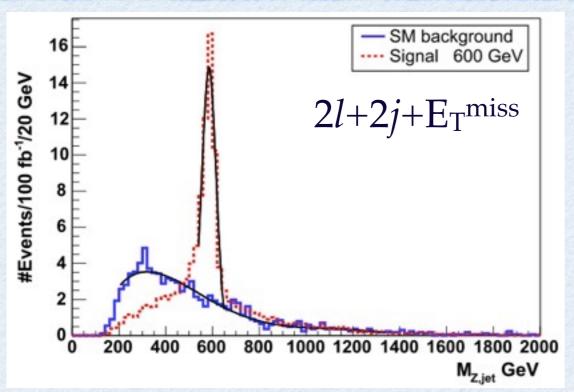
$$\begin{split} L_D &= \frac{\sqrt{4\pi\alpha_{\rm em}}}{2\sqrt{2}\sin\theta_{\rm W}} \left[\bar{u}^\theta\gamma_\alpha(1-\gamma_5)d\cos\phi \right. \\ &+ \left.\bar{u}^\theta\gamma_\alpha(1-\gamma_5)D\sin\phi\right]W^\alpha \\ &- \frac{\sqrt{4\pi\alpha_{\rm em}}}{4\sin\theta_{\rm W}} \left[\frac{\sin\phi\cos\phi}{\cos\theta_{\rm W}}\bar{d}\gamma_\alpha(1-\gamma_5)D\right]Z^\alpha \\ &- \frac{\sqrt{4\pi\alpha_{\rm em}}}{12\cos\theta_{\rm W}\sin\theta_{\rm W}} \\ &\times \left[\bar{D}\gamma_\alpha\left(4\sin^2\theta_{\rm W} - 3\cos^2\phi(1-\gamma_5)\right)D\right. \\ &+ \left.\bar{d}\gamma_\alpha\left(4\sin^2\theta_{\rm W} - 3\cos^2\phi(1-\gamma_5)\right)d\right]Z^\alpha + {\rm h.c.} \end{split}$$

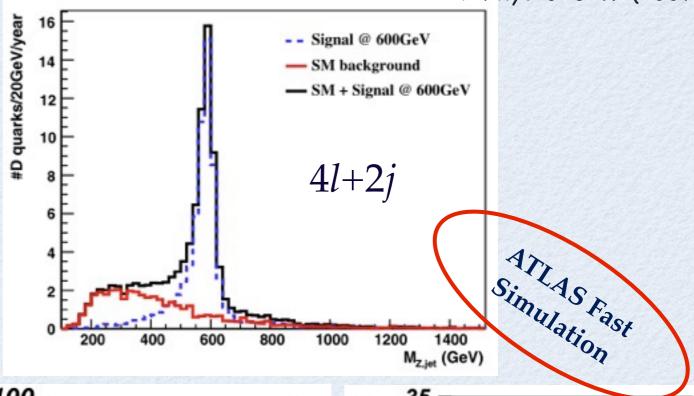

- The mixing angle constrained by 3x4 extension of CKM:
 - |sinΦ|<0.045

PRODUCTION

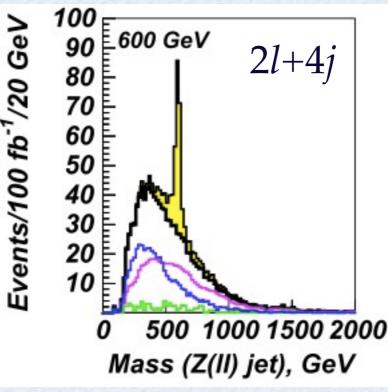
Main pair-production diagrams:

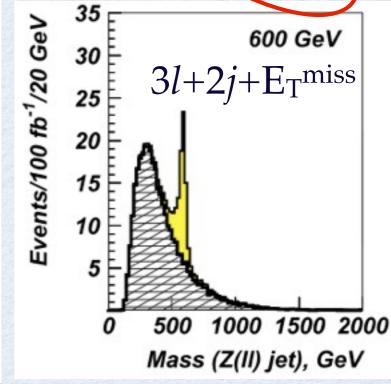
- Contribution from t-channel diagrams negligible.
- Cross-section largely independent of the mixing.


RECONSTRUCTION

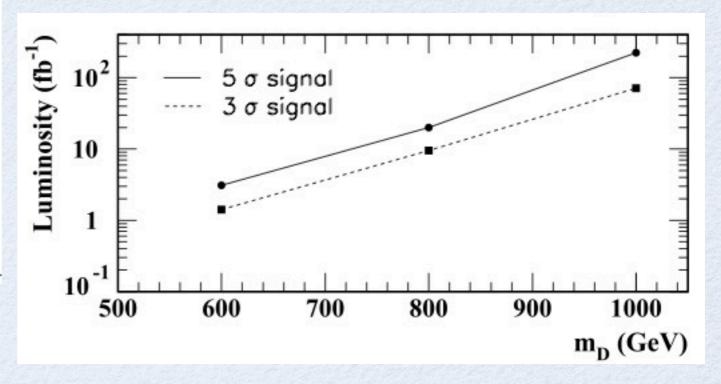

$D\bar{D} ightarrow$	Final state	Expected signal	Decay B.R.	Total B.R.
$ZZdar{d}$ 0.33×0.33	$egin{array}{cccc} Z ightarrow \ell ar{\ell} & Z ightarrow \ell ar{\ell} & Z ightarrow onumber Z ightarrow \ell ar{\ell} & Z ightarrow onumber Z ightarrow \ell ar{\ell} & Z ightarrow q ar{q} & Z ightarrow Q \ar{q} & Z ightarrow $	$4\ell+2\mathrm{jet} \ 2\ell+2\mathrm{jet}+E_T \ 2\ell+4\mathrm{jet}$	0.07×0.07 $2 \times 0.07 \times 0.2$ $2 \times 0.07 \times 0.7$	0.0005 0.0028 0.0107
ZWdu $2 \times 0.66 \times 0.33$	$egin{array}{ccc} Z ightarrow \ell ar{\ell} & W ightarrow l ar{ u} \ Z ightarrow \ell ar{\ell} & W ightarrow q ar{q} \end{array}$	$3\ell + 2 \text{jet} + \cancel{E}_T$ $2\ell + 4 \text{jet}$	$\begin{array}{c} 0.07 \times 0.21 \\ 0.07 \times 0.68 \end{array}$	$0.0065 \\ 0.0211$

- All final states with at least one leptonic Z are studied.
- Highest P_T objects are used in each event:
 - Two hardest jets are taken to be D-quark daughters.
- Cuts slightly vary for different channels, but roughly:
 - $|\eta_{e,\mu,j}|<2.5$, $P_T^{e,\mu}>20$ GeV, $P_T^{j}>80$ GeV
 - $|m_{ll}-90|<20$ GeV, $|m_{lv}^{visible}-80|<20$ GeV, $|m_{jj}-85|<25$ GeV
- Ambiguity in W/Z-jet assignment resolved by looking at min(Δm_D).


RECONSTRUCTED QUARKS


Eur. Phys. J. C 54 (2008) 507 Eur. Phys. J. C 49 (2007) 613

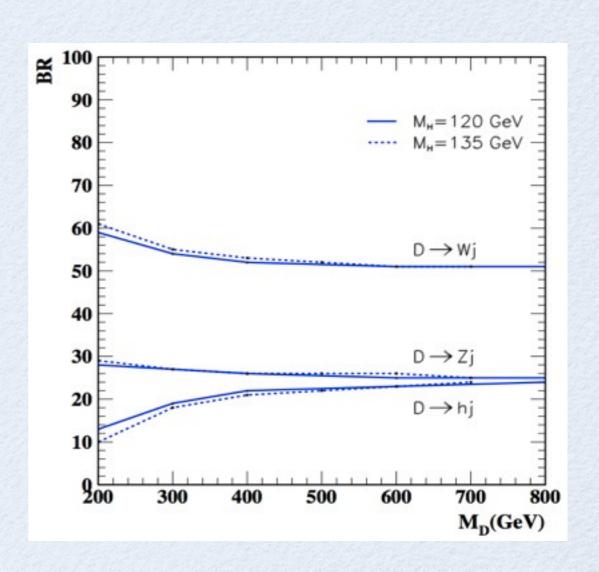
 For all final states, clean signal peaks observed on smooth background shapes.


COMBINED SIGNIFICANCE

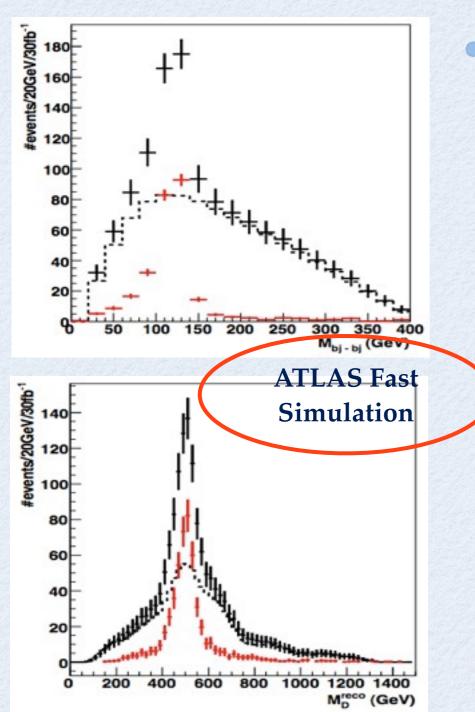
Eur. Phys. J. C 54 (2008) 507

$m_D \; ({ m GeV})$	600	800
$4\ell + 2j$ signal	16	3.7
background	3.0	1.3
$-\ln p$	21.47	4.78
$2\ell + 2j + \not\!\!E_T$ signal	53	19
background	12	13
$-\ln p$	120	15.81
$3\ell + 2j + \not\!\!E_T$ signal	97	18.3
background	24.9	9.0
$-\ln p$	191.4	20.66
$2\ell + 4j$ signal	133	18
background	9	3
$-\ln p$	983	25.3
$-\Sigma \ln p$	1315.9	66.5
combined significance (σ)	51.3	11.3

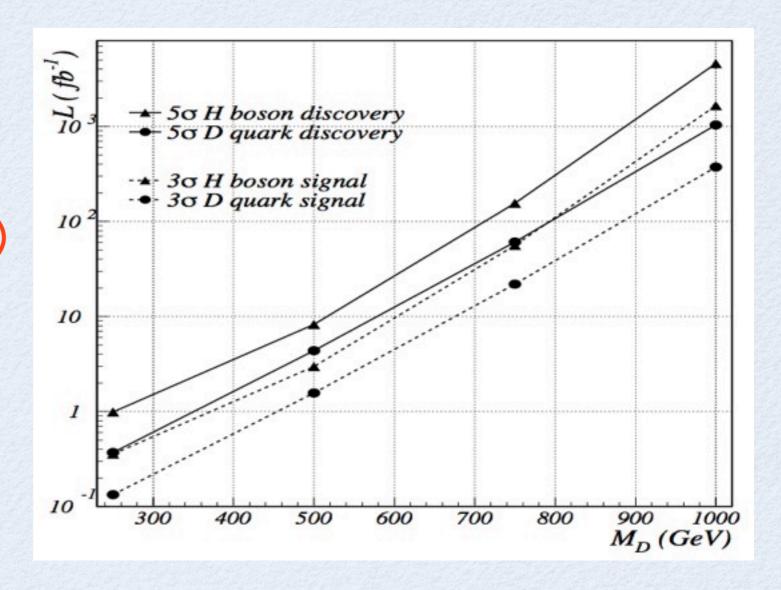
Expected number of signal events
 ≈ 2.8/fb⁻¹ for m_D=600GeV


- Smooth background shape, clear signal peaks, extrapolation down:
 - Up to $m_D \approx 500$ GeV could be within reach with $\approx 1 \text{fb}^{-1}$.

A WORD ON HIGGS

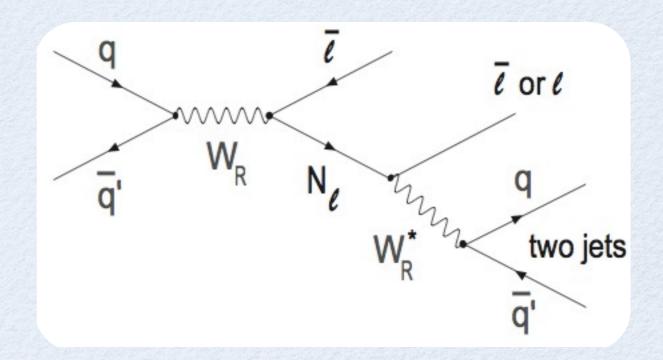

Phys. Lett. B 669 (2008) 39

- If Higgs mechanism is still present and $m_h < m_D$, d-D mixing can lead to D->hd decays.
- For $m_h << m_D$, BR(D->hd)=25%.
- Light Higgs (~120GeV) & D
 quark studied in H_{bb}jW_{jj}j final
 state.
- Similar cuts as ZjWj, but also b-tagging, |cos(θ_{bb})|>-0.8, m_{jj}>90GeV, H_T>800GeV



A WORD ON HIGGS

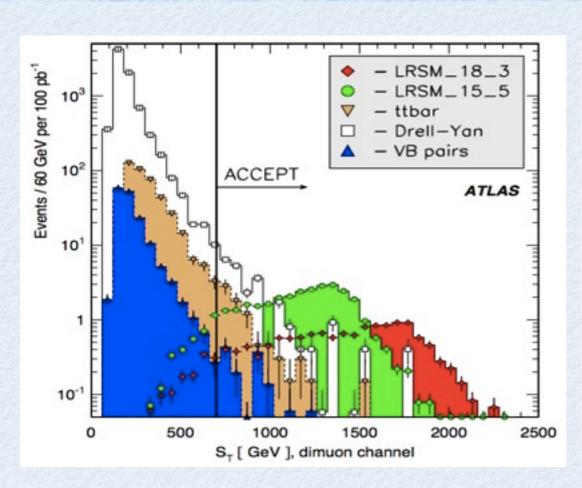
Phys. Lett. B 669 (2008) 39

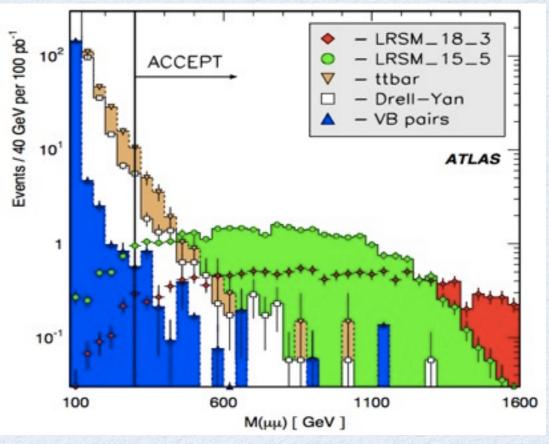


 With only this final state (H_{bb}jW_{jj}j), double discovery could be possible with a few fb⁻¹ for mD≤400 GeV.

MAJORANA NEUTRINOS

- Left-Right Symmetric Models (LRSMs) address non-zero masses of neutrinos and baryogenesis.
 - Introduce 3 new heavy right-handed Majorana neutrinos, new bosons W_R & Z',...
 - Direct searches:
 m(W_R)≥750GeV.
 - W_R can be produced via the Drell-Yan process and decay to heavy neutrinos.


SIGNAL AND BACKGROUNDS

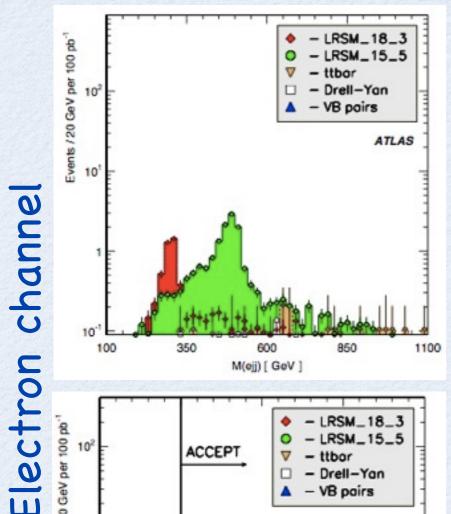

		x-section (pb)			
Sample (l=e,µ)	Generator	no cuts	basic cuts, e-channel	basic cuts, µ-channel	
pp-> W_RX , W_R -> $lljj$ m(W_R , $N_{e,\mu}$)=1800,300 GeV	pythia	LO 0.25	0.088	0.145	
pp-> W_RX , W_R -> $lljj$ m(W_R , $N_{e,\mu}$)=1500,500 GeV	pythia	LO 0.47	0.220	0.328	
pp-> $Z_{II}X$, mll>60GeV P_T^I >10GeV, $ \eta^I $ <2.7	pythia, herwig	NLO 1808	49.8	80.0	
pp->tt, at least one e, μ with $P_T^l>1GeV$	mc@nlo	NLO+NLL 450	3.23	4.17	
pp->VV, V=Z,W, $m_{Z/Y}$ *>20GeV, P_T >10GeV, $ \eta^1 $ <2.8	herwig	NLO 60.9	0.610	0.876	
multi-jet	pythia	108	20.5	0.0	

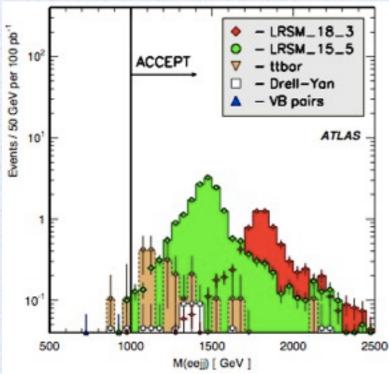
• Basic cuts: 2e or 2 μ well-identified, 2jets with cone0.4, $\Delta R(jet,any\ e)>0.1,\ P_T^{l,j}>20\ GeV,\ |\eta^l|<2.5,\ |\eta^j|<4.5,\ m_{ll}>70\ GeV$

EVENT SELECTION

CERN-OPEN-2008-020

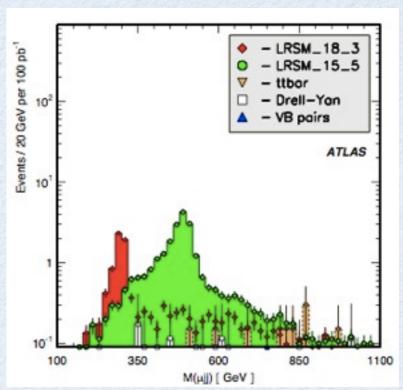
- Reconstruct from 2 highest-P_T jets and leptons
- $S_T>700\,GeV$ (scalar ΣP_T of 2 jets and leptons), $m_{II}>300\,GeV$

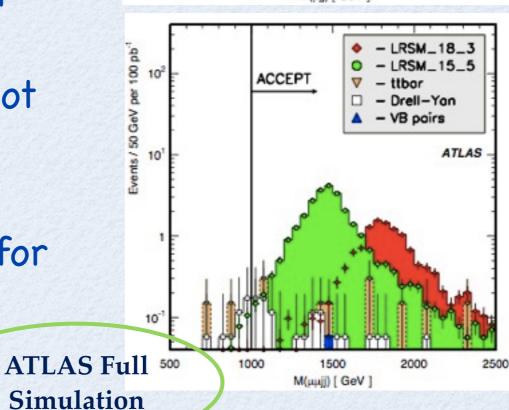

ATLAS Full Simulation


Final signal region: m_{ljj}>100GeV, m_{lljj}>1000GeV

Muon channel

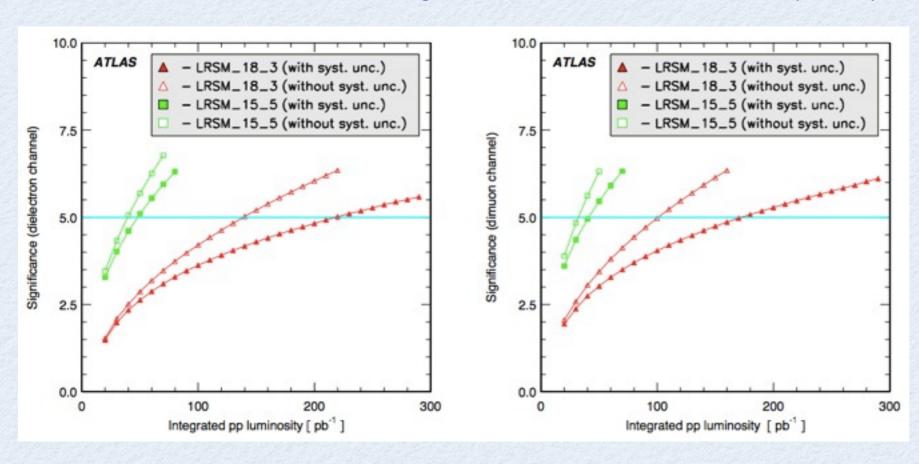
RECONSTRUCTED WR & V


CERN-OPEN-2008-020



- After all cuts, backgrounds are about an order of magnitude smaller.
- 9-45 signal events @ 100pb⁻¹
- Multi-jet background not shown.
 - Can be important for e-channel.

15



RESULTS

CERN-OPEN-2008-020

- Trigger efficiency (single e or µ triggers) ≥ 95%
- Systematics on the background estimation ≈ 40-45%
 - Largest contributors: Integrated luminosity measurement, jet energy scale and resolution, limited MC statistics.
 - Multi-jet background in e-channel & pileup not considered.

5 σ discovery expected at 150pb⁻¹ and 40pb⁻¹ for m(W_R,N_{e,\mu}) = 1800,300 and 1500,500 scenarios respectively.

CONCLUSION

- New heavy fermions will be in the reach of ATLAS starting with the first 100pb⁻¹ of data.
 - With 2010 data at low CM energy, heavy quark searches in FCNCs are likely to improve on Tevatron exclusion limits - discovery at high significance will probably require more data.
 - Heavy neutrino searches more promising. Same-sign leptons 50% of the time: Could further optimize cuts to focus on SS final states if needed.
- Looking forward to the 3rd WS with results from data!

BACKUPS

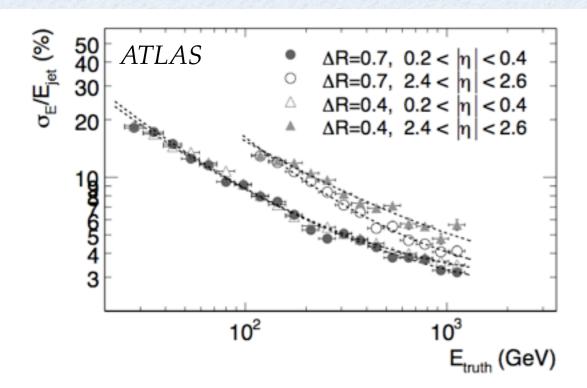
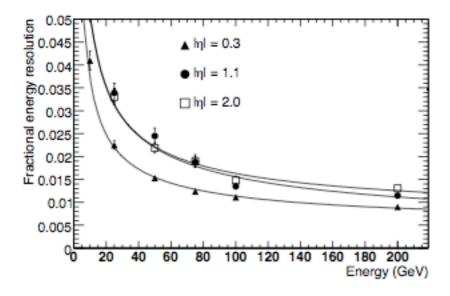
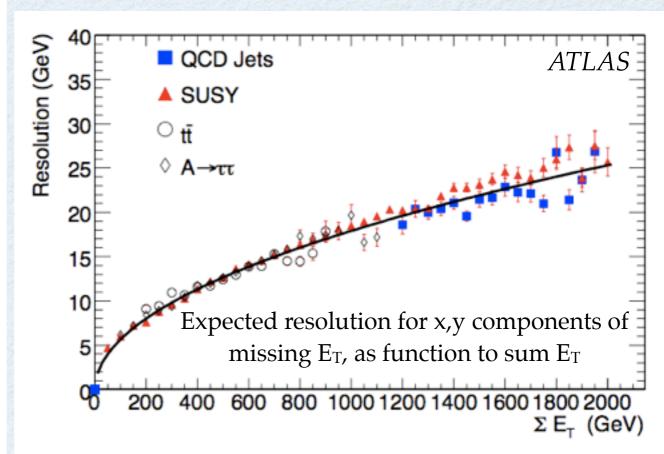
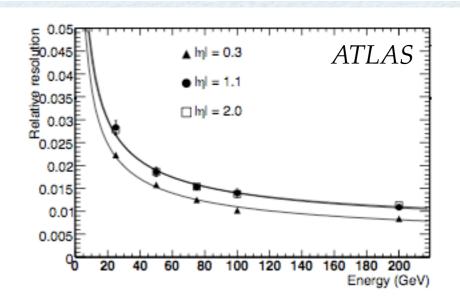


Figure 10.71: Fractional energy resolution for calibrated cone-tower jets reconstructed with

 $\Delta R = 0.7$ and $\Delta R = 0.7$ and $\Delta R = 0.7$ and as a

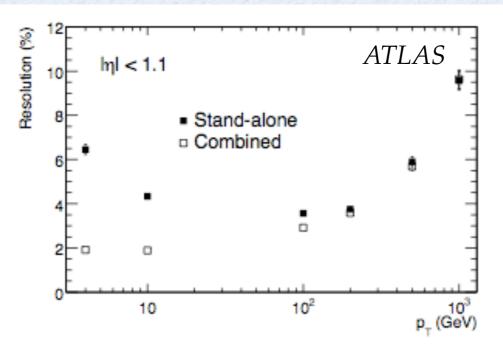

Figure 10.50: Expected relative energy resolution as a function of energy for electrons at $|\eta| = 0.3$, 1.1, and 2.0. The curves represent fits to the points at the same $|\eta|$ by a function containing a stochastic term, a constant term and a noise term.

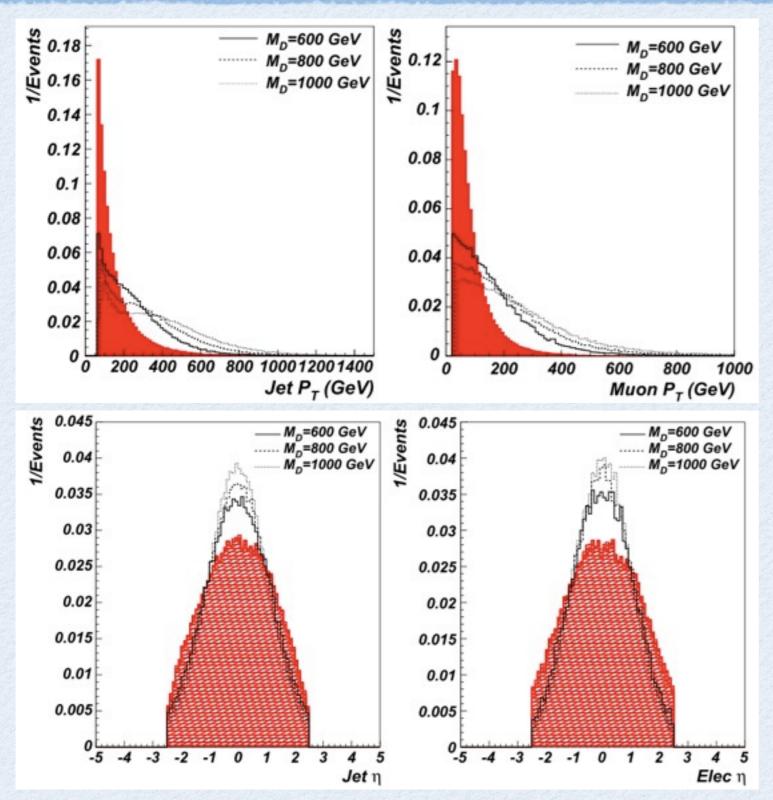
Figure 10.51: Expected relative energy resolution as a function of energy for photons at $|\eta| = 0.3$, 1.1, and 2.0. The curves represent fits to the points at the same η by a function containing a stochastic term, a constant term and a noise term.

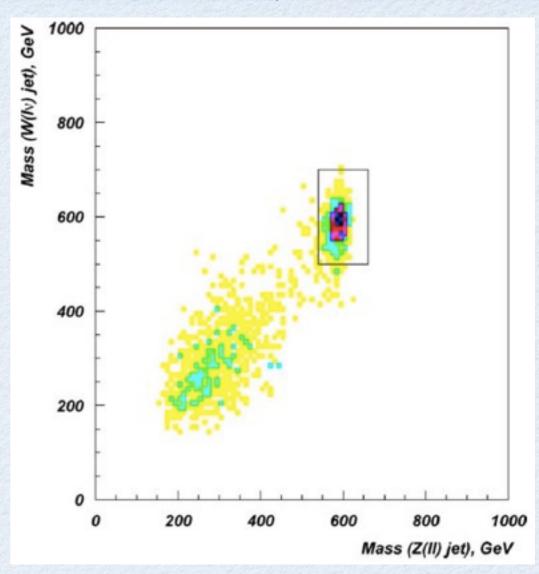
Stand-alone Combined P_T (GeV)

Figure 10.35: Expected stand-alone and combined fractional momentum resolution as a function of p_T for single muons with $|\eta| < 1.1$.

Figure 10.36: Expected stand-alone and combined fractional momentum resolution as a function of p_T for single muons with $|\eta| > 1.7$.

Track parameter	$0.25 < \eta < 0.50$		$1.50 < \eta < 1.75$	
	$\sigma_X(\infty)$	p_X (GeV)	$\sigma_X(\infty)$	p_X (GeV)
Inverse transverse momentum (q/p_T)	0.34 TeV ⁻¹	44	0.41 TeV^{-1}	80
Azimuthal angle (ϕ)	70 μrad	39	92 μrad	49
Polar angle (cot θ)	0.7×10^{-3}	5.0	1.2×10^{-3}	10
Transverse impact parameter (d_0)	10 μm	14	12 μm	20
Longitudinal impact parameter $(z_0 \times \sin \theta)$	91 μm	2.3	71 μm	3.7


Table 3: Expected track-parameter resolutions (RMS) at infinite transverse momentum, $\sigma_X(\infty)$, and transverse momentum, p_X , at which the multiple-scattering contribution equals that from the detector resolution (see Eq. (1)). The momentum and angular resolutions are shown for muons, whereas the impact-parameter resolutions are shown for pions (see text). The values are shown for two η -regions, one in the barrel inner detector where the amount of material is close to its minimum and one in the end-cap where the amount of material is close to its maximum. Isolated, single particles are used with perfect alignment and calibration in order to indicate the optimal performance.


 $\sigma_X(p_T) = \sigma_X(\infty)(1 \oplus p_X/p_T)$

KINEMATICS FOR ISVLQ RECONSTRUCTION

Eur. Phys. J. C 54 (2008) 507

 Various distributions from the ISVLQ analyses (ATLAS fast simulation)