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Abstract 

 

It is proposed to measure the magnetic moment of 49Sc by the Nuclear Magnetic Resonance on 

Oriented Nuclei (NMR-ON) method using the NICOLE on-line nuclear orientation facility. 49Sc is 

the neutron rich, doubly closed-shell, nucleus 48Ca plus one proton. Results will be used to deduce 

the effective g-factors in the 48Ca region with reference to nuclear structure and meson exchange 

current effects. 
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1. Introduction 

The nuclear magnetic moment is a sensitive probe for the study of nuclear structure.  The 

electromagnetic properties of nuclei that are doubly closed-shell plus or minus one nucleon are 

expected to be most approachable by theory, are most approachable to theory. Experimental 
ground state magnetic moments of such configurations deviate from single-particle 
shell model estimates by often significant amounts arising from inaccuracy of the 
description of the single-particle nuclear state and of the one-body magnetic moment 
operator. Corrections for these inadequacies, mainly requiring rather involved 
modeling of second-order core polarization, isobar-current and meson-exchange 
current effects [1], are treated differently in different models leading to different 
predictions for magnetic moments of the doubly-closed-shell plus or minus one nucleon, 
as demonstrated in Fig.1 
 
Honma et al. [2] used an effective GXPF1 interaction in their large-scale shell model 
calculation in the full pf shell.  This interaction contains empirical monopole and 
pairing corrections to the part of the interaction derived from the nucleon-nucleon 
potential, however these corrections proved insufficient to account for core excitations 
across the N or Z=28 shell gap.  Their calculation is exact for Sc isotopes (with no 
truncation of the model space). Both free-nucleon and effective single-particle g-factors 
were used in their magnetic-dipole moment operator which did not include specifically 
second-order correction terms.  The predictions for the heavy odd-A Ca, Sc and Ti 
nuclei in this model deviate from experiment by plus/minus 6% on average that is 
plus/minus 0.3 μN  in the estimate for 49Sc. 
 
The work of Speidel et al. [3] describes shell model calculations with four effective 
interactions, FPD6, KB3, VHG and FPY. The configurations included where the full f7/2 

sub-shell, allowing particle excitations to p3/2, f5/2 or p1/2. Core polarization effects were 
studied both in shell model diagonalisation and in first-order perturbation theory. 
These methods were used to interpret the trends in experimental g-factors of the first 
2+ states in even-even Ti, Cr and Fe nuclei in this region. Using the results of this 
study, odd-A g-factors were deduced for 49Sc for the four interactions, with a range 
shown in Fig.1 [KB3 and VHG gave the same, central, result]. The uncertainty is of 
order 0.4 μN.  Speidel et al. also estimated the dependence upon the number of particles 
excited from the f7/2 subshell to the remainder of the fp shell. This effect, considered 
only for the FPD6 interaction, produced a smaller additional spread in moment 
predictions of plus/minus 0.07 μN for one, two and three particles excited outside the f7/2 



subshell. 
A precise measurement of the magnetic moment of the ground state of 49Sc may well 
inspire a more microscopic calculation, applicable at present only to isotopes having 
single nucleons outside a double-magic core, of the effective g-factors in the fp shell in 
the spirit of Towner and Khanna [1], similar to that performed for 67Ni [4] as well as 
contribute to improvement of the large scale shell model calculation in the fp shell 
outlined above.   
To add valuable new input near 48Ca we propose measurement of the magnetic moment of 49Sc (Iπ 

= 7/2−, T1/2 = 57 m) by the Nuclear Magnetic Resonance on Oriented Nuclei (NMR-ON) method 

using the NICOLE on-line nuclear orientation facility.  

 

2. Experimental Background 

We propose to measure the magnetic moment of 49Sc with good precision. Table 1 gives a list of the 

known magnetic moments of odd-A Sc isotopes. Figure 1 shows these values with several 

theoretical shell model calculations of 49Sc [2,3].  

 

 Table 1: Magnetic moments of odd-A Sc isotope ground states – all single 7/2- proton. 

 A Neutrons T1/2 magnetic moment [μN] 
41 (7/2-)0 596 ms 5.431(2) 

43 (7/2-)2 3.891 h +4.62(4) 

45 (7/2-)4 Stable +4.756487(2) 

47 (7/2-)6  3.345 d 5.34(2) 

49 (7/2-)8 57.2 m to be measured 
   

Table 2: Magnetic moments of odd-Z, 7/2- ground states, N = 28 isotopes. 

 Isotope Protons:Iπ T1/2 magnetic moment [μN] 
49Sc  (7/2-)1 7/2- 57.2 m to be measured 
51V (7/2-)3 7/2- 3.891 h +5.1487057(2) 
53Mn (7/2-)5 7/2- Stable +5.024(7) 
55Co (7/2-)7 7/2- 3.345 d +4.882(3) 

   

 

Table 2 shows the systematic variation of magnetic moments of other, f-subshell, 7/2- ground state 

magnetic moments. This valuable series will also be completed, with the inclusion of the (7/2-)1 

element, by the measurement of 49Sc. 

 



Recently we observed NMR-ON resonances for several Sc isotopes in iron [5,6]. The hyperfine 

field at Sc in iron was also measured. The observed hyperfine field for 47Sc is BBhf( ScFe) = 

−13.17(5) T [5]. This precise field value means that observation of NMR/ON in Sc will yield the 

moment with an accuracy of better than 1.0 % [any hyperfine anomaly between the two isotopes 

will be less than 0.1%]. The expected frequency, based on this field and the model moment 

estimates is about 156 MHz, well within the range accessible at NICOLE. 
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An essential of standard On-Line Nuclear Orientation experiments is that the half-life of the isotope 

under study is comparable with or longer than the spin-lattice relaxation time with which the nuclei 

cool to the iron lattice temperature. We observed the effective relaxation time for 47Sc which has 

the same spin and parity as 49Sc, to be T1'(47ScFe) = 350(70) s at 10 mK with the external magnetic 

field of BB0 = 0.2 T. For Sc, the relaxation time is expected to be similar to this value, since the 

magnetic moment of Sc is expected to be close to that of Sc and is thus adequately shorter than 

its half-life of 57.2 m.  
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Figure 1: Magnetic moments of odd-A Sc isotopes and model predictions for 49Sc [2,3]. 

 

Production of Sc beams 

Table 2 shows the yields for the Sc isotopes from the ISOLDE yield database. However the 

numbers for the heavier isotopes are for a Ta target. There is no data for the pure beta emitter 49Sc 

because of the presence of many activities at the mass 49 position from multiply charged ion 

species from which any 49Sc component cannot be separated. Such a beam, with unknown, 

complex contamination, would not be acceptable for an NMR/ON experiment dependent upon beta 



detection. Instead we propose to use either a Ti foil target plus CF4 leak plus plasma source for 

which the estimated yield is 1 106/μC beam, or a standard UCx target with surface ionizer which 

produces 49K (T1/2 1.24 s) and 49Ca (T1/2 8.8 m) with estimated rates such as to produce ~ 5 105/μC 

of 49Sc by decay [7]. The beta activities from these parent isotopes will not orient as their lifetimes 

are shorter than their relaxation times and they will thus not contribute to the measured polarization 

or to resonance detection. Should the contaminant beta activity prove troublesome a source will be 

accumulated, then the beam closed off, whereupon the longer lived 49Sc rapidly dominates the 

detected beta decay, this cycle being repeated as necessary. 

 

Table2: Yields of Sc isotopes at ISOLDE. 

Nucleus yield at ISOLDE 

 (ions/μC) 

target material

3.0E+7 Ti 47Sc 

2.5E+6 Ti 
48Sc 3.0E+7 Ta 
50Sc 3.6E+3 Ta 
 

3. Nuclear Orientation Experiment  

We propose to use the NMR-ON method, detecting resonant destruction of asymmetry of the β rays 

from 49Sc nuclei, implanted at low temperature in a pure iron ferromagnetic host. Figure 2 shows 

the decay scheme of 49Sc nucleus. Although the spins/parities of 49Sc and 49Ti are both 7/2-, their 

isospins are respectively 7/2 and 5/2. The allowed beta transition is dominated by the 

Gamow-Teller matrix element and is estimated to show a 0o/180o asymmetry of about 30% at 15 

millikelvin, based on the known field and an estimated moment of 5.3 μN

The NICOLE 3He/4He on-line dilution refrigerator will be used with β-ray detectors inside the 

cryostat at 0o and 180o to the polarization axis, as was done for on-line NMR/ON of 67Ni at 

ISOLDE [4]. External plastic scintillators may alternatively, or in addition, be used for detection of 

the high energy betas which can penetrate the thin cryostat windows [8]. External HP Ge detectors 

at 0o and 90o to the polarization axis will be used for gamma detection. A modulated RF field 

produces resonant absorption between the hyperfine-split substates of the oriented nuclei. This 

resonance can be detected by reduction in the observed β-ray asymmetry. The temperature of the 

sample will be monitored using γ-transitions in an oriented 60CoFe sample soldered to the 

cold-finger of the dilution refrigerator.  
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Figure 2: Decay scheme of 49Sc. 

 

4. Experimental Procedure and beam time request 

We need time to set up the beam and to observe the asymmetry as the dilution refrigerator is cooled 

from close to 1 K in order to get good base temperature knowledge of β-ray asymmetry from the 

somewhat mixed source. Once this is established, the resonance search can be initiated. A 

reasonable estimate for the experiment is 8 shifts. We propose to collect a source of 3.345d 47Sc, 

cold implanted into iron, for subsequent off-line NMR-ON measurement for careful calibration of 

the system. For this collection we request 4 shifts, giving a total of 12 shifts.  

 

Support from CERN: For the experiments proposed here, we will need liquid nitrogen for the 

detectors and liquid nitrogen and liquid helium for the 3He/4He dilution refrigerator.  
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