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Abstract

This thesis presents two innovations to geophysical inversion. The first provides a
framework and an algorithm for combining linear deconvolution methods with geo-
statistical interpolation techniques. This allows for sparsely sampled data to aid in
image deblurring problems, or, conversely, noisy and blurred data to aid in sample
interpolation. In order to overcome difficulties arising from high dimensionality, the
solution must be derived in the correct framework and the structure of the problem
must be exploited by an iterative solution algorithm. The effectiveness of the method
is demonstrated first on a synthetic problem involving satellite remotely sensed data,
and then on a real 3-D seismic data set combined with well logs.

The second innovation addresses how to use wavelets in a linear geophysical inverse
problem. Wavelets have lead to great successes in image compression and denoising,
so it is interesting to see what, if anything, they can do for a general linear inverse
problem. It is shown that a simple nonlinear operation of weighting and thresholding
wavelet coefficients can consistently outperform classical linear inverse methods in
terms of mean-square error across a broad range of noise magnitude in the data.
Wavelets allow for an adaptively smoothed solution: smoothed more in uninteresting
regions, less at geologically important transitions.

A third issue is also addressed, somewhat separate from the first two: the correct
manipulation of discrete geophysical data. The theory of fractional splines is intro-
duced, which allows for optimal approximation of real signals on a digital computer.
Using splines, it can be shown that a linear operation on the spline can be equiva-
lently represented by a matrix operating on the coefficients of a certain spline basis
function. The form of the matrix, however, depends completely on the spline basis,
and incorrect discretization of the operator into a matrix can lead to large errors in
the resulting matrix/vector product.

Thesis Supervisor: M. Nafi Toks6z
Title: Professor
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Chapter 1

Introduction

In geophysics one is often faced with the problem of inferring physical properties of

the Earth from indirect noisy measurements. Examples range from inferring sub-

surface petrophysical properties from surface seismic data, to mapping topographic

features via satellite-borne sensors. The process of obtaining information about these

parameters is known alternatively as estimation or inversion. Estimation can be

difficult due to the complicated physical laws governing the observed system, exces-

sive noise in data, or the large size of geophysical data sets. The inherent numerical

inaccuracy of digital computers can also complicate the problem.

This thesis is essentially about geophysical inversion and offers two main contribu-

tions. The first is a method to combine two seemingly different geophysical problems:

deconvolution and interpolation. To link them, they are both posed in the framework

of inverse theory, and then subsequently combined in a single joint inverse problem.

The result is a deconvolution method that integrates blurred data with existing point

samples of some parameter field and geostatistical constraints. Conversely, it can be

viewed as an interpolation method that uses blurred data to constrain the interpo-

lation results away from the point samples. We apply this method to two different

applications, first, to 3-D poststack seismic and well log data (Chapter 3), then to

satellite based remote sensing data in the form of a digital elevation model (DEM)

and global positioning system (GPS) data (Chapter 4). Due to the large size of the

data sets dealt with, standard algorithms cannot be applied. One is required to make



clever use of the structure of the problem along with an efficient iterative solution

method. We use the conjugate gradients algorithm to solve the problem.

The second major contribution of the thesis is the use of wavelets (Meyer, 1992;

Strang and Nguyen, 1997; Mallat, 1998) in solving linear geophysical inverse prob-

lems. In the past 10 years wavelets have shown themselves to be superb for image

compression (DeVore et al., 1992) and denoising (Mallat, 1998). We ask the question

of what (if anything) they can gain in a linear inverse problem. We follow recent

work in abstract estimation theory by Donoho (1995), who has introduced the so-

called wavelet-vaguelette decomposition for solving a certain class of linear inverse

problems. We elaborate on and extend his work in the context of a 1-D geophysical

slowness estimation problem. Our wavelet based strategy is applied to both synthetic

and real examples. For the synthetic problem, wavelet based inversion beats classical

linear inverse methods across a large range of noise magnitudes in the data.

Another goal of this thesis, somewhat disjoint from the first two, is to present

fractional splines, a new class of functions useful for representing and discretizing

continuous functions. The discretization process and correct manipulation of the re-

sulting discrete vectors is often overlooked in the geophysical community. Careless

treatment of these coefficients can needlessly incur error in computer applications.

The theory of fractional splines is presented in Chapter 5, along with a simple appli-

cation of discretizing the derivative operator and operating it on real well log data.

Fractional spline basis functions can also be converted into wavelets. We connect

wavelets and fractional splines on a more rigorous level in Chapter 6. Fractional

spline wavelets inherit all the beneficial properties of the fractional spline basis func-

tions, plus the ability to analyze and synthesize non-stationary signals more efficiently.

These wavelets are used in the wavelet inversion of Chapter 7.

1.1 Outline and contributions

Chapters 2, 5, and 6 of this thesis concentrate on essential background theory nec-

essary for understanding the other chapters. Chapter 2 gives a brief overview of



classical linear statistical estimation theory, which is necessary for Chapters 3, 4, and

7. Chapter 5 presents splines, and Chapter 6, wavelets, both essential for Chapter

7. Chapters 3, 4, and 7 present applications of new inversion methods to geophysical

data, and are the meat of the thesis. A reader with with a solid background in the

material of chapters 2, 5, and 6 is recommended to go directly to the application

chapters.

We list here a brief synopsis of each chapter along with its major contributions to

the thesis as a whole.

Chapter 2: Discrete linear inverse theory

This chapter presents an introduction to discrete linear inverse theory. We follow

the Bayesian point of view (Tarantola, 1987), which specifies a prior probability

distribution on the parameter(s) to be estimated, and then, combined with a likelihood

function, gives the solution as a posterior probability density function. Bayesian

methods require finite dimensional model and data vectors in order to be correctly

posed. Since all applications involve discrete data and operators we limit ourselves

to such finite dimensional system. We also limit ourselves to problems with linear

forward modeling operators. This is sufficient for all applications in the thesis.

The chapter begins by stating the general inference problem, then the Bayesian

inference problem, and then narrows the scope to Bayesian linear inverse problems.

Two frameworks are used to derive a solution to the problem. The first usually is

associated with minimum variance estimation methods and seeks to derive a function

called an estimator that maps data to models. The second framework is usually asso-

ciated with maximum likelihood estimation methods. It searches for a model vector

that minimizes the data misfit, subject to a prior covariance constraint. Under cer-

tain conditions these methods are equivalent, but one may be more computationally

efficient than the other, depending on the relative sizes of model and data vectors.

The second framework is the more versatile one and is used throughout the thesis.



Chapter 3: 3-D geostatistically constrained seismic deconvo-

lution

Deconvolution has been worked on in the geophysical community for the last half

century (Robinson, 1954; Robinson and Trietel, 1980). A variety of linear and non-

linear methods have been applied to produce optimal reflectivity sequences or wavelets

(depending on the application). These methods have been largely applied in a 1-D

sense, where a separate inverse problem is essentially solved sequentially at each seis-

mic trace location; i.e., if a seismic data cube consists of large number of horizontally

correlated seismic traces, nothing in the deconvolution process takes into account the

fact that the underlying reflectivity solution should also be horizontally correlated.

Nor does it honor the existing well data.

Interpolation methods used for geophysical data typically go by the name kriging

(Deutsch and Journel, 1998; Isaaks and Srivastava, 1989), named after the South

African mining engineer, D. Krige, who pioneered the method. Kriging is the domain

of the geostatistics community. They traditionally have derived a solution to the in-

terpolation problem in a minimum variance framework. This produces computational

difficulties that limit the size of the data sets to be interpolated. In the last few years

a few workers (Fomel, 2001) have discovered that the same interpolation problem can

be posed in an alternate, but equivalent, framework. This change of thinking leads

to a way to interpolate large 3-D data sets that, until now, have only been possible

by using approximate kriging methods.

Posing both the deconvolution and kriging problems in this alternate inversion

framework allows them to be combined into a single inverse problem. Using multiple

data sets will then lead to a better solution than using only one of them.

Using a 3-D poststack, post time migrated seismic data set along with velocity

and density logs, we jointly deconvolve for reflectivity under a zero offset seismic

convolution model, while honoring and interpolating the well data.

It is easier to pose the solution of this joint inverse problem than to actually solve

it. The sheer size of 3-D seismic data sets precludes all but a few solution methods.



It is shown that the conjugate gradients algorithm, along with the structure of the

problem, allow for efficient solution.

Chapter 4: Joint deconvolution and interpolation of remote

sensing data

This chapter essentially applies the same mathematical method of Chapter 3 to a

different application: estimating topography jointly from satellite data and point

samples of elevation. A synthetic problem is constructed by taking a real DEM,

blurring it, and adding noise. This is the first data set. Point samples are randomly

extracted from the DEM and noise is added to them to produce the second data set.

This second data set mimics GPS data, which measure elevation at a much higher

resolution than DEM's do. The two data sets are then simultaneously inverted for an

optimal solution. It is shown that the joint solution can be computed efficiently by

the same method as in Chapter 3, and leads to smaller mean square error than using

only one of the data sets by itself.

Chapter 5: Fractional splines and discrete data

Splines are very useful functions for a variety of reasons:

* Approximation

A finite linear combination of spline basis functions can be used to approxi-

mate other, more complicated, functions. The resulting approximation error

can be show to be less for an appropriately chosen spline than for any other

approximating function.

" Continuous( -discrete

Projecting a complicated function or operator onto a spline space allows for

discrete representation of both the function and operator. Thus manipulation

of the spline can be carried out equivalently by discrete operations on its coeffi-

cients. Incorrect discretization can lead large errors when manipulating discrete



data sets.

* Wavelets

Splines basis functions are suitable for creating wavelets, a class of mathematical

functions with additional useful properties.

Fractional splines are a generalization of the traditional integer degree splines

studied in the mathematical community for the last 50 years (Schoenberg, 1946;

Unser, 1999). They allow for optimal representations of a continuous function given

knowledge only of its H6lder continuity.

This chapter first introduces concepts such as Riesz bases and the projection of a

continuous function into a function space spanned by a certain set of basis functions.

It then introduces splines as an ideal basis for the projections. Several candidate

spline basis functions are presented, each with useful mathematical properties. Next,

spline bases are also used to discretize linear operators. An example of taking the

derivative of well data is shown.

Chapter 6: Wavelets

Building upon the material of Chapter 5, this chapter introduces wavelets, functions

capable of analyzing and synthesizing other continuous functions locally in both the

spatial and frequency domains. This property makes them optimal for representing

non-stationary signals, and led to their success in signal compression and denoising.

This chapter is mostly a repetition of the theory presented in Mallat (1998) and

Strang and Nguyen (1997), along with the new theory of fractional splines (Unser and

Blu, 1999, 2000). It attempts to give a clear derivation of all formulas and concepts

needed to fully understand semi-orthogonal spline wavelets basis, and associated filter

banks. Filter banks allow for fast implementations of the wavelet transform on a

digital computer, which is required for applications in Chapter 7.



Chapter 7: Wavelet domain geophysical inversion

In 1995 Donoho presented an exciting new methodology for solving linear inverse

problems known as the wavelet-vaguelette decomposition (WVD). It involves wavelet

transforming the solution of an inverse problem and then thresholding the wavelet

coefficients that lie below some threshold level and then inverse wavelet transforming.

Donoho (1995) theoretically predicts that this nonlinearly thresholded solution will

asymptotically have a smaller mean-square error (MSE) as the noise level decreases

than solutions obtained via classical regularized inverse methods.

This chapter presents and expands upon Donoho's WVD method. The method

is presented in a linear algebraic formulation, which allows for a more intuitive and

understandable derivation. It is applied to the 1-D linear inverse problem of estimat-

ing a slowness model from noisy traveltime data, simulating the VSP experiment of

exploration seismology. MSE error of the WVD method is compared to the results

from classical regularized inverse methods across a large range of noise magnitudes

in the data.

Chapter 8: Conclusions

In this chapter we summarize the the major contributions and limitations of the

thesis. We also postulate future directions for the research.



Chapter 2

Survey of linear inverse theory

Most techniques used by geophysicists to infer information about the subsurface can

be posed as special cases of inverse theory. Examples include deconvolution, travel-

time estimation, and the interpolation methods commonly used by the geostatistical

community. In this chapter we will limit ourselves to discrete inverse problems involv-

ing linear forward modeling operators. We derive classical linear inverse operators to

solve the problem.

Inversion has been well studied in and out of the geophysical community on

both computational and theoretical levels. Books such as Tarantola (1987); Mo-

rozov (1993); Parker (1994); Bertero and Boccacci (1998); Vogel (2002) lay out the

theory in detail. We do not attempt to be rigorous here, but rather give an overview

and a few essential results as a background for later chapters.

We begin this chapter by describing the general Bayesian inference problem, which

involves estimating a probabilistic model of reality from a probabilistic observation of

the world. We then narrow the inference problem down to Bayesian linear inversion,

where the model and observation are vectors of real numbers related to each other

by some linear forward operator. We then derive two frameworks for solving such

a problem. The benefits and drawbacks of each framework are explained. We do

not describe solution algorithms, but rather refer the reader to the above mentioned

sources.



2.1 Bayesian inference

We define inference as the procedure of observing some event and obtaining infor-

mation from it. More specifically, it involves the following system:

1. A set, F, of possible models of reality which may exist.

2. A set, Z, of possible observations called data.

3. A relation, H, that associates models in Y with data in Z.

Solving the inference problem involves taking a particular Zobs E Z that we observe

and trying to infer its associated element(s) f c Y. We define the relation H to be a

subset of the Cartesian product P = F x Z (Naylor and Sell, 1982):

H = {(f, z) : f is related to z}. (2.1)

The solution to the inference problem is then the set of elements

{f C F : (f, zobS) c H}. (2.2)

The inference problem can be generalized to Bayesian inference by assigning a

probability to each of the elements of both Y and Z. In order to assign probability,

the elements of these sets must be finite dimensional random vectors.

We will denote such vectors by boldface italic letters: f, g,. .. , etc. Realizations

of random vectors will be identified by boldface Roman letters: f, g, ... , etc. Indi-

vidual coordinates of any of the above vector objects will be given by the equivalent

non-boldface font with a subscript, i.e. fi, f2, . . . , etc. We let the sets of events

corresponding to the model and data spaces be denoted 3 and 3, respectively. Vec-

tor valued probabilistic events from these sets will be denoted by boldface frakture

letters: Jg,... , etc.

Restricting ourselves to such finite dimensional sets we state the basic axioms of

probability (Papoulis, 1991; Willsky et al., 1999) in terms of the set 93 = 3 x 3 and



arbitrary events1 f, 3 C T:

P(O)

if fn3 = {0} then P(f U3)

= 1,

= P(f) + P(3),

where P : 93 - R+ is a functional that returns the probability of a given event.

The conditional probability of an event J given another event 3 is defined through

the following relationship:

(2.6)P(f n3)
P( 3)

Similarly, the conditional probability of 3 given f is defined as

P W-P(3 n j)
P(3|J) = ( )P(f)

(2.7)

From these equations we can see that

P(f n 3) = P(3)P(3) = P(3|P( (2.8)

We also can combine Equation 2.6 and 2.7 to get

P(1)=P(3|f)P(f)PP43) = . (2.9)
P(3)

Furthermore, if we let fj be an element in a partition, {fi, f2, - , fN}, of 93, and 3 an

arbitrary event, then Equation 2.9 can be extended (Papoulis, 1991, p. 30) to

P(fj|3) = P(3 If) P(fb) (2.10)
+ P( 3 |f2 )P(f 2 )+ - --+ P( 3 |fN)P(N)

This equation is known as Bayes rule and is of central importance to inverse theory.

'An event here will be a partial or full realization of vector f E 93, i.e. a realization s E P can

be an event but so can the realization of just a subset of its coordinates, such as f or z.

P(f) > 0, (2.3)

(2.4)

(2.5)

P(31f1)P(fI)



Now we let the event fj in Equation 2.10 be f, the realization of a finite dimensional

model space vector, and the event 3 be z, an observation of an element of the data

space. For the purposes of this thesis we restrict each coordinate, fj, in the random

vector f to be a random variable defined over the real numbers with a continuous

probability density function (PDF). We denote the joint PDF of f as pf(f). These

specifications allow us to represent Bayes rule (Equation 2.10) in terms of PDF's

(Tarantola, 1987):

pzif(z f)pf (f)
priz(flz) = 0 PZf .fPff (2.11)

ff pzif(zlf)pf(f)df 

Noticing that f_"0 pzIf(zIf)pf(f)df = pz(z) we can also write the equivalent of Equa-

tion 2.8:

Pf,z(f, z) = Pf 1z(fIZ)Pz(Z) = Pzif (ZIf)Pf (f) (2.12)

PzIf(z f) is known as the likelihood function and is only a PDF for a given vector

f. pf(f) and pfiz(flz) are known as the prior and posterior PDF's, respectively.

Solution to the estimation problem involves calculating some statistic of pfIz(f1z).

This may be its maximal value but also can be another statistic such as its mean

value.

It should be noted that for geophysicists the elements of F are often continuous

(infinite dimensional) petrophysical parameter fields, f (x), defined over real Euclidean

space, x E R. The elements of Z are also often continuous fields, z(x'), defined on

another Euclidean space x' C R'. d and d' usually range from 1 to 4 spatio-temporal

dimensions. Such a system does not fit into the Bayesian framework 2 of equation

2.11. To assign probability to such geophysical parameter fields, we must discretize

the continuous function over a finite interval to obtain finite dimensional model and

2One can define stochastic processes, the infinite dimensional analog to random vectors, in
an infinite dimensional space. By making use of the second moments of the stochastic processes

one can still define estimation of continuous functions with prior models. The method is known as
stochastic inversion. It is, however, limited to linear forward operators. Interested readers are

referred to Franklin (1970) and Prenter and Vogel (1985).



data spaces. Discretization is also essential for manipulating elements of T or Z on

a computer. The process of discretization is outlined in Chapter 5.

2.2 Bayesian linear inversion

For the situations that will interest us we have the relation between elements of F

and Z as

z = Hf +n, (2.13)

where H : Y 4 Z is a linear operator (a matrix) and n is a vector of zero mean white

noises. n models the inherent inaccuracy of the operator H as well as independent

processes in the system unrelated to the operator H or the vector f.

Given an observed vector Zbs, the Bayesian linear inverse problem involves finding

the single most probable vector, fest, called the maximum a-posteriori (MAP)

estimate, that satisfies Equation 2.13.

In what follows we will restrict the PDF of both f, n, and z to be Gaussian.

Using f as an example, Gaussian vector takes the form:

p(f) = d Cf 1/2 exp ( fTC,-f . (2.14)
27TN/ det Cr/22

This is done for two reasons. The derivation of a solution to the linear inverse problem

is much simpler in the Gaussian case, and, empirical PDF's encountered in many

applications are well approximated by a Gaussian distribution.

There are basically two methodologies that lead to fest. The first seeks an inverse

operator of H that produces statistically optimal solutions. The second optimizes an

objective function for a best fitting solution f. Each of these methods has its benefits

and drawbacks which we will elaborate on.

3Discrete "white noise" is a vector of independent random variables.



2.2.1 Method 1

This first solution method usually goes by the name of minimum variance estimation.

It involves constructing a function, Ht, called the estimator that maps vectors in Z

back into F. Even if H is a linear forward modeling operator, Ht is not restricted to

be linear4 . We will restrict it here to be a linear matrix operator Ht, and we have

f = Htz + e. (2.15)

e is another random vector, called the error, measuring the inaccuracy of the inverse

operator. Rearranging Equation 2.15, we have

e = f - Htz. (2.16)

We have the PDF of both z and f; it remains to find the inverse operator Ht. This

is done by minimizing the expected value of some cost function, C(.), of e over all

possible matrix operators A:

Ht = argminE[C(e)]. (2.17)
A

= arg min E [C(f - Az)] (2.18)
A

arg min C (f - Az)pf,z (f, z) df dz (2.19)

Minimizing different cost functions will give different solutions. The most conve-

nient cost functions to minimize are weighted 4, norms to the p power. Minimizing

an 1 norm leads to the median value of the posterior PDF of fest; the f 2 norm leads

to the mean value; the t leads to the mid-range (Tarantola, 1987, p. 18). Which

norm to use is an interesting question. To answer this we first notice that as long

as Ht is a matrix operator and f is a Gaussian random vector, e will tend to have

a Gaussian distribution regardless of the PDF defined on z. This is because linear

4The term "linear" in linear inversion pertains to the forward modeling operator. We show

in Chapter 7 that simple nonlinear estimators for linear inverse problems can outperform linear

estimators when the model space is poorly approximated as a stationary Gaussian distribution.



combinations of any random variables of finite variance tends towards a Gaussian

distribution. Therefore the 12 norm is the most natural, leading to the mean of the

posterior PDF. If Ht is not linear, or the prior PDF non-Gaussian, the posterior PDF

may be very far from Gaussian and it is hard to tell what norm to minimize.

The easiest way to obtain the estimator is to do it point-wise for each row of Ht.

Denoting the jth row as h, and rewriting Equation 2.16 in the scalar random variable

case, we have

e3 = f3 - ht z. (2.20)

To estimate h we must minimize the expected value of a scalar random variable

cost function of e3. In this scalar case the f, cost functions correspond to absolute

moments of ej (Papoulis, 1991). The expected cost of Equation 2.20 is

E [C(ef)] = C(eJ)pfz(fj, z)dfj dz. (2.21)

Assuming, for the moment, that f3 and z have zero mean, we use an e2 cost

function and minimize variance over all vectors a:

h = argminE[C(ej)) (2.22)
a,

= arg min E [(fl - zT a) 2] (2.23)
a,

arg min E [;f) 2 + T a- 2 fzaj. (2.24)
a,

arg min (E [(fj) 2 ] + af E [zzT] a3 - 2E [fjzT] a3) (2.25)
a,

= arg min of + af Cza, - 2a cf,z), (2.26)

where cf,,z is the cross-covariance between f3 and z. The minimizing vector h will

satisfy

0= (c2 + aT'Cza3 - 2a ci,,z) (2.27)

= 2Czaj - 2 cf,,z (2.28)



This leads us to the solution

ht = CTzC- 1
J f3 , z (2.29)

This vector goes into the jth row of Ht. Proceeding in the same way for all rows we

arrive at the estimator for the Bayesian linear inverse problem:

Ht = Cf,z Czl1 . (2.30)

This operator can be applied to any observed vector to obtain the solution:

(2.31)fest Cf,zCzazoob.

If we let E [f] = E [n] = 0, and assume that E [fnT] = 0, we can establish the

following equalities:

= E [f z T ]

= E [f (Hf + n)T]

- E [f f' H T]

= Cf HT

(2.32)

(2.33)

(2.34)

(2.35)

and

Cz - E [zzT]

- E [(Hf + n)(Hf + n)T]

- E [(Hf f T HT + nnT)]

- (HCf HT + Cn).

(2.36)

(2.37)

(2.38)

(2.39)

Plugging Equation 2.35 and 2.39 into Equation 2.31 we obtain

fest = C3 HT(HCf HT + C)-zS. (2.40

Cf,z

(2.40)



If f has a known mean, mf, we can incorporate it into Equation 2.40 as

fest = mf + Cf HT(HCf HT + Cn)- 1 (zobs - Hmf). (2.41)

In looking at Equation 2.41 we see a strength of the methodology: it can still solve

an inverse problem in the case of no measurement error n. This is useful in applica-

tions such as exact interpolation of data, a.k.a. kriging (Deutsch and Journel, 1998).

Method 2, below, cannot do this.

From the above derivation, however, we see that method 1 is a rather obtuse way

of estimating a vector. When the PDF's of n or f are non-Gaussian, or the operator

H nonlinear, it is not clear what kind of cost function to minimize, nor whether an

estimator H will even exist (Willsky et al., 1999). We will overcome these ambiguities

with method 2.

2.2.2 Method 2

This methodology is usually presented with maximum likelihood inverse methods. We

assume for the moment that f is not stochastic. Equation 2.13 then becomes

z = Hf + n. (2.42)

Rearranging Equation 2.13 then gives

n = z - Hf. (2.43)

For a given vector f the PDF of n is the same as the PDF of z - Hf, which is the

likelihood function PzIf(zIf).

The maximum likelihood solution to the inverse problem would be to find the

maximum of pzf(z~f). Since n is a Gaussian random vector, it has the form

PZif(z~f) 2 rN/2de 1/2 exp - (z - Hf)T C;I (z - Hf) . (2.44)



Maximization of this function corresponds to the minimization of its exponent,

which happens to be a weighted e2 norm to the second power:

IC-1/ 2 (z - Hf) =2  (z - Hf)T C- 1 (z - Hf) (2.45)

= TC-Z - 2fTHTCnz +fTHTC-1Hf. (2.46)

This is the objective function that we must minimize. The minimum can be found

by taking the derivative and setting the result to zero:

S[z TC 1z - 2fTHTC-lz + fTHTC- Hf] = 0 (2.47)
Of

-2HTC-z + 2HTC-Hf = 0 (2.48)

HTCnHf = HTC-lz (2.49)

This relationship gives us the maximum likelihood solution:

fest = (HTC nH)l HTC zb,. (2.50)

This equation may give rise to a noise corrupted solution, or to a non-unique solution,

depending on the operator H. Another constraint may be required. The Bayesian

solution offers this constraint in the form of the prior PDF.

We can induce a smooth prior on f by saying that a differencing operator acting

on it produces white noise:

n' =L f. (2.51)

The covariance of f (assuming zero mean) is then

C = E IL-'n'n' TL -T (2.52)

= L -E n'nT] L-T (2.53)

= 2 o(LT-L)- (2.54)



We can use the PDF, pnt(n'), to represent f. Multiplying this PDF times the likeli-

hood function of Equation 2.11 brings us back to the Bayesian solution:

pf IZ(f Iz) = k pn(n)pn, (n'), (2.55)

where k incorporates the denominator of Equation 2.11.

The joint exponent of this posterior PDF has the form of two f2 norms added

together:

[IC;1/2 (z - Hf)/ f 2 + ||C.i/2Lf1| 2| (2.56)

The solution is then the minimizing vector:

fest = arg min [|C;1/2 (z - Ha) 112 + |C 1/2La . (2.57)

We expand this equation, take the derivative with respect to a, and set the result

equal to zero, as was done above. This leads to the our solution:

fest = (HTC;1H + Cfj-)l HT C -zbs. (2.58)

A known mean can also be included in this equation as

feat = mf + (HT Cn1H + Cf 1)- HT C --I (Z,b - Hmf). (2.59)

This solution is equivalent to Equation 2.41. Which equation to use depends on the

size of the vectors f and z. Letting M be the length of the z and N be the length of

the f, Daniel (1997) shows that 2.41 is more efficiently solved when M << N. 2.59

is more efficient when N << M. This will be the case in chapters 3 and 4 where

multiple data sets are simultaneously inverted.

The framework of Method 1 can be used to derive linear solutions to nonlinear

problems, but, in general, this tends to be intractable and suboptimal. Method 2, on

the other hand, extends easily to nonlinear forward operators. All that is needed is a



PDF defined on the data.



Chapter 3

3-D geostatistically constrained

seismic deconvolutiont

In this chapter we simultaneously solve two inverse problems: deconvolution and

interpolation. The specific application is one useful in reservoir characterization:

integrating poststack seismic data with available well logs for an optimal 3-D image

of subsurface reflectivity.

3.1 Introduction

Seismic deconvolution has been used to improve temporal resolution of seismic data

for the last 50 years (Robinson, 1954; Robinson and Trietel, 1980; Saggaf and Robin-

son, 2000). Typical deconvolution methods operate on a seismic volume trace-by-

trace. Lateral consistency between adjacent traces is usually not enforced or only

done so in ad-hoc manners. Lavielle (1991), Idier and Goussard (1993), and Kaare-

sen and Taxt (1998) all have used a Bernoulli-Gaussian probability distribution to

model the horizontal correlation seen in geological structures. They then posed mul-

titrace deconvolution as a Bayesian inverse problem and used this probabilistic model

as a prior. Their choice of a prior, however, requires computationally intensive Monte

tThis chapter was submitted to Geophysics.



Carlo algorithms to estimate a solution. Also, they did not incorporate well data in

their inversion schemes.

Geostatistics is used to analyze the multi-dimensional correlation structure of a

petrophysical parameter field. This information can then be used to interpolate iso-

lated measurements of the parameters, such as well data, and provide error estimates

on the interpolated values. Geostatistical interpolation usually goes by the name of

kriging. Examples of kriging applied to well data abound (Gorell, 1995). Cokriging

is another geostatistical technique that allows the incorporation of secondary vari-

ables as constraints on the estimation of a primary variable by assuming a statistical

relationship between the two variables. Doyen (1988) used cokriging to extrapolate

porosity in wells constrained to seismic data. Xu et al. (1992) used it to combine well

and seismic data for mapping the top of a geologic structure. Although geostatistical

methods make use of seismic and well data, they do not incorporate physical rela-

tionships between the seismic data and the estimated parameter. Some workers have

attempted to address this problem. Haas and Dubrule (1994) provide a geostatisti-

cally based method for estimating a field of acoustic impedance from poststack seismic

data by sequentially kriging well data and performing 1-D seismic inversion. Most

notably, Eide et al. (2002) present a unified statistical methodology for integrating

various well data with poststack seismic data by casting it in a Bayesian framework.

They concentrate, however, on sampling the posterior rather than maximizing it, and

are constrained by the computational cost of Monte Carlo sampling methods.

This chapter presents a joint linear inversion method that combines both de-

convolution and geostatistical interpolation in a single framework. The statistical

formulation is similar to that Eide et al. (2002) but provides the maximum of the

posterior probability function, rather than samples of it. Being linear, it is compu-

tationally more efficient than Monte Carlo methods. Applying this method results

in a statistically optimal estimate of 2-D or 3-D reflectivity constrained by both well

and seismic data. Depending on the setting of adjustable parameters we can arrive

at kriging, damped trace-by-trace deconvolution, laterally smoothed deconvolution,

and joint deconvolution/kriging as special cases.



We begin by first describing the seismic and well data we use. We follow this with

a concise presentation of the inversion method we use to combine these data sets.

We then elaborate on how to set adjustable parameters in the inversion. We next

discuss the estimation of a seismic wavelet from the data, a step necessary before any

deconvolution is applied. Finally we apply the joint inversion method to the field

data sets and discuss the results.

3.2 The field data

In this work we will use both a 2-D and 3-D seismic data set, each cut out of the

same larger volume. The seismic data is a RAP-DMO migrated poststack volume

with a sampling interval of 4 ms. For a detailed description of the this data set and

its geological environment see Al-Moqbel et al. (2002).

Poststack data ideally means that previous processing (such as migration and

stacking) has put the seismic data in a form such that the 1-D convolutional seismic

model (Sengbush et al., 1960) holds. Thus our observed seismic data is assumed to be

the result of a one dimensional linear operation (a convolution) of a seismic wavelet

on a reflectivity sequence.

We plot the 3-D subvolume in Figure 3-1. The negative is plotted because we

observe that positive values of reflectivity in the wells correspond to negative values in

the seismic data. Plotting the negative will facilitate easier comparison to reflectivity

obtained from inversion. The blank area at the top of the data is due to a later

flattening of the seismic data along a horizon. The flattening pushes some of the

seismic data out of the cube which is then not used when we perform inversion;

therefore, we do not show it here. The flattened 3-D subvolume is shown in Figure

3-2. The flattening is done along a horizon corresponding to a known reservoir.

After performing inversion the resulting reflectivity field is subsequently unflattened

for comparison with the unflattened seismic.

The seismic subvolume includes 7 wells as illustrated in Figure 3-3. The 2-D

seismic section intersects the 3-D subvolume at crossline 164 and contains one well
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Figure 3-1: 3-D subvolume of field seismic data
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Figure 3-3: Reflectivity well data in unflattened 3-D subvolume.

well locations are obtained by taking existing velocity and density well logs measured

in depth and converting them into reflectivity sequences measured in time. This

reflectivity well data is correspondingly adjusted in time when the seismic data is

flattened. Adjusting the logs with the flattened seismic data allows them to be inter-

polated along linear trends. Standard geostatistical interpolation techniques require

this. Flattening the seismic data provides a simple solution to the problem of mod-

eling non-horizontal layering in the Earth. No complicated statistical prior models

like those used in Lavielle (1991) are required in the inversion below. Subsequent

unflattening then restores the nonlinear structure to the estimated reflectivity field.

This might present a problem if pinch-outs or faults are present but these were not

observed in our seismic data.

3.3 Joint inversion

We present here a condensed version of the joint inversion methodology presented

in Chapter 2. We refer the reader to that source for theoretical and computational



details.

We describe the relationship between observed seismic and reflectivity by the

following linear equation:

s - Hf + nH, (3.1)

where the discrete vector f represents either a 2-D or 3-D reflectivity field, s represents

the 2-D or 3-D field of seismic data, and H is a seismic convolution operator that

takes each reflectivity trace measured in time and convolves it with a seismic wavelet

h. nH represents inaccuracies in the operator H, errors in previous processing steps,

and noise in the data collection system. We assume nH to be a vector of Gaussian

white noise with variance cr. Solving Equation 4.1 for f is ill-posed (Tikhonov and

Arsenin, 1977). Without constraints, the solution may be highly contaminated with

noise.

Another linear operator relates observed reflectivity well data, d, to the reflectivity

field:

d = Pf + np. (3.2)

P is the "picking" operator that samples the field at measurement locations. In this

discrete linear equation it has the form of a subset of rows of the identity matrix. P

is not an invertible operator and no geostatistical interpolation can be done unless

other constraints are imposed. np is Gaussian white noise vector with variance a.

Likelihood functions (Tarantola, 1987) can be defined for both the seismic and

well data through Equations 4.1 and 4.3, and the Gaussian probability distributions

of the noise terms, nH and np:

11
Lk(slf)= N exp 2 (s - Hf)T(s - Hf) , (3.3)

(2 ) 2 2H
1 [1

Lk(dIf) = exp 2 (d - Pf)T(d - Pf). (3.4)
(2 p) 2 p- [



These functions are probability distributions only for fixed f.

The solution of a maximum likelihood inverse problem involves multiplying to-

gether equations 3.3 and 3.4 to get

Lk(fIs, d) = k' Lk(sIf)Lk(dlf), (3.5)

and then maximizing over f. k' is a normalization constant. Depending on the form of

equation 3.5, there may be more than one vector f that maximizes, or the maximum

might be highly influenced by the noise. In order to overcome the ill-posedness of

such an inverse problem, we define an a-priori Gaussian probability distribution on f:

Pr(f) 1 exp (fTL T Lf) . (3.6)
(27r 2) Ndet((L T L)- 1) 2

The effect of this term on the deconvolution will be to damp out the noise in the

solution as well as to impose horizontal geostatistical correlation on the resulting

reflectivity field. Using this term in conjunction with the picking operator allows for

kriging. We note that kriging is traditionally not posed in this manner. It is usually

defined in the minimum variance framework (Deutsch and Journel, 1998). We use

the maximum likelihood framework for computational reasons.

Including Equation 3.6 in the product of Equation 3.5, we arrive at the posterior

probability density function (Tarantola, 1987):

Pr(fIs, d) = k Lk(slf)Lk(dlf)Pr(f), (3.7)

where k, again, is a normalizing constant.

Equation 3.7 is a joint Gaussian probability density function with the following

exponent:

1 1 (s - Hf)T(s - Hf)+ ( - Pf)T(d - Pf) + fTLTLf). (3.8)
2 \o op L

Maximizing Equation 3.7 involves minimizing the negative of this exponent. Taking



the derivative of Equation 3.8 with respect to f and setting the result equal to 0 leads

to the joint normal equations:

( HTH + 2pTp + 2 L LTL) f 2 HTS + pTd. (3.9)
H P L H P

A b

Solving this equation for f gives the vector that maximizes the posterior probability.

2 2
UH expresses the degree of uncertainty in the seismic data and u expresses the degree

of uncertainty in the observed well data. or 2 can be interpreted as saying how much

smoothness we wish to impose on the resulting reflectivity field.

To solve our joint inverse problem we must set the o.2 's and numerically perform

the equivalent of

f = A -b. (3.10)

The size of the hypothetical A matrix precludes all but a few methods of solution.

The matrix would be too large to store on a computer, let alone invert. It is very

sparse, though, and can be operated very efficiently. This leads us to choose an

iterative method of solution. The method we use is the conjugate gradients algorithm

(Schneider, 2000).

3.3.1 Setting L, a, and the o's

The matrix L in Equation 3.6 is related to the covariance matrix, C, traditionally

used in geostatistics. In fact, C = (LTL)- 1 . L usually has the form of a differencing

operator. To make a full connection to geostatistics we need to define an L that has

a well defined associated covariance matrix used by geostatisticians. In 1-D such a

matrix exists. We define

L I-D (3.11)
aL v'2 a '



where D is a first (forward) differencing matrix and I is the identity matrix. In the

limit as the discretization length goes to zero, LTL is the inverse of the exponential

covariance operator:

2 Ix-' (3.12
C(x, X') = ULe a (3.12)

where a is the correlation length of the random field. In this work we define an L

in two horizontal directions. Unfortunately this does not lead to the 2-D exponential

covariance function. It does, however, give an associated covariance function with a

correlation length that is controlled by the a parameter. The inversion results below

give evidence of this.

We define covariance structure only in horizontal directions because we expect

correlated geological structures in those directions. From the seismic data we empiri-

cally estimate a correlation length of a = 200 in each horizontal direction. We assume

that this length is indicative of the correlation length of underlying reflectivity field.

We impose no correlation structure on reflectivity in the vertical direction.

In order to estimate the seismic noise level, U, we use the amplitude spectrum

of a seismic trace at high frequencies. We assume that this energy in the seismic

data at high frequencies is the noise in the system (see Figure 3-5). Inverse Fourier

transforming the power spectrum of the noise gives the covariance function. The

value of the covariance function at zero lag is oH. By this method we obtain the

value U2 1.05 x 106 from the seismic data. This value is used in the inversion

described below. When performing only kriging we set o =- oo in order to disregard

the seismic data.

It can be safely assumed that the well data is of much higher accuracy than the

seismic data. Therefore o? should be much smaller than or. As U 1-4 0 we have

noise free well data. In this work we set o?2 = 7.65 x 10-7 for most results which, for

all practical purposes, says that the well data should be exactly reproduced in the

solution of the joint inverse problem. If we don't wish to use the well data in the

inversion, we simply set o? = 00.



We treat U as an adjustable parameter. It represents how much prior information

is needed to give us a desirable result. We calculate it by trial and error for each of

the different joint inversion results below.

3.3.2 Generating a seismic wavelet

It is useful to extract a seismic trace at a location where there also exists reflectivity

well data for a visual comparison. This is done for the well data at crossline 211 in

the 2-D section, shown with its corresponding negative seismic trace in Figure 3-4.

The scales of the reflectivity and seismic data differ by several orders of magnitude
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Figure 3-4: Seismic trace and reflectivity from well log.

so, to visually compare them, the amplitude of the reflectivity data is multiplied by

12, 000. Plotting the negative of the seismic versus the reflectivity in Figure 3-4 allows

us to see the close match between major events in the log and the seismic trace. This

match is not exact though. In addition to the polarity reversal and scale difference

of the two data sets, we also see that they appear to have different frequency content

(the seismic is lower frequency compared to the reflectivity). Assuming convolution

with a wavelet as the operator that changes reflectivity into seismic data, we must



estimate the wavelet.

In seismic analysis, different methods are used for estimating a wavelet (Robinson

and Trietel, 1980). To simplify our wavelet estimation we assume that the seismic

wavelet is a zero phase Ricker wavelet, and try to find its best fitting central frequency

value. To do this it is useful to look at both reflectivity and seismic data at the same

well location in the Fourier domain. In Figure 3-5 we plot the amplitude spectra of the

seismic data from Figure 3-4 with a solid line. We take the amplitude spectra of Ricker

wavelets of varying central frequency and multiply them by the amplitude spectra of

the reflectivity until a good is fit is found to the seismic data. The best fitting result

is shown in Figure 3-5 as the dashed line for a Ricker wavelet with center frequency of

28Hz. The amplitude spectrum of the best fitting Ricker wavelet is shown along with

the reflectivity amplitude spectrum in Figure 3-6. Inverse transforming the spectrum

of the Ricker wavelet gives the zero phase wavelet itself, shown in Figure 3-7. It

has negative polarity because of the polarity relationship between the seismic and

reflectivity data.
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Figure 3-5: Amplitude spectra of seismic trace, best fitting wavelet convolved with
reflectivity in well, and noise.
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When we reconvolve our chosen wavelet from Figure 3-7 with the reflectivity shown

in Figure 3-4, we do not reproduce the observed seismic trace exactly. This is shown

in Figure 3-8. This highlights the inherent inaccuracy in our seismic convolutional

model expressed by the nH vector in Equation 4.1.

150 200 250 300
Time (ms)

350 400

Figure 3-8: Reconvolved wavelet with reflectivity and true seismic trace.

3.4 Application to field data

We show the negative of the 2-D seismic data in Figure 3-9, and an alternate plot of

the negative 3-D subvolume in Figure 3-10. Although the overall quality of this seis-

mic is good, it was observed after joint inversion (below) that the seismic data needed

further static corrections. The static errors were clearly observed after increasing the

resolution in the inversion. Using a preliminary 2-D inversion run, statics corrections

were manually calculated and then applied to the original 2-D seismic data. This is

shown in Figure 3-11. One should compare Figures 3-9 and 3-11 to see the improve-

ment from the static correction. The corrected 2-D seismic data set is used in all the

solutions to the 2-D inverse problem below.
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Figure 3-10: Alternate plot of 3-D seismic subvolume.
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Figure 3-11: Static corrected 2-D seismic data.

We now examine the results of the joint inversion on the field data. Inversion

is done for 4 sets of U
2 parameters. The combination of parameters are shown in

Table 3.1 and illustrate 4 important special cases of the inversion: kriging (with

no use of seismic data), damped trace-by-trace deconvolution (with no use of well

data), laterally smoothed deconvolution (with no use of wells but with geostatistical

constraints), and optimal joint deconvolution/kriging (with optimal use of well and

seismic data, and geostatistical constraints). We see that a different U is used in

2-D and 3-D. The L operator takes horizontal differences in one direction in 2-D and

in two directions in 3-D. Hence it is a different operator in 2-D than in 3-D and one

is essentially solving a different inverse problem. Therefore we expect the value of UL

to change with dimensionality. of also changes with the a parameter. This can be

Inversion Type a 2 I o in 2-D 2 of in 3-D a
Kriging Only oo 7.65 x 10-7 0.005 0.005 200

Damped Trace-By-Trace Decon. 1.05 x 106 00 0.1 100 1

Laterally Smoothed Decon. 1.05 x 106 00 0.0075 0.05 200
Optimal Joint Decon./Kriging 1.05 x 106 7.65 x 10- 7  0.005 0.15 200

Table 3.1: Parameter combinations for 4 different inversion schemes.



seen by looking at the form of the L matrix in Equation 3.11. As a changes, the norm

of L changes also. This affects the solution of Equation 3.9 and explains the order

of magnitude difference of oL between damped trace-by-trace deconvolution and the

other inversion cases. We re-emphasize here that the optimal o values for all cases

are found by trial and error.

Using the well data shown in Figure 3-3, we perform kriging with the parameters

from Table 3.1. The kriging results are shown in Figures 3-12 and 3-13 for 2-D and 3-

D, respectively. From these figures we can see that the well data has been extrapolated

a large distance because of the correlation length input with the L operator. Kriging

can tell us nothing, however, about reflectivity at locations above and below the wells.

It also cannot account for any variations in reflectivity at inter-well locations.
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Figure 3-12: 2-D kriged reflectivity field.

Damped trace-by-trace deconvolution makes no use of the well data or geosta-

tistical constraints. It does not force the result of the inversion to fit well data at

well locations because o2 is infinite. Nor does it enforce much horizontal correlation

because a = 1. Thus it essentially only performs a vertical damped deconvolution

at each seismic trace location. The results of such an inversion are shown in Figures
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Figure 3-13: 3-D kriged reflectivity field.

3-14 and 3-15 for 2-D and 3-D, respectively. The lateral continuity is as bad as the

original seismic but vertically the resolution has been improved because of decon-

volution in that direction. We next combine the vertical resolution improvement of

damped trace-by-trace deconvolution with the horizontal correlation provided by the

L matrices.

Laterally smoothed deconvolution enforces horizontal correlation constraints on

the estimated reflectivity field but does not make use of well data. We show the

results of this in figures 3-16 and 3-17, for 2-D and 3-D respectively. It improves upon

the damped trace-by-trace deconvolution by smoothing out the noise and connecting

reflectors horizontally while still improving resolution vertically. Incorporating the

well data can only improve this result, as we show next.

In Figures 3-18 and 3-19 we see the results of the optimal joint deconvolution/kriging

in 2-D and 3-D, respectively. Away from well locations we see that the inversion pro-

duces a laterally consistent deconvolution; it sharpens the image and shows greater

lateral continuity than the original seismic. Near the wells the inversion makes use of

the high resolution well logs and produces a high resolution image of reflectivity not

attainable with laterally smoothed deconvolution by itself.
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Figure 3-14: Damped trace-by-trace deconvolution of 2-D seismic data.
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Figure 3-15: Trace-by-trace damped deconvolution of 3-D seismic data.
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Figure 3-16: Laterally smoothed deconvolution of 2-D seismic data.
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Figure 3-17: Laterally smoothed deconvolution of 3-D seismic data.
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Figure 3-18: 2-D joint deconvolution/kriging of well and seismic data.
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Figure 3-19: 3-D joint deconvolution/kriging of well and seismic data.



The reflectivity fields obtained above by joint inversion can be further inverted

for other petrophysical parameters. Al-Moqbel et al. (2002) converts the reflectivity

cube shown in Figure 3-19 into an acoustic impedance cube. He does this in a

fast, trace-by-trace, fashion via a 1-D nonlinear inverse operator. Since correlation

between adjacent reflectivity traces has already been imposed by the joint inversion

process, the resulting impedance cube also exhibits horizontal correlation. This way

of estimating impedance is fast because it breaks the problem into two steps: a 3-D

linear inverse problem, and then a sequence of fast 1-D nonlinear operations.

3.5 Conclusions

In this chapter we applied a methodology that jointly deconvolves poststack seis-

mic data while interpolating existing well data. By posing both deconvolution and

kriging as a single joint inversion we could arrive at several different solutions as spe-

cial cases including kriging, damped trace-by-trace deconvolution, laterally smoothed

deconvolution, and joint deconvolution/kriging.

The kriging result simply extrapolated the available well data without constrain-

ing the estimate to the seismic data. Therefore it could not account for heterogeneity

in the reflectivity field away from the wells. The damped trace-by-trace deconvolu-

tion greatly enhanced the vertical (temporal) resolution of the seismic, but resulted

in a horizontally discontinuous field. This problem was corrected in the laterally

smoothed deconvolution where geostatistical correlation constraints were imposed on

the resulting reflectivity. Finally, by incorporating both the geostatistical constraints

and well data along with the seismic, we arrived at joint deconvolution/kriging. It

provided the best estimated field by using the well data to increase the resolution of

the deconvolution near the wells and the seismic data to aid the extrapolation away

from the wells. We summarize the results of all 4 inversion cases in Figure 3-20 for

comparison.

There are a couple of obvious improvements that could be made on these results.

We did not account for the vertical correlation structure of the reflectivity field. A



0.1

0

-0.1

400

0.1

0

-0.1

400

200

400

600

800

200

400

600

800

200
d

200

400

600

800

200

400

600

800

0.1

0

-0.1

400

0.1

0

-0.1

400

Figure 3-20: Inversion results for a) kriging, b) trace-by-trace deconvolution, c) lat-
erally smoothed deconvolution, and d) joint deconvolution/kriging.

200

200
c

200



great deal of research has gone into this in recent years (Saggaf and Robinson, 2000)

and the stochastic reflectivity models of other workers could be easily incorporated.

Another improvement that could be made would be to calculate the estimation error

variance of the estimated reflectivity field. There exist methods to do this in the same

maximum likelihood framework using the conjugate gradients algorithm (Schneider,

2000).

3.6 Acknowledgments

We thank the ERL Founding Members Consortium for its support of this project.



Chapter 4

Joint deconvolution and

interpolation of remote sensing

datatt

This chapter represents a different application of the same joint inversion methodol-

ogy used in Chapter 3. We again combine accurate, but sparse, point samples of a

field, with global, but low resolution and blurred, observations of the same field. The

data sets involved in this case are digital elevation model (DEM) data and global

positioning system (GPS) data. In practice the former is obtained via satellite mea-

surements over large areas but is of low resolution, while the latter data set is of higher

accuracy but only available at sparse locations. Using a real topographic model, syn-

thetic DEM and GPS data are generated and a problem is constructed to show the

superiority of the joint inversion method.

4.1 Introduction

Inverse problems can involve estimating a field of parameters given multiple data

sets related to that field by different operators. These data sets might be of different

ttThis chapter to be submitted to IEEE Transactions on Geoscience and Remote Sensing.



resolution and provide different, but complementary, information about the parameter

field of interest. It is intuitive that a combination of multiple data sets should result in

a superior estimated field than by using just one of them. How to optimally combine

these different data sets, however, is not necessarily a straight-forward operation.

In remote sensing a common source of data are aerial or satellite based sensors.

An example of such a data set is a digital elevation model (DEM), which is usually

acquired over a regular grid of discrete points and represents the topographical eleva-

tion of the Earth's surface. In many cases this data can be modeled as the result of a

convolution of the unknown elevation model with a point spread function (PSF),

representing the impulse response of the sensor. There is usually also additive noise

in such a system. We show an example of such a data set in Figure 4-1. Another
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Figure 4-1: Digital elevation model.

source of data representing elevation measurements are those obtained by a global

positioning system (GPS). These data are noisy point samples of the elevation field

obtained directly at ground sites. They tend to be of much higher accuracy than



DEM data, but sampled sparsely at irregular locations. The technique of inverting

the former data set is known as deconvolution, a problem that has been well stud-

ied in a number of scientific fields over that last 50 years (Wiener, 1949; Robinson,

1954). It involves reversing the blurring effect caused by the PSF while simultane-

ously damping the noise in the system. Inverting the latter data set is known as either

statistical interpolation (Leung et al., 2001) or, in the geostatistical community,

as kriging (Deutsch and Journel, 1998).

By constructing a likelihood function associated with each data set and defining

a prior model of the topography field we can use the Bayesian framework to define

the joint inverse problem. The solution then becomes the model that maximizes the

posterior probability distribution. Finding that model involves solving a very large

system of equations. This cannot be done with standard matrix inversion techniques.

By making use of the structure of the problem and the conjugate gradients algorithm,

we show how the solution can be calculated accurately and efficiently.

The outline is as follows: we first present deconvolution and interpolation and

derive likelihood functions associated with both problems. Combined with a prior

model, these likelihood functions define the Bayesian maximum a-posteriori (MAP)

solution. We next present the conjugate gradients algorithm as a method for over-

coming computation difficulties associated with large dimensionality. Joint inversion

is then performed on a synthetic data set mimicking DEM and GPS data.

We use the following notation conventions in this chapter:

vectors fg,h ...

scalars f, g, h, ...

random vectors fh,f,h ...

random scalars f, hf, h ...

matrix operators F, P, H, A, ....

functions f(.),p(),...

probabilistic events a, b, c, . . .

constants L, N, a, # ...



4.2 Deconvolution

We will denote our unknown model parameter as f. For the purposes of this chapter

it will be a discrete finite dimensional vector on a 2-D Cartesian spatial lattice rep-

resenting topographical elevation. The PSF will be denoted by h. It is the impulse

response of the measuring instrument, and, for our purposes, will be an IIR 2-D filter.

We will represent the forward convolution operator as a matrix/vector product:

s = Hf + n, (4.1)

where H is a square circulant convolution matrix. n is a random vector that represents

the noise in the data gathering process as well as inaccuracy in the representation of

the PSF. We constrain it to be Gaussian with covariance matrix C,. This is done

mainly because of the mathematical tractability of Gaussian random vectors and the

fact that linear combinations of a large number of finite variance random variables

converge to the Gaussian, providing theoretical justification for its usage.

Equation 4.1 implicitly describes the likelihood function, pSif(slf), of the data

s given a model f. It is equivalent to the probability density function (PDF) of the

noise: plfi(slf) = pn(n) = pn(S - Hf). Since the noise is Gaussian we have an explicit

representation of this likelihood function:

pri((slf) =t 1 exp [ (s - Hf)TCnl(s - , (4.2)

(27r 2 det(Cn))2

where Nn is the number of elements of n.

If H is invertible it has a block diagonal inverse, H-1 . Furthermore, if the noise,

n, is not too large, the inverse problem is well-posed and can be solved by maximizing

Equation 4.2 over all possible vectors f. This is known as the method of maximum

likelihood estimation (Willsky et al., 1999; Rodi, 1989). If H is not invertible or

the noise level is too large, the problem is ill-posed (Tikhonov and Arsenin, 1977)

and some other constraint is required for a unique stable solution. In the Bayesian

framework this constraint comes in the form of a PDF defined on the object being



estimated. We examine the prior PDF below.

4.3 Interpolation

Statistically based interpolation of data is usually derived in the minimum variance

framework (Deutsch and Journel, 1998; Leung et al., 2001). We will instead define

the interpolation problem in the maximum likelihood framework (Fomel, 2001), as we

did for deconvolution. The minimum variance framework leads to the same solution

as the maximum likelihood framework, but to a different (yet equivalent) system of

equations to solve (Willsky et al., 1999; Rodi, 1989). Which framework to use depends

on the number of elements in the data and model vectors and the algorithm used to

solve the linear system of equations. It can be shown (Daniel, 1997) that for direct

inversion of full matrices the minimum variance solution requires less computations

when there are fewer data than model parameters. The opposite is true when the

data vector is larger than the model vector. In the joint inverse problem below we

have the latter case so we use the maximum likelihood framework.

Posing interpolation as a discrete linear inverse problem in the maximum likeli-

hood framework requires 1) a "picking" operator that picks isolated observations out

of a lattice of values, and, 2) a constraint that forces continuity between adjacent esti-

mated values. We examine the first of these requirements in this section and address

the second in the next section.

We let f again be the unknown model. d will represent data extracted by the

picking operator, P. d is related to f via the following equation:

d = Pf + n'. (4.3)

P is a rectangular matrix comprised of zeros with a single value of 1 in each row at

the location corresponding to the element of f that is observed. It can be seen that

P is made up of a subset of the rows of the identity matrix. It "picks" the observed

data out of the field f and adds some noise, n', to make the sampled data. n' is



another Gaussian random vector that we assume to be uncorrelated with f and with

covariance matrix Ca'.

As in Equation 4.2, we can explicitly write the likelihood function for the sampled

data:

1 F1(1
Pdjf(d~f) = N d exp (d - Pf)TC n(d - Pf) , (4.4)

(27r- - det(Cn,) )2

where Nn, is the number of data in n'.

The matrix P is wider than it is long, thus it does not have a unique inverse. The

sampled data cannot be inverted to give inter-sample model estimates unless we add

some kind of constraint to the problem. As with the ill-posed deconvolution problem

above, this constraint will be a prior PDF defined on f.

4.4 The prior model

In the deconvolution problem, a prior PDF may be needed to make the problem in-

vertible, or to account for excessive noise in the system. In the interpolation problem,

a prior PDF is absolutely required if any interpolation is to be done. Besides making

inverse problems solvable, a prior PDF tells us something about the continuity of the

estimated field.

We will impose a Gaussian PDF over f to make it a random field, f. The Gaussian

PDF is sufficient to uniquely specify the mean, variance, and covariance of each

element of f. The PDF will have the explicit form

pf (f) = exp fT C- f. (4.5)
(27 2 det(Cf))

We established above that the individual elements of f are functions of 2-D space:

fj = fj(sj), where sj = (x,, yj) are 2-D spatial coordinates. We will assume an

isotropic exponential covariance structure between the points of f. This covariance



model is commonly used in geostatistical applications and has the form

C(f,,kf) = o exp [|s, - se 1] , (4.6)

where oj is the variance of the prior random field and L is the isotropic correlation

length. Since Cf[j, k] = C(fj,fk), the values of the matrix Cf can be filled in via

Equation 4.6. The stationary structure of this random field ensures that the ma-

trix Cf will be a convolution matrix. We also force it to be a circular matrix for

computational reasons below.

4.5 Joint inversion

The conditional probability of an event a occurring given that two other events b and

c have occurred is defined as

p(alb, c) = p(a, b, c)
p(b, c)

where p(-) is the probability functional returning a value between 0 and 1. Similarly

we have

p(b, cla) = P(a, , C) (4.8)
p(a)

Combining Equations 4.7 and 4.8 we arrive at

~'b c)p(b, cl c~p(a)
p(al b, c) = . (4.9)

P(b, c)

If we assume that events b and c are independent, we further have

p(al b, c) = p(.a)p(cja)p(a) (4.10)
p(b)p(c)



If we set the events a, b, and c equal to the vectors f, s, and d, respectively, we arrive

at the Bayesian posterior PDF:

pf Is,d(fIs, d) = k pJr (slf)pdf(d f)pf (f), (4.11)

with k = 1/(p,(s)pd(d)) being simply a re-normalization constant. The Bayesian

solution of the joint inverse problem requires finding the vector f that maximizes

Equation 4.11.

Inserting Equations 4.2, 4.4, and 4.5 into Equation 4.11 we have the explicit form

of the posterior PDF:

pfIs,d(f Is, d) = k exp [-E(f s, d)] , (4.12)

where

e(fIs, d) = ((s - Hf)TC-1 (s - Hf) + (d - Pf)TC /(d - Pf) + fT C f 1 f).

(4.13)

Maximizing the multi-Gaussian posterior PDF in Equation 4.12 corresponds to

minimizing its negative exponent, Equation 4.13. To find the minimum we take the

derivative of Equation 4.13 with respect to f and set the result equal to zero:

Be(f s, d) = (HTC lH + PTC-P + C f 1) f - HTC;Is - PT C-id = 0. (4.14)

Rearranging, we have

(HTC-1H + pTC-/p + C- ) f = HTCnIs + PTC-Id. (4.15)

A b

Inverting the matrix A will result in a vector fest maximizing the posterior probability:

fest = A- 1 b. (4.16)



We now examine the computational difficulties of inverting such a matrix.

4.6 Computational issues

If f is a 2-D Cartesian spatial lattice with dimensions p x q, then f has Nf = p x q

elements and the matrix A has N elements. For a problem of realistic size A may

be so large that it cannot be stored in computer RAM, let alone inverted. Standard

algorithms for matrix inversion (Strang, 1986; Trefethen and Bau, 1997; Press et al.,

1995) are not applicable and we must seek another way of solving Equation 4.15.

Certain iterative methods require the repeated application of the A matrix to

obtain fest. If we can find a fast way to operate A without explicitly constructing

it, we can still solve the problem. We show how this can be done quickly by looking

individually at each component of A. The first component of A is HTC;1H. Since H

is a circulant convolution matrix, it is diagonalized by the Fourier transform. If n is a

circular stationary random vector, C; 1 is also diagonalized by the Fourier transform.

We represent the 2-D Fourier transform by the matrix F. FT is its unitary inverse

such that FTF = I. We have

HTC;1H = FTFHT FTF C;l FTF HFTF (4.17)

= FTA*A;lAHF, (4.18)

where AH = FHFT and A; 1 = FC;lFT are diagonal matrices with the Fourier

spectrum of H and C;1 along the respective diagonals. A* is the complex conjugate

of AH.

We defined f above to be a circular stationary random vector, therefore Cf1 in

Equation 4.15 is also diagonalized by the Fourier transform:

Cf = FT FCf FTF (4.19)

= FT AfF. (4.20)



We can combine Equations 4.18 and 4.20 together to get

HTC;IH + C-' FT (A* A;'AH + Ail) F. (4.21)

A

The matrix A AhA; 1 AH+A- 1 is a diagonal matrix. Its diagonal can be calculated

and stored before any inversion is done. Altogether calculating the right hand side of

Equation 4.21 is an O(Nf log(Nf)) operation.

The final part of Equation 4.15 to examine is the PTCn/lP operator. This operator

picks data points out of f, operates with C;/, and then "unpicks" the resulting vector

back to the same size as f. Equation 4.15 can be restated as

(FT AF + PTC;/P) f = b. (4.22)

This equation could be simplified without the existence of C;/. When picking data

points it is typical that errors on the picked data are independent of each other with

a stationary variance op. We assume that this is the case for our inversion, therefore

we have that C;1 = I. This further reduces Equation 4.15 to
p

FT F + 2 PTP f = b. (4.23)
EP

The pTp operator is an extremely fast O(Nf) operation, thus the forward operation

of FTAF + -pTP remains O(Nf log(Nf)). The vector b can be calculated quickly
U P

before inverting A and does not significantly contribute to computation load.

The iterative method we use to solve Equation 4.23 is the conjugate gradients (CG)

algorithm. Rather than derive the CG algorithm here we recommend the interested

reader to Golub and Van Loan (1996) for details. We list the steps of the algorithm

in Figure 4-2. It essentially proceeds by generating several sequences of vectors,

{fo, fi, f2 , .-- , fN}, {ro , 2, .... , rN}, and {do, di, d 2 ,... , dN}. The fj vectors are a

sequence of approximations to the vector fest = A-lb that will minimize the objective

functions <b(f) = IfTAf - fTb. The rj vectors are a sequence of residual vectors that



1. Set fo = arbitrary, and ro = b - AfO

2. Of = r Tlrjl_/rY-2 rj-2 (except #1 = 0)

3. dj = r,_1 + #jdy_1 (except di = ro)

4. a rTir._1/d TAd 3

5. f3 = f_1 + ajd,

6. r= r,_1 - aAdj

7. Repeat step 2.

Figure 4-2: The conjugate gradients algorithm.

measure the misfit between b and Afj. The dj vectors are A-orthogonal (Golub and

Van Loan, 1996) vectors pointing in the direction of the best f for the next iteration.

The CG algorithm as we have listed it in Figure 4-2, along with our formulation of

the A operator in Equation 4.23, only requires the storage of the current fy, rj, and

dj vectors, each with Nf elements, as well as the storage of the diagonal of A, which

also has Nf elements. This amounts to O(Nf) memory requirements.

In the absence of numerical round-off error, the CG algorithm will reach the

minimizing solution in Nf iterations. In practice it will only iteratively converge to

fest as j i-+ oc. However, as the algorithm runs, smaller and smaller details are added

to the solution. This allows one to stop the algorithm early and still have a solution

close to fest. This also has a negative effect that if stopped too early the solution

will be effectively smoothed. The effect of this sort of smoothing and that produced

by the prior covariance matrix, Cf, might be hard to distinguish. Therefore, after

obtaining a satisfactory solution one should run a few more iterations to make sure

that the smoothness is not an artifact of the CG algorithm. Another benefit of the

algorithm is that it can be restarted where it left off by setting fN from the last run

to be fo in next run.

How to establish convergence and automatically stop the CG algorithm is an area

of ongoing research. We do not address this issue here but recommend the interested

reader to Schneider (2000) for an overview of the subject and some new results. In



this chapter we empirically establish a reasonable number of iterations by trial and

error.

4.7 Application to data and discussion

Before inverting the data sets, we make one further assumption on Equation 4.15:

that n is also identically distributed white noise. Thus Cn = uLI. Making this

assumption does not take away from the generality of the method. Performing joint

inversion in this case reduces to just setting the respective values of oU, o,, U2, and

the correlation length L.

To examine the effectiveness of the joint inversion we create a synthetic data set.

We take the real DEM shown in Figure 4-1 and blur it with a PSF, h. The result

of this blurring is shown in Figure 4-3. We add independent Gaussian noise with
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Figure 4-3: Blurred DEM.

stationary variance of an = 2500m 2 to the blurred field. The blurred and noisy data
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set is shown in Figure 4-4. We see that the noise level is large and obscures the
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Figure 4-4: Blurred and noisy data.

image. We also extract samples of the DEM and add independent Gaussian noise

with stationary variance o-, = 0.0001m 2 . This data is shown in Figure 4-5.

By changing the values of o-, a 2 ,, and L one will get very different inversion

results. We examine 4 special combination of these parameters: statistical interpo-

lation, damped deconvolution, laterally correlated inversion, and optimal joint inver-

sion. Statistical interpolation sets o- = oo, which effectively says the noise on the

blurred DEM data set is infinite, and therefore removes that data set from the inver-

sion. Both damped deconvolution and laterally correlated deconvolution set o , = oo,

which says that the noise on the sampled data is infinite, and removes that data set

from the inversion. The former case sets the L = 0, which is equivalent to having

C1 = ojfI. The latter case imposes lateral correlation. For the optimal joint inversion

case, we set both o-2 and o-2, equal to the values we used to generate the respective

noises. We intuitively expect this to yield the best result. We list these 4 inversion



Figure 4-5: GPS data.

cases in Table 4.1.

Inversion Type a

Statistical Interpolation o
Damped Deconvolution 2500

Laterally Correlated Decon. 2500
Optimal Joint Inversion 2500

Table 4.1: Parameter combinations

I n L "Optimal" J
0.0001 25 2000

00 0 4500
oo 25 2000

0.0001 25 2000

for 4 different inversion runs.

We also need o-j to invert the data. This, however, is a difficult parameter to set

(Vogel, 2002). Setting it too high produces a noise corrupted result. Setting it too

low smooths the solution too much. To show the effect on the solution by varying

o, the inversion is run for each of the 4 cases in Table 4.1 with a ranging from 500

to 4500, in steps of 500. The f 2 norm of the error between fest and the true DEM

shown in Figure 4-1 is calculated for each run. The results of these runs are shown in

Figure 4-6. We also zoom in and show the same results for just the laterally correlated

deconvolution and optimal joint inversion in Figure 4-7. This plot clearly shows a
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minimum at the oj = 2000 on both curves. It should be emphasized that this sort

of comparison cannot be done in practice, since the true solution is not known. It is

only shown here to demonstrate the effect oj2 has in the various inversion cases, and

which case tends to give the best (smallest error) solutions. It should also be noted

that the f2 norm may not be the best criterion for comparing the inversion cases. It

is a global measure and does not take into account local improvement of the inversion

around sample locations.

We see that statistical interpolation by itself tends to perform the worst, since

it only provides accurate estimates near sample locations. Damped deconvolution

performs better but makes no use of the a-priori geostatistical structure of f. Includ-

ing this prior information improves the inversion in the laterally constrained case,

but we still have not included the sampled data. Finally, including all data sets and

the correlated prior we arrive at the optimal joint inversion solution, which gives the

smallest error of all the cases across all values of a .

The final column of Table 4.1 lists the "optimal" prior variance. This is chosen

by selecting the lowest error result from Figure 4-6 for each inversion case. Each of

these "optimal" results is plotted in Figures 4-8 through 4-15. In these plots we do

not plot inversion results within 15 units of the edges because of edge effects caused

by circular convolutions.

In Figure 4-8 we see that statistical interpolation honors the data at the sample

locations but is smooth between samples, as it cannot reconstruct greater detail there.

In Figure 4-9 we plot of the difference between the true DEM and the estimate from

statistical interpolation. The sample locations are overlaid as black circles. We notice

that the error near sample locations is minimal but increases significantly away from

the samples.

In Figure 4-10 the damped deconvolution gives suboptimal results uniformly across

the whole model. This can be seen in both the ringy quality of the estimate and the

apparently random distribution of error in Figure 4-11. Since the GPS data is not

honored there is no error reduction around those locations.

In Figure 4-12 the laterally correlated inverse solution is slightly better than
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Figure 4-8: Statistical interpolation.
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Figure 4-9: Inversion result minus true DEM (in meters).
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Figure 4-10: Damped deconvolution.
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damped deconvolution in that it produces an estimate with the proper correlation

length. The overall error of the estimate is less but local GPS data is still not hon-

ored.
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Figure 4-12: Laterally correlated deconvolution.

Finally, the optimal joint inversion estimate in Figure 4-14 gives a good solution

uniformly across the model while providing an almost exact fit at the data locations.

Although this is difficult to see in Figure 4-15, the estimate matches the sample data

at the sample locations.

4.8 Conclusions

We have presented a method for jointly inverting two remote sensing data sets for an

optimal model of topographic elevation. The maximum likelihood inversion frame-

work generated a large system of equations to solve. Using the conjugate gradients

method overcame the problem of large dimensionality.
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Figure 4-13: Inversion result minus true DEM (in meters).
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Figure 4-14: Optimal joint inversion.
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Figure 4-15: Inversion result minus true DEM (in meters).

The method was applied to synthetic data mimicking DEM and GPS data for

4 separate inversion cases. Statistical interpolation did not make use of the DEM

data. Damped deconvolution consistently outperformed the statistical interpolation

results but did not make use of geostatistical prior knowledge. Laterally correlated

deconvolution used an exponential correlation function as a prior model and gave

superior results to the damped deconvolution, but still did not use the GPS data.

Finally, by using all data sets with correct assumptions of noise levels, the optimal

joint inversion consistently gave the best results. In addition to having the smallest

error compared to the true solution, it almost perfectly matched the GPS data at

the sample locations. Thus we see that by posing deconvolution and interpolation as

a single joint inversion we can still arrive at either interpolation or damped decon-

volution as special cases, but incorporating both of the data sets gives the superior

solution.

The methodology presented in this chapter is not limited to only deconvolution

and interpolation problems. Any other data set can be incorporated into the Bayesian



framework if it has a well defined likelihood function. This includes data arising from

nonlinear forward operators. The conjugate gradients algorithm can still be applied

in nonlinear inverse problems. Thus the method presented in this chapter might be

ideal for general data fusion of multiple data sets. This remains an area for future

research.

Recent work has attempted to use the CG algorithm to give the estimation error

variance in addition to the estimate at no additional cost. There has been some success

with this (Schneider, 2000) and it is a promising direction, but, due to instability

in the CG algorithm, there remain many problems to be resolved. Also, the CG

algorithm is not the only iterative method that could be applied to the joint problem.

Other algorithms such QRMS, bi-conjugate gradients, Gauss-Seidel, etc. may solve

the problems associated with the CG algorithm. This is an open area to investigate

and it is not known what benefits these other methods might bring.

A final problem that needs to be addressed is how to set the prior variance. This

parameter greatly affects the inversion result and is notoriously hard to optimize.

Methods such as generalized cross validation or L-curve method (Vogel, 2002) may

prove useful.



Chapter 5

Fractional splines and discrete data

Geophysicists deal with multidimensional petrophysical parameter fields. These fields

are often idealized as continuous functions of three spatial dimensions and perhaps

a fourth temporal dimension. Representing such a field of parameters on a digital

computer is impossible, so the data sets dealt with must be discretized into a finite

number of coefficients in order to be manipulated or analyzed. Splines provide a link

between continuous and discrete representations of a function.

Splines are piecewise polynomial approximations of a true function. They are

representable by linear combinations of spline basis functions, which possess use-

ful mathematical properties and are the building blocks of any arbitrary spline. By

manipulating the coefficients of such basis functions one can effectively perform op-

erations on the spline.

More specifically, classical integer degree splines are defined to be piecewise con-

tinuous polynomials (Unser, 1999) indexed by an integer parameter a, indicating the

number of bounded derivatives of the function. They can be conceptualized as be-

ing constructed from a basis of functions that also have a bounded derivatives. The

ath derivative of an a degree spline yields a function that is piecewise constant with

discontinuities at the locations where the piecewise polynomials meet. These points

are called knots and are usually constrained to lie at the nodes of a regularly spaced

grid. Recently the integer degree spline framework has been generalized by Blu and

Unser (2001a). The parameter a can take fractional, non-integer values resulting in



fractional splines. In this case the parameter a represents the Hdlder degree of

continuity, a generalization of the traditional concept of continuity to define func-

tions with non-integer degrees of differentiability. The H6lder exponent, a, is also

sometimes called the Lipschitz exponent (Mallat, 1998, page 166).

In the first section we present the concept of projecting a continuous function

into a function space spanned by a set of basis functions. Linear combinations of

these basis functions generate an approximation to the original function. The section

introduces Riesz bases, which allow for the concept of a dual function. Associating

the dual function with a physical tool used to obtain geophysical measurements, we

construct a framework for optimally approximating the original function. Prefiltering

is presented as a way to project a function into an arbitrary basis of our choice. The

concept of accuracy of approximation of a basis is also introduced. Finally, a periodic

basis is defined so that filtering operations can be defined on the approximation.

In the second section we present spline basis functions as an ideal basis for repre-

senting a function. There are several kinds, each possessing useful properties. Alge-

braic singularity functions are the arch-types of functions that possess a certain degree

of H61der continuity. From these we construct other types of spline basis functions

that retain the H6lder continuity but possess much better mathematical properties.

Such basis functions include B-splines, cardinal splines, and orthogonal splines.

Finally, in the third section, we show how the basis into which we have projected

affects the form of linear operators in that basis. We present the particular example

of a derivative operator acting on a discrete geophysical data set in order to illustrate

the potential error introduced by careless manipulation of coefficients.

5.1 Projection onto a basis

Given a Hilbert space, N, a projector, P, is a linear operator mapping 7- into a

subspace U such that (Mallat, 1998, Appendix A.4):

1. Pu is orthogonal,



2. Pu is self-adjoint,

3. ||Pull = 1,

4. Vf E 'W ,|f - Puf | = minfteu ||f - f'||-

For our purposes the space 'W will be L2, the space of square integrable functions. U

will a subspace spanned by a set of basis functions g = g(x - k) of our choice. The

projection, fu, of f into U will then have the form

Puf = fu

= c[k]g(x - k).

(5.1)

(5.2)
k

Property 4 essentially says that fu is the function in U that is closest to f in an L2

sense.

To make the concept of a projection more concrete we show in Figure 5-1 a well

log measuring the rock velocity as a function of depth. In Figure 5-2 we show a
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Figure 5-1: Velocity as a function of depth.

close-up view of the area enclosed in the box of Figure 5-1. We see that the log is



not a continuous function, but rather a discrete sequence of coefficients. What are
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Figure 5-2: Samples of velocity log in black box of Figure 5-1.

these coefficients? One may wish them to be point samples of the true function (as

many geophysicists are in the habit of doing) but that is usually not true. These are

the coefficients, c[k], in Equation 5.2. The well logging tool that took these samples

probably took a weighted average of values around the sample point. It is reasonable

to assume that the tool took the same average around each sample point and also

that the samples were evenly spaced1 . We can then view the well logging process

as a convolution of f with j(-x), which models the well logging tool, followed by a

discretization:

c[k] = 6c(x) [.(-x) *f (x)]. (5.3)

6c(x) is the Dirac comb function (Mallat, 1998, page 29) that performs the action of

sampling the continuous function it is multiplied with. Unser (1999) would call g a

prefilter.

'The spacing of the samples can be any distance Ax. For simplicity we set Ax = 1 in all equations

unless otherwise noted.



Given coefficients and a basis, we can reconstruct the projection, fu, according to

Equation 5.2. We reconstruct an approximation of f using cubic B-splines (Section

5.2) in Figure 5-3. We notice that the reconstructed approximation does not equal

the coefficients at the sample locations. In general, this will be true. The coefficients

will equal samples of the approximation function only when our basis functions are

interpolating functions, such as cardinal splines (Section 5.2).
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Figure 5-3: Samples of velocity log and reconstructed approximation, fu.

5.1.1 Riesz bases

Mallat (1998, Appendix A.3) gives a concise definition of Riesz bases. In the Hilbert

space U C L2 the existence of such a basis says that any function, fu, can be repre-

sented in terms of a sequence of linearly independent functions g = g(x - k) E U,

o samples
--- approximation

o- I-
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with constants A > 0 and B > 0, such that

fu(x) = c[k]g(x -k), (5.4)

k

and

full2 < |c[k]|2 < Ifull2. (5.5)
k

Equation 5.5 expresses a partial f2 - E2 norm equivalence between fu and c[k]. If

the basis functions, g were orthogonal, A would equal B and the norm of c[k] would

equal the norm of fu. The Riesz Representation Theorem (Naylor and Sell, 1982)

proves that there exist dual functions such that

c[k] =< g(x - k), f >, Vk E Z. (5.6)

Both g and g span the same space of functions. Therefore fu could equivalently

be represented by the dual functions with a similar norm equivalence property:

fu(x) = Z [k]9(x-k), (5.7)
k

and

A|lfu||2  < |j[k||2  B||fu|| 2. (5.8)
k

In this case the coefficients are

E[k] =< g (x - k), f >, Vk E Z. (5.9)

The logic of Riesz bases says that, given a Hilbert space, one can represent any

element of it by linear combinations of a convenient basis function, g. How to weight

those basis functions is given by Equation 5.6, which says that one should take the

inner product of the dual functions with fu to give us the c's. Relating these concepts

to the well log data of Figures 5-1 and 5-2 we see that we wish to apply the logic in

reverse. That is, we start with known dual basis functions and coefficients, and wish



to know the correct basis function with which to construct our projection.

To see that the dual of the dual is, in fact, the obvious basis function to use, we

note that the approximation error of an orthogonal projection, fu, must be orthogonal

to U, which implies that

(f - fu, (x - )) = 0. (5.10)

We immediately see that

(f, 7 x - 0)) = (fu, 7 x - 1)) . (5.11)

This tells us that the coefficients arising from operating Nk on f are equal to the

coefficients of operating gk on its projection, fu. We could potentially choose any

basis of functions, #, spanning some function space, V C L2, to associate with the

coefficients c[k]. We, however, would not have any way of knowing how good of an

approximation Ek c[k]#(x-k) would be. If we use g, we know that our approximation

is the optimal one possible (in an L2 sense) in the subspace U.

From the preceding we see that our knowledge of the measurement process plus

the coefficients resulting from an experiment should determine the appropriate basis

function to represent the data2 . The reconstruction formula in Equation 5.4 would

then tell us how to evaluate fu at arbitrary locations. To do this one simply evaluates

each gk times its coefficient, c[k], at the location and sums the values.

5.1.2 Prefiltering

We may not wish to represent f in a space spanned by g, as was done in Equation

5.4. Indeed, g may not be a very well behaved function and there are many reasons

to select a different basis # to approximate f. For instance, certain linear operators

may become very sparse when represented as matrices in a certain basis (e.g., see

2As a side note, we mention that these arguments only apply when the data gathering process

can be modeled as a linear functional for each data point. If the functional is nonlinear it is not
clear how to choose a basis.



Section 5.3). Therefore one basis may lead to greater computational efficiency than

another. To project f into a space spanned by # requires prefiltering, in which we

pass our coefficients through a discrete filter to obtain a new set of coefficients.

To illustrate how this works we present an equation similar to 5.4:

fv (x) = 1 a[ [k]#(x - k). (5.12)
k

The difference here is that #k are the basis functions approximating f, and they span

a different space than the gk's. fv(x) is a different function than fu(x). We have c[k],

what we want are the coefficients a[k]. To calculate these we desire that fu(x) and

fv(x) are as close to each other as possible. Therefore we evaluate Equations 5.4 and

5.12 at the knots to give us

fu[l] = ( c[k]g[l - k] (5.13)
k

fv[l] = ( a[k][- k]. (5.14)
k

We can represent the convolutions in Equations 5.13 and 5.14 in matrix/vector nota-

tion as

fu = Gc (5.15)

fy = <Da, (5.16)

where G and <b are convolution matrices.

We next minimize the difference between fu and fV over all possible a in the e2

norm:

min||fu - fG||1. (5.17)
a

To find this minimum we expand the norm, take its derivative with respect to a, and



set this equal to 0:

( c T Gc + a T<kT(ka - 2a T<bpTGc] =0 (5.18)Oa
24T ba - 2<pTGc = 0 (5.19)

<bGca = <bTGe (5.20)

a = (4Tb)-1,bTGc. (5.21)

If 4 is invertible, we can reduce Equation 5.21 to

a = 4D-'G c, (5.22)
V

which shows the precise form of the proper prefilter:

V = <b- 1 G. (5.23)

Rewriting Equation 5.22 as discrete convolutions of filters, we have

a[k] = #[k]-l* g[k] * c[k]. (5.24)

The convolution of g[k] with c[k] converts the c's into actual point samples of fu.

Subsequent convolution with #-1[k] converts these point samples into coefficients in

the 4k basis.

Although prefiltering is advocated by many researchers including Strang (1986),

Mallat (1998), and Choi and Baraniuk (1999), we note that it is rarely done in practice

for a couple of reasons:

1. The filters g[k] and #[k] may be infinite in length (IIR) and slow computations.

Therefore one may wish to stay in the suboptimal basis g,.

2. In dealing with data such as the well log data in Figure 5-1 we often don't

know the sampling function g. Without this knowledge one might as well treat

the samples as coefficients in a convenient basis of our choice, such as splines



(Section 5.2).

5.1.3 Accuracy of approximation

Now that we have seen how to project a function f into an arbitrary basis the question

becomes "which basis is best?". We want our approximate function to be as close

to the original function as possible. Therefore we examine how to quantitatively

measure the error of approximation. Approximation theory (Strang and Nguyen,

1997; Mallat, 1998; Unser, 1999; Thevanaz et al., 2000) provides a framework for

doing this.

We let # - k) be a Riesz basis in V3 C L 2 with a variable discretization level

Ax = 2-i. fv, is the projection of f onto this basis of functions. Unser (1999, page

28) gives the following error bound for approximating a function in this basis:

f - fV311 C(AX)LIf(L)1, Vf C W. (5.25)

L is the order of the approximation. It and the constant, C, are functions of V and

the Sobolev space to which f belongs. A Sobolev space, I-L, contains functions

whose Lth derivative lies in L2. V2 = L2 is the previously defined Hilbert function

space of square integrable functions.

The way to interpret Equation 5.25 is as follows. We assume prior knowledge of

the largest possible L' such that f E i'. We then pick a subspace Vj, the elements

of which are L times differentiable. Equation 5.25 then holds for all L < L'. The

best basis to use is the one with the largest L because the term (AX)L in Equation

5.25 becomes the smallest. This classical Strang-Fix theory has been generalized

by Unser and Blu (2000) to include non-integer orders of approximation, enabling

one to exactly match basis functions to the H61der continuity of the function being

approximated.

What, then, does one do in a real application if one is unsure of the H6lder

continuity of the true function, f? Or, even worse, what if the H6lder coefficient of



that function changes from point to point?3 We put forth a couple of suggestions:

1. If one is unsure of the H6lder degree of continuity of the true function, an

estimate could be obtained from prior data. A method is presented by Li

et al. (1996) that does this by examining the variances of wavelet transform

coefficients as a function of scale.

2. If the H6lder degree changes from point to point the best one can do, without

a-priori knowledge of point-wise continuity, is to use one global value. Com-

plex functions such as these are known as multi-fractals. One could again

use the wavelet transform coefficient variances method of Li et al. (1996). An-

other method is suggested in the singularity spectrum used by Herrmann

(1997). The singularity spectrum shows how much of the support of a continu-

ous function appears to scale with a certain H6lder exponent. One could simply

pick either the most commonly occurring, or the average, H6lder exponent for

specifying the smoothness of a basis.

5.1.4 Periodic bases

We have seen how to take an infinite dimensional continuous function, approximate it

in a subspace, and represent the approximation with a discrete sequence of coefficients.

In most applications the data comes in the form of finite length discrete vectors. The

basis that spans the Hilbert space then has a finite number of basis functions. Finite

dimensional vectors present a problem when one performs filtering, which requires

knowledge of vector values beyond the end points. There are essentially two ways to

handle this problems. The first constructs a filter such that it handles edge values

with special "boundary filters". The second, and more common, way is to artificially

extend the vector. The effect of the filter will still cause problems by "smearing" the

edges. Following Strang and Nguyen (1997), we examine 3 methods mitigating this

effect:

3Herrmann (1997) has shown this to be the case in well data.



1. Padding the vector with zeros (or some other constant).

2. Assuming the observed signal periodically repeats itself off to infinity.

3. Assuming that a mirrored version of the function repeats itself off to infinity.

The first two methods are often used in conjunction; that is, the vector is padded

with zeros and then conceptualized as repeating periodically to allow for Fourier

domain filtering. This method says that the values of the function at locations outside

the interval repeat those within the interval infinitely. Applying this concept to the

function f gives

f (x - nT) = f (x), n E Z, (5.26)

where the support of f is [0, T]. Letting this periodization extend also to the approx-

imation of f in Equation 5.4, we arrive at

fu(x - nT) = fu(x) (5.27)

( c[k]g(x - k - nT) = ( c[k]g(x - k), (5.28)

k k

which says that

g(x - k - nT) = g(x - k). (5.29)

From this we see that periodizing the projection will also periodize its basis functions.

Although we technically have an infinite number of coefficients now, they repeat

themselves infinitely and only one finite set needs to be retained and manipulated. In

this way we have modeled a continuous function of infinite support by a finite vector

of coefficients.

Method 3 is similar to method 2. f is first mirrored across its end points so that

f (x + T) = f (T - x), Vx E [0, T]. (5.30)



This defines a new function f' over the interval [0, 2T]. This new function is then

repeated periodically over the entire real line. The basis functions for f' are then

also a periodic basis. Whereas the periodic approximation function from method

2 usually has discontinuities at its edges, that from method 3 is continuous at the

edges (but not continuous in its derivative). If a convolutional filter is applied to a

periodic function, method 2 will affect the result near the edges of the image more

than method 3. In applying a 2-D wavelet transform to an image, Strang and Nguyen

(1997, p. 340) shows that mirrored extension results in the least distortion at the

edges.

In this thesis we will mostly stick to the combination of methods 1 and 2 for

simplicity, although we will apply method 3 in chapter 7. We do not use method 1

by itself.

5.2 Spline basis functions

Up to this point we have only spoken of generic basis functions that we might use to

represent a function f. In this section we present certain candidate basis functions

that form what are known as spline spaces, S c L 2 . These spaces contain functions

that are piece-wise polynomials with an adjustable degree of differentiability. Among

many useful properties, spline basis functions possess optimal approximation proper-

ties according to Equation 5.25 (Strang and Nguyen, 1997; Thevanaz et al., 2000).

There are many possible bases for a spline space. We examine four of them, each

with useful and different mathematical properties.



5.2.1 Algebraic singularity functions

One-sided algebraic singularity functions4 , denoted x4(x), have a bounded derivatives

and a singularity at the origin with Hdlder exponent a:

X+( W = r( +1), x > (5.31)
07 otherwise.

The Fourier transform of such a function (in a distributional sense) is

1
+ . (5.32)

This is identical to Zemanian (1987, page 348) with the exception of the placement of

the F term. We present the function in this form to make it the inverse of the causal

derivative operator. It should be noted that these functions are not normal functions

but rather generalized functions (Gel'fand and Shilov, 1964). They are unbounded

and of infinite support and require care when manipulated mathematically.

The anti-causal one-sided algebraic singularity function is simply defined in terms

of the causal one as:

Xa W aX+ (- X) (5.33)

We will require symmetric versions of these functions later so we define them here

as (Unser and Blu, 1999):

,X(x) =-2sin(r/2a) F(a+1) a not even(534)
X2

, log Xa _2
(-1)+ 7a+1), a = 2n (even)

4Also known as one-sided power functions or homogeneous distributions (Gel'fand and

Shilov, 1964).



These functions possess Fourier transforms

1
XT (P = s .

(5.35)

The subscripts "+", "-", and "*" imply causality, anti-causality, and symmetry of

the algebraic singularity functions, respectively.

In Figure 5-4 we show an a =1 causal algebraic singularity function. Linear

combinations of translations of such a function can construct a piecewise linear func-

tion as shown in Figure 5-5. Similarly, in Figure 5-6 we plot an a = 2 singularity

150

00-

50-

0 -100 -50 0 50 100 150

Figure 5-4: Causal algebraic singularity function for a = 1.

function. A linear combination of its translations is shown in Figure 5-7.

The big drawback to using algebraic singularity functions as a basis is that they

unbounded and of infinite support. It is not possible to periodize them. Linear

operators projected into such a basis lead to full matrices. They are useful, though,

for creating other spline basis functions.
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Figure 5-5: Combination of a = 1 algebraic singularity functions.
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Figure 5-6: Causal algebraic singularity function for a = 2.
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Figure 5-7: Combination of a = 2 algebraic singularity functions.

5.2.2 B-splines

A classical result of integer degree splines, a E Z+U f{}, is that they are representable

in a basis of B-splines (B for basic), # (x), which are bell shaped functions of compact

support. These functions can be causal, anti-causal, or symmetric. There are two

ways to define B-splines. The first is in terms of finite differences of the algebraic

singularity functions defined in Equations 5.31 through 5.35 (Unser and Blu, 2000).

For causal algebraic singularity functions we have:

a A+1O1x+. (5.36)

For anti-causal singularity functions we have:

pa = A_+ax. (5.37)



The differencing operator Aa+1 is defined as:

a+ E _1)k ( (x - k) (5.38)
k>O

We can also define the symmetric B-spline in terms of a convolution of a causal and

an anti-causal B-spline:

a-1 a-1

#f = p2 * 0_ 2 (5.39)

There is, in fact, a corresponding symmetric differencing operator defined in (Unser

and Blu, 2000). We keep things simpler by defining the symmetric splines via a

convolution of causal and anti-causal functions.

From Equations 5.31, 5.36, and 5.38 we can derive that the 0 th degree causal B-

spline is in fact the boxcar function on the interval from 0 to 1. In the Fourier domain

this becomes the Fourier transform of unity from 0 to 1:

#3 (w) e-dx = . . (5.40)

The 0 th degree anti-causal B-spline is the complex conjugate of the causal one:

/0(w) [ O(w)]. (5.41)

The symmetric 0 th degree B-spline is the absolute value of the 0 th degree causal

B-spline:

/(w)= 50(w) . (5.42)

We use the same notation for causality, anti-causality, and symmetry in the B-splines

as we did for the algebraic singularity functions. If no subscript is supplied to a

spline basis function in an equation in this thesis, it is assumed that the equation

applies equally to spline basis functions of any symmetry. We plot the causal 0 th



degree B-spline in one and two dimensions in Figures 5-8 and 5-9. We plot symmetric

versions of the same function in one and two dimensions in Figures 5-10 and 5-11.

The anti-causal version of these functions is just the mirror image of the causal ones.

We see that the symmetric 0 th degree B-splines have a much stranger appearance

-4 -3 -2 0 1 2 3 4

Figure 5-8: Causal 0 th degree B-spline.

than the causal functions, but they have the same degree of Hdlder continuity.

From Equations 5.40 through 5.42 we can see that higher degree B-splines are

created easily in the Fourier domain by exponentiating the 0 th degree B-spline to the

ae + 1 power. This corresponds to a auto-convolutions of the 0 th degree B-spline with

itself in the state domain.5 We see the 1st degree B-spline constructed in this way

from the 0 th degree B-spline in Figure 5-12. In the causal case we have the following

expression for integer degree B-splines:

() = ( eiw
(5.43)

'State domain refers to the non-transformed domain.
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Figure 5-9: 2-D Causal 0 th degree spline outer-product basis function.
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Figure 5-10: Symmetric 0 th degree B-spline.
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Figure 5-11: 2-D Symmetric 0 th degree spline outer-product basis function.
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Figure 5-12: Convolution of two causal box car functions to produce a hat function.



in the anti-causal case:

(a =a. (5.44)

and, for the symmetric case:

1 - eiw
Oa() (5.45)

By letting a assume fractional, non-integer values, a - {R : a > -1/2}, we arrive

at fractional B-splines. The properties of B-splines do not change when a is not

an integer with the exception of compact support; they become infinitely supported

but decay exponentially rapidly to zero. If computations with the basis are done in

the Fourier domain, this does not present any computational difficulties. However,

if computations are done in the state domain an integer degree B-spline basis will

lead to FIR filters (and sparse matrices) while the non-integer B-splines will lead to

IIR filters (full matrices) (see Section 5.3). Thus we see that adjusting the a for

the smallest approximation error may lead to much slower computations. This is a

trade-off that must be balanced when dealing with discretized data.

We show examples in 1-D of causal and symmetric fractional B-splines for frac-

tionally varying a in Figures 5-13 and 5-14, respectively. Again, although the

appearance of the causal and symmetric B-splines differs for non-integer a > 0, for a

given a they have the same degree of H6lder differentiability.

5.2.3 Cardinal splines

Another widely used spline basis function is the cardinal spline. Like the B-spline,

this basis function is more simply defined in the Fourier domain by (Unser, 1999)

M" (M) (5.46)
Ewk #4 (o + 27rk)
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Figure 5-13: Causal B-splines for a = 0 to a = 3 in steps of 0.25.

-0.4

Figure 5-14: Symmetric B-splines for a = 0 to a = 3 in steps of 0.25.
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The denominator of this equation is the sampled version of the B-spline in the fre-

quency domain. By sampling a function we make its Fourier transform 27r-periodic

(Mallat, 1998, page 40). Thus we see that a cardinal spline is a B-spline that has

been filtered by the inverse of its sampled version.

Cardinal splines are interpolating functions. They have the interesting property

that, when sampled on a regular grid, the sampled values equal zero everywhere

except at a single node, where it equals one. In the limit as a 1- oo the cardinal

spline becomes the infinitely smooth sinc function of classical interpolation theory

(Aldroubi et al., 1992). Equation 5.46 becomes the boxcar function in the case of

the a = oc sinc function. In Figure 5-15 we show the famous cubic B-spline and in

Figure 5-16 we plot its corresponding cardinal spline, obtained by Equation 5.46. We

notice that it is zero at all the integers.
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Figure 5-15 Cubic B-spline.

When using interpolation functions as a basis, the coefficients in Equation 5.4

are truly point samples of the approximation functions. Since most scientists prefer

their discrete data to represent point samples of the approximation function, cardinal
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Figure 5-16: Cubic cardinal spline.

splines are a useful basis. For cardinal splines, Equation 5.4 becomes

fs = fs[k]rfN(x), (5.47)
k

where fs[k] are the samples of fs at the integers. For a - {0, 1} cardinal splines

share the drawback with non-integer degree B-splines of not having compact support

- leading to IIR filters (non-sparse matrices).

It should be noted that the classical method for handling discrete data was to

construct a band-limited approximation function, leading to a = oo spline basis

functions. There are no frequencies above the Nyquist frequency in this case, and

Shannon's sampling theorem (Strang, 1986, page 325) proves that the discrete samples

of a function are sufficient to characterize the function at all points. Looking at

the problem from an approximation theoretic point of view, we see that splines can

improve upon the band limited assumption if one has a-prior knowledge of the H61der

continuity of the true function, f. Then approximation theory tells one that a non-

band-limited a < oo degree cardinal spline would be a better basis than the sinc

function.
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5.2.4 Orthogonal splines

Another spline basis function is the orthogonal spline (Unser, 1999). It is defined

as

(w =) 3(2 (5.48)

(Ek JBa(w ± 27rk)12)

Here the B-spline is filtered by the inverse of the square root of the periodic sampled

power spectrum6.

Orthogonal splines have the property that they are orthogonal to integer shifts of

themselves. This means that the f2 energy in the coefficients of such a basis equals the

L2 energy in the approximation function fs. This will turn out to be a very desirable

property when constructing wavelets in chapter 7, where we may desire to make

an orthogonal transform. Orthogonal splines share the drawback with non-integer

B-splines and cardinal splines of not being compactly supported.

We show a cubic orthogonal spline in Figure 5-17. This should be compared to

the cubic B-spline and cubic cardinal spline in Figures 5-15 and 5-16. It looks very

similar to the cardinal spline but does not exactly equal zero at the integers, or unity

at the center node position.

5.2.5 Dual Splines

For any of the spline basis functions derived above (but not the algebraic singularity

functions), one can derive the dual basis function. This dual function spans the same

spline space as its associated basis function, and is also integer shift biorthogonal

to the basis function. If we let #(x) be any spline basis function, its unique dual is

6Jt should be noted that the denominators in both equations 5.46 and 5.48 cannot be evaluated
exactly on a digital computer and are instead truncated to two hundred terms when used to generate
cardinal or orthogonal splines in this thesis.
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Figure 5-17: Cubic orthogonal spline.

defined in the Fourier domain by

#(w) (5.49)

M Ek [ (w + 27k)J

It is easily seen that multiplying this function by #(w) and then making it 27r periodic

(which is sampling in the Fourier domain) will give unity, thus showing orthogonality.

That the dual spans the same spline space is seen by the fact that it is constructed

by a discrete filter (linear combination) of the original basis function.

Plugging in # for # we have the following equation for dual B-splines:

#M 2. (5.50)

k [$(w + 27rk)]

Representing the dual cardinal spline in terms of B-splines gives

W) >1k ( + 2 .k) (5.51)

Ek [(o + 27rk)] 2
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We express this equation in terms of B-splines because of their simple analytical

expression. To see that it is orthogonal to i/(w), simply multiply by Equation 5.46

and 27r periodize.

Orthogonal functions are their own duals, so we do not have a separate expression

for 9(w).

5.3 Discretizing an operator

We have seen how to represent a continuous function with discrete coefficients via

projection onto a spline subspace. We now examine how to project linear operators

onto the same subspace. We will show that the action of the linear operator D on a

function fs then can be equivalently represented by a discrete matrix operating on

a discrete vector. Understanding this topic is of extreme importance to all scientists

and mathematicians since one can only represent and manipulate discrete vectors and

operators on a digital computer. We will limit ourselves to spline subspaces of L2,

and the case where D is a circular convolutional operator for simplicity.

We let # represent an arbitrary spline basis function. We then have the represen-

tation

fs(x) = c[k]#(x - k). (5.52)
k

Operating on both sides of Equation 5.52 with the operator D we have

z(x) Dfs(x) (5.53)

= c[k]D#(x - k). (5.54)

k

We immediately see a problem with this equation. z is not a member of the same

space as fs. It is instead spanned by a strange new (perhaps generalized) function

#x - k) = D#(x - k). We may want to stay in the space S and calculate the

coefficients of the projection of z onto S; that is, we want to calculate the coefficients
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d[l] in the representation

zs(x) = d[](x - 1). (5.55)

Calculating d[l] involves convolving the dual of # with z followed by sampling:

d[l] = c(x') f O(x - x') c[k]D#(x - k) dx (5.56)
. k .

c[k] 6c(x') J(x - x')D#(x - k)dx . (5.57)
k

It is clearer to see this process in the Fourier domain. Since D is a circular convo-

lution operator, it can be operated in this domain by multiplication of its spectrum,

Dw)

c[k] [c(x') J q(x - x')D#(x - k)dx] -> hs(w + 27rn)a(w), (5.58)
k n

where

-s(w) = O(w)D(w)#(w) (5.59)

This representation needs explaining. In Equation 5.57 there is a convolution of

D with the basis functions, and then with the dual functions. This gives rise to

the 3 terms in Equation 5.59. The resulting operator is then convolved with the

coefficients, c[k], and then sampled, which makes the 27r periodic Fourier domain

operator, >, bs(w + 27rn), of Equation 5.58. The coefficients, c[k], were already

a sampled function in the state domain, so (w) =- (w + 27rn). E, Ds(W + 27n)

represents a discrete filtering operation, a.k.a., a circular convolution matrix which

we denote as Ds. We can now express the infinite dimensional operation

ZS = Dsfs (5.60)
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equivalently by the finite dimensional operation

d = Dsc. (5.61)

c are the coefficients of fs in the spline basis, <k; d are the coefficients of zs in the

same basis; Ds are the coefficients of the linear operator K mapping fS to zs.

We end this section with an example of the above process. The operator, D, that

we use will be the derivative operator. DS will then be a differencing matrix. What

the coefficients of this matrix are will depend on the spline space we are in. We will

let the coefficient vector c be velocity log shown in figure 5-1. We don't know what

degree a to use - that is, we don't know what spline space is optimal for representing

this data. This doesn't matter for our example. We simply want to show the effect

of making different assumptions. If different assumptions lead to drastically different

vectors d in Equation 5.61, then we know that a correct modeling of the discrete data

is crucial to obtaining accurate results.

We generate 3 different matrices Ds. One assuming a = 0, the next a = 1, and,

finally, a = oc. In Figures 5-18, 5-19, and 5-20 we show the impulse responses of each

of these matrices, respectively. Their appearances are significantly different. The

first is the first differencing operator commonly used to approximate the derivative of

discrete data. The third is basically the Fourier transform of the derivative operator

d iw. The second vector is somewhere in between. To better illustrate the dif-
dx

ference between these operators we plot the absolute value of their Fourier transforms

in Figure 5-21 for all three values of a.

Letting c be the well log data shown in Figure 5-1, we show the d vector resulting

from Equation 5.61 for both a = 0 and a = oc operators in Figure 5-22. Figure 5-23

shows the difference between the d's plotted in Figure 5-22. From this last plot we see

that the difference is of roughly the same magnitude as the vectors themselves. This is

a substantial difference. If one spline space is optimal and the discrete data is treated

as though it belonged to a different spline space, large error can be unnecessarily

incurred.
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Figure 5-18: Impulse response of derivative matrix, Ds, in spline basis for a = 0.
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Figure 5-19: Impulse response of derivative matrix, Ds, in spline basis for a = 1.
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Figure 5-20: Impulse response of derivative matrix, Ds, in spline basis for a = oo.
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Figure 5-21: Frequency domain derivative operator, bs, for all a's.
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Figure 5-22: Results of operating Dsc for a = 0 and a = oo.
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Figure 5-23: Difference in the results of operating Dsc for both a's.
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Chapter 6

Wavelets

Wavelets are localized oscillatory functions, i.e. "wiggles" that have most of their

energy at a specific point in space1 . They are also localized in the frequency domain.

They must integrate to zero to be a proper wavelet, and, depending on the wavelet,

have higher order moments equal to zero also.

Many real world signals consist of a few isolated jumps (edges) separated by larger

smooth regions. Wavelets represent a new and more efficient way to analyze and

synthesize such non-stationary functions than classical bases (Donoho, 1995). They

have proved useful in applications ranging from image compression (DeVore et al.,

1992) to inverse problems (Kolaczyk, 1994, 1996; Donoho, 1995).

To better understand the nature of wavelets we must first define multiresolutions

(Mallat, 1998).

6.1 Multiresolutions

Let {Vj}, j E Z, be a sequence of closed subspaces of L2 . According to Mallat (1998),

the V,'s are a multiresolution approximation if the following properties are satisfied:

1. V(j, k) E Z x Z, f (x) E Vj f (x - 24k) E Vj,

'Since the independent variable could be either space or time we will just refer to it as space for

simplicity.
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2. Vj E Z, Vj+ 1 C Vj,

3. Vj E Z, f(x) E Vj ) f(x) E V+1,

4. lim, oo v- = F-o v. = {O},

5. limj,. Vj = Closure(U2 Vj)= L2(R).

6. There exists a function # such that #(x - k), k E Z, is a Riesz basis of VO.

Blu and Unser (2001b) have shown that if the function # satisfies the partition of

unity constraint

#(x - k) = 1, (6.1)
kEZ

in addition to properties 3 and 6, then all the properties of a multiresolution are

satisfied, and # is a valid scaling function. This allows for a simpler description

of a multiresolution. The scaling function can be used to approximate continuous

functions as was done in Chapter 5, and, in fact, we will use spline basis functions as

our scaling functions below.

Multiresolutions gives a mathematically precise way of defining the intuitive con-

cepts of scale and resolution. We will follow Mallat (1998) and define scale to be

the number 2i and resolution, its inverse, the number 2 -3. We will call j itself the

scale level2 . Scale 20 = 1 usually corresponds to the scale at which a regular grid

is defined. An arbitrary function in £2 may have details at very small scales and

the Riesz basis at scale 1 might be inadequate to completely represent the function.

Therefore we usually refer to a representation of a function at a certain scale as an

approximation.

2 There are at least two conventions in the literature as to the definition of scale. Some follow

Choi and Baraniuk (1999), Strang and Nguyen (1997), and Donoho (1995) who use the opposite

definitions of scale and resolution than Mallat (1998) uses. Some workers (Li et al., 1996) define

scale by j, which we call scale level. All these different conventions leads to conflicting and confusing

notations in equations involving wavelets. We believe that the notation of Mallat (1998) is the most

intuitive and easy to use and thus follow it in this work.
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We are now ready to make a precise definition of a wavelet. Let )Vj be the

orthogonal complement of V, on V._I (Naylor and Sell, 1982):

V, = V3+ 1 e W+1. (6.2)

The symbol E implies a direct sum of two linear spaces (Naylor and Sell, 1982). We

interpret this as saying that V3 has approximations of functions by a Riesz basis at

level j and WA)3 contains the details necessary to represent the function at level j - 1.

Equation 6.2 implies a recursive relationship if we expand the V's in terms of W's.

Starting at the smallest scale of interest, Vo, we have:

Vo = W1i EW2 -D -. -( WN N, (6.3)

where VN is the largest scale space we care to define. It is in the spaces Wj that

wavelets reside. They can be interpreted as carrying the details of functions between

consecutive scales.

We can define an analyzing function, #, that is biorthogonal to integer shifts of #:

6[n - k] = (#(x - n), 0-(x - k)) . (6.4)

Since #k is a Riesz basis, 0 could be the dual function (Section 5.1.1), but it does not

have to be. Any function satisfying the biorthogonality constraint in Equation 6.4

will do. If # is the dual, then # is also in Vo, and the relationships between subspaces

in Equations 6.2 and 6.3 apply to it.

If q is not the dual of # but satisfies the necessary requirements for a scaling

function, it will have its own dual multiresolution spaces, V and W, defined by the

recursion

V = V+ 1 E WVV+i. (6.5)
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If expanded, this leads to

Vo= 1e EW2 (D- - - INN VN (6.6)

It can be shown (Mallat, 1998) that Vj is orthogonal to W23, but not to Wj, and that

V3 is orthogonal to Wj, but not to IWV,.

By the above partition of function spaces we assume an arbitrary fv, (x) E Vj to be

the sum of two functions, fv,,+ (x) E Vj+1 and fw,,, (x) E Wj+,. fv,+ is representable

in a basis of dilated scaling functions # - k) C V,+ 1 , while fvv,+, has as a

basis another set of dilated functions v' 0( - k) C Wj+1. We thus have the

following equivalent decompositions:

fv3 (x) = aj[n] #( - n) (6.7)
V2i 23

Sfv3 1 (x) + fw,+ 1 (x) (6.8)

ra,+1[k] #( - k) + dj1 [k] ( - k). (6.9)
k V2-3+12 k V/2+ 1 2j±1

The functions 4 will be our wavelets. We will call aj [k] the approximation coefficients,

and dj[k] the detail coefficients, at scale level j. To determine these coefficients we

must decompose fv, (x) with the analyzing functions 'q( x -1) and '@(x -

1). Taking the inner product of Equation 6.9 with 1 (+ - 1), and observing

that functions in V3+1 are orthogonal to functions in V+1, we have:

- 1
V 

2+ ) 
2j+1

E aj+[k] k)(l)

+ 1dj+1[k ( - 1), ( - k) (6.10)

= aj+1[k]6[l - k] (6.11)
k

= aj+1[l]. (6.12)
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By the same line of reasoning we take the inner product of Equation 6.9 with 1 /(Xr

l) to obtain the detail coefficients:

(- l) (6.13)

If we take the inner product of Equation 6.7 with (1 (r - 1) we have:

( -1 ), fv, (x)

n V12\ 3+1 2j+1
- 1), #0( (6.14)

Making the change of variables x' = x - 21 and writing the inner product as an

explicit integral we obtain

K 2i1 q(j - ), f (x) 1

Zai2ril 2i 1 2j21
=j a[n] *-Wv2--- #) x V -2- n + 21)2jdx'

n

= aj}[n] (), #(x' - n + 2l)

Z a[n]h[n - 2].
n

(6.15)

(6.16)

(6.17)

The filter

h[n] K1 ( )X
2+ 0T

1 ( X
- n)> (6.18)

is extremely important to wavelet theory and is known as the (analysis) refinement

filter. Using these coefficients, the optimal representation of /21 0( x) in terms

of -- (-) is given by

21 21+1) =
1_ - ri)

nl )
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We can see that this equation expresses a scaling function at a scale level j + 1 in

terms of linear combinations of the same function at scale level j. It can also be

shown that there exists a synthesis refinement filter defined by the relationship -

1_ x_ 1 ~x
#( 2 )=Zh[n] -n).f 5Ti-+ 2j+1 v/2j 2i

(6.20)

If we now take the inner product of Equation 6.7 with (fr - 1) and follow the

same line of reasoning as for Equations 6.14 through 6.17 we obtain

1 - x
0(2 - 1), fv (x)V2T+ 12j+1

aj [n] 0(

a, [n] ( o,#('

-a[n]p[n - 2l].
n

-), ( 2i

n + 21) )

The new analysis filter

-ri-7= 1 -x

g 7n 2 2 )

1 qX
#(- (6.24)

is what actually defines the analysis wavelets. Using these coefficients we can represent

,+10(2x+) by %q5(x -n):

- ) (6.25)= g[n] - n).
2i 2

There is a similar synthesis filter g[n] that defines synthesis wavelets via the equation

1 )( x 1 #( - n). (6.26)

This shows that wavelets at scale level j + 1 are linear combinations of the scaling

functions at scale level j.
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The scaling functions determine the filters h and h. We will derive g and from

these filters in Section 6.3, below.

6.2 The discrete wavelet transform

In the last section we concentrated on defining scaling functions and wavelets and

showing their relationships across consecutive scales. Here we concentrate on analyz-

ing a function f(x) by inner products with dilated and translated analysis wavelets

4'j E A1 j at all scales, and translated analysis scaling functions #j E Vi at a large scale

level, J. This analysis procedure is called the discrete wavelet transform3 (DWT).

The analysis part of this transform lies in Equations 6.10 and 6.13. Re-writing the

inner products explicitly as integrals we have:

aj[k] = f (x) ( - k) dx, (6.27)

dj[k] = fW- k) dx, (6.28)

where aj[k] and dj[k] are vectors of discrete wavelet coefficients. The complex conju-

gation of the analysis functions applies to the general case that they have imaginary

components (i.e. they are complex scaling functions and wavelets). We saw in Sec-

tion 5.1.4 that, if f(x) is a periodically repeating function, only a finite number of

coefficients are needed to represent the continuous function. The same is true with

the DWT. If one period of the function is of length 2J there will be 2J-i wavelet

coefficients at each scale level, and only one scaling function coefficient at scale level

J.

We can reconstruct the projection of f(x) onto Vo via Equation 6.9:

fv o(x) +\ [kd] 1 4( 1 -[k] ( -k). (6.29)
k ji=1 k

3What is discrete about the discrete wavelet transform is that it takes continuous functions and

equivalently represents them in terms of a discrete series of coefficients (although possibly infinitely
many of them).
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As the scale 2i gets larger, the wavelet coefficients measure lower and lower fre-

quency content in the signal. The periodized dilated scaling function at the largest

scale is the constant function and measures the zero frequency of f (x). It is constant

due to the partition of unity property of the scaling function; i.e., at the largest scale

the sum of the periodic scaling functions sums to a constant number according to

Equation 6.1.

We saw in Chapter 5 that operations on a continuous function spanned by a basis

functions 4k can be equivalently done via operations on the discrete coefficients of

the basis functions. This also holds for the DWT. If we project the wavelets, scaling

functions, and f(x) all into the same basis 4k, then the DWT involves discrete vector

multiplications and summation. For a periodic function with N = 2' coefficients, the

DWT produces N coefficients and can be represented by a square matrix. We plot

such a matrix in Figure 6-1. This particular DWT uses the Haar basis as 4k (Strang

and Nguyen, 1997). Each row is the projection of a continuous Haar wavelet into the

Haar basis. The first N/2 rows contain double shifted discretized wavelets at scale

level j = 1; the next N/4 rows contain quadruple shifted wavelets at scale level j = 2,

and so on. The very last row contains the discretized constant function.

Figure 6-1: Wavelet transform matrix.
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If one has the approximation coefficients of f(x) in a basis other than #k and

wishes to perform the DWT with this matrix, prefiltering (Section 5.1.2) must first

be applied to the vector, otherwise one is committing a "wavelet crime" (Strang and

Nguyen, 1997, page 232).

In the next section we see that one does not need to construct a matrix to perform

the analysis portion of the DWT. It can be equivalently done by an O(N) discrete

filtering and downsampling operation. To do this we need the discrete filters h, h, g,

and g.

6.3 Filter Banks

Combining Equations 6.12 and 6.17 we see the interesting relationship

aj+l[1 = aj[In]h[n - 21]. (6.30)

From this equation we see that the approximation coefficients at scale level j+ 1 are

equal to a correlation of the the approximation coefficients at scale level j with the

analysis refinement filter, h, followed by a downsampling. If we combine Equations

6.13 and 6.23 we get a similar relationship for detail coefficients:

dJ+1l) = aj[n]gIn - 21]. (6.31)
n

This recursive formulation provides us with the approximation and detail coeffi-

cients at scale j + 1 without ever having to evaluate the inner product of a wavelet or

scaling function with the function being analyzed. One only need the approximation

coefficients of the scaling functions in Vj to apply the algorithm.

A similar reconstruction formula can also be derived in terms of discrete coeffi-

cients. Returning to Equations 6.20 and 6.26 we observe that functions in Vj+1 and

Wj+1 both also have a basis in 1#(' - k). We can therefore decompose fv,+, (x)
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and fv,(x) via inner products with the analyzing function (2 - k):

aj[n] = K - k), f (x) (6.32)
/=27 2i

= Iaj+1[k] 1(_x - k), #( - k) +

d3+1[x]K ( x.- k), 12 1 - k). (6.33)

Making the same change of variables as in Equations 6.15 and 6.21 we have

aj[n] = aj+1[k] -( )(x' - n + 2k) +

d% 1[k] K (), (x' - n + 2k)> (6.34)

Plugging 6.18 and 6.24 into Equation 6.34 we have

aj[n] = (a 1 i[k]h[n - 2k] +5 dj+1[k]g[n - 2k]. (6.35)
k k

Whereas Equations 6.30 and 6.31 analyze by correlation with a filter followed by

downsampling, Equation 6.35 synthesizes by summing two vectors, each of which

result from upsampled filters convolved with approximation and detail coefficients,

respectively. We have arrived at what is known as a filter bank (Strang and Nguyen,

1997): a mathematical construction that is capable of breaking a discrete signal into

two separate downsampled signals via Equations 6.30 and 6.31 and then reconstruct-

ing the original with Equation 6.35.

It can be shown (Mallat, 1998) that a filter bank is an O(N) process when the

filters are short length FIR. If the filters are long, or IIR, the it can still be operated

in the Fourier domain with 0(N log N) operations.

The recursive filters h, h, g, and g are the key to filter banks and in order to

guarantee an analysis and synthesis without loss of information we must pose some

constraints on these filters.
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6.3.1 Relationship between filters

In order to understand the relationship between the various filters in a filter bank,

we first observe that downsampling a function f(x) in the Fourier domain has the

following representation (Strang and Nguyen, 1997, chapter 3):

fj 2(w) = -[( ) +2 2
(6.36)f( + 7

where ft 2(w) signifies the downsampled function. Transforming Equations 6.30 and

6.31 into the Fourier domain we then have, respectively,

1 w *w w
[j( )h(-) + dj(-2 2 2 2

and,

=-[&2()j( ) + 6,(-2 2 2 2

+7rh 2 r)],

+ 72)*( + cr)].

(6.37)

(6.38)

Doubling all frequencies in these equations gives

dj+1 (2w)

dj+ 1(2w)

= [&,(w)h (w) + &(w

and,

- [ (w)bM*(w) + et( P2

+ )h (w

+ gr)h*(W + 7r)].

(6.39)

(6.40)

Transforming Equation 6.35 into the Fourier domain yields

dj(w) = &j+1 (2w)h(w) + dj+1(2w)(w). (6.41)

Substituting Equations 6.41 into 6.39, expanding, and grouping terms by &j+1(2w)

and di+1(2w), we arrive at

&j+1 (2w) + h(w + 7r)h (w + 7r)]&j+1(2w) +
1 - 2 *

= [h (w)h ()

-+ (

(6.42)

+ rh + 7r)]dj+1 (2w).

119

dj+1 (w)



To preserve equality between the left and right sides of Equation 6.42 we explicitly

see two requirements for perfect reconstruction in a biorthogonal filter bank. They

are

h(w)h (w)

z *h ( )

(6.43)+ h(w + 7r)h (w + 7r) ==2

+ y(W + 7r)h (W + 7r) =0 (6.44)

We can represent these equations by a 2 x 2 matrix acting on a vector:

h(w) h(w + -r)

y(W) (o + -r)
x ( 2

0
(6.45)

In solving this system of equations we obtain

2

A(w) y(w) )I (6.46)

where A(w) is the determinant:

A(w) = ( + r)h(w) - (w)h(W + 7r). (6.47)

We unfortunately cannot evaluate this determinant because it involves a function

we do not know, namely, y(w).

6.47 obeys the relationship

It is interesting to notice, however, that Equation

A(W + r) = -A(w). (6.48)

Mallat (1998, page 261) shows that a function satisfying this constraint is

A(w) = -2ae i(2+1)w (6.49)
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where a E R and 1 E Z. It is a convention to set a = 1 and 1 = 0. This equation

combined with Equation 6.45 gives us our high pass filter :

S(w) = eit(w + r). (6.50)

To derive the relationship between g and h we substitute Equation 6.41 into

Equation 6.40 and group terms by &.+1(2w) and d,+1(2w):

dj+1 (2w) = [h(w)*(w) + h(w+ -r)*(w + r)]&j+1(2w) +
2
1

~[y(w)+*(w) ± y(w + 7r)*(w + 7)]dj+ 1(2w).
2

(6.51)

Preserving equality of the two sides leads to another two requirements for perfect

reconstruction:

S(w))*(w) + y(w + ))*( + ir) = 2

) + h(w + r)*( + 7r) 0.

(6.52)

(6.53)

We can again construct a matrix expressing these two equations:

(6.54)(w) h(W + r)

h(w) h(o + 7r)

2

0

Inverting this matrix leads to

b*(o + ir) J
where A(w) is defined in Equation 6.49. Combining Equation 6.55 with Equation
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2 h(w + r)

-h(w)
(6.55)
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6.49 gives us

g(w) = -ei'N*(w + ir). (6.56)

Equations 6.50 and 6.56 establish a link between the high-pass filters, y, 9, and

the low-pass filters, h and h. We typically start with only the scaling function <0 from

which we derive h. We then need to establish a relationship between h and either h

or y in order completely specify all four filters. We show the connection between the

four filters in the schematic of Figure 6-2.

-. ?

g9 9

Figure 6-2: Relationship between biorthogonal filters.

Before we finish linking the filters, we mention that workers often start with a

discrete FIR, h, and from it construct a filter bank. Going in this direction is more

difficult because one must show that the filter defines a valid scaling function. Proving

this involves analyzing the convergence of

< = 2 . (6.57)
p=1

This product converges to a valid scaling function when following properties hold true

(Mallat, 1998, page 229):

1. |h(w)12 + Ih(w + 7r)12 = 2 Vw C R.

2. h(0) = V.

3. h(w) is 27r periodic and continuously differentiable in a neighborhood of W = 0.

4. ing gg|I> 0.
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Starting with a valid scaling function in the first place, and from it deriving the filter

h alleviates this difficulty.

Biorthogonal filter banks

It is common practice to apply the method of Smith and Barnwell (1986) to derive

the high-pass filter y directly from h

(w) =e-r*( ± r). (6.58)

From y and h the other filters can be derived through Equations 6.50 and 6.56. The

filters and the related scaling functions are indeed biorthogonal but, in general, they

span different multiresolution spaces.

Dual filter banks

In order to span the same multiresolution, one starts with a valid Riesz basis, #,

which specifies a unique dual function, <, that spans the same space. These functions

are automatically biorthogonal to each other, and if one is a valid scaling function,

so is the other. From these functions valid low-pass filters, h and h, can be derived.

One can then calculate the related high-pass filters for both scaling functions from

Equations 6.50 and 6.56. This gives what we call dual filter bank: a biorthogonal

filter bank with the added property of having synthesis and analysis scaling functions

that span the same multiresolution.

Whichever way we derive a valid filter bank, the g's finally give us the wavelet via

Equation 6.26. In the Fourier domain, for a synthesis wavelet at j = 1, this is

(2w) = ,(w)<0>(w) (6.59)

= h ( + 7r)#(W)

123



6.4 Fractional spline wavelets

In chapter 5 we defined fractional spline basis functions. These functions are a Riesz

basis for L 2 and fulfill all the requirements of a scaling function. We therefore use them

to generate wavelets. These fractional spline wavelets inherit all the beneficial

properties of the spline basis functions, including an adjustable parameter a exactly

fitted to the H6lder continuity of the functions they analyze or synthesize.

Spline wavelets are not new to the wavelet community and are known by the names

of their creators: Battle (1987) and Lemari6 (1988). What is new is the generalization

of these wavelets to non-integer degree splines.

To construct fractional spline wavelets we must first construct the refinement filter

h[k], as described in Section 6.1. To distinguish between refinement filters generated

by the different spline basis functions we put two subscripts: 1) +, -, or * signi-

fying causal, anti-causal, or symmetric basis functions, and, 2) 0, rq, or y signifying

whether the spline is a B-spline, cardinal spline, or orthogonal spline, respectively.

The subscripts will be dropped when they are irrelevant or implied by the text.

The (synthesis) refinement filter associated with B-spline basis functions is implied

by

-/'(x/2) = ha[k]#a(x - k) (6.60)

or, in the Fourier domain,

#a (2.) = ha (W) "(w) (6.61)

Rearranging, we have

B () = vi- t 4. (6.62)

By combining Equations 5.43 and 6.62 we obtain the following expression for the
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B-spline refinement filter in the causal, anti-causal, and symmetric cases, respectively:

1 + ei.a+

h" § (w) = v1_2( 2 (6.63)

1i+ e-iW a

h1 ()= 2 . (6.65)

Similarly, if we are dealing with cardinal splines, the refinement filter in the Fourier

domain is

hNa(w) = .(2.) (6.66)
71 i' (W)*

Combining Equations 5.46 and 6.62 with 6.66 we have the following expressions for

cardinal spline refinement filters:

() rna (w) (6.67)

where ^n a (w) = Ek !3&(, + 27k) is the sampled B-spline in the Fourier domain.

Finally, in the case of orthogonal spline basis functions we have the refinement

filter

h,(w) := V/2i(2w)
^t 07 (W)*

(6.68)

By combining Equations 5.48, 6.62, and 6.68, we have the following formula for the

orthogonal spline refinement filter:

e2+1(w)

a2 a+1(2w)
(6.69)
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where 2 Qla+1() - Zk I3a(, +-27rk)| 2 is the 27r periodic power spectrum in the Fourier

domain.

The dual low-pass filters can be derived from the dual spline basis functions from

Section 5.2.5. For B-splines and cardinal splines they are as follows:

_^ a - &2a+1( )
h ) = ha (6.70)S&2a+1l(2w)'

and
-a a rn(2.) &2a+1(e
h (w) = h: n (6.71)

q M na(w) 2a+1(2w)'

Having both low-pass filters, we can complete the filter bank by deriving g and . from

Equations 6.50 and 6.56.

The fractional spline wavelets derived above are called semi-orthogonal wavelets.

They were derived from dual functions that span a Riesz basis. The multiresolution

spaces for both scaling functions are the same. Thus Vj = Vj and Vj = WY9. From

this it follows that the wavelets are orthogonal to all wavelets at other scales, but not

within the same scale (Strang and Nguyen, 1997, page 256).

In Figures 6-3 and 6-4 we show examples of causal and symmetric fractional B-

spline wavelets, respectively. In Figure 6-5 we show examples of symmetric fractional

cardinal spline wavelets. And, in Figure 6-6, we show symmetric fractional orthogonal

spline wavelets. All wavelets are shown for a's ranging from 0 to 3 and in steps of

a= 0.25 except for the cardinal splines wavelets, which were plotted for a = 1 to

a=3.

Wavelets can be generalized to multiple dimensions by tensor outer products

(Nowak and Baraniuk, 1998). We show a few examples of 2-D wavelets in Figures

6-7 through 6-10.
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1.5

1

r -: -2 0 2 4

Figure 6-3: Causal B-spline wavelets for a -0 to a = 3 in steps of 0.25.

:4 -2 0 2

Figure 6-4: Symmetric B-spline wavelets for a = 0 to a = 3 in steps of 0.25.
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-4 -2 0 2 4

Figure 6-5: Symmetric cardinal spline wavelets for a 1 to a = 3 in steps of 0.25.

Z4 -2 0 2

Figure 6-6: Symmetric orthogonal spline wavelets for a = 0 to a = 3 in steps of 0.25.
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-4

Figure 6-7: 2-D Symmetric cubic cardinal spline wavelet outer-product basis function.

-0.1

Figure 6-8: 2-D Symmetric cubic B-spline wavelet outer-product basis function.
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1--

0-

-4 -4

Figure 6-9: 2-D Causal 0" degree orthogonal spline wavelet outer-product basis func-
tion.

10 . * - -.

5-

0

-2 ..-- 0

24-2
-4

Figure 6-10: 2-D Symmetric 0 th degree orthogonal spline wavelet outer-product basis
function.
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Chapter 7

Wavelet Domain Geophysical

Inversiont

In this chapter we examine the usefulness of wavelets for solving inverse problems.

Building upon the theory of Chapters 5 and 6, we construct fractional spline wavelets

and project an inverse problem into the wavelet domain via a filter bank. A new

method of wavelet coefficient thresholding is used to regularize the solution, rather

than classical methods. We compare the wavelet based method to classical methods

for both synthetic and real geophysical inverse problems.

Introduction

Wavelets have established themselves as highly useful mathematical functions for

a variety of applications. In harmonic analysis they allow for the representation of

certain functions for which classical basis functions are either inefficient, or completely

incapable (Meyer, 1992; Donoho, 1995). In applied mathematics they have proven

superb for data compression and denoising of audio and video signals (DeVore et al.,

1992; Strang and Nguyen, 1997; Mallat, 1998).

Denoising an observed signal can be looked upon as an inverse problem, where

IThis chapter to be submitted to Geophysics.
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the forward modeling operator is simply the identity operator on the model space.

Given the success of wavelets in this application, it was reasonable to ask whether

they were applicable to other inverse problems. In the 1990's a large amount of work

in the applied mathematics and statistics community went into answering this ques-

tion. Perhaps foremost among the workers was Donoho (1995), who formulated the

wavelet-vaguelette decomposition (WVD) for solving certain linear inverse problems.

His theory was then applied by various workers; Kolaczyk (1994, 1996) applied the

method to 2-D tomographic problems; Abramovich and Silverman (1998), formulated

a related vaguelette-wavelet method; Nowak and Thul (1998); Neelami et al. (1999,

a) and Neelami et al. (b) applied it to deconvolution problems.

The WVD based inversion method is innovative in its use of a nonlinear thresh-

olding operation in the wavelet domain. Thresholding is both fast and easy, and

performs a non-stationary filtering of the estimated model. This effectively smooths

the estimate more in areas of little signal and smooths less in more interesting areas,

thereby preserving interesting features.

To our knowledge WVD methods have not appeared in the geophysical litera-

ture. Therefore the first goal of the work presented here is to apply the theory to a

1-D geophysical problem. The second goal is to combine the wavelet-vaguelette de-

composition method with fractional splines wavelets, a versatile class of wavelets

recently introduced by Unser and Blu (1999, 2000). To our knowledge this work also

is the first use of the WVD framework with fractional spline wavelets.

The outline is as follows: we first introduce fractional splines, and from them,

fractional spline wavelets. Using these functions we can discretize functions and

operators. This allows us to pose a discrete linear inverse problem as an approximation

to the analogous continuous problem, and then translate such a problem to the wavelet

domain via a filter bank. We then present classical regularized least-squares inverse

methods in the wavelet domain, as well as the alternate WVD framework and discuss

pros and cons of the methods. After this we apply the WVD method to the 1-D

problem of slowness estimation from picked traveltime data. Results are compared to

both damped and regularized least-squares methods. We then apply all the methods
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to a real traveltime data set, discuss the results, and present conclusions.

7.1 Fractional splines and wavelets

Unser and Blu (1999, 2000) have presented a degree fractional splines: a-H6lder

continuous functions (Mallat, 1998) used to approximate more complicated "real"

functions. The adjustable a parameter controls the degree of differentiability of the

approximation function. Fractional splines are a generalization of the classical integer

degree splines to fractional degree of continuity. There are several convenient basis

functions for fractional splines. Perhaps the most famous are the causal B-splines

which have the Fourier domain representation

(w) = ( (7.1)

We show examples of these basis functions for varying degree a in Figure 7-1. Integer

1.2
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0.8
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0.4

0.2

0

-0.2
-4 -2 0 2 4

Figure 7-1: Causal fractional B-splines of degrees a = 0 to a = 3 in steps of 0.25.

shifts of basis functions such as these are the building blocks of a spline. These basis

functions can be made both symmetric about the origin and orthogonal to integer
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shifts of themselves via the following equation (Mallat, 1998, p. 225):

zia,(W) =

(k /a + 2rk) 2)1/2

These orthogonal spline basis functions are the spline basis functions we will

use in this work. As an example, we show in Figure 7-2 the a = 1.25 symmetric

orthogonal spline basis function derived from the a = 1.25 B-spline via Equation 7.2.

1.4
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0.4-
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0

-0.2
4 -2 0 2 4

Figure 7-2: a = 1.25 orthogonal spline basis function.

Specifying a basis of functions determines the values of coefficients when discretiz-

ing continuous functions into vectors and linear operators into matrices. Ignoring the

details of such an operation will unnecessarily generate errors. Fractional spline basis

functions are used for 3 reasons:

1. Given only prior information about the differentiability of a true function, one

can use an equally differentiable fractional spline basis to optimally approximate

that function.
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2. Spline basis functions have better approximation properties than any other

known function (Strang and Nguyen, 1997, p. 223). Fractional spline basis

functions generalize this property to a fractional order of approximation (Unser

and Blu, 1999).

3. Spline basis functions possess all the multiresolution properties necessary for

creating wavelets (Blu and Unser, 2001b).

In particular, orthogonal spline basis functions can be used to create orthogonal

spline wavelets (Blu and Unser, 2001b). Using the Fourier domain formula of Mallat

(1998),

(7.3)

we can convert our basis functions into wavelets. y is a high pass filter determined

uniquely from a lowpass filter h, which, in turn, is uniquely determined by the basis

function zb (Mallat, 1998). In Figure 7-3 we show the a = 1.25 orthogonal spline

wavelet obtained from the basis function of Figure 7-2.

Figure 7-3: a = 1.25 orthogonal spline wavelet.

The wavelet transform (Mallat, 1998) uses shifts and dilations of such a wavelet
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to project and represent a function in a basis of wavelets. It is shown in Chapter

6 that if the function has already been projected into a certain spline basis, and

the wavelets are constructed from the dual functions of that same spline basis, the

wavelet transform can be exactly implemented via a discrete filter bank operating

on the spline coefficients. The filter bank (Strang and Nguyen, 1997) is how the

transform will be computed in this chapter, and can be implemented in either O(N)

or 0(N log N) operations, depending on the wavelet. We, however, will symbolically

represent the transform as a discrete matrix, W, which is an equivalent, although

computationally inefficient method of applying it. Each row of W is coefficients of

the projection of a shifted and/or dilated wavelet into the appropriate spline basis.

Representing the wavelet transform as a matrix will allow us to analyze the use of

wavelets in linear inverse problems more efficiently.

The superiority of wavelets over more traditional basis functions stems from the

fact that they represent functions in both spatial and scale coordinates. This has led

to their usefulness in signal compression and harmonic analysis, and it will also lead

to their use in inversion in this chapter.

7.2 Classical inversion in the wavelet domain

Linear inverse problems encountered in science and mathematics often take the form

z =Kf + n, (7-4)

where f is a function we desire to estimate, n is the uncertainty (noise) in the system

(which is independent of f), K is a linear operator mapping models into data, and z is

the noise contaminated data. In order solve such a problem on a computer we must

discretize the functions and operator by projecting them onto a finite dimensional

basis of functions. We project into the basis of orthogonal spline functions of degree

a = 1.25 shown in Figure 7-2. We explain why we use this particular value of a

below. After projecting into this basis Equation 7.4 can be replaced by the related
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finite dimension system:

z =Kf +n, (7.5)

where f, n, and z are finite dimensional vectors and K is a matrix.

Upon observation of a vector Zobs, and assuming that n is a multi-Gaussian random

vector, finding the the maximum likelihood solution reduces to finding the f that

solves

min ||C-1/2 (Zobs - Kf)| , (7.6)

where C-1/ 2 is the square root of the inverse of the covariance matrix of n.

The minimization of Equation 7.6 leads to the least-squares solution:

f= K- 1z (7.7)

where K-j = (KTC-lK)-KTC;1. If K is square and invertible then K- 1 = K- 1.

If we substitute Equation 7.5 into Equation 7.7 we obtain

1=f+ K-n. (7.8)

From Equation 7.8 we can see that our solution will be contaminated with colored

noise, K,-n. The effect of this noise can be seen through the inequality

i1 - fle2 < |IK-1 1e2 ||n1f2 (7.9)

If the noise, n, is of too large a magnitude, or if K or KTC;lK was not invertible

in the first place, we can see that the right side of the equation will be large or

infinite, and we have an ill-posed inverse problem (Tikhonov and Arsenin, 1977).

The traditional way to solve such a problem is by putting some other constraint on the

system. In Bayesian methods (Tarantola, 1987) the constraint involves simultaneously

maximizing a prior probability density function (PDF) defined on the model to be
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estimated. A correctly chosen prior PDF will both damp the effects of the noise and

provide a unique solution to the problem. The solution is then known as the maximum

a-posteriori (MAP) solution. In a non-Bayesian setting (Tikhonov and Arsenin, 1977)

the constraint usually comes in the form of minimizing a linear operator acting on the

vector to be estimated, which is functionally equivalent to the Bayesian method with

a multi-Gaussian prior. This framework is known as regularized maximum likelihood.

Either way, the constraint is expressed as

minI|LfIli, (7.10)
f

where L is usually a differencing matrix obtained by projecting a differential operator

into the chosen spline basis (Chapter 5). This leads to the regularized least squares

solution

f=K-'z, (7.11)

where

K- = (KTC-lK + ( C-')- KTC-l. (7.12)

In the Bayesian framework Cf = (LTL) 1 is the covariance matrix of f. ( is an

adjustable constant that changes the amount of damping in the inversion. In the

Bayesian case it is the inverse of the prior variance. An optimal ( is hard to estimate

in advance and a poor choice of it can lead to poor results in the inversion. If it

is too large, the solution will be too smooth. If it is too small the solution will be

too rough. In the special case where L = I we replace Cf with I and have the

damped-least squares solution, which essentially inputs less prior information into

the inverse problem.

If one can decompose the matrix K into a sequence of other matrices that are

more computationally efficient to apply, the least-squares inversion can also be made

more efficient. For instance, if K is a square circular convolution matrix then it is
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diagonalized by the unitary Fourier transform, F. Denoting the inverse of F as FT,

we have

K = FT AKF. (7.13)

The matrix AK is diagonal with the spectrum of K on its diagonal. The matrices F

and FT can each be operated in O(Nlog N) operations with the fast Fourier trans-

form, where N is the length of the vector being operated on. Plugging Equation 7.13

into Equation 7.7 we have

f FT AiKFz. (7.14)

We can see from this that inversion becomes an O(N log N) operation. If Cn and Cf

are also square circular convolution matrices we have, respectively,

Cn F AnF (7.15)

and (7.16)

Cf FTAfF. (7.17)

These relationships lead us to the Fourier domain regularized least-squares inverse

filter

F FT A-Fz, (7.18)

where

A-= (AA 1AK + (A-') -A*A-~. (7.19)

A* is the Hermitian transpose of AK. When Cf = I we have the Af = I and

Equation 7.19 becomes the damped least-squares inverse filter. The implementation

of the regularized filter in Equation 7.18 again requires O(N log N) operations.
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As fast as the fast Fourier transform is, the wavelet transform is potentially faster.

For wavelets of compact support W can be operated in O(N) operations via Mal-

lat's pyramid algorithm (Mallat, 1998). Therefore, to make inversion in the wavelet

domain appealing to us, we would like to see a formulation similar to Equations 7.13

through 7.19, only with W in place of F. To derive an equivalent formulation we

also require that the wavelet transform be orthogonal. Only Daubechies wavelets

(Daubechies, 1988) simultaneously satisfy these requirements. Orthogonal fractional

spline wavelets do not because, in general, they are not compactly supported. As-

suming for a moment that we choose to use Daubechies wavelets and that K is square

and invertible, we decompose K in the wavelet domain to give

K = WTOKW. (7.20)

Substituting 7.20 into Equations 7.7 and 7.11 we have

= WTQ K IWz. (7.21)

and

f = WT-Wz, (7.22)

where

r- K nK f K '23)

Qf = WCfWT, (7.24)

and

On = WCnWT. (7.25)

We show an example of a circular convolution matrix K and its corresponding QK

matrix in Figure 7-4. We use the Haar wavelet for this example, which is of both the

Daubechies and fractional spline families. In order to show the dominant structure in

QK the coefficients were thresholded at a certain value. The location of coefficients
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Figure 7-4: Matrix decomposition via wavelet transform matrices.

that survived the thresholding are shown in blue.

There are several problems with the formulation of Equation 7.22. First, OK

is not diagonal for any commonly encountered class of operators. There exists no

known computationally efficient algorithm for applying this matrix, or inverting it.1

Second, in general, it will not even be sparse. Rather, it will be a full matrix and its

coefficients may have to be individually calculated. Thus any computational gains

made with the W matrix are lost with OK.

Li et al. (1996) solve Equation 7.22 for the same 1-D geophysical problem ad-

dressed in this work. Their synthetic problem is small enough to allow direct creation

and inversion of the matrices in Equation 7.22. They, however, approximate Or with

a diagonal matrix that correctly models the variance of wavelet coefficients of a frac-

tal process at each scale. Their solution is actually obtainable without the use of

wavelets. Using Equation 7.11 would even allow the correct prior covariance matrix

of a fractal be used, rather than an approximation.

Other workers, such as Amaratunga and Castrillon-Candas (2000), use the thresh-

olded approximation of OK along with iterative methods to invert lK in Equation

7.21. Such a method requires only the repeated operation of fK to find the solution,

and is not limited to small problems. While this is potentially a computationally

efficient method once the coefficients of f2K have been calculated and stored, the

calculation of these coefficients may be a much more intensive task than the inverse

'Beylkin (1992); Saito and Beylkin (1993); Alpert et al. (1993); Beylkin and Torresani (1996)
have created methods for efficiently applying certain operators via filter banks. Such methods may
be amenable to applying the matrix but not to inverting it.

141



problem itself. It is also difficult to measure the error caused by thresholding the OK

matrix. And, as with the method of Li et al. (1996), the solution obtained will still

be the classical solution. We will not investigate such methods, but rather turn to a

simpler formulation that gives superior results.

7.3 The wavelet-vaguelette decomposition

Donoho (1995) presented an alternative methodology for solving a certain set of linear

inverse problems in which K is a homogeneous operator. These operators are

defined by having the following dilation invariant property:

KGa = aaG 0 K, (7.26)

where Ga is the dilation operator, i.e. Gaf(X) = f(f). Operators that obey this prop-

erty include fractional integration, fractional differentiation, and the radon transform.

With some minimal constraints on a wavelet, the operation of a homogeneous

operator on the wavelet will produce a vaguelette:

KV'j,k = C(j)Vj,k, (7.27)

where 'j,k = gw(- - k) is a valid wavelet, Vj,k = (- - k) is a vaguelette,

and c(j) is a constant dependent on scale only. Vaguelettes have a precise defini-

tion according to Meyer (1992). Among their properties are localization in space,

zero mean, and some degree of H6lder continuity. Donoho's main reason for using

vaguelettes is that for homogeneous operators, there exist dual vaguelette functions,

Ujk = jIU( - k), that are approximately orthogonal to the vaguelettes. We will

show why this is a useful property below. For homogeneous operators the constants

c(j) are also easy to (approximately) calculate.

Since we are dealing with discrete data sets, the homogeneous operator K needs to

be projected into the same spline basis as the functions were. This converts the linear

operator K into a matrix K. In a matrix formulation, the WVD method proceeds as
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follows: an inverse orthogonal wavelet transform matrix WT is constructed, where

each column are the coefficients of the projection of a wavelet into the spline basis.

K then operates on each of these individual wavelets to produce the coefficients of

the continuous vaguelette in the same basis. These discrete vaguelettes occupy each

column of a matrix VT:

KWT = VTr. (7.28)

In Donoho (1995) the matrix r is a diagonal matrix with the diagonal entries equal

to the c(j) constants above. For the homogeneous operators listed above Donoho

provided simple formulae for calculating these constants such that the columns of VT

would almost have unit energy (and also be almost orthogonal to each other).

Moving WT to the other side of Equation 7.28, we get the wavelet-vaguelette

decomposition (WVD):

K = VT TW. (7.29)

Equation 7.29 looks similar to the singular value decomposition (Strang, 1986;

Trefethen and Bau, 1997; Golub and Van Loan, 1996), with the exception that VT is

not an orthogonal matrix (although for homogeneous operators, it is near orthogonal).

Donoho (1995) therefore called the entries of F quasi-singular values. It is important

to note here that W and F are always invertible, but VT is invertible only if K is.

If VT is indeed invertible we call its inverse U, which has as its rows the discrete

biorthogonal duals of the columns of VT.

We are now ready to apply the WVD to the solution of a linear inverse problem.

Assuming temporarily that K is invertible and square, we can represent its inverse

via the WVD as

K- = W-'F1 U. (7.30)
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Plugging Equation 7.30 into Equation 7.7 we get

i = W -lUz. (7.31)

This is where the crux of the WVD inversion method appears. A nonlinear thresh-

olding operator, ET, will be inserted between the F-1 and the U matrices, and will

remove those vaguelette coefficients v = Uz that are deemed to possess much greater

noise than signal. Inserting such a nonlinear thresholding operator into Equation 7.31

we obtain

S= w-T 1 rT[U]. (7.32)

To gain insight as to how to create such a thresholding operator we plug Equation

7.5 into Equation 7.31 obtaining

i = W-T-'U(Kf + n). (7.33)

We then examine the covariance, Cs, of the noise among the vaguelette coefficients,

n = Un. Assuming for a moment that the noise in the data is white, we have

Ca = E [UnnTUT] (734)

= UE [nn T ] U T  (7.35)

= o2 UUT. (7.36)

Due to the approximate orthogonality of U we may believe that the noise in the

data will be uniformly distributed among the vaguelette coefficients. Following this

assumption through we may make the intuitive argument that any vaguelette coeffi-

cient of a magnitude significantly larger than the standard deviation of the noise in

the vaguelette coefficients will probably contain more signal that noise. Conversely,

vaguelette coefficients with magnitude much smaller than the standard deviation of

the noise are probably just noise. According to Donoho (1995), these assumptions
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are valid when the function being estimated belongs to certain function spaces that

contain smooth signals with a finite number of discontinuities. Real world signals are

well approximated by functions in such spaces. In such a case the vaguelette trans-

form will tend to isolate interesting features of a signal into a few large coefficients,

while spreading the noise evenly at small magnitude over all coefficients. We can now

define the thresholding estimator.

We define OT by

8)T[-] = k v :vl > T (7.37)
0 :Vk < T

where Vk are vaguelette coefficients and a "universal" threshold criterion has been

defined by Donoho (1995) as

T = a V/2 In(N). (7.38)

N is the number of coefficients in z.

This universal threshold level comes from the fact that for N independent, unit

variance, Gaussian random variables x1, X2, . - - , XN,

lim P max Ixj I> V2 lnNl = 0. (7.39)
N -oo I

Applying this to our inverse method, this basically says that if the noise n is white

with unit variance, the probability of getting a coefficient of vaguelette noise above

2 ln N tends to zero as N gets larger.

A difficulty in Equation 7.32 is how to implement U. Creating a vaguelette from

each individual wavelet would be tedious and inefficient. Noting the similarities be-

tween wavelets and vaguelettes, Kolaczyk (1994, page 4) has said,

[Scale invariance of vaguelettes] should enable the development of fast

algorithms for the computation of the vaguelette coefficients, at which

point methods similar to the wavelet shrinkage of Donoho et al. become
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feasible.

This seems to imply that there might exist a fast vaguelette transform akin to the fast

wavelet transform. For convolution operators, the method of Beylkin and Torr sani

(1996) may be useful for this purpose, but we do not investigate it here. Noting that

U - FWK-1 , we see an alternate way of generating the vaguelette coefficients. We

substitute this expression into Equation 7.32 and obtain

f = W- 1 8F1 T[FWK-Z]. (7.40)

To implement this Equation we simply need to be able to apply K- 1 , in addition to

the wavelet transform.

The intuitive idea behind Equation 7.40 is this: solving Equation 7.7 leads to a

noise contaminated solution. Transforming this solution to the wavelet domain ac-

cording to Equation 7.40 and weighting with F tends to isolate "good" signal into

a few large valued, isolated coefficients, while the noise tends to be spread around

equally with smaller energy. Thus thresholding the small vaguelette coefficients will

tend to remove noise and leave the more interesting and coherent features untouched.

Inverse weighting with F- 1 and inverse wavelet transforming will result in an adap-

tively smoothed solution. It effectively regularizes the solution without any prior

information other than the distribution of the noise in the data, and the assumed

differentiability of the underlying function (needed for the wavelet transform).

In examining the computational cost of the WVD inversion method in Equation

7.40 we see that the most expensive part may be applying K-. This cost depends

greatly on the operator K. If it is a convolution matrix, Fourier methods could

still be applied. As mentioned above, a forward and inverse wavelet transform each

cost O(N) if the wavelet is of compact support, otherwise it can be done in the

Fourier domain in O(Nlog N) operations (Blu and Unser, 2001a). Thresholding is

an extremely fast O(N) operation on a vector. Calculating the quasi-singular values

via Donoho's formula for homogeneous operators is a simple O(N) operation. Hence

the efficiency of the WVD inverse method is limited by the computational cost of
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applying K- 1 .

7.3.1 Deriving the y's

We will deviate from Donoho's framework here and derive the -y's as a function of

the energy of the noise n. The reason to do this is that from experience it has been

observed that the vaguelettes deviate too much from the orthogonality assumption

to believe the noise has been evenly distributed among the vaguelette coefficients.

This will not be a problem if we can successfully map the covariance of n to the

covariance of the vaguelette coefficients. In fact, it may allow us to generalize the

WVD method. To see this we temporarily assume that K and Cn are square circular

convolution matrices and K is invertible. We also slightly redefine Equation 7.28 into

KWT = VT (7.41)

This differs in that no normalizing factors are removed from the vaguelettes to make

I'. We then have

K = TW. (7.42)

From this we have

K-' = WTU, (7.43)

where = (VT) . We clearly have that U = WK-1 . Recalculating the covariance
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of the new vaguelette coefficients we have

C , E [nnT T (7.44)

- E [WK- nn T (WK-1 )T] (7.45)

- WK-E InnT] (WK-l)T (7.46)

- WK-CnK- T W T  (7.47)

SWK- C1/ 2 C1/ 2 K-TWT (7.48)

Q
(7.49)

The matrix Q is also a square circular convolution matrix. It is diagonalized by the

Fourier transform and has a spectrum AQ. Remembering that a wavelet transform

is achieved by a convolution and downsampling process, we can calculate the noise

energy at any scale of wavelet coefficients by multiplying AQ by the Fourier transform

of a wavelet at that scale, and calculating the energy of the resulting amplitude

spectrum. This energy would be the standard deviation of the vaguelette noise at

that scale.

Such an analysis of the noise in the vaguelette coefficients is not limited to con-

volutional operators but will become more complicated with other operators. Even

if the noise is still stationary, if the operator K is not convolutional, there is not

a straightforward way of calculating the noise distribution on the vaguelette coeffi-

cients. A brute force Monte Carlo method could be used where multiple realizations

of n are generated and converted into realizations of ii = WK-'n. Then the standard

deviations of each element of ii could be empirically estimated.

Once these standard deviations are calculated, their inverses become the elements

of the diagonal of a matrix f. Then the result of ii = tWTK-ln would be a random

vector that has unit variance (but not a diagonal covariance matrix). This is exactly

what we want because we can now apply the T = 2 ln N threshold uniformly to

each coefficient. This is the method used to calculate the Ik,k's in the applications
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that follow. Our WVD based estimator now takes the form

f = WT 1 ET[rWKlz]. (7.50)

There is one glaring problem that we have not addressed in the linear algebraic

framework presented here. Since we are not using any regularizing term in the inverse,

how can we apply the method if K is not invertible? There are two options. The first

is to add a very small amount of damping to make the operator invertible. We do not

recommend this because, although it gives good results, it essentially inputs extra

information into the problem. We want to extract all our information from the data

itself. Therefore we recommend applying a pseudo-inverse (Nashed and Wahba,

1974) when K is not invertible. This method ignores singular values that equal

zero when applying an inverse and leaves any signal present in the data untouched

(although potentially drowned in noise). This is essentially what Donoho (1995) does

when addressing weakly invertible homogeneous operators. If an important feature of

the model is lost because of the pseudo-inverse, it can only be obtained in the form

of prior information. This is what is done in the slowness estimation problem in the

next section. The pseudo-inverse can be calculated directly by the SVD for small

matrices, or indirectly via iterative methods for larger problems.

7.3.2 Slowness estimation

In this section we compare classical least-squares inversion methods with the thresh-

olded WVD method. We apply all methods to the problem of slowness estimation

from traveltime data. This kind of problem arises in VSP experiments, where an

impulsive source at the surface is received at sensors within a well. The sensors are

usually uniformly distributed at depth in the well and measure the time it takes for

the signal to travel from the surface to each depth. Mathematically, the traveltime

can be modeled as a cumulative integration of the slowness of the rock formation:

K = j[-du, (7.51)
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where x is depth. In the Fourier domain this operator has a singularity at zero

frequency. Projecting this operator into our spline basis results in a lower triangular

matrix. This makes it hard to compute the fk,k's by our method without resorting

to expensive Monte Carlo methods. As we mentioned above, wavelet based methods

are more tractable when the K is a circular convolutional operator. We will therefore

remove the singularity of the operator and simplify the problem by assuming a known

mean. Edge effects aside, this allows us to model the integration operator and its

inverse as convolution operators. Assuming a known mean changes Equations 7.7 and

7.11, respectively, to

= + + K-' (z - Kyf) (7.52)

and

S= p+K- (z - Kpf), (7.53)

where pr is the known mean vector of f. We will perform inversion first on a synthetic

data set and then on a real one. The synthetic data is generated from a real slowness

log shown in Figure 7-5. To make the solution easier to visually compare with the

true model we will block the log by thresholding coefficients of its wavelet transform.

We use orthogonal fractional spline wavelets with a 1.25 for the blocking. Our

blocked model now has H6lder continuity of degree a = 1.25. We assume we know

this prior information on the differentiability of the model and hence use the same

order wavelets in the WVD inversion. The blocked log is shown in Figure 7-6. This

blocked model is cumulatively integrated and stationary white noise with standard

deviation on = 0.005s/m is added to the data. The traveltime data are shown in

Figure 7-7. For the synthetic inversion we calculate the mean of the true slowness

model beforehand and assume this to be known in all estimations of the model.

Our job now is to invert this data set and try to get back original slowness log in

Figure 7-6. In doing this we will compare three different methods:

1. WVD based inversion via Equation 7.50.
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Figure 7-5: Slowness well log.

x 104

1000
Depth (m)

Figure 7-6: Blocked slowness well log.
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Figure 7-7: Noisy synthetic traveltime data.

2. Damped least squares according to Equation 7.7.

3. Regularized least squares according to Equation 7.11.

We first graphically go through the steps of WVD thresholded inversion. Before

any inversion is performed, edge effects are minimized by symmetric extension of the

data (Strang and Nguyen, 1997). Then, following Equation 7.50, we first apply K- 1.

Since there is an ignored eigenvalue in this convolutional inverse, we are essentially

performing a pseudo-inverse. This gives rise to the noise contaminated solution shown

in Figure 7-8. We next apply the orthogonal fractional spline wavelet transform to

the noisy estimate. This is shown in Figure 7-9. It is followed by the weighting with

the I as shown in Figure 7-10. The universal threshold is also shown here by the red

lines. We pause here to show in Figure 7-11 the difference in -y's between our method

and the method of Donoho (1995). We can see that Donoho's method underweights

small scale coefficients and overweights large scale ones. We can demonstrate that

our f does what it should by removing the signal Kf from our data and passing

only noise, n through the WVD algorithm. We show such a result in Figure 7-12.

This plot shows us two things: 1) the variance of the noise appears to be uniformly
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Figure 7-11: y's calculated via our method and that of Donoho (1995).
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distributed, and, 2) It does not exceed the universal threshold level, as it shouldn't.

We also show in Figure 7-13 the result of removing all noise from our data and passing
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Figure 7-12: fWK- 1 n

only Kf through the WVD method. From this plot we can see the distribution in

the vaguelette domain of the signal we wish to recover.

Moving on, we both threshold the vaguelette coefficients from the noisy data and

unweight with f- 1 in Figure 7-14. From this plot we can see how our solution model

is greatly compressed into a few coefficients in the wavelet domain. This shows how

the compressional properties of the wavelet transform have lent themselves to the

inversion. Finally we inverse wavelet transform and arrive at the solution in Figure

7-15.

It is interesting to see what the effects on the WVD inversion method would be if

the degree of the fractional spline wavelet was incorrectly chosen. In Figure 7-16 we

show the mean-square error (MSE) of the WVD method for varying values of a. The

curve is convex and the error remains at the same order of magnitude for all a values.

This tells us that the WVD inversion method is insensitive to incorrectly chosen a.

We now move on to the more classical regularized least-squares methods. In

Figures 7-17 and 7-18 we show, respectively, the regularized least-squares and damped
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least-squares solutions from Equations 7.52 and 7.53. In order to implement these
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Figure 7-17: Solution via regularized least-squares.

solutions the parameter ( must be set. Since this is a synthetic problem we can run

the regularized least-squares inversion multiple times and measure the MSE. This is

shown in Figure 7-19 for damped least-squares over for range of ( values. For all

comparisons between regularized least squares and WVD based inversion we run the

regularized inversion with the optimal value of ( obtained from such a plot. Thus

for all comparisons between the methods we are using the best possible regularized

inversion result, which is a better solution than would probably be obtained in reality.

To correctly compare the WVD based inverse method with regularized and damped

least squares methods, we vary the standard deviation of the noise over a large range

and compare the MSE of each method for each value of o-.. We plot the results of this

comparison in Figure 7-20. This is the most important plot in this work. It shows

that the WVD based inverse method consistently outperforms the classical methods

over an order of magnitude range of noise on the data. For values of o. greater than

those plotted in Figure 7-20 the noise is so large that essentially only the mean is

recovered from the data. For values of o. less than those plotted, there is so little
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noise on the data that the MSE will not significantly decrease for the WVD method.

7.3.3 Inversion of real data

We now apply each of the methods compared above to the inversion of real traveltime

data shown in Figure 7-21. We did not have information as to the noise level on this

data so an intuitively plausible level of a = 0.0003 was chosen. We again use

orthogonal spline wavelets of degree a = 1.25. We plot the WVD based inversion

result in Figure 7-22. It has clearly done an adaptive estimation. We see interesting

features appearing at 500 meters, 1300 meters, and 3500 meters. The rest of the

estimate is smooth by comparison. Such a signal adaptive estimate as this is the

whole reason for developing the WVD based method.

For comparison we plot the regularized least-squares solution in Figure 7-23. (

was chosen by trial and error, looking for a solution that neither looks too rough or

too smooth. The solution for damped least-squares inversion looked almost the same

as regularized least-squares solution so we do not show the latter result here. It is

difficult to say whether the small scale detail in the damped least-squares estimate is
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Figure 7-23: Regularized least-squares inversion of real data.

noise or signal.

7.4 Conclusions

The work presented here introduces the wavelet-vaguelette decomposition to the geo-

physical community and presents its use in solving linear inverse problems via a

thresholding operation on the vaguelette coefficients. WVD method was compared

to other wavelet based methods used to solve inverse problems and then applied to a

1-D synthetic inverse problem, that of slowness estimation from traveltime data. The

WVD method was shown to consistently outperform classical least-squares method

in terms of MSE over a large range of noise magnitudes on the traveltime data. The

method was also applied to a real geophysical data set and the results examined.

This work also presents fractional splines as a good basis for representing geo-

physical data and creating orthogonal wavelets. To our knowledge, this is the first

application combining the WVD methodology with fractional spline wavelets.
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Chapter 8

Conclusions

In this chapter we summarize the major contributions and limitations of the thesis.

Possible future directions for the research are also postulated.

8.1 Joint deconvolution/interpolation of geophys-

ical data

The first contribution of this thesis was a statistically optimal way to deconvolve

a blurred image for an improved model, while simultaneously interpolating sparse

samples of the same model. Efficient solution of this problem required a non-standard

derivation of interpolation. Classical minimum variance based kriging methods were

not applicable. A careful analysis of the structure of the problem was also needed for

efficient computation of the solution via the conjugate gradients algorithm.

Chapter 3 applied the method to an application in reservoir characterization: de-

convolving (deblurring) a 3-D poststack seismic data cube constrained by existing

well data. The joint inversion led to a solution with super resolution within a cor-

relation length around the well locations, and laterally correlated geologic features

throughout the deconvolved cube. This solution was superior to that obtained by

using only one of the data sets.

Chapter 4 applied the same joint inversion method to a different application:

164



integrating synthetic DEM and GPS data for an optimal topographic elevation model.

The best results were again obtained when both data sets were used.

8.1.1 Limitations and future directions

1. Missing from the joint inversion method is a way to calculate posterior covari-

ance information. The matrices are too big to calculate the posterior covariance

matrix explicitly. Recent work (Schneider, 2000) has shown the possibility of

obtaining the posterior variances as a by-product of the conjugate gradients al-

gorithm. Instability problems, however, preclude this working on anything but

a small problem, or problems requiring only a few iterations of the algorithm.

2. It was shown in Chapter 3 that for large dimensional joint inverse problems

it is easier to perform regularized inversion with the inverse of the covariance

matrix rather than with the covariance matrix itself. It would be helpful to

have a flexible, parameterized class of covariance matrices which have simple

and sparse inverses.

3. Our particular application of joint inversion was for two simple linear forward

modeling operators: convolution and picking. Generalizing the method for

arbitrary linear operators is conceptually simple, but will require exploitation

of the structure of the operators in order to be computationally efficient. Such

structure will change from problem to problem.

More interesting is what to do in the case of nonlinear operators. Many inter-

esting geophysical problems are inherently nonlinear. One loses information if

they are linearized. The joint inversion framework again handles such operators

without a problem, but different algorithms are needed to solve the problem.

The solution is no longer a matrix inversion. Perhaps Monte Carlo methods

such as Gibbs sampling, the Metropolis method, sample rejection, or genetic

algorithms would be adequate to obtain a solution without too many iterations.

The first three of these methods can also provide statistics of the posterior

distribution.
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4. More care needs to be taken in obtaining the optimal regularization parameter.

In Chapters 3 and 4 it was done empirically by trial and error. Methods such

as cross-validation or the L-curve (Vogel, 2002) could be applied.

8.2 Wavelet domain geophysical inversion

The second major contribution of this thesis was to bring a new wavelet based inver-

sion method to geophysical problems. Our method was based on a previous method of

Donoho (1995). As opposed to regularized inverse methods, the wavelet based method

inputs less prior information into the problem, and extracts more information from

the data. It results in a solution that has been smoothed more in more smoothly

varying areas, and smoothed less in regions with sharp transitions, thereby preserv-

ing geologically interesting features. Inversion of a synthetic 1-D problem showed it

to consistently outperform the classical regularized solutions over a broad range noise

magnitude on the data.

8.2.1 Limitations and future directions

1. A limitation of the WVD based inverse method is that it is more computa-

tionally expensive. In our method the threshold level, y, had to be calculated

in advance of the inversion. It was computationally efficient in the case of a

convolutional forward operator. In the case of an arbitrary forward modeling

operator it would be much more difficult. Monte Carlo realizations of the noise

would have to be made, each passed through the generalized inverse and wavelet

transform in order to calculate statistics on the wavelet coefficients.

2. Beylkin and Torr6sani (1996) implement convolution operators via filter banks.

Implementing this would greatly speed up WVD based inversion in the case of

convolution forward operators.

3. Since the WVD based inversion is not a Bayesian method, there exists no pos-

terior PDF. It is still theoretically possible to estimate statistics of the estimate.
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How to do this is not clear, though.

4. The WVD based inverse method gave impressive results but was limited to 1-D.

To make the method useful for real geophysical applications one needs to gen-

eralize wavelets to higher dimensions, a not so trivial task. The most common

way is to use tensor outer products of 1-D wavelets to define the 2-D wavelets,

but this is not optimal. In a 2-D image, singularities tend to align themselves on

curves. The optimal wavelet basis would therefore be one where the wavelets

are perpendicular to the curves, thus triggering on the singularities. Recent

work by Candes and Donoho (2000) and Starck et al. (2000) has introduced

a new class of wavelet like functions, called curvelets, that align themselves

on curved singularities. It would be interesting to apply such functions in the

WVD framework of Chapter 7.

8.3 Fractional splines and discretization

Chapter 5 illustrates the non-triviality of manipulating discrete data. The simple

example of the derivative operator in Section 5.3 shows the possible error arising

from incorrect manipulation of coefficients.

8.3.1 Limitations and future directions

1. What about multi-fractals? Splines are great when approximating a function

that is uniformly H6lder a. If the H6lder exponent changes spatially, it is not

clear which exponent to use for the spline.

2. A geophysical example needs to be found, using real data, that more clearly

illustrates the danger of not treating discrete data correctly.
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