
REAL-TIME MODELING OF RIVER BASIN RESPONSE
USING RADAR-GENERATED RAINFALL MAPS AND

A DISTRIBUTED HYDROLOGIC DATABASE

by
Luis Garrote

Ingeniero de Caminos, Canales y Puertos
Universidad Politecnica de Madrid, 1985

Doctor Ingeniero de Caminos, Canales y Puertos
Universidad Polit6cnica de Madrid, 1990

Submitted to the Department of Civil and Environmental Engineering
in Partial Fulfillment of the Requirements for the Degrees of

Master of Science in Civil Engineering

and ARC

Civil Engneer MASSACHUSETTS INSTITUTEl i OF TTr4Aini nry

SEP 28 1992
at the

Massachusetts Institute of Technology LIBRARIES

August, 1992

© Luis Garrote, 1992. All rights reserved
The author hereby grants to MIT permission to reproduce and to

distribute publicly copies of this thesis document in whole or in part

Signature of Author... ..................
Department of Civil and Environmental Engineering

August 12, 1992

Certified by.......... .. ...................... .....................

Professor Rafael L. Bras
Thesis Supervisor

A ccepted by................... ...... r ...................................
Eduardo Kausel

Chairman, Departmental Committee on Graduate Studies





Real-Time Modeling of River Basin Response
Using Radar-Generated Rainfall Maps and a

Distributed Hydrologic Database

by
Luis Garrote

Submitted to the Department of Civil and Environmental Engineering on
August 12, 1992 in partial fulfillment of the requirements for the degrees of

Master of Science in Civil Engineering and Civil Engineer.

ABSTRACT

A distributed model for real-time rainfall-runoff simulation during
floods is presented. The model is called Distributed Basin Simulator. DBS
uses information from a distributed hydrologic database to interpret
rainfall information in real time. The model is largely based on the
detailed topographical information provided by digital elevation models
(DEM). Basin representation adopts the rectangular grid of the DEM, and
other soil properties, input data and state variables are also represented
as data layers using the same scheme. The basic objective is to map the
topographically-driven evolution of saturated areas as the storm
progresses. Two modes of runoff generation are simulated: infiltration
excess runoff and return flow. DBS applies a kinematic model of
infiltration to evaluate local runoff generation in grid elements, and also
accounts for lateral moisture flow between elements in a simplified
manner. The model was successfully calibrated for the Sieve basin.

Object-oriented methodologies were applied in model design and
implementation. The resulting computer package is called Real-time
Interactive Basin Simulator. RIBS combines the distributed basin
simulator and a hydrologic database within an interactive real-time
framework. Model structure is flexible, and several modes of operation
are possible: an off-line calibration mode, an on-line simulation mode and
an on-line forecasting mode. RIBS has two graphic user interfaces: a
synchronous, model-driven interface and an asynchronous, user-driven
interface. The synchronous interface displays simulation results and
forecasts in real time as the model progresses. The asynchronous user
interface offers off-line information of basin state and model results at the
user's request. It can generate hydrographs at any point within the basin,
display the time evolution of model variables for any grid element, or
represent the spatial distribution of basic or derived variables.
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CHAPTER 1

Introduction

1.1 Introduction, motivation and scope of the work

This work is concerned with the practical application of distributed

modeling to real-time flood forecasting. Most distributed models reported

in the literature have been applied at scales smaller than those generally

of interest to the operational hydrologist. The emphasis is usually placed

on the scientific understanding of the physical processes governing runoff

generation at the hillslope scale. Extrapolation of those basic modeling

strategies to midsize or large basins (hundreds of km2 ) leads either to

serious problems of representation of subgrid variability or to unfeasible

data and computational requirements. However, active research

addressing both issues is currently in progress. Certainly, developments

in computer technology have outpaced progress in catchment hydrology,

but many authors remain optimistic about the future of distributed

modeling. It is therefore reasonable to expect that in the near future the

results of research on distributed modeling will be made available to

consulting engineers in the form of software packages including

distributed rainfall-runoff models (Beven, 1989)

The application of distributed modeling schemes in real time is the

focus of this work. Two aspects make distributed modeling specially

attractive for flood forecasting: the possibility to include detailed



topographical information and the opportunity to make effective use of

radar-generated rainfall maps. Flood forecasting schemes based on

rainfall-runoff modeling are usually applied to midsize catchments,

where storm size is comparable to basin size, and basin relief is relatively

easy to characterize.

Aerial photogrametry and computer information processing in the

form of digitized elevation maps have made topographical information

widely available at a relatively low cost. Obtaining other types of

hydrological information, such as vegetative cover, geology, soil types,

etc., is comparatively more expensive, since it must rely on less-developed

remote sensing techniques or intensive field work. Topography has been

proven to affect runoff generation dramatically, specially in humid

climates. The combined effects of a dense vegetative cover and moisture

availability facilitate the development of highly permeable soil horizons.

In these basins, runoff generation is mainly controlled through hillslope

processes, which determine the expansion of saturated areas in troughs

and depressions. In the absence of long historic rainfall-runoff records to

calibrate simpler models, physically-based modeling is the only viable

option to incorporate available information into the modeling process.

Hence, topography-based models are a valid alternative.

The availability of radar-generated rainfall maps is also a strong

argument in favor of distributed modeling. Distributed models are an

excellent tool to track the spatial and temporal evolution of atmospheric

disturbances and to evaluate their effects on basin response. The spatial

structure of rainfall, as identified in radar pictures, is very complex and

highly variable. High-intensity cells develop against a background of

considerably less intense rainfall. In these conditions, the highly non-



linear character of runoff generation raises questions about the validity of

lumped schemes, based on spatial averages of rainfall. If distributed

rainfall information is available, a modeling scheme that accounts for the

spatial distribution of rainfall on a spatially heterogeneous basin can, in

principle, outperform lumped schemes.

Remotely-sensed rainfall should also be included in operational flood

forecasting because short-term rainfall forecasting methods can greatly

benefit from the characterization of a storm as a spatial phenomenon

(Collinge and Kirkby, 1987). Detailed descriptions of storm development

can be used to identify mesoscale weather phenomena and to provide

forecasts based on linear extrapolations for short periods of time

(Campbell and Olson, 1986; Seo and Smith, 1992). In this context, complex

situations in which a storm moves from one basin into another or where

only a fraction of the basin is covered by the storm can be effectively

analyzed with a distributed modeling scheme.

This work is therefore based on the conviction that a physically-based

model using detailed topographical information combined with a less

precise soil characterization is the most cost-effective strategy currently

available to address the problem of flood forecasting in ungaged

watersheds. There are, of course, the challenges of developing accurate

quantitative real-time radar measurement techniques and adequately

modeling the spatial extent of saturated areas at a relatively large scale.

This work is a first step towards the latter goal.

Operational issues are also addressed. Models should be seen only as

one component of a larger organization, within the framework of a

decision-support system (Johnson, 1986). In a real-time flood forecasting

system, modeling is a mean to aid decision making, not an end on itself.



Only a fully reliable forecasting model could work in isolation. Model and

data imperfections introduce uncertainties in the forecasts which should

be fully acknowledged and understood by decision makers. Traditional

model development has been mainly concerned with model

conceptualization: input data, physical variables, formulations, etc. This

work is also concerned with model operation, based on the understanding

that limitations in model behavior should be fully exposed to the user

through a versatile and flexible interface, rather than hidden under a

exclusive presentation of final results.

It is also important to locate the model within the broader realm of

real-time decision making. The rainfall-runoff model should not be

designed as a self-contained unit, a software package which only interacts

with the end-user. There is an ever-increasing presence of computers in

areas traditionally associated with human decision making. Modern

operational flood warning schemes are complex systems, where the

coordination of sensors, communications, data processing and modeling

cannot always rely on direct human intervention. Complex systems are

controlled by computers, and therefore hydrologic models intended to

work in complex contexts should be designed in a way that facilitates their

use by higher-level computer applications. They should be able to interface

not only with human users, but also with other programs capable of

making decisions. The problems of communication between different

software modules in a real-time flood forecasting system are addressed

here.

Software design for hydrologic models is an important concern of this

work. The combination of recent advances in software development

methodologies and interactive graphic capabilities of engineering



workstations constitute an adequate starting point to develop new ways to

address the problem of real-time flood forecasting. The introduction of

digital computers represented a revolutionary change in our ideas about

hydrologic analysis (Snyder and Stall, 1965). Ever since, the evolution of

computer modeling of catchment response has relied more on

quantitative improvements in computer performance than on qualitative

developments in model design. The way hydrologic models are designed

has changed very little since the pioneering work on the Stanford

Watershed Model. Functional analysis and structured programming are

still the basic design methodologies applied to hydrologic model

development, while other areas of computer simulation of physical

systems have already evolved to object-based design methodologies

(Widman et al., 1989). The application of these advanced design

methodologies to hydrology can lead to more efficient and better

structured modeling environments where the problem of real-time

decision making can be addressed as a whole.

This work presents a software package for real-time flood

forecasting, called Real-time Interactive Basin Simulator (RIBS). The

package is based on a distributed rainfall-runoff model (Distributed Basin

Simulator) intended to operate on midsize and large basins. Simplicity

and computational efficiency for real-time performance have been the

basic goals of model development. The model communicates with a

hydrologic distributed database and presents its state, results and

behavior to the user through an interactive graphic interface. The whole

package is divided into different modules which communicate with each

other under the control of a manager module.



1.2 Previous work on distributed modeling

The area of distributed modeling has been in constant evolution

during the last 30 years. From the standpoint of flood forecasting,

research has focused mainly on the basic problem of local runoff

generation, which was originally approached as an infiltration

phenomenon. The analysis of one-dimensional infiltration is presented

first, and then the progressive evolution to more complex two and three-

dimensional schemes is discussed.

Considerable literature exists on infiltration. Philip (1969) presents a

detailed analysis of the mathematical treatment of the theory of flow

through unsaturated porous media applied to the problem of infiltration.

Skaags and Khaleel (1982) and Singh (1989) provide ample reviews of

conceptual and empirical infiltration models, traditionally used to

estimate rainfall excess under a one-dimensional or lumped approach.

The natural extension of the one-dimensional infiltration problem is

the two-dimensional analysis of flow in a hillslope, where vertical

infiltration combines with lateral flow to generate subsurface runoff.

Interest in modelling subsurface flow in a hillslope in order to obtain

stormflow arose from the realization that Hortonian runoff can only

account for a fraction of the basin response observed in humid regions of

high infiltration rate. Experimental studies of hillslope moisture profiles

(Abdul and Gillham, 1989) or chemical hydrograph separation (Nolan

and Hill, 1990; McDonnell, 1990) show that runoff-generation processes at

the hillslope scale are more complicated than the basic infiltration-excess

mechanism, and usually involve complex subsurface interaction between



'old' and 'new' water. That interaction, however, has proven difficult to

characterize and "a detailed [...] understanding of hydrologic response

[...] still eludes the hydrologic community" (Goodrich and Woolhisher,

1991).

When the spatial distribution of runoff generation is of concern,

multidimensional models are required to evaluate the relative importance

of vertical and lateral moisture flows. Zaslavsky and Rogowski (1969)

called attention on the role of soil slope and anisotropy on the generation of

lateral downhill flows and their impact on soil formation. Childs and

Bybordi (1969) also analyzed the effect of soil layering on vertical

infiltration. Zaslavsky and Sinai (1981a,b,c) presented a series of papers

on the mechanisms that can produce lateral flow more or less parallel to

the soil surface, illustrated with analytical models and numerical

solutions. Two mechanisms are thought to have the largest effects: the

surface transition layer and the existence of a layer of lower hydraulic

conductivity.

The surface transition layer refers to the top portion of the soil where

porosity varies from 100% in the air to a constant value at some depth.

Higher hydraulic conductivities observed in this layer are usually

explained in terms of macropores which run approximately parallel to

the soil surface, providing a low-resistance path for lateral flow. There is

clear evidence for the existence of flow through macropores (Hornberger

et al, 1991), but modeling the phenomenon is extremely difficult, due to the

complexities of the problem (Germann, 1990). The existence of a layer of

lower hydraulic conductivity is also a factor that can produce lateral flow,

since the layered soil as a whole acts as an anisotropic formation which

deviates the flow from the vertical (Zaslavsky and Sinai, 1981b). McCord



and Stephens (1987) conducted tracer experiments to analyze water

movement in the usaturated zone. They gathered evidence suggesting a

strong lateral component of subsurface flow even in the absence of an

impervious layer.

The numerous factors that affect unsaturated flow make it extremely

difficult to model. For some simplified cases, analytical solutions can be

obtained. Protopapas and Bras (1991a, b) obtained analytical solutions to

the problem of two-dimensional unsteady infiltration, and found that, in

the absence of slope, the importance of lateral flow in horizontally layered

terrain is limited. Beven (1981, 1982a,b) presented an analytical model of

subsurface stormflow generation based on the kinematic wave theory.

Philip (1991a) provided an analytical solution to the problem of infiltration

in sloped terrain in terms of infinite series, and extended his analysis to

study concave and convex hillslopes (Philip, 1991b). He found that lateral

flow is mostly driven by the combined effect of soil slope and anisotropy.

Although analytical solutions provide an excellent basis for

understanding the influence of the diverse factors involved, their

applicability to rainfall-runoff models is certainly restricted by the

limitations of their assumptions. Factors such as soil heterogeneity,

forcing functions or problem geometry can only be taken into account

through analytical formulations, and therefore only simple cases can be

treated.

In general, only numerical solutions to the three-dimensional flow

problem are feasible, provided that there is enough knowledge about the

boundary conditions and the spatially varying soil properties. Freeze

(1971) presented a three-dimensional model based on the numerical

integration of the partial differential equations governing overland and



subsurface flow. The model was calibrated to fit observed outflows and

water table responses on a hillslope in the Reynolds Creek catchment in

Idaho (Stephenson and Freeze, 1974). The calibration was evaluated by the

authors as "less than perfect", although a "fairly complete" set of

experimental measurements was available, and the scale of the

application was very small.

In general, intensive data requirements prevent the application of

numerical schemes to solve the three-dimensional governing equations,

and simplifications must be adopted in order to keep the models

operationally feasible at large scales. Simplifications are obviously related

with the goals of the modeling effort, and represent relaxations of the

basic assumptions made to model individual processes. They usually

involve reducing the dimensionality of the problem, making assumptions

about flow directions and discretizing the catchment into interacting one

or two-dimensional components.

The Systeme Hydrologique Europ6en (Abbot et al., 1986a, b) is

probably the more general application of distributed modeling to the land

phase of the hydrologic cycle. The SHE is a physically-based model

composed of a series of layered modeling units, all of them applied on the

same basic orthogonal grid network. Modeling units include processes

such as canopy interception, snowmelt, evapotranspiration, overland and

channel flow, and unsaturated and saturated subsurface flow. Modeling

layers are basically independent and can be run at different time steps. In

addition to the independence of hydrologic processes, the strongest

assumption of SHE refers to subsurface flow directions. It is assumed that

flow in the unsaturated zone is essentially vertical, whereas flow in the

saturated zone is essentially horizontal. Although the authors claim



general applicability, model structure and basic assumptions suggest

applications at long time scales, mainly for continuous simulation of

basin response.

Bathurst (1986a) reports on the application of SHE to the Wye

catchment, a watershed of 10.55 km2 in mid-Wales. Basic parameter

values were derived from field measurements or published data and only

those parameters to which the model is most sensitive were fixed by

calibration. Calibration results were encouraging, although the inability

of the model to account for lateral subsurface flow prevented an adequate

fitting of both peak flow and baseflow recession. That aspect, together with

the lack of physical basis to define initial phreatic surface levels,

constitute the strongest limitations of the model.

The Institute of Hydrology Distributed Model (IHDM) is conceptually

similar to the SHE (Beven, 1985), but places more emphasis on the

definition of basin structure. Rather than following a rectangular grid,

the catchment is divided into hillslope and channel components of

irregular shapes, but the same basic processes are included in the

simulation. Rogers et al. (1985) tested the model ability to reproduce

observed streamflows in the Tanllwyth catchment (0.9 km 2 ) and

conducted sensitivity analyses to assess the effects of uncertainties in

parameter estimation. Surface roughness and hydraulic conductivity

were identified as the most sensitive parameters, and model calibration

was limited to them. Model performance was similar to that of SHE.

A significant body of research has been dedicated to investigate the

role of topography in runoff generation. Dunne and Black (1970a, b) report

on experimental studies on a hillside and a short reach of stream in the

Sleepers River Experimental Watershed in Vermont. They found that the



major part of storm runoff is overland flow on saturated areas close to the

stream which vary dynamically, both during the storm and seasonally.

Subsurface flow is the key factor, because it maintains soil saturation

during dry periods and accounts for the expansion of saturated areas

during the storm, but its effect is largely controlled by topography at the

basin scale. Saturated areas are likely to be found in convergent slopes, at

the base of long hillslopes, and in areas of reduced soil moisture storage

(Anderson and Burt, 1990a).

The prediction of the extension of the surface saturated areas has

been the focus of numerous modeling efforts. Troendle (1985) describes

models based on the variable source area concept. In the Variable Source

Area Simulator, the watershed is divided into segments representing

elementary hillslopes. Every segment is divided horizontally into

increments and vertically into layers, and Richards equation is applied in

a numerical scheme to route subsurface water between elements, thus

accounting explicitly for subsurface lateral flow. Surface saturated

elements configure the variable source area, where exfiltration takes

place. The model was tested for several storms in two small forested

watersheds (Fernow, of 38 ha, and Whitehall, of 24 ha). Results were

better in the Fernow watershed, best suited for model application because

of the uniformity and predictability of soil properties and configurations.

Data and computation requirements limit the applicability of detailed

variable-source-area models. In order to minimize data requirements and

to make models applicable to larger basins, several authors have adopted

simplifying assumptions, generally based on topographic analysis, to

incorporate the concept of variable contributing areas explicitly.

O'Loughlin (1981) and Beven and Kirkby (1978) present models based on a



topographic wetness index that is dynamically used to define the surface-

saturated area. These models are based on distributed information and

are mostly physically based, but the introduction of the easily obtainable

topographic index makes them very parsimonious and attractive. Moore

et al. (1991) report studies by several other authors who found strong

correlations between different topographic indices and soil moisture

content, although they recommend caution when applying static indices

to dynamic processes because of the hysteretic nature of the phenomenon.

Hornberger at al. (1985) report on the calibration of a revised version of

TOPMODEL (Beven and Wood, 1983; Kirkby, 1986) for a 5.15 km2

catchment. It was found that, although the number of model parameters

(13) was relatively low compared to other distributed models, hidden

interdependence between sensitive and insensitive parameters prevented

an adequate calibration.

Topographically-based models require a detailed representation of

catchment relief. The increasing availability of digital terrain data has

facilitated the expansion of this type of models, since automatic

algorithms for terrain analysis reduce considerably the inconveniences of

tedious manual methods. Moore et al. (1991) review the basic terrain

modeling techniques. Three types of terrain data structures are available

for computer processing: point elevation data on an irregular grid

(Triangular Irregular Network), elevation data on a square grid and

digitized contour data. Square-grid network data are of widespread use

because of their ease of computer implementation and computational

efficiency. Most recently developed distributed models adopt this

representation, although the other two structures have also been applied

successfully.



Moore et al. (1990) present the TAPES-C (Topographic Analysis

Programs for Environmental Sciences - Contour) model, which is based

on digitized contour lines. The model automatically partitions the basin

into stream tubes, following equipotentials and streamlines of water flow

according to topography. Several topographic attributes are computed

automatically by the model, which are used to obtain lateral subsurface

and return flow applying a surface-subsurface kinematic modeling

approach. Output from the model includes runoff hydrographs and flow

depths and velocities at any point in the basin and mapping of the zones of

surface saturation. Application of the model to a 79.6 ha forested

catchment produced good agreement with observed data for the

calibration storm.

The widespread availability of digital elevation models on regular

grids has focused the attention of investigators on the automatic

processing of topographical information. The analysis of digital elevation

models is currently an active area of research, with contributions ranging

from the inference of basic topographic variables, flow paths and channel

networks (Band, 1986; Morris and Heerdegen, 1988; Tarboton et al., 1991;

Quinn et al., 1991) to the investigation of universal behavior in catchment

geomorphology (Tarboton et al., 1989). Automatic algorithms to elaborate

the topographic information contained in digital elevation models are

convenient tools to describe and manipulate the terrain in distributed

models.

Current research in distributed modeling can be grouped into two

main categories. The first category consists of new model developments or

modifications of pre-existing models. Adaptations of previously developed

models usually address additional issues, such as water quality or



sediment transport (Woolhiser et al., 1990). Recent models published in

the literature usually place emphasis on specific submodel components of

special relevance for their modeling objectives. Blain and Milly (1991)

presented a vertically integrated two-dimensional model of soil moisture

which stressed the importance of lateral flow. The model by James and

Kim (1990) concentrated on overland and channel flow, considering only

infiltration-excess runoff. The possibility to obtain information from

remotely sensed data has also affected model conceptualization. Ott et al.

(1991) developed a distributed model where model parameters are directly

derived from satellite imagery at a resolution of 30x30 m2. The model gave

excellent results when applied to a 18.5 km2 test basin, apparently without

calibration. Becchi et al. (1992) concentrated in the use of radar rainfall

maps to predict the evolution of soil moisture content during flood events.

They applied a distributed mass balance to account for moisture evolution

and a scheme based on a network of linear reservoirs for channel routing.

They tested the model at different spatial resolutions using synthetic

storms.

The second category consists of contributions in which distributed

models are used to explore the implications of changes in land

management on basin response or to assess the effects of spatial

variability on the performance of less complex, generally lumped, models

(Gan and Burges, 1990a, b). Specially interesting in this group are the

attempts to characterize subgrid variability in distributed models. Binley

and Beven (1991) studied the prediction uncertainty of the IHDM using a

very detailed three-dimensional Darcian flow simulator. Mancini et al.

(1992) presented a similar analysis between a conceptual model based on a

topographic index combined with Philip's infiltration equation and a



three-dimensional model of Richards equation in variably saturated

porous media. Loague (1988) analyzed the effect of the spatial description

of rainfall and soil hydraulic properties on the characterization of

hillslope runoff. The stochastic-conceptual model designed by Freeze

(1980) was the basis for this work. Binley et al. (1989a, b) used a fully three-

dimensional subsurface flow model to assess the effect of different

random patterns of saturated hydraulic conductivity on a small hillslope,

of size comparable to that of a cell in a digital terrain model. They found

that effective uniform hydraulic conductivities could be defined only in the

case of high-permeability soils, although no consistent relationships could

be found between the effective parameters and the moments of their

distributions. Wood et al. (1988) applied TOPMODEL to address the issue

of the relation between spatial heterogeneity and catchment scale. They

analyzed the change of the statistical behavior of runoff generation with

increases in catchment scale. They concluded that a Representative

Elementary Area (REA) exists, as the minimum averaging unit from the

standpoint of runoff generation.

Distributed modeling is still an unsolved area of research. Goodrich

and Woolhiser (1991) summarize their review stating that "model

evaluations which utilized observed data do not paint an encouraging

picture of our ability to model catchment response". Significant

improvements have been made possible by the development of computer

technology, but it still remains unclear whether future increases in

computer performance will solve all problems posed by distributed

modeling. As Beven (1989) notes, "these problems result from limitations

of the model equations relative to a heterogeneous reality; the lack of a

theory of subgrid scale integration; practical constraints on solution



methodologies; and of dimensionality in parameter calibration". None of

these problems can be addressed by a simple increase in computational

power, however large. Practical issues, such as our ability to collect

distributed data at the scale required by the models or to provide the

necessary education for potential model users on a day-to-day basis, could

also be added to the list if professional, widespread use of distributed

models is to be achieved. Further research should address these

problems.

1.3 Outline of approach

This work concentrates in two parallel lines of action: hydrologic

model development and software engineering. It is believed that both

approaches have benefited mutually from the interaction. Software design

concepts have helped build a hydrologic model whose behavior can be

easily analyzed and understood by the user in real time. On the other

hand, the use of hydrologic concepts as basic entities in software analysis

has led to a modular and efficient software package, which can be

extended in many ways. This section presents the basic approach adopted

to achieve the design objectives in both lines of action.

On the area of model development, the objective was to define a

simple and computationally efficient rainfall-runoff model that could be

used for flood forecasting in midsize and large basins. General research

guidelines can be summarized in two aspects: (1) take advantage of radar-

generated rainfall maps and (2) include topographical information in the

form of digital elevation models. Chapter 2 is dedicated to the presentation



of the distributed rainfall-runoff model. A model structure based on the

square grid of DEM's was selected. The basin is discretized in rectangular

elements of homogeneous properties. Morphologic properties are

extracted from the DEM and pedologic properties are obtained from a soil

study. Model conceptualization is based on the analysis of distributed

runoff-generation at the subgrid scale and the subsequent surface flow

routing. Since uncertainty in the evaluation of rainfall excess usually

dominates uncertainty in runoff prediction (Goodrich and Woolhiser,

1991), a greater emphasis was placed on the representation of runoff-

generation processes rather than on flow routing.

Regarding runoff generation, two processes, infiltration-excess

runoff and subsurface return flow, are included, since both contribute

significantly to basin response in flood situations. The intended scale of

application of the model required a simplified and computationally

inexpensive model of infiltration which could use the topographical

information provided by the DEM. Among the simplified models which

have been developed for application in rainfall-runoff models, those based

on the kinematic approximation (Beven, 1984; Charbenneau, 1984) offer a

good platform to study the influence of slope, layering and anisotropy in

gravity-dominated flow. The kinematic approximation neglects capillary

potentials in the usaturated zone. For event-based models, concerned with

fast basin response to intense rainfall, the penetration of the moisture

wave is mostly controlled by gravitational forces and the effect of the

capillary potential can be neglected, specially in the case of macropore-

dominated flow (Anderson and Kneale, 1982). The kinematic infiltration

model adopted is described in Chapter 2 and Appendix 1. Although one-

dimensional in formulation, the model actually provides a description of
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the two-dimensional features of subsurface flow in a hillslope. It accounts

for the effects of terrain slope, anisotropy and soil layering under the

influence of the gravitational potential. A simplified scheme to account for

lateral moisture transfers between basin elements allows the

representation of return flow.

Surface flow analysis is also based on computational simplicity.

Schemes based on two-dimensional modeling of overland flow are

computationally expensive and their applicability at large scales is

questionable. Therefore, a simpler approach, based on travel times, was

adopted. A routing scheme based on flow velocities has clear

computational advantages, and its application is justified by the fact that

the assumption of linear response is better for midsize and large

catchments, specially at high flows. Both hillslope and stream travel

velocities are considered by the model. The DEM is used to identify the

stream drainage network based on the threshold area concept proposed by

Tarboton et al. (1991). There is also the possibility to account for non-

linearities in basin response through simple schemes.

The performance of the distributed basin simulator is analyzed in

Chapter 3. In order to evaluate the relative importance of model

parameters, a thorough sensitivity analysis was carried out. Emphasis

was placed on verifying if the actual behavior of the model corresponded to

the expectations and on studying the influence of model parameters on

the different modes of runoff generation. Results of the sensitivity analysis

were applied to calibrate the model for a midsize basin. Five events were

used in a first calibration attempt, reserving other five events for a later

evaluation step.



On the area of software engineering, the objective was to map the

hydrologic analysis of the flood forecasting problem into a correlative

software organization. General research guidelines have been taken from

the permanently growing field of artificial intelligence, where software

design methodologies have been developed within the context of general

problem solving. The analysis of engineering problems in artificial

intelligence usually leads to multilevel architectures, where symbolic and

numeric methods are combined to achieve the final goal (Roddis and

Connor, 1988). The system presented in this thesis, called Real-time

Interactive Basin Simulator, is also structured in several levels.

The RIBS system architecture, presented in Chapter 4, is organized

around the notion of generic task, as presented by Brown and

Chandrasekaran (1989). A task is a combination of a problem,

representation and inference strategy. Two types of agents are considered

in a generic design problem: specialists and simulation tasks. Specialists

address the problem of 'what to do', and are usually symbolic in nature.

Simulation tasks address the problem of 'how to do it', and, in

engineering contexts, are usually numeric in nature. Although system

design takes into account the entire problem of real-time flood forecasting,

the implementation work has focused almost exclusively in the

simulation tasks, which incorporate the concepts of the distributed basin

simulator. To allow for a smooth interaction of simulation tasks with

different goals, an external manager module controls system inference in

the absence of specialists.

Simulation tasks are implemented as separate modules which

maintain open channels of communication with the control manager. An

important feature of the overall design is the role of the central database,



which stores basin properties, states and model results. The general

structure of modules operating on a central database follows the pattern of

blackboard architectures (Nii, 1986). Although many distributed

hydrologic applications rely on Geographic Information Systems for

external data storage (Johnson, 1989; Sasowsky and Gardner, 1991), the

goal of software portability, the relative homogeneity of the structure of the

data involved and the need for fast transactions in real time are strong

reasons that support the adoption of storage in direct-access files.

System implementation is discussed in Chapters 5 and 6. Chapter 5

describes the distributed basin simulator and Chapter 6 describes the user

interface. Design and implementation have followed object-oriented

techniques (Stefik and Bobrow, 1986; Cox, 1986; Booch, 1990). The main

feature of RIBS implementation is the use of hydrologic concepts as

software objects. In order to obtain maximum portability, the C language

(Kernighan and Ritchie, 1988) was selected for implementation.

Abstraction, encapsulation, inheritance and polimorphism are the main

properties of object-oriented programming. Although C allows object-

oriented programming, it does not support it explicitly. Therefore, RIBS

implementation does not exhibit polimorphism, and inheritance was only

considered in the design stage, since there are no mechanisms in C to

implement it. These properties, however, were not essential in RIBS,

because the class hierarchy is very simple.

The user interface is based on interactive graphic technology (Fedra

and Loucks, 1985). Engineering workstations offer the possibility of a

network-transparent window environment (Jones, 1989) which facilitates

man-machine interaction. Each window is like a sheet of paper that can

be moved, resized, stacked, put away and recovered. Windows can display



easy-to-understand graphic information, and the user can dynamically

configure the screen to present the most relevant information at every

moment. Object-oriented programming techniques also allow the

definition of interactive interfaces (Young, 1990) where the user can

establish a dialog with the model requesting the realization of specific

tasks according to the situation. This possibility is used to provide

multiple ways to access internal model representations, allowing the user

to understand model behavior.





CHAPTER 2

The Rainfall-Runoff Transformation Model

This chapter presents a distributed, physically based, rainfall-runoff

model that is later included in a real-time flood forecasting environment.

The model is called Distributed Basin Simulator (DBS), and adopts the

nodes in the grid of a Digital Elevation Model (DEM) as spatially discrete

elements. Each node consists of a laterally homogeneous soil column in

which vertical variability is parameterized following a simple scheme.

The discrete spatial representation allows for the distributed definition of

terrain slope, soil parameters and rainfall input, which are used to

simulate the spatial distribution of runoff generation in the basin. The

model is based mostly on topographical information, and the objective of

the modeling process is to map the evolution of the saturated areas in the

basin during a storm event. A simple routing procedure is applied to

obtain basin response in points of the basin. After a description of the

model representation of the basin, this chapter presents the runoff

generation mechanisms and routing procedures adopted in DBS.

2.1 Basin representation

The three-dimensional geometrical structure of the basin is

represented on a number of data layers which contain two-dimensional



information, as shown in Figure 2.1. Each layer is represented following

the raster format proposed in the literature of spatial information

systems. The layers are defined on a common rectangular grid composed

of homogeneous elements. Raster format offers an excellent

representation of spatially variable magnitudes if the number of grid

elements is high. The rectangular grid representation was selected to
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Figure 2.1: Representation of distributed information in the basin. All
data layers share the same rectangular grid.
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match the detailed topographical information provided by DEM's. Other

data used by the model may typically be available at lower spatial

resolution, as in the case of rainfall intensity, or may be more naturally

represented in vector format, as in the case of soil types or drainage

networks, but the use of a standard raster format of equal size for all data

layers offers clear advantages from the standpoint of computational

efficiency in real time.

Two different scales of variability are combined in the model. Large

scale spatial variability is represented through the distribution of different

geomorphologic and pedologic properties on the nodes of the rectangular

grid. The model also accounts for some variability at the subgrid scale, but

only in the vertical direction. Model representation of the basin is

therefore a number of points in the nodes of a rectangular grid (see Figure

2.1). Distributed variables are assigned values on the nodes of the grid,

and are supposed to be representative of the square cell surrounding the

node. Model equations are formulated in the vertical direction for the

subgrid elements, which are assumed one-dimensional. Large scale

interactions are taken into account through an element coupling scheme,

which allows for moisture transfer between contiguous elements.

Every grid cell represents a portion of sloped soil. The representation

of cell elements is shown in Figure 2.2 The geometry of the element is

defined on three data layers: elevation, orientation and slope. The average

elevation of the element as defined by the DEM is assigned to the element's

central point. The slope orientation is approximated by the line pointing to

the center of one of the eight cells surrounding the pixel. Connectivity

between elements is based on slope orientation, which implements the

relation "drains to". The slope value is given by the difference in



elevations divided by the horizontal distance. Techniques to analyze

DEM's (Tarboton, 1989) are used to obtain orientations and slopes. The

drainage network can also be obtained from the DEM assuming a

threshold contributing area (Tarboton et al., 1989). Basin morphology is

therefore completely defined in terms of its digital elevation map.

The second aspect of spatial representation refers to soil

characteristics. Several soil properties are of interest to DBS. Each one is

represented on an independent data layer, with values of the soil

properties assigned to the nodes of the grid. Thematic cartography and

field information can be used to generate spatial distributions of hydraulic

conductivity, porosity and other soil properties of interest, but the

investment required to obtain an accurate characterization of soil

r

Figure 2.2: Model representation of a subgrid element.



properties at the same resolution as the DEM is considerable. Therefore,

model conceptualization emphasizes topographical information as the

basis to analyze basin response.

The subgrid internal representation of the element is a vertically

layered and laterally homogeneous sloped soil. The subgrid analysis is

carried out in a reference system defined by the coordinate system (n,p)

(Figure 2.2), where n follows the direction normal to the terrain slope

(positive downwards) and p follows the direction parallel to the line of

maximum slope (positive downslope). All variables within the element

are assumed constant in the direction perpendicular to the plane (n,p).

Soil properties are considered to be homogeneous in the directions parallel

to the terrain surface, but some variability is allowed in the direction

perpendicular to the soil surface. The soil is layered, with normal

hydraulic conductivity decreasing with normal depth. In order to keep

model parameters to a minimum, a one-parameter analytical expression

for vertical variability is assumed.

The model was designed to work on grids with thousands of

elements, but the upper limit is only set by hardware limitations: memory

allocation and execution time. For practical applications there is an

optimum grid size, which is a function of the size of the catchment and of

the variability of its properties. Currently available standard DEM's

provide topographical data with horizontal resolution of 30 m. It is

unlikely that, for practical applications, topographical data of higher

resolution be widely available, and therefore 30 m is the typical scale of the

lower spatial resolution considered in DBS. However, a spatial resolution

of 30x30 m2 would require a very large number of grid cells to represent



midsize catchments, of the order of hundreds of km2 , and therefore,

larger grid sizes have to be considered for larger basins.

2.2 Runoff generation

The distributed basin simulator incorporates the two modes of storm

runoff-generation mechanisms: infiltration excess and return flow. The

basis for local runoff generation is the kinematic model of infiltration

proposed by (Cabral et al., 1990). The model was further developed by the

author, and the final version, adopted in this work, was finally presented

by Cabral et al., (1992). For the reader's convenience, a copy of that paper

is included in Appendix 1. This section presents an overview of the basic

features of the kinematic model of infiltration and its application to the

distributed basin simulator.

Although one dimensional in formulation, the kinematic model

actually reproduces the two dimensional flow of water in an infinite slope

of layered soil, and provides an expression to compute the net horizontal

flow across a vertical cross section of the hillslope. At the basin scale,

however, the subsurface flow of moisture is essentially three dimensional,

due to the heterogeneities in slope orientation and soil characteristics.

DBS approximates the real three dimensional flow by assuming the

validity of the infiltration equations in each element at the subgrid scale

and accounting for the transfer of moisture among cells in a simplified

manner. The evaluation of runoff generation has two aspects: runoff

generation at the subgrid scale using the one-dimensional model of

infiltration and moisture transfer among elements.



2.2.1 The one-dimensional model of infiltration

The basin representation at the subgrid scale accounts for two main

types of mechanisms that can generate runoff: infiltration excess, when

rainfall intensity exceeds the infiltration capacity of the soil, and return

flow, when there is convergence of subsurface flows in an already

saturated area. In the first case, the runoff generation may be truly

Hortonian, when the infiltration capacity of the soil column is equal to the

saturated hydraulic conductivity at the surface, or it may be produced

through a saturation-from-below type of mechanism, when a perched

saturation zone reaches the surface reducing the effective infiltration

capacity of the soil column. Return flow may be produced when

subsurface flows converge into an area where perched saturation has

developed.

The one-dimensional model of infiltration applied at the subgrid

scale is described in this section. The basic assumptions regarding the

representation of the soil column and the parameterization of vertical

variability are reviewed first. Secondly, soil-water movement in the

unsaturated and saturated areas is analyzed. Finally model equations for

front evolution are presented.

Basic assumptions

The kinematic model considers a soil column of vertically

heterogeneous, anisotropic and sloped soil in which the hydraulic

conductivity decreases with depth. The terrain surface forms a slope



angle a with respect to the horizontal datum. Infiltration is described in

the plane defined by the line of maximum slope and the normal to the

terrain surface. Conditions are assumed to be uniform in the third spatial

dimension, and variability in that direction is therefore neglected. The

reference system is formed by the axes n and p, as represented in Figure

2.2. n is perpendicular to the terrain surface and positive downward, and

p is parallel to the soil surface and positive in the downslope direction.

The flow of subsurface water is assumed Darcian. The full equations

are considered in the saturated area, but the kinematic approximation

(Beven, 1984) is adopted in the unsaturated zone, where the contribution of

capillary pressure to the hydraulic gradient is neglected. Under the

kinematic approximation, the infiltration capacity of a soil column is

equal to the saturated hydraulic conductivity at the surface. A rainfall

intensity R, at the surface, higher than the saturated hydraulic

conductivity, Ksat, would produce a Hortonian infiltration-excess runoff

equal to R - Ksat. Rainfall of intensity lower than Ksat will infiltrate

completely during the early stages of the storm, leading to a moisture

distribution along the soil profile capable of maintaining an infiltration

rate equal to R. However, heterogeneities in the vertical distribution of

hydraulic conductivity may lead to the formation of a zone of perched

saturation, whose top boundary ascends as the storm progresses, and

may eventually reach the surface producing a "saturation-from-below"

type of runoff generation.

The Brooks-Corey parameterization scheme (Brooks and Corey, 1964)

is adopted to relate the unsaturated hydraulic conductivity and the pore

pressure with moisture content. The soil is anisotropic, with main

directions of anisotropy parallel to the axes n and p. The saturated



hydraulic conductivities in the main directions are considered to

decrease with normal depth. In order to obtain analytical formulations of

the model, the variation of saturated hydraulic conductivity with depth is

limited to the exponential case:

Ks(n ) = Ko en (2.la)

Ks (n) = Ko, e-'" (2.1b)

where Ksp(n) and Ksn(n) are the saturated conductivities at depth n

perpendicular to the surface; Kon and Kop are the saturated hydraulic

conductivities in directions n and p at the soil surface; and f is a

parameter of dimension [L-1] , which controls the decay of the saturated

hydraulic conductivity with depth.

Other soil properties (anisotropy, porosity, etc.) are considered

homogeneous within each element, although they are allowed to vary

throughout the basin. The saturated hydraulic conductivities in directions

p and n are related through the dimensionless anisotropy ratio ar, defined

as

K0
ar = -> 1 (2.2)K0O

This relationship is assumed to be valid for all depths. For unsaturated

soils, hydraulic conductivity is a function of moisture content. Upon

substitution of Equations (la) and (1b) for the saturated conductivities in

directions n and p, the Brooks-Corey (Brooks and Corey, 1964)

parameterization gives



Kn (6,n) = Ko e fn r (2.3a)
n (OS - Or

K, (8,n) = Ko e (2.3b)

where Kn(8,n) and Kp(6,n) are the hydraulic conductivities in directions

n and p at moisture content 0 and at depth n; 6s is the saturated moisture

content; Or is the residual moisture content, defined as the value below

which moisture cannot be extracted by capillary forces; and e is a pore size

distribution index.

Unsaturated flow description

Model dynamics are based on the kinematic approximation (Beven,

1984; Charbeneau, 1984) for flow in the unsaturated area. Under the

kinematic approximation, the capillary pressure gradient is neglected

and as a result moisture waves during a storm event can be described as

sharp discontinuities that separate areas of different moisture content.

These discontinuities are usually referred to as fronts, and are assumed

to proceed perpendicular to the terrain surface in homogeneous or layered

soil. Two fronts are considered in the kinematic model described here: a

wetting front which represents the penetration of the moisture wave into

the soil and a top front which represents the ascent of the perched

saturation zone that develops when moisture flux in the unsaturated area

is greater than hydraulic conductivity at the wetting front. The normal



depths of the wetting and the top fronts are Nf and Nt respectively, as

represented in Figure 2.3.

The total moisture content of the cell above the wetting front Mt is

divided into an unsaturated and a saturated area. Unsaturated moisture

content is Mu and saturated moisture content is Ms. The relations

between moisture contents and front positions are given by the equations:

Mt = 0(n) dn
(2.4a)

N

MU= 0(n) dn (2.4b)
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Figure 2.3: Schematic representation of the wetting and the top fronts.
The horizontal axis represents moisture content 6, and the vertical axis

represents normal depth.
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Mst O(n) 
(2.4c)

Mt= Mu + MS (2.5)

The model accounts for the evolution of moisture in the saturated and

the unsaturated zones. The unsaturated area extends from the terrain

surface to the top front, and the saturated area extends between the

wetting and the top fronts. Moisture distribution is defined according to

the simplifying assumption of constant normal flux in the unsaturated

area, implying that flux variations in the normal direction are quickly

smoothed out. This assumption is consistent with the one-dimensional

continuity equation for the unsaturated zone:

~t -n (2.6)

Negative flux gradients in the normal direction imply local moisture

accumulation, which in turn increases the hydraulic conductivity of the

soil and correspondingly increases the local normal flux, reducing the

gradient.

The assumption of constant normal flux in the unsaturated area

leads to the description of the soil moisture profile under steady

infiltration at rate R. As described in Appendix 1, the unit gravitational

gradient leads to the expression R = K(6,n). Substituting for K(6,n)

according to the Brooks-Corey parameterization and solving for 0



O(R,n)= (OS - Or e+ 0r (2.7)

Equation (2.7) shows that for constant normal flux, the moisture content

above the wetting front increases exponentially with depth, in order to

keep the normal hydraulic conductivity equal to the infiltration rate R.

Given that saturated soil conductivity decreases with depth, for a

certain depth within the soil profile, N*(R), the saturated conductivity in

the normal direction will be equal to the rainfall rate R (for the case R <

Kon), that is

Ks(N) = R (2.8)
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Storm moisture
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content
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Figure 2.4: Schematic representation of unsaturated flow. Both frontscoincide. The moisture content above the fronts is given by equation 2.7.



Substituting the expression for Ksn(N*) obtained from Equation (2.1b) into

equation (2.8) and solving for N* we obtain,

N *(R)= - . K n -
f R (2.9)

Equation (2.9) applies only for R Kon. For R > Kon, the saturated level is

at the surface, and there is no unsaturated area above the wetting front.

Making n = N*(R) in Equation (2.7), we obtain 9(R,N*) = 63.

Therefore, N*(R) represents the depth at which saturation develops under

a steady infiltration rate R. For n > N*(R), we have K (n) < R and the soil

can no longer transmit flow at the rate of infiltration to depths beyond

N*(R). Water accumulates above that level and perched saturation

develops. Figure 2.4 represents schematically the concepts related to

unsaturated flow.

Saturated flow description

The soil column above the wetting front is saturated in two cases; 1)

when the rainfall rate is higher than the surface saturated conductivity

(R > Ko), or 2) when the wetting front has penetrated beyond the critical

depth (Nf 2N*(R)).

In the first case, the entire wetted soil (from the surface to the wetting

front) is saturated. In the second case, as the wetting front reaches

N*(R), normal flux below the saturation level is less than recharge from

above, and moisture progressively accumulates above the wetting front. A



zone of perched saturation develops and grows upward from N*(R), as

well as downward as the front progresses.

The first term in the continuity equation (2.6) is zero within the zone

of saturation, since 6(t) = 6s, and the saturated flow is therefore non-

divergent, which in one dimension means:

aqn

an =(2.10)

According to Equation (2.10) , qn(n) is constant in the n direction.

Since the elevation gradient is constant and hydraulic conductivity

decreases with depth, constant normal flow within the saturated zone

implies a positive pressure buildup in it. Pressure gradient compensates

for the different hydraulic conductivities of the successive layers of the

saturated zone in order to keep normal flow constant. Therefore, the

hydraulic gradient within the saturated zone has to account for the

gradient of that positive pressure distribution.

The pressure distribution can be obtained assuming that at both

fronts, Nt and Nf, pressure is atmospheric. The resulting pressure

distribution is (see Appendix 1 for details)

______ fn efn -e t
'P(n)= cos(a) n + N + - (N,+

( f ef ef' t ef - ef (2.11)

The hydraulic potential can be obtained upon differentiation of the

pressure distribution. After substitution of the normal component of the

hydraulic potential in the flow equation, we get an expression for the

normal flow in the saturated area,



f(Nf - Nt) cos(a)

n ef - e t  
(2.12)

Normal flow is constant in the saturated area. We can define an

"equivalent hydraulic conductivity" for the saturated area, Keq, as the

normal hydraulic conductivity of a homogeneous soil with the same

normal flow qn given by Equation 2.12. The equivalent hydraulic

conductivity is given by

f.(Nf -Nt)
Keq (Nf , Nt) = KOn L f.N fN

ne fNf - e * (2.13)

The equivalent conductivity corresponds to the harmonic mean of the

conductivities over the saturated depth,

fN fdn
N t

Keq (Nf , Nt) N

IN K,(n) (2.14)

We may also designate by "equivalent depth", Neq, the normal depth

which has saturated hydraulic conductivity equal to Keq(NfNt). From

Equations (2.1a) and (2.13),

1 ~ f . (Nf- Nt)
Nf (NNt)= ~ fN 2.15_Lef- e (2.15)



II

Neq is also the depth at which the pressure distribution (Equation (2.11)) is

maximum, because for that point the pressure gradient is zero and flow is

controlled only by the gravitational gradient. For depths smaller than

Neq, that is Nt < n < Neq, the saturated hydraulic conductivity is greater

than Keq, and the pressure gradient is positive (increasing pressure with

depth) to compensate for the excess in hydraulic conductivity and keep the

normal flow constant. For depths greater than Neq, that is Neq < n < Nf,

the saturated hydraulic conductivity is smaller than Keq, and constant

normal flow implies a negative pressure gradient in that area, up to the

wetting front, where pressure is again atmospheric. Figure 2.5

represents moisture and pressure distributions in the saturated area.

Moisture Pressure

8 sat 'P max

.. .. ......

NtV Top front Nt

. .. . . . . . . . .

.................................... Euvln e

Equivalent Neq----I 1*~~~~~.depth
.................... .................

...........

Wetting front Nf

Nwt... Nwt. Water table
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Figure 2.5: Schematic representation of saturated flow. Positive pressure

develops between the wetting and the top fronts. The conductivity of the

soil at the point of maximum pressure corresponds to the equivalent

hydraulic conductivity of the saturated area as a whole.



Front evolution equations

Three state variables (the moisture content, the wetting front depth

and the top front depth) define the moisture state in the soil column.

Below the wetting front the moisture profile is that corresponding to the

initial state before the beginning of the storm. Between the wetting and the

top fronts the soil column is saturated. If the element has not reached

saturation yet, the wetting and the top fronts coincide and the saturated

volume is null. Above the top front the moisture is distributed with the

condition of uniform normal infiltration. The kinematic model provides

equations that describe the dynamics of the state variables. Subsurface

moisture inflows to the soil column are given as upstream (i.e. upslope)

boundary conditions to the problem. Moisture outflows depend only on the

internal distribution of moisture along the soil column, and therefore,

once the values of the state variables are known, the horizontal moisture

outflow from the cell can be computed. Surface runoff can then be

evaluated as a function of rainfall intensity, saturated hydraulic

conductivity at the surface, saturation level depth and moisture balance in

the pixel.

The evolution of the state variables is described by a system of three

first-order differential equations. Model equations are derived in

Appendix 1. Front evolution is described by two basic set of equations,

each one corresponding to a possible moisture profile, depending on

whether a perched saturation area has developed between the top and the

wetting front. The equation for the evolution of the third state variable,

moisture content, is obtained through mass conservation considerations.

A summary of the model formulation is presented hereof.



When the wetting front is not saturated both wetting and top fronts

coincide, and their evolution is controlled by the following equation:

dNf (R - Ri) cos(a)

dt O(R , Nf) - (Ri,N (2.16)

where

- Nf is the wetting front normal depth, which is also equal to the depth of

the top front Nt for unsaturated infiltration

- a is the slope angle

- R is the equivalent rainfall intensity, which is equal to the normal

infiltration flux in the unsaturated portion of the soil column. When

rainfall intensity is variable, R represents an equivalent constant

rainfall intensity that would lead to the same moisture distribution in

the soil column

- Ri is the initial recharge rate, which describes the moisture state at the

beginning of the storm

- 6(R,n) is the moisture content of the soil column at depth n when the

infiltration rate is R

The model assumes an exponential decrease of hydraulic

conductivity with depth, and therefore, as the front progresses downward

it reaches levels of lower permeability. To maintain a normal infiltration

flux equal to R, moisture content must increase with depth. Eventually,

moisture content reaches saturation, and the governing equations

change. A zone of perched saturation develops, which grows both

upwards and downwards because normal flux in the unsaturated zone



(equal to the rainfall intensity R) exceeds infiltration capacity in the

saturated area.

The equations for the evolution of the wetting and the top front of the

perched saturation zone are:

dNf q_ - R icos(ac)

dt Os - 0(Ri,N) (2.17a)

dNt qn - R cos(a)

d t ,- O(R,Nt) (2.17b)

- Nt is the top front normal depth

- 6 is the saturation moisture content

- qn is the normal infiltration flux in the saturated portion of the soil

column, given by Equation (2.12)

When the storm moisture wave reaches the water table it can only be

drained laterally, since no vertical moisture flow can occur below the

water table. Water table levels in the basin are in equilibrium draining

the initial recharge rate Ri, and therefore normal infiltration capacity at

the water table is equal to the initial recharge rate. When the wetting front

reaches the water table depth, it can no longer proceed downwards, and

the rate at which moisture accumulates above it exhibits a sharp

increase. The eventual effect is a local rise of the water table in that

element which will make it completely impervious if the saturated area

reaches the surface.



2.2.2 Adaptation to basin scale

The one-dimensional model of infiltration is formulated for

conditions which differ significantly from those under which the basin

scale model is intended to operate. The infiltration model is defined for a

constant rainfall intensity in a uniform slope of infinite length. Water

movement occurs in the plane defined by the vertical direction and the

line of maximum slope, and, since the slope is infinite, lateral flow for

any vertical section is balanced. DBS is a basin-scale model, and the

infiltration model is applied to rectangular grid elements, limited in size.

Every element receives subsurface flow from upstream elements and

transmits its own contribution to the element downstream of it. There are

also effects of flow aggregation. As a result, lateral inflow and outflow do

not necessarily coincide for a given pixel. Front position will vary from

pixel to pixel, since soil properties and pixel slope will change from point

to point in the basin. Rainfall intensity will also vary in time and space.

Therefore, several additional assumptions and modifications have to be

made in order to adapt the infiltration model to variable rainfall,

unbalanced lateral flow and spatial heterogeneities. These modifications

play an important role on the practical implementation of the model,

because they affect the numerical accuracy and stability significantly.

This section concentrates on the problem of variable rainfall rates. The

problems of unbalanced lateral flow and spatial heterogeneities affect the

moisture balance equation, and are discussed in detail in Section 2.2.3.

In order to adapt the model to variable rainfall rates, the following

assumption is made: water gets redistributed in the normal direction in

order to attain uniform normal flow. This means that only a single



moisture wave will propagate downwards, regardless of the variability of

rainfall intensity during the storm. This is a strong assumption, which is

to some extent supported by the dynamics of the unsaturated infiltration

mechanism, which, at least qualitatively, tend to redistribute moisture.

For the uniform rainfall case, moisture content is such that the

unsaturated hydraulic conductivity equals the normal infiltration flow.

For the variable rainfall case, an average infiltration flow can be defined.

If moisture content at some level is higher than that corresponding to the

average flow, the hydraulic conductivity is higher than the average, and

moisture will tend to migrate from that point. Conversely, if moisture

content is lower, water will tend to accumulate in that area, increasing

hydraulic conductivity until an equilibrium is reached.

The solution adopted is to define an equivalent uniform rainfall rate

that would lead to the same moisture content in the unsaturated portion of

the pixel. The moisture profile is given by Equation 2.7. Integrating the

moisture profile above the wetting front for an equivalent rainfall rate, Re

and equating it to the unsaturated moisture content, Mu, we obtain

1

---o ( - O) e" r] dnMU (2.18)

Solving for Re

Re = Ko-

(O - O e - 1)(2.19)



The expressions for front evolution are assumed still valid, substituting R

by the equivalent rainfall rate Re. Equation (2.19) is only valid when there

is an unsaturated area in the pixel, that is when Nt > 0. When the top

front is at the surface, the equivalent rainfall rate is equal to the actual

rainfall rate at that time.

2.2.3 Moisture balance

Once the position of the fronts is known, the moisture distribution in

the soil column can be obtained. Since gradients are also known, moisture

fluxes at every point can be computed applying Darcy's equation. Moisture

outflows are in turn a function of moisture fluxes. The equations

governing vertical and lateral moisture flows are obviously coupled. To

account rigorously for moisture transfers among elements in the grid, the

full three-dimensional equations of moisture flow should be applied,

accounting for soil heterogeneities both in the vertical and in the

horizontal directions. That approach introduces computational

complications which make it impractical for application at large basin

scales. Therefore, simplifications must be made in order to obtain a

computationally efficient model that can operate in real time for basins

composed of a large number of elements.

Simplifications in DBS are based on the idea of decoupling vertical

and horizontal moisture equations. That approach is supported by the fact

that the forcing mechanisms driving vertical and lateral movement of

moisture during a storm are essentially different in nature and operate at

different time scales. Vertical movement is largely based on the

gravitational forcing for significant infiltration rates. The vertical



redistribution of moisture due to capillary forces is only of secondary

importance and operates at a much slower time scale. For the lateral

movement, however, there is no gravitational forcing, and capillary forces

are predominant, transporting water from wet to dry areas in the basin.

In any case, gravitational forces are predominant in the overall water

transport. Moisture concentrates on troughs and depressions, in a

general downslope movement following topography, and that is the most

important feature that should be captured by the model.

Two types of moisture transfers among elements are considered in

DBS. First, the one-dimensional model of infiltration applied at the

subgrid scale predicts deviations of flow from the vertical even in the case

of laterally homogeneous terrain. When the model is applied to a bounded

domain, the horizontal component of flow produces a net flow of moisture

at the downslope boundaries, which is transmitted to the contiguous

element. In addition to that, the application of the gravity-dominated one-

dimensional model of infiltration to every element independently gives

different pressure and moisture distributions in every cell, which in turn

lead to horizontal pressure and moisture gradients that drive lateral flow

between pixels. In the former case, moisture transfers among pixels are a

consequence of the state in every element, and in the latter, moisture

transfers are a consequence of the difference in moisture profiles in

contiguous elements. Both moisture transfers are taken into account in a

simplified manner, described as follows.



Lateral flows in homogeneous terrain

In the kinematic model of infiltration, local terrain slope,

heterogeneity and anisotropy produce a diversion from the vertical for the

infiltration in the saturated zone. Consequently, a lateral movement of

moisture may exist. The model was originally defined for an infinite

homogeneous hillslope, and therefore it was not affected by boundary

conditions. Model hypotheses are not valid when it is applied to a finite

domain, like the cells considered in DBS, because boundary conditions

will in general affect the patterns of circulation of subsurface flows.

However, since no simple solutions are available for the full three-

dimensional equations under arbitrary boundary conditions, a simplified

element coupling scheme was adopted to account for moisture transfers

between elements.

It is considered that the one-dimensional infiltration equations are

valid at the subgrid scale. The equations describe the two dimensional

flow contained in a plane defined by the normal to the terrain surface and

the line of maximum slope. The horizontal component of the flow can be

integrated along any vertical surface to obtain the net flow across that

boundary. In particular, according to the description of flow given in

Section 2.2.1, the total subsurface outflow from the wetted soil,

represented by Qhout, from a vertical cross-section of width W is obtained

through integration over the wetted depth (i.e. from 0 to ) of the
cos(ax)

horizontal component of the moisture flow in the soil column, as shown in

Appendix 1. The resulting expression is



Q=W sin(a) [N R (aT - 1)] + Ko (et - e f)l -[K f(Nf- Nt)2I
L0Kn f i On ef - e iJ( 2 .2 0)

For a rainfall rate lower than the initial infiltration capacity (for R <

Kon) lateral discharge is given only by the first term of (2.20) while Nt = Nf

< N*(R). After perched saturation has developed (for Nt < Nf) lateral

discharge is given by all three terms of equation (2.20) while Nt > 0.

However, eventually Nt = 0, and lateral discharge is then given only by the

second and third terms of Equation (2.20).

This expression for the horizontal subsurface flow across a vertical

cross section is applied to evaluate outflows from all elements in the

basin. Subsurface inflows into a certain element are given by the sum of

the outflows from all the upstream elements draining directly into it. In

order to account for moisture transfers between elements correctly, the

computations should be carried out recursively, according to the relation

"drains to". This guarantees that outflows from all upstream elements

have already been computed before considering a given element, and

therefore the total subsurface inflow to the element is available.

Two major simplifications are implicit in this scheme. First, the

coupling effect between elements is only indirectly considered. Each pixel

is represented by model equations applied to its central point. Model

equations consider it to be an effective infinite extension of soil, with no

boundary effects. The coupling between elements is taken into account in

the mass conservation equation, but it is neglected in the momentum

equation. Every pixel receives moisture from the upstream pixels

draining into it. That moisture is taken into account in the mass balance,

but it is considered that these flows do not affect the momentum equation,



that is, the speed at which fronts move. Since the momentum equation is

formulated in the direction normal to the slope, the approximation may be

acceptable as long as the volume of water transferred is only a small

fraction of the total volume of water stored in the element.

The second simplification refers to the assumption about flow

geometry. The spatial orientation of the flows entering every cell is

assumed parallel to the line of maximum slope, irrespective of the

orientation of the slopes of the upstream pixels. This assumption is strong

and unreal considering the idealized model adopted for the description of

basin terrain, where sharp discontinuities are defined at the boundaries

between pixels, but it is not so strong considering the situation in the real

basin, where transitions are usually smooth and subsurface flows tend to

be parallel to the lines of maximum slope, following the general

topography of the area.

Lateral flows resulting from the spatial variability

Since different pixels have different moisture and pressure

distributions in the vertical direction, there are horizontal moisture and

pressure gradients which drive lateral moisture flows among the pixels.

Lateral gradients are relatively small, because for a typical pixel size

horizontal distances between two consecutive elements are very large

compared to vertical distances. Therefore, lateral flows due to spatial

variability of moisture are small compared to lateral flows due to

topography and anisotropy, as shown by analyses of moisture

distributions in real basins (Dunne et al., 1975; Tanaka et al., 1988,

Gbureck, 1990).



A very simplified procedure is applied to account for the effect of

horizontal pressure gradients on lateral flow. It is considered that the

equations describing front evolution and moisture distribution in every

element are valid for the central point of the grid cell. The one-

dimensional model provides therefore an estimate of water pressure

distribution along the normal to the surface of every element in its central

point. Since different pixels have different pressure distributions, the

hypothesis of lateral uniformity made in the one-dimensional model of

infiltration is not satisfied, because the terrain is not infinite in practice,

and at some point, boundary effects affect the solution. To account for this

in a simplified form, the method of superposition of solutions was

adopted. Model equations are applied to every element independently, and

the results are then corrected accounting for moisture transfers due to

lateral imbalances of pressure between two consecutive pixels. The

correction applied is detailed next.

The objective is to estimate the horizontal moisture flow between two

contiguous pixels as a consequence of pressure imbalance. The use of the

full equations of Darcian flow is complicated by the geometry of the

problem. The saturated area may be located at different depths in

contiguous pixels and the normals to the surface may not be parallel if

terrain slopes are different. The model adopted to describe the terrain is

also unrealistic, with spatially homogeneous soil of different type in every

cell separated by a sharp discontinuity. Furthermore, additional

complications are introduced by the different relative positions of

contiguous pixels within the grid.

The geometry of the problem is considerably simplified if the

difference of the inclinations of the normals with respect to the vertical is



neglected. That is equivalent to considering uniform slope in both pixels.

That slope may be given by the difference in elevation of the central points

of the two consecutive pixels divided by the horizontal distance, and is not

a bad approximation in most cases. Under that approximation, the total

lateral gradient between two contiguous pixels is given by

D'P Ay(z) V2(z) -yi(z)
x(z) = Dx Ax - x2 - x1  (2.21)

where Vf is the pore pressure, z represents vertical depth and x,
d A I(z)

horizontal distance. -x- may be approximated as AX(z) . Neglecting the

effect of slope in Ax (Front depths are of the order of a few meters at the

most, while horizontal distances between grid points are of the order of

tens of meters), Ax is independent of z. Also, since we have assumed that

both elements have the same slope, the vertical depth z can be substituted
n

by the normal depth , where a is the average slope angle of both
cos(a)

elements.

Lateral flow is given by Darcy's equation

q (z)=-K (z) J (z) (2.22)

The hydraulic gradient is given by Equation (2.21). For the equivalent

hydraulic conductivity Keq(z), some average of the hydraulic

conductivities of both elements has to be used. The selection is complicated

by the anisotropy and heterogeneity, both in the vertical and in the

horizontal, of the soil. Since they are connected in series, the geometric



mean of the saturated parallel hydraulic conductivities is considered an

acceptable approximation

K (z)= P2 (Z) (2.23)

Total flow is obtained integrating Darcy's equation over the saturated

depth

Q = qx(z) dz = - KN(z) Jx(z) dz
ZjM

where

- Zinf = minimum (

- Zsup = maximum

Nfl
cos(a)

Nti

cos(a)

(2.24)

Nr2
cos(a)

NOt
cos(a)

Applying the principle of superposition, lateral flow Qx is given by

QX =f K, (z)
Vp1(z) - V2(z

Axdz

(cos(a)QX=j N t Keg
cos(a)

V1l(z)
(z) dz -Ax

fcos(a)NfKt
CNOS(c K
cos(a)

V2(Z)
(z) dz

Ax

The transfer of moisture between elements due to imbalances in pressure

distribution can be computed as the difference between the flows that

(2.25)



would result considering pressure distribution in both pixels

independently. That flow can be obtained substituting for the expressions

of Keq and and W. The distribution of F as a function of n is given by

Equation (2.11), which can be readily expressed in terms of z. Keq is

expressed as a function of z as

Keq = VKpi Kp2 e f z cos(a) (2.26)

Substituting for W and Keq in the first term of Equation (2.25), carrying out

the integration over z, and considering a section of width W, we obtain the

expression for the moisture outflow from pixel 1, Qpout, considering only

pressure distribution in pixel 1

W (NN[Ne -Nf est 1 N + N
Qpont = KoeqX - X1 (Nf - N t +f -feWt ,+N

X2 X1  e -e (2.27)

All variables in Equation 2.27 refer to values in pixel 1. The second

term in Equation (2.25) corresponds to moisture inflow into pixel 1

considering only pressure distribution in pixel 2. The expression is

analogous to Equation (2.27), substituting 1 by 2. The net outflow from

pixel 1 is given by the difference between outflow and inflow, as shown in

Equation (2.25).



2.2.4 Runoff generation

Two modes of runoff generation are represented in DBS: infiltration

excess runoff and return flow. Both are estimated as final output of the

equations described above for front movement and lateral moisture

transfer. We first analyze the different runoff-generation states of the

pixel, according to front position. Then, infiltration excess-runoff, which

is a direct consequence of pixel state, is analyzed. The problem of return

flow is considered last, since return flow is obtained as a result of global

moisture balance in the soil column, including the infiltration input in

addition to subsurface lateral inflows and outflows.

Pixel states

The final result of the one-dimensional model of infiltration is a

description of the moisture profile along the soil column. Depending on

the position of the top and the wetting fronts, the soil column can be in

four distinct states, which have different runoff-generating potential. In

order to study the runoff generation in the basin, four basic pixel

situations should be considered, as represented in Figure 2.6

- Unsaturated: The wetting front is at some depth above the water table,

but saturation has not been reached yet. The soil column generates purely

infiltration excess runoff only. Its runoff generation potential is controlled

by its surface hydraulic conductivity exclusively.
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Figure 2.6: Representation of the four possible runoff-generation states of
the pixel.
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- Perched saturated: The wetting front has reached the level of saturation

N*, and the top front is still at some depth below the surface. The soil

column generates infiltration excess runoff. Its external behavior is

similar to that of an unsaturated column, but, as the top front approaches

the surface, the column becomes closer to saturation. An evaluation of

how close the soil column is to being completely saturated is the water

storage that still remains free in the pixel above the top front.

- Surface saturated: The wetting front is at some depth above the water

table and the top front is at the surface. The runoff generation properties

of the column are not function of its surface hydraulic conductivity, but of

the harmonic mean hydraulic conductivity of the saturated depth. The

column generates infiltration excess runoff, but the infiltration capacity is

a function not only of the soil type, but also of the moisture state. In

general, the infiltration capacity is significantly lower than that of the

unsaturated case. The column may also generate return flow, if

infiltration plus subsurface flows into the pixel exceed subsurface

outflows plus the storage increment provided by the progression of the

wetting front.

- Fully saturated: The wetting front has reached the water table and the

top front is at the surface. The soil column behaves effectively as if the

water table had reached the surface. The infiltration capacity of the pixel

is equal to the inter-storm recharge rate Ri. No rainfall from the storm

can infiltrate, and therefore, its tendency to generate surface runoff and

return flow is maximum.
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Infiltration excess runoff

The infiltration-excess runoff is a direct consequence of the

infiltration capacity of the soil, which is in turn a function of front

position. Actual infiltration is obtained by comparing the infiltration

capacity of the soil with the rainfall rate. If the rainfall rate is higher than

the infiltration capacity,actual infiltration equals the infiltration capacity

and infiltration-excess runoff is generated. If we designate the infiltration

capacity as Imax, three basic modes can be considered, comprising the

four possible pixel states.

For unsaturated (N,'=Nt ) and perched saturated (0 < Nt < Nf) pixels,

the maximum infiltration capacity is only controlled by surface saturated

conductivity

Imax = K0, cos(a) (2.28)

When the pixel is in the surface-saturated state (Nt = 0, Nf < Nwt), the

infiltration capacity is abruptly reduced

f Nf
Imax = Kon co f 1s(a)

e f- 1 (2.29)

After the top front reaches the surface of the soil, infiltration into the soil

is no longer controlled by the infiltration capacity of the unsaturated

upper layers (surface normal hydraulic conductivity Kon), but by the



infiltration capacity of all the saturated zone as a whole. which extends

from the surface down to the wetting front.

The fully-saturated state (Nt=0, Nf'=Nwt) is the limiting case in which

the saturated zone extends down to the water table. For these pixels, the

infiltration capacity is in equilibrium with the inter-storm recharge rate,

and storm rainfall cannot infiltrate,

Imax = 0 (2.30)

The actual infiltration I is given in all cases by

I=R

I= Imax

R 5 Imax

R > Imax (2.31)

Designating the the infiltration-excess runoff by Ri, it is given by

Ri=R-I (2.32)

Return flow

Return flow is generated when the pixel is saturated, as a

consequence of the moisture balance. The evolution of the total moisture

content in the pixel is given by

dMt dNfR QIin - Qout
=, dt A (2.33)



The first term of Equation (2.33) corresponds to the moisture

increment due to the vertical displacement of the wetting front. Since Mt

is defined as moisture above the wetting front (see Equation 2.4a)),

moisture accounting should include the increment due to the

incorporation of the initial moisture distribution to our reference volume.

The second term accounts for the infiltration, and is given by Equation

(2.31). The last term includes lateral subsurface inflows and outflows

from the pixel due to interactions with contiguous pixels, as described in

Section 2.2.2, normalized by the horizontal area of the element, A.

The model assumes that all moisture inflows accumulate in the area

of the soil column affected by the storm, that is, above the wetting front.

Therefore, the total moisture content has an upper limit, set by Nf6s,

which corresponds to surface saturation. Whenever the sum of the

previous moisture content in the element and the net moisture inflow

exceeds the saturation volume above the wetting front, return flow is

generated. If the pixel is not saturated at the surface (unsaturated or

perched-saturated states), it has a reservoir above the top front to absorb

subsurface moisture inputs, and it is unlikely to generate return flow.

However, if the pixel reaches the surface-saturated state, the limit to the

increase of moisture content is only set by the speed at which the wetting

front progresses downwards, and the potential to generate return flow is

very high. In this case, the maximum moisture increment allowed is

CdMt dNf
dt ma dt (2.34)

and therefore, return flow is generated whenever



I+ Q>i - [ - (Ri,N)]A dt [ (2.35)

In that condition (surface-saturated pixel satisfying Equation 2.35),

the return flow generated Rr is equal to

R =- I [OS - e(Ri,Nf)]r A dt (2.36)

In the limiting case of a fully-saturated pixel, = 0, and the potential

for generating return flow is maximum.

Return flow is clearly an effect of lateral flows. In isotropic terrain,

lateral transport of water is usually small compared to vertical transport

for a given pixel. Rainfall effects are confined to the area above the wetting

front, which is the depth affected by the storm. For a typical storm,

wetting front penetrations (1) are of the order of a few meters at the most,

while pixel sizes (L) are tens or hundreds of meters. In isotropic terrain,

both lateral and vertical flows are of the same order of magnitude, and

hence the moisture inflow into a pixel due to rainfall infiltration is one or

two orders of magnitude larger than either the inflow or the outflow due to

lateral flow, because vertical flow acts on LxL and lateral flow acts on lxL.

Furthermore, the model assumes that inter-storm lateral subsurface

flows are in equilibrium with the average recharge rate, and it only

considers the perturbations introduced in the equilibrium lateral flow by a

given storm, which are small. Since it is the net difference between inflow

Qin and outflow Qout what is of concern, the differences in the order of

magnitude between net lateral input and vertical input are even greater.



Therefore, unless pixel sizes are of the order of wetting front

penetrations, non-convergent lateral flows in isotropic terrain could be

neglected while computing the net moisture balance in the pixel.

However, if the soil is highly anisotropic, lateral transport of water is

significant, because lateral flows are considerably larger than vertical

flows and can compensate for the difference in the cross-sectional areas

upon which they operate. Moreover, if the pixel is saturated, lateral flow

becomes extremely important, because it becomes return flow directly,

which is added to surface runoff.

The total runoff generated by the pixel is designated by Rf, and it is

the sum of the infiltration excess runoff Ri, given by Equation (2.32), and

the return flow Rr, given by Equation (2.36) or mass balance

considerations in a discretized scheme

Rf= Ri+ R (2.37)

2.3 Surface flow routing

The second aspect in the computation of basin response is the routing

of the runoff along the stream channels down to the basin outlet.

Algorithms for extracting the river channel network from a DEM can be

used used to identify the path that runoff generated at every grid point

would follow down to the basin outlet (Tarboton et al., 1989), which can

provide us with a physical basis to estimate the distributed basin

response.



2.3.1 Basic routing equation

The most general formulation of the distributed response of a basin is

the well-known distributed convolution equation

Q(t) = Rf(x,yt) h(x,y,t - t) dt (2.38)

where Q(t) is the resulting hydrograph at the outlet, Rtfx,y, r) is a function

describing the distribution of runoff rate generation per unit area and

h(x,y,t) is the instantaneous response function of the element of area dA

located at coordinates (x,y). For a linear system, the instantaneous

response function is constant during the event. For a non-linear system,

the instantaneous response function may vary during the event,

according to the varying transport conditions in the drainage network.

Two physical processes control the characteristics of the

instantaneous response function: convection and dispersion. Convection

refers to the bulk transport of the elementary response through the

drainage network down to the basin outlet. Dispersion refers to the

spreading experimented by the elementary response during the

transportation, due mostly to the non-uniform velocity distribution across

the channel cross section. Considering the elementary runoff generation

a Dirac delta function at some time to, 3(t0 ), the instantaneous response

function due exclusively to convective transport would be another delta

function, lagged by an interval t, 8(to+t). t is the time of travel of the

response from the element dA to the basin outlet. The effect of dispersion

would be to spread the response around the mean value to+t. Different



functional forms could be adopted to account for dispersion (Gaussian,

gamma function, etc). Tracer experiments in natural streams (Pilgrim,

1979) show the relative importance of both phenomena. Although there is

a considerable amount of dispersion, convection is the predominant

phenomenon in midsize catchments.

The detailed geomorphological description provided by DEM's

provides a good estimate of the length of the travel path. The evaluation of

the time of travel along that path is a more complicated problem, since it

involves the estimation of flow velocities. Many studies have been carried

out in natural streams, measuring average flow velocities in different

locations in a basin for different flow conditions (Leopold and Maddock,

1953; Askew, 1970; Pilgrim, 1979; Beven et al., 1979), suggesting that

annually averaged velocities tend to remain constant along a given river

system. However, for a given episode, temporal flow variations can be

expected, according to the transient conditions of the rising and falling

limbs of the hydrograph.

For a certain event, flow equations could theoretically be solved for

both overland and stream flows, given that there is enough knowledge of

the geometry and of the hydraulic characteristics of the channels. An

analysis of the hydraulic conditions of the flow clearly suggests that the

linearity assumption of constant velocity along the drainage network for

all times is not valid. Flow conditions change significantly during the

storm, and that influences flow velocities and times of travel throughout

the basin. Although attempts have been made at solving simplified forms

of the flow equations in distributed models (Huggins and Monke, 1968;

James and Kim, 1990), the approach has always proven to be too

demanding in terms of data and computational requirements for



application to midsize basins (of the order of hundreds of square

kilometers). Our problem here is to find a parameterization of the problem

that be simple enough to operate efficiently in a distributed model, but that

can capture the most relevant features observed in the basin response. It

is an important requirement to keep the number of model parameters to a

minimum, in order to be able to obtain a parsimonious calibration.

2.3.2 Distributed instantaneous response function

The objective of the solution adopted for the instantaneous response

function is to differentiate between the two transport mechanisms that

operate in overland and stream flow, and to take into account some form

of nonlinearity in basin response. Convection is assumed to be the

dominant factor in basin response, and, although it is acknowledged that

dispersion can also be of importance, its effect is neglected to a first

approximation, in order to keep model parameters to a minimum.

Therefore, the distributed instantaneous response function is assumed to

be a Dirac delta function, with a delay equal to the time of travel from the

location of the element to the outlet of the basin. Inclusion of dispersion

effects in the formulation would be straightforward, substituting the delta

function for other parameterization of the instantaneous response

function. The travel path IT corresponding to a typical hillslope element

consists of a hillslope fraction lh and a stream fraction 1

T= lh + Is (2.39)



Overland flow is assumed to be a quickly channelized process, and

therefore the model does not account for infiltration in unsaturated

elements during the routing process. The travel time is defined according

to the assumption of uniform velocities for both overland and stream flows

throughout the basin for a given time, although travel velocities are

allowed to vary as the storm progresses, accounting for the changing flow

conditions in the streams. If vh(r) is the hillslope velocity and v,(r) is the

stream velocity at time r, the travel time tr for the typical hillslope element

is given by

1h is

Vh(tC) ' VE) (2.40)

The uniform surface velocity approximation allows for a simple

computation of the hydrograph at the outlet of the basin. The

instantaneous response function of the basin element located at (x,y) at

time r would be the Dirac delta function given by

lh(xy) 1s(x,y)h,(Xyt) VhC) + s (C) (2.41)

An incremental basin response is estimated independently for every

time step r routing the runoff generated at every pixel

q,(t)= Rf,(x,y) h,(x,y,t) Ax Ay
(x,y) e Basin (2.42)



where Rf1(x,y) is the runoff rate generated in the element at location (x,y)

at time r and AxAy is the area of the element. The total basin response at

time T is obtained adding the incremental responses since the beginning

the storm

T

Q(t) =1 q,(t)
=0_ (2.43)

This methodology allows the estimation of basin response once an

estimate for hillslope and stream velocities is available at every time step.

2.3.3 Non-linearities in basin response

Studies and experiments show evidence of non-linear behavior in

basin response. Several expressions for the average velocity or time of

travel have been proposed in the literature. The relationship between

discharge and velocity during a storm event has been studied using three

approaches: the lag time, the tracer experiments and the rating curve.

A significant fraction of the work done deals with the evaluation of

the lag time at basin scale , which can be defined as the difference

between the center of mass of excess rainfall to the center of mass of the

resulting runoff. The lag time lumps into one single parameter all the

spatial and temporal variability of basin response, and it is therefore a

good estimate of the overall non-linearity of basin response. Lag time was

found to be strongly correlated to the magnitude of discharge for high

flows. Several parameterizations have been proposed relating lag time to



some characterization of discharge. Askew, (1970) proposed a power law

of the form

b
tL = a qw (2.44)

where qw is a weighted mean discharge. He found exponents ranging

from -0.2 to -0.32, with reasonably good correlation coefficients. Other

authors (Laurenson, 1964; Minshall, 1960) fitted laws of similar form

considering peak or mean discharge with satisfactory results. Boyd et al.

(1979) verified that the power relationship proposed for average discharge

values could be extended to represent instantaneous values in a non-

linear storage routing equation.

Another group of analyses deals with the study of tracer

experiments, measuring the time of travel and dispersion of tracer

injections on stream reaches of small watersheds. These experiments

offer information on flow velocities along a given path within the basin,

but results are averaged in time, and usually only cover a small range of

flows for a given location. These studies (Beven et al., 1979; Pilgrim, 1977;

Kellerhals, 1970) show that average velocities increase nonlinearly both

downstream and with increasing discharge, although an upper bound

was found for velocities in high flows. Power laws of the form
bon

v,.=m Q"(2.45)

have also been fitted to these cases. Here Vr is the average velocity along a

reach and Q is a measure of discharge, usually average discharge during

the experiment, although Pilgrim (1977) found better correlations using



the peak discharge of the event. The variability of the exponent n is larger

than that of the exponent b in the case of lag time, with an average value

around 0.5, but with results ranging from 0.2 to 0.8.

A third case is the study of the theoretical or empirical relationships

between velocity and discharge at a given location for different flow

regimes, what is known as the rating curve. That relationship is highly

dependent on the local slope and on the shape and roughness of the cross

section of the channel, and it therefore does not have a general validity.

Mein et al. (1974) assumed uniform flow governed by Manning's

resistance formula and obtained exponents for the velocity-discharge

relationship ranging from 0.25 to 0.4 for different cross-section shapes.

They also cite several field studies in gaging stations, selecting an average

value of 0.29 for their runoff routing method. Beven (1979) suggested that

for high flows the power law usually assumed in kinematic routing

models tends to overpredict flow velocities, and proposed a modified

method that considers constant velocities for high flows.

None of these three approaches coincide with our problem of

estimating average flow velocities along a certain path to estimate the

time of travel for a given instant during a storm. Nevertheless, all of them

suggest a that a power relation between discharge and flow velocities

might hold, at least on a statistical sense. The solution adopted is based on

a relationship of that kind, and tries to capture the fact that travel times

are a function of the amount of water present in the basin. The value

selected to estimate flow velocities is the discharge at the outlet of the

basin at the same time. Basin discharge provides a rough estimate of the

conditions in the drainage network, and has the computational advantage



of being readily available at all times. Therefore, the following equation is

applied to obtain average channel velocities in the basin

v,(t) = CofQ(t)]r (2.46)

v, is the channel velocity at time t, Q(t) is the discharge at the outlet of the

basin at time t, and cv and r are coefficients. Since no direct

measurements are available, the coefficients have to be estimated through

calibration. It is also considered that the ratio of stream velocity to

hillslope velocity is a constant, Kv. The travel velocity in hillslopes is given

by

_h T Vs (T)

Vhr (2.47)

where Kv is the ration of stream velocity to hillslope velocity. Kv also has to

be estimated through calibration.

This scheme allows for the introduction of some non-linearities in

basin response. It should be interpreted only as a first order

approximation to deal with basins that exhibit a clearly non-linear

behavior.





CHAPTER 3

Model Performance

The performance of DBS is analyzed in this chapter. The computer

implementation of DBS is discussed in Chapters 4 and 5. Here the

computer implementation is used to assess model behavior and to evaluate

model performance. The presentation of model performance is divided into

two sections. The first section contains a sensitivity analysis whose goal is

to identify the influence of model parameters in model performance. The

second section is an example of the practical use of the model. The model is

calibrated with data for the Sieve river basin, and the quality of the

calibration is verified with a different data set.

3.1 Sensitivity analyses

The sensitivity analyses presented in this section evaluate the

influence of model parameters in the final result and assess the capability

of the distributed basin model to reproduce the physical mechanisms that

it is intended to simulate.

Although the final goal of the model is to simulate the global

response of the basin to a given storm, the fact that it is physically-based

and distributed implies that the model should acceptably reproduce the

internal behavior assumed for the basin. It means that, from the modeling



point of view, it is a requisite that the model be able to reproduce not only

the total hydrograph for a given storm, but also all the internal runoff

generation mechanisms postulated in the model definition. The goal of the

sensitivity analysis is therefore twofold:

- Explore model sensitivity to the different parameters defined,

identifying those responsible for a greater part of the response.

- Explore under which combinations of parameters the internal results

produced by the model reproduce its expected behavior. Unfortunately,

field data corresponding to internal behavior of a basin are usually not

available, and thus model results can only be checked against working

hypotheses about how the real watershed behaves.

The parameters that need investigation in the sensitivity analysis

can be inferred from a qualitative picture of how the model works. DBS is a

distributed, event-oriented model, intended to work for flood forecasting.

Almost all low-frequency variations and slow processes are neglected.

Modeling strategy consists basically in identifying the area of the basin

which is saturated and describing its time evolution as a function of

rainfall. The model reproduces the pattern of saturation areas in the

watershed based mainly on topographical information. It is postulated that

the saturated area develops either near the streams, in areas of

convergence of subsurface flow, or in areas where local infiltration has

been high. The good behavior of the model depends on the adequate.

mapping of the saturated area and on the correct representation of its

evolution in time, as the storm progresses. Therefore, the key aspect to test

in the sensitivity analyses is the evolution in time of the state of the basin,

which is fundamental to understand how runoff is generated.



Sensitivity analyses were carried out on two different basin models: a

simplified hillslope model and a real basin model. The hillslope model

represents an idealized hillslope of limited height and infinite width, since

no interactions are defined in the traversal direction. Different pixel size

definitions and soil type distributions were considered. The real basin

model was constructed from the digital elevation data available for the

Sieve catchment, part of the Arno basin in Italy. Section 3.1.1 presents the

results obtained with the hillslope model, and Section 3.1.2 presents the

results obtained with the basin-scale model.

3.1.1 Hillslope model

An idealized model of a uniform slope was defined to study the

behavior of the model in a system of simple geometry, in order to compare

it with other analytical or simplified numerical solutions. A hillslope of

constant slope was defined. The geometry of the hillslope is represented in

Figure 3.1. The slope forms an angle of 100 with the horizontal datum and

has a total length of 4000 m. The initial water table position follows a

straight line. Water table depth is 10 m at the divide and 0 m at the bottom.

The objective of the hillslope sensitivity analysis is to evaluate the

importance of the subsurface flow and of the interactions between pixels.

The hillslope sensitivity analysis tests the validity of the approximate

expressions proposed to model subsurface flow of moisture between

contiguous pixels. It also studies how an array of pixels can model the

behavior of a real hillslope, capturing the relevant aspects of the two-

dimensional subsurface moisture flows. Qualitative and quantitative

studies of subsurface moisture flow are available in the literature



(Troendle, 1985; Beven, 1981, 1982b), and therefore this simplified model is

a good test case to compare model performance with the more elaborate

solutions available for this problem.

Table 3.1 Soil characteristics in the hillslope models

Soil Type Kon 0s Or
Soil 1 0.25 0.48 0.09
Soil 2 5.1 0.49 0.109
Soil 3 16.6 0.52 0.064
Soil 4 45.0 0.56 0.109

E
7.5
3.6
3.5
3.6

The hillslope is represented by an array of consecutive pixels. Several

models with different pixel sizes were defined, in order to test how pixel

size affects the flow exchange between pixels or to what degree the model

angle: 100705 m

Water table

4000 m Indefinite
width

Figure 3.1: Schematic representation of the geometry of the hillslope used
in the sensitivity analysis.
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reproduces in two dimensions the ideal situation assumed in the one-

dimensional model of infiltration. Models with pixels of 1, 10 and 100 m

were defined. Two situations were considered: hillslope formed by

homogeneous terrain and hillslope formed by terrain of different soil types.

Soil characteristics are summarized in Table 3.1 and hillslope

configurations are represented in Figure 3.2. A standard parameter set,

represented in Table 3.2, was used in the computations, where only the

anisotropy ratio was varied, in the range 1, 10 and 100. The model was run

with a constant rainfall intensity of 5.0 mmh-1.

Model a

Ax = 1, 10 and 100 m

Model b

Soil 1
Ksat = 20 mm/h

Soil 2
at = 10 mm/h

Ksat Soil 3
'**R Ksat = 5.1 mm/h

Soil 4
= 1.0 mm/h

Ax = 1 m

Figure 3.2: Hillslope models used in the sensitivity analysis.



Two types of sensitivity analyses were carried out in the hillslope

model. In the first set of sensitivity runs the effect of changing different

computational features was analyzed, in order to set basic requirements to

pixel size and computation time step. In the second set, the hillslope model

was used to analyze how the model captures the two dimensional features

of subsurface flow in the hillslope, accounting for the effect of soils of

different characteristics with different anisotropy ratios.

Table 3.2 Model parameters for the hillslope models

Parameter Value
Parameter f (mm-1) 1 x 104
Anisotropy ratio ar 1, 10, 100
Initial recharge rate (mmh-1) 0.01

Sensitivity to computational features

We test model sensitivity to pixel size and computation time step. The

focus is on front position, since other variables of the pixel depend on the

basic state variables. Front position is analyzed after 30 and 60 hours of

uniform rainfall intensity over a hillslope with uniform soil type. A soil of

20 mmh- 1 of saturated hydraulic conductivity at the surface and

anisotropy ratio of 10 was selected. The case with the smallest pixel size

and computation time step is taken as the base result.

Figure 3.3 shows terrain surface and front positions after 30 and 60

hours of simulation for a pixel size of 1 m. The water table level is taken as

the reference level, and appears horizontal in the figure. In the upstream

portion of the hillslope, the wetting and the top fronts coincide for both



cases, because saturation has not developed. As we move further

downslope, the wetting front penetrates deeper, as a result of moisture

migration downslope carried by the subsurface flow. A small area of

perched saturation can be observed in the lower third of the slope, where

the lines representing the wetting and the top front diverge. A sudden

increase in the thickness of the saturated area is noticed when the wetting

front (lower line) reaches the water table. The first pixel in that situation

along the profile becomes fully saturated, since it receives all the

subsurface flow coming from the upstream pixels. The saturation of the

pixel appears as a spike in the diagram, and identifies the point of

generation of return flow. Shortly after that, the top front (upper line)

reaches the surface, and an area of saturation develops in the lower part of

the hillslope, where the whole depth of the soil column is saturated.

10 Front position dt 5 min size 1 m

8 - . --- : Terrain surface
... Wetting and top fronts after 30 hr

6 - - -: Wetting and top fronts after 60 hr

4-

2-

- 0
0 500 1000 1500 2000 2500 3000 3500 4000

Horizontal distance (m)

Figure 3.3: Terrain surface and front positions with respect to the water
table level after 30 and 60 hours of simulation. The results correspond to

hillslope model a. The pixel size is 1 m and the computation time step is 5
min.



The saturated area generates all the runoff from the hillslope. The

infiltration capacity of the hillslope is equal to the surface saturated

hydraulic conductivity in the unsaturated and perched saturated areas,

and is zero in the lower part of the hillslope where the whole depth of the

soil column is saturated. The normal saturated hydraulic conductivity of

the soil at the surface is 20 mmh-1, and rainfall intensity is 5 mmh-1. The

model shows how downhill subsurface flow accumulates in the areas of

shallow water table, generating runoff in a soil of surface infiltration

capacity four times greater than rainfall intensity.

- Pixel size: The effect of considering increasing pixel sizes was analyzed,

to evaluate its influence on numerical accuracy. Three different pixel sizes

were considered: 1, 10 and 100 m. Figures 3.4 and 3.5 compare the results

obtained with different pixel sizes for three computation time steps. Figure

3.4 presents the position of the fronts 30 hours after the initiation of

rainfall, and Figure 3.5 presents the position of the front 60 hours after the

initiation of rainfall. Each figure includes three plots, corresponding to

computation time steps of 5 min, 30 min and 60 min respectively. Each plot

compares model results for the three pixel sizes considered, and focuses on

the lower part of the hillslope because in the upper part (unsaturated area)

front positions for all pixel sizes are almost coincident. The figures show

that all pixel sizes give similar results except in the area where the wetting

front reaches the water table and the top front depth decreases sharply. In

all cases, the full saturation of the first pixel whose wetting front reaches

the water table is predicted, but the location of the pixel varies slightly from

one case to another. This minor difference is due to the lack of spatial
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Figure 3.4: Sensitivity of front position to pixel size for computation time
steps of 5, 30 and 60 min after 30 hours of simulation. The results

correspond to hillslope model a.
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resolution in the model to identify the exact point at which this event

occurs. In general, model behavior for different pixel sizes is very good.

It can be concluded that, at least for the uniform conditions

considered in these sensitivity experiments, the errors resulting from

considering a large pixel size (of the order of hundreds of meters) are not

important. It was also verified (in the case of maximum definition: pixel

size of 1 m) that the transient effects of the boundaries both upslope and

downslope only extend a few meters, because inflow and outflow for a given

soil column are quickly balanced. This result agrees with the observations

of Philip (1991a).

The impact of pixel size is very much a function of the magnitude of

lateral flow. Lateral transfer of moisture between pixels is only important

when there is an unbalance in the conditions upstream and downstream

of the soil column. That happens when there is high variability of soil type

or when there is the possibility of generating return flow. For uniform soil

type and deep water table, lateral flow is not important. Subsurface

interactions between pixels only take place through the saturated area. In

most cases, the saturated area extends only up to a few meters of depth (1-2

m), and, unless soil types in the neighboring pixels are very different, the

net balance of the amount of moisture advected by lateral flow is negligible

compared to the infiltration. It means that the one-dimensional vertical

effect (common to all pixel sizes) is dominant when lateral flows are small.

Pixel size will therefore be conditioned more by the variability of

slopes and soil types in the basin and by the validity of the ideal conditions

formulated for the one-dimensional model than by numerical accuracy

constraints. As long as the physical variability in the real basin allows for

an accurate description using large pixel sizes, the numerical errors are



not significant. However, there is a limit to pixel size imposed by the

physical interpretation of model variables. For pixels of hundreds of

meters to the side, the assumption of a wetting front whose surface is

parallel to the terrain surface is unrealistic. For these pixel scales, the

model applied to the subgrid is more a conceptual representation rather

than a physically-based representation.

- Computation time step: Figures 3.6 and 3.7 present the results of the

sensitivity analyses to computation time step. Three different computation

time steps were considered: 5 min, 30 min and 60 min. Figure 3.6 presents

front positions after 30 hours of simulation and Figure 3.7 presents front

positions after 60 hours of simulation. Three plots, corresponding to pixel

sizes of 1, 10 and 100 m, are presented in each figure. In each plot, front

positions in the lower part of the hillslope are compared for the different

computation time steps. The results are very good for the time step of 30

min, which almost coincides with the time step of 5 min. Only minor

differences are observed for the time step of 60 min, except in the case of

pixel size of 100 m after 60 hr, where the sudden increase of the top front

position is displaced one grid element.

Since the model is largely governed by the mass conservation

equation, the effect of the computation time step is only of second order.

The time evolution of front velocities given by Equations (2.16) and (2.17) is

very smooth for uniform conditions. The changes in front velocities are

very small, and therefore, the effect of considering a constant value even

for a long period of time is largely irrelevant. The time increment of the

simulation is more constrained by input variability than by computational

requirements. Nevertheless, it should be noted that, since an explicit
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Figure 3.6: Sensitivity of front position to computation time step for pixel
size of 1, 10 and 100 m after 30 hours of simulation. The results

correspond to hillslope model a.
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numerical scheme was adopted, the sensitivity to changes in the

conditions could be very high. The results presented here are always well-

behaved because the sensitivity analyses were made on a hillslope of

homogeneous terrain under uniform rainfall intensity. Practical cases

present much stronger temporal and spatial variability where there is

more potential for numerical problems. Therefore, extreme care should be

taken in guaranteeing numerical stability.

There are also situations in which the computation time step is

critical. If soil anisotropy is high, the ratio of lateral to vertical flow is also

high in the same proportion. For very narrow pixel sizes (of the order of a

few meters), the net volume of water entering the soil column laterally is

many times larger that that entering the column vertically. Model

equations are formulated mainly for vertical flows, and lateral flows are

only envisioned as correction terms. For small pixels in anisotropic

terrain, lateral flow is completely dominant, and the numerical

formulation of the model is inappropriate. In these cases, the computation

time step must be reduced in order to prevent numerical instabilities

caused by the fact that front velocity is not a consequence of the gravity-

driven, one-dimensional infiltration of water, as assumed by the model,

but a result of of the interaction of both vertical and lateral flow. The

instabilities are caused by the explicit numerical scheme, and usually lead

to oscillating front positions in consecutive pixels, alternating in

successive time steps. These instabilities are eliminated either defining a

smaller time step or considering larger pixels, where the difference

between lateral and vertical flow is compensated by the cross-sectional

areas considered.
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As a concluding remark, it should be noted that the conditions in this

idealized hillslope are very special, and the results obtained in this

sensitivity analysis cannot be extrapolated to real basins without careful

consideration of the differences. This analysis has dealt only with uniform

soil conditions, in elements connected in a very simple linear structure.

Irregular distribution of soil types and flow convergence are usually found

in natural basins. They are factors that can modify the conclusions of the

sensitivity analysis and should therefore be taken into account.

Sensitivity to physical features

We test model sensitivity to two basic physical features: soil type and

anisotropy ratio. The objective in this sensitivity analysis is to explore how

the runoff generation mechanisms of the model work for very simple

cases, which can be compared to other theoretical hillslope models. Two

features are analyzed: front position and runoff generation along the

hillslope. The hillslope model used is represented as model b in Figure 3.2.

Four bands of equal length with different soil properties were considered.

A time step of 30 min and a pixel size of 1 m were used in the

computations.

Figures 3.8 to 3.10 present the results obtained for the three

anisotropy ratios considered. Figure 3.8 shows results for ar=1, Figure 3.9

shows results for ar=10 and Figure 3.10 shows results for ar=100. Each

figure presents results 30 hours and 60 hours after the beginning of

rainfall. For each case, the upper plot shows front positions and the lower

plot shows runoff rate distribution along the hillslope. The four basic

runoff generation mechanisms can be observed in every plot. Pixels in the
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Figure 3.8: Front position and runoff generation for the hillslope model b
after 30 and 60 hours of simulation. The anisotropy ratio is equal to 1.
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Figure 3.9: Front position and runoff generation for the hillslope model b
after 30 and 60 hours of simulation. The anisotropy ratio is equal to 10.
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after 30 and 60 hours of simulation. The anisotropy ratio is equal to 100.
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two upper soil zones are unsaturated. Wetting and top front coincide and,

since there is no saturation at the surface, runoff generation is controlled

exclusively by surface saturated hydraulic conductivity. Pixels in the two

lower zones are saturated and infiltration capacity for them is an average

of the infiltration capacity in the saturated depth. This can be clearly seen

in the third soil area, where the surface saturated hydraulic conductivity

(5.1 mmhr-1) is slightly greater than the rainfall rate (5.0 mmhr-1). As the

saturated area grows in depth the effective infiltration capacity is reduced,

and the area generates significant runoff volumes. In the fourth area

there are also a few pixels in the lower part of the hillslope where the

wetting front has reached the water table. Those pixels are fully saturated,

and their infiltration capacity is null. A fourth type of runoff generation

mechanism, return flow, can also be observed in the figures. Wherever

there is a transition from an area with a certain soil type to another area

which is saturated at the surface and has a soil type of lower hydraulic

conductivity, there is a positive unbalance between inflows to and outflows

from the pixel, and the difference becomes return flow. There is a local

generation of runoff in the transitions from higher to lower hydraulic

conductivity. That return flow appears as a spike in the runoff-generation

plots, and roughly amounts to the volume of subsurface lateral flow in the

hillslope, which is interrupted by the saturation state of the downslope

area. The local runoff generation is higher for higher anisotropy ratios,

because higher anisotropy ratios originate higher lateral flows. The effect

is dramatic in the case of ar = 100 (Figure 3.10), where runoff rates of

return flow at the boundary pixels are almost two orders of magnitude

larger than infiltration-excess runoff rates.
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3.1.2 Basin model

The goal of the sensitivity analyses at the basin scale is to identify the

importance of the different model parameters in the global hydrograph of

the basin. The sensitivity analysis also gives an insight on the importance

of the different runoff mechanisms at the basin scale and on the role of

topography on the generation of the basin response. The parameters

analyzed are:

- Initial recharge rate (to describe initial condition) Ri.

- Rate of change of hydraulic conductivity with depth f.
- Anisotropy ratio ar.

- Routing parameters Ko, cv and r.

The variables analyzed were:

- Total output hydrograph

- Spatial pattern of runoff generation

- Time evolution of the proportion of runoff from different sources

The Sieve basin

The catchment selected for the analysis is drained by the Sieve river,

one of the tributaries of the Arno river. The Arno river crosses the cities of

Florence and Pisa and drains an area of 8000 Km2 on the northwest of the

Italian peninsula. The confluence of the Sieve and the Arno is located

near Florence, and the area of the Sieve catchment is approximately 840

Km 2 . The basin is highly mountainous, with an average elevation of 470

m above sea level. The elevation of the highest peak is 1657 m, and the

outlet is at 50 m above sea level. The basin is elongated in shape, with the
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main river following the Southeast direction. Mountain ranges surround

the basin to the North and the East. Figure 3.11 represents the boundaries

and topography of the basin.

The rainy season lasts from October until April, with peaks in the

months of November and February. Winter storms are usually originated

by frontal systems. During the fall, the mountains may also produce

orographic precipitation events when moist air is advected by westerly

winds from the nearby Mediterranean sea. Meteorological and physical

data available for the Sieve basin are described in Section 3.2.1, where the
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Figure 3.11: Boundaries and topography of the Sieve river basin.
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model is calibrated for that basin. Here we focus only on sensitivity

analysis to model parameters, and, except for the topographical

description of the basin, the values assigned are arbitrary.

A set of computer runs was made to test sensitivity to the list of

parameters mentioned in the introduction. The different runs are all the

combinations of the options summarized in Table 3.3. Four different

values of the parameter f and the anisotropy ratio ar were considered. The

sixteen combinations were run for different initial states. The initial state

is defined by the position of the water table Nwt(x,y) and the definition of

the initial recharge rate Ri.

Table 3.3 Parameter values

Parameter
Parameter f (mm h-1) 1 x 10-4 3 x 10-4 5 x 10-4 7 x 10-4
Anisotropy ratio ar 1 10 100 500
Initial water table 10% 50% 90%
(prob. exceed.)
Parameter Ri Moisture Recharge
(Interpretation as) content rate

Initial water table positions were generated using the model

described by Cabral et al., (1990), which considers only water movement

in the saturated zone below the water table. The model gives the water

table position for which the baseflow drained from the basin is in

equilibrium with a long term recharge rate, assumed constant

throughout the basin. Three different initial states were generated for

each combination of parameters (anisotropy ratio ar and parameter /).

The initial states correspond to equilibrium situations for interstorm

baseflows that are exceeded 10%, 50% and 90% of the years respectively for
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the month considered (November). The 10% option corresponds to a wet

state, the 50% option to an average state, and the 90% option to a dry state.

The initial states were generated for the four different values of the

parameter f, but only two values of the anisotropy ratio were considered,

because values greater than 10 lead to unrealistic water table profiles. It

was considered that the anisotropy ratio used in DBS refers only to the top

layers of the soil, where the effects of vegetation and weathering create the

strongly layered structure that causes high anisotropy ratio. The water

table model deals with the deep layers of soil below the water table, where

strong anisotropy is more unlikely to occur. Therefore, it was decided to

generate initial states only with anisotropiy ratios of 1 and 10 and apply

the initial state generated with ar=10 to the cases ar=100 and ar=500.

The infiltration model is based on the kinematic approximation,

which assumes a direct relationship between moisture content and

vertical flow. In reality, moisture gradients in the vertical create capillary

forces which balance the gravitational gradient, and an inter-storm

equilibrium moisture profile develops, where water moves very slowly

driven by surface evaporation. This situation cannot be captured by the

kinematic model, and therefore, inter-storm moisture descriptions under

the kinematic approximation are always imperfect. If the kinematic

parameterization is chosen to reproduce the real moisture content, the

model overestimates flows, because it does not account for capillary

forces. Conversely, if the model is chosen to reproduce flows, moisture

contents are underestimated. An interesting dilemma arises as to which

interpretation to choose for the description of the initial moisture content

in the basin scale model: moisture content or infiltration rate. An

important part of the sensitivity analysis was dedicated to study this
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aspect. Two options were considered to define the initial recharge rate,

each corresponding to a different interpretation of the meaning of the

parameter Ri.

In the first case, Ri is interpreted as a description of the moisture

content of the soil column at the beginning of the simulation. The initial

infiltration rate is defined in such a way that the moisture profile reaches

saturation at the water table level. Since the water table is located at

different depths for different grid elements, Ri is not homogeneous

throughout the basin. Ri is higher in those elements were the water table

is shallower, and smaller in elements where the water table is deep.

Infiltration values obtained in this case should not be interpreted at their

face value, but as a surrogate of the variable that they represent, namely

the moisture content.

In the second option, Ri is interpreted as the real recharge rate

during the previous inter storm period. In this case, Ri is obtained from

the inter-storm baseflow. The baseflow is in equilibrium with a recharge
=3.6qbf

rate given by Ri= A , where Ri is the initial recharge rate in mmh-1,

qbf is the baseflow in m3s-1 and A is the watershed area in Km2. The value

of Ri is assumed to be uniformly distributed throughout the basin. In this

interpretation only the value of infiltration rates has real meaning.

Sensitivity to parameter f

Figures 3.12 to 3.14 represent the sensitivity of the total hydrograph to

the parameter f. Each figure contains four plots corresponding to the

different anisotropy ratios considered. Each plot compares the total
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Figure 3.12a: Sensitivity of basin response to parameter f for anisotropy
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hydrograph for the four values of f. Figures 3.12a and 3.12b correspond to

the wet initial state, figures 3.13a and 3.13b to the average initial state and

figures 3.14a and 3.14b to the dry initial state. Figures labelled 'a'

correspond to the initial state option where Ri is interpreted as the initial

moisture content, and figures labelled 'b' correspond to the initial state

option where Ri is interpreted as the initial recharge rate. In general,

model sensitivity to the parameter f is very strong. The sensitivity obtained

is greater if the parameter Ri is interpreted as the initial moisture

content, since it leads to higher initial moisture in the basin. The

influence of the initial position of the water table is also remarkable. The

sensitivity is higher in the wet and average cases, and significantly lower

in the dry case. The effect of the anisotropy ratio on the sensitivity to

parameter f is less clear, and it can only be noticed in the wet initial state

case.

Figures 3.15a and 3.15b represent the time evolution of runoff

generation in the basin compared to the rainfall rate. Figures 3.16a and

3.16b represent the effect of the different runoff generation mechanisms

on the total hydrograph obtained for the basin. There are four plots in

each figure, each corresponding to a different value of f. The rest of the

parameters correspond to the base case. These four figures offer a more

detailed description of the cases represented in the second plot of figures

3.13a and 3.13b.

The runoff is decomposed according to its different possible origins.

Two basic types of runoff are considered: infiltration excess or surface

runoff and return flow or subsurface runoff. Since the dynamics of the

state of the basin are also important, the plot differentiates between runoff

generated in the areas of the basin which are permanently saturated
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Figure 3.15a: Time evolution of different modes of runoff generation for
parameter f equal to 1 10-4, 3 10-4, 5 10-4 and 7 10-4 mm-1. The results

correspond to anisotropy ratio equal to 10, initial state with 50% probability
of exceedance and parameter Ri interpreted as initial moisture content.
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Figure 3.15b: Time evolution of different modes of runoff generation for
parameter f equal to 1 10-4, 3 10-4, 5 10-4 and 7 10-4 mm-1. The results

correspond to anisotropy ratio equal to 10, initial state with 50% probability
of exceedance and parameter Ri interpreted as initial recharge rate.
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Figure 3.16a: Decomposition of basin response into different modes of
runoff generation for parameter f equal to 1 10-4, 3 10-4, 5 10-4 and 7 10-4

mm-1. The results correspond to anisotropy ratio equal to 10, initial state
with 50% probability of exceedance and parameter Ri interpreted as initial

moisture content.
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Figure 3.16b: Decomposition of basin response into different modes of
runoff generation for parameter f equal to 1 10-4 3 10-4, 5 10-4 and 7 10-4

mm-1. The results correspond to anisotropy ratio equal to 10, initial state
with 50% probability of exceedance and parameter Ri interpreted as initial

recharge rate.

124

1000

1000

500

1000

........................................ ........- ur rn o f from -penm sat. area ....-ota runoff
eturn now trom pern. sat. area

- -- .-.-.-.-----.-.-................



(stream areas or areas where the initial water table is at the surface) and

runoff generated in the areas of the basin which are temporarily

saturated. In general, runoff generated in the areas permanently

saturated is not sensitive to the parameter values, and is only affected by

the initial state. Runoff generated in the rest of the basin can be extremely

sensitive to parameter values, accounting for the visible differences at the

basin scale.

The lowest part of the runoff plot (dotted line) represents the return

flow generated in the areas permanently saturated. This area is barely

noticed in almost all plots, since the contribution of this type of runoff to

the global response is very small for the anisotropy ratio considered in this

case. The next layer (between the dotted and the dashed line) represents

the return flow generated in areas that have become temporarily

saturated. The third layer (between the dashed and the dash-dotted line)

represents surface runoff generated in areas permanently saturated.

Since the infiltration capacity in these areas is null, these areas usually

account for the most important fraction of total runoff generation. The last

fraction (between the dash-dotted line and the solid line) represents the

runoff generated in the rest of the basin, and includes the purely

Hortonian runoff generated in the unsaturated areas and the infiltration

excess runoff generated in the saturated areas.

Figures 3.15 and 3.16 show that an important part of the sensitivity of

the total hydrograph to the parameter f comes from the return flow

generated in the areas of the basin which become saturated during the

storm. There is also a different response in the surface runoff, but it is

comparatively much smaller. This second influence is isolated in figures

3.15b and 3.16b, because in the case where Ri is interpreted as initial
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recharge rate the initial moisture is generally too low to generate

appreciable return flow. Therefore, in this case the sensitivity to

parameter f is almost exclusively due to different surface runoff.

The parameter f defines the level at which the wetting front will

reach saturation for a given infiltration rate. As f becomes greater,

saturation is reached at a smaller depth, and therefore a greater number

of pixel elements become saturated. The infiltration capacity in those

pixels is significantly reduced and they generate more surface runoff, but

the most important effect is that when a certain area becomes saturated

all the subsurface flow converging into it becomes return flow. The

mechanisms through which the parameter f increases runoff generation

are: (1) increasing the surface of locally saturated areas, and (2)

enhancing the production of return flow in these locally saturated areas.

Sensitivity to anisotropy ratio

Figures 3.17 to 3.19 describe the influence of anisotropy ratio on the

total hydrograph. The four plots contained in each figure correspond to

the different values of f. In each plot the sensitivity to the four values of ar

considered is compared. As in the previous case, label 'a' corresponds to

Ri interpreted as initial moisture content and label 'b' corresponds to Ri

interpreted as initial recharge rate. Figures 3.17a and 3.17b represent the

wet initial state, figures 3.18a and 3.18b the average initial state, and

figures 3.19a and 3.19b the dry initial state.

Model sensitivity to the anisotropy ratio is very small in the case

when Ri is interpreted as the initial recharge rate. In the case when Ri is

interpreted as the initial moisture content the sensitivity is higher, but
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Figure 3.17a: Sensitivity of basin response to anisotropy ratio for
parameter f equal to 1 10-4 3 104, 5 10-4 and 7 10-4 mm- 1. The results

correspond to initial state with 10% probability of exceedance and
parameter Ri interpreted as initial moisture content.
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Figure 3.17b: Sensitivity of basin response to anisotropy ratio for

parameter f equal to 1 10-4 310-4, 5 10-4 and 7 10- mm
1

. The results

correspond to initial state with 10% probability of exceedance and

parameter R interpreted as initial recharge rate.
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Figure 3.18a: Sensitivity of basin response to anisotropy ratio for
parameter f equal to 1 10-4, 3 10-4, 5 10-4 and 7 10-4 mm-1. The results

correspond to initial state with 50% probability of exceedance and
parameter Ri interpreted as initial moisture content.

129



--ar=500

E a..ar=100
-ar=10

MO -ar=1
500 ...................

0
0 5 10 15 20 25 30 35 40

Time (hr)

Parameter f 0.0003 mm-

1000.................

.. ....... ........ ......5 0 0 . .. . . . . . . . . . . .

E~ ar=-100
-ar=10
-- r=

01

0 5 10 15 20 25 30 35 40
Time (hr)

Parameter f 0.0005 mm-i

..1000-..............

(4 ~-- ar=500 .

. ar=1100
- - ar=10

50 ---- l
'4 5 0 0 .. . . . . . . . . ..... ... ....... .... .. ........ .. ........... .................. .

0
0 5 10 15 20 25 30 35 40

Time (hr)

Parametr f 1.0007 mm- I
1000..-.--...........

--ar=500
.ar=-100:
-ar=10

500~~a- -I .....

01
0 5 10 15 20 25 30 35 40

Time (hr)

Figure 3.18b: Sensitivity of basin response to anisotrop ratio for
parameter f equal to 1 10-4," 3 10-4,' 5 10-4 and 7 10-4 mm-1. The results

correspond to initial state with 50% probability of exceedance and
parameter Ri interpreted as initial recharge rate.
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Figure 3.19a: Sensitivity of basin response to anisotropy ratio for
parameter f equal to 1 10-4, 3 10-4, 5 10-4 and 7 10-4 mm-1. The results

correspond to initial state with 90% probability of exceedance and
parameter Ri interpreted as initial moisture content.
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Figure 3.19b: Sensitivity of basin response to anisotropy ratio for
parameter f equal to 1 10-4, 3 10-4, 5 10-4 and 7 10-4 mm-1. The results

correspond to initial state with 90% probability of exceedance and
parameter Ri interpreted as initial recharge rate.
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smaller than the sensitivity to the parameter f. In general, only the case

ar=5 0 0 appears to be significantly different from the rest. ar=1 and ar=10

are almost equal in all cases. The sensitivity to ar depends greatly on the

initial position of the water table. The sensitivity is higher in the wet and

average cases, and significantly lower in the dry case. The influence of f is

also significant, with high values of f increasing the sensitivity to ar.

Figures 3.20a and 3.20b represent the time evolution of runoff

generation in the basin compared to the rainfall rate. Figure 3.21a and

3.21b represent the effect of the different runoff generation mechanisms

on the total hydrograph obtained for the basin. These figures offer a more

detailed description of the base case, represented in the second plot of

figures 3.18a and 3.18b. The interpretation of the figures is analogous to

the previous case.

Figures 3.20 and 3.21 show that the sensitivity of the total hydrograph

to the anisotropy ratio comes almost exclusively from the return flow

generated in permanently saturated areas (dotted line in the plots). The

anisotropy ratio is the main cause driving lateral flow between elements,

and therefore its main influence is through the effect of the subsurface

flow on return flow. That explains why the model is so insensitive to the

anisotropy ratio when Ri is interpreted as the initial recharge rate. In this

case the initial moisture content is so low that most of the subsurface flow

can be stored in the unsaturated area of the pixels without ever reaching

the saturated areas. Only the case ar=5 00 generates a very small quantity

of return flow.

In the case when Ri is interpreted as the initial moisture content, the

model shows some sensitivity to ar, specially in the case ar=5 0 0 . It can be

observed that the portion of return flow generated in the areas which
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Figure 3.20a: Time evolution of different modes of runoff generation for
anisotropy ratio equal to 1, 10, 100 and 500. The results correspond to
parameter f equal to 5 10-4 mm-1, initial state with 50% probability of
exceedance and parameter Ri interpreted as initial moisture content.
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Figure 3.20b: Time evolution of different modes of runoff generation for
anisotropy ratio equal to 1, 10, 100 and 500. The results correspond to
parameter f equal to 5 10-4 mm-1, initial state with 50% probability of
exceedance and parameter Ri interpreted as initial recharge rate.
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Figure 3.21a: Decomposition of basin response into different modes ofrunoff generation for anisotropy ratio equal to 1, 10, 100 and 500. The
results correspond to parameter f equal to 5 10-4 mm-1, initial state with50% probability of exceedance and parameter R interpreted as initial

moisture content.
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Figure 3.21b: Decomposition of basin response into different modes of
runoff generation for anisotropy ratio equal to 1, 10, 100 and 500. The

results correspond to parameter f equal to 5 10 -4 mm- 1, initial state with
50% probability of exceedance and parameter Ri interpreted as initial

recharge rate.
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become saturated during the storm is approximately constant for different

anisotropy ratios. That dynamic return flow is mainly controlled by the

parameter f, because local saturation is mostly a transient effect, and the

response of the subsurface flow is so slow that there is no time to

accumulate enough convergence of subsurface flow in the temporarily

saturated areas. The effect of the anisotropy ratio can be seen in the areas

permanently saturated because in that case there is enough time for the

subsurface flow to accumulate.

The mechanism through which the anisotropy ratio increases runoff

generation is by enhancing the production of return flow in permanently

saturated areas. It is also clear that the response time of the runoff

generated through this mechanism is much slower than other runoff

components of the basin.

Sensitivity to the initial position of the water table

Figures 3.22 and 3.23 represent the sensitivity of the total hydrograph

to the initial water table positions for different combinations of other

model parameters. As in previous cases, the label 'a' corresponds to the

interpretation of Ri as the initial moisture content and the label 'b', to the

interpretation of Ri as the initial recharge rate. Figure 3.22 presents

different values of the parameter f for an anisotropy ratio of 10, and Figure

3.23 presents different anisotropy ratios for a value of f=5 10-4 mm-1.

The model is sensitive to the position of the water table in all cases,

but it can be observed how different combinations of the other parameters

can greatly enhance this sensitivity, specially when Ri is interpreted as

the initial moisture content, because in this case the moisture content is
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Figure 3.22a: Sensitivity of basin response to initial state for parameter f
equal to 110-4 , 310i 4 , 5 10-4 and 7 104 mm-1. The results correspond to

anisotropy ratio equal to 10 and parameter Ri interpreted as initial
moisture content.
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Figure 3.22b: Sensitivity of basin response to initial state for parameter f
equal to 1 10-4, 3 10-4, 5 10-4 and 7 10-4 mm-1. The results correspond to

anisotropy ratio equal to 10 and parameter Ri interpreted as initial
recharge rate.
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Figure 3.23a: Sensitivity of basin response to initial state for anisotropy
ratio equal to 1, 10, 100 and 500. The results correspond to parameter f
equal to 5 10-4 mm-1 and parameter Ri interpreted as initial moisture

content.
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Figure 3.23b: Sensitivity of basin response to initial state for anisotropy
ratio equal to 1, 10, 100 and 500. The results correspond to parameter f

equal to 5 10-4 mm-1 and parameter Ri interpreted as initial recharge rate.
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correlated with the depth of the water table. In general, the effect of f on

the sensitivity to the position of the water table is greater than that of the

anisotropy ratio.

Figures 3.24a and 3.24b show the evolution in time of the runoff

generation in the basin compared to the rainfall rate. Figures 3.25a and

3.25b represent the effect of the different runoff generation mechanisms

on the total hydrograph obtained for the basin. The case considered in

these figures is the one represented in the third plot of figures 3.22a and

3.22b, or in the second plot of figures 3.23a and 3.23b.

The sensitivity to the initial position of the water table is mainly a

consequence of the surface runoff generated in the permanently saturated

areas, which are those where the initial water table is at the surface.

Different initial water table positions define different saturated areas, and

therefore, they lead to different volumes of runoff. There is also an

indirect effect on the generation of return flow, mostly as a consequence of

different moisture contents in the case where Ri is interpreted as initial

moisture.

The mechanism through which the initial water table position

controls runoff generation is by defining the areas of the basin which are

saturated. These areas have a runoff coefficient of one, and therefore their

extension is extremely important to define the total runoff volume of the

basin.
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Figure 3.24a: Time evolution of different modes of runoff generation for
initial states with 10%, 50% and 90% probability of exceedance. The results
correspond to parameter f equal to 5 10-4 mm-1, anisotropy ratio equal to 10

and parameter Ri interpreted as initial moisture content.

144

-Rainfall -r I i

-Total runoff .
- --..- -. -. .Surface runoff from perm. sat. area.TbOal'iedrri flow

Return flow from perm. sat. area

---- --- --- - - - - -

- R a'infall
- Total runoff

Surface runoff from perm. sat. area
T6tal returri flow

. Return flow from perm. sat. area

18 20

ow 
, om.............. 

....

3

. .......... .......... ........ ..... ....... . ..........



Wet initial state 10% exceedance
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Figure 3.24b: Time evolution of different modes of runoff generation for
initial states with 10%, 50% and 90% probability of exceedance. The results
correspond to parameter f equal to 5 104 mm-1 , anisotropy ratio equal to 10

and parameter Ri interpreted as initial recharge rate.
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Figure 3.25a: Decomposition of basin response into different modes of
runoff generation for initial states with 10%, 50% and 90% probability of
exceedance. The results correspond to parameter f equal to 5 10-4 mm-1 ,

anisotropy ratio equal to 10 and parameter Ri interpreted as initial
moisture content.
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Figure 3.25b: Decomposition of basin response into different modes of
runoff generation for initial states with 10%, 50% and 90% probability of
exceedance. The results correspond to parameter f equal to 5 10-4 mm-1,

anisotropy ratio equal to 10 and parameter Ri interpreted as initial
recharge rate.
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Sensitivity to the interpretation of the parameter Ri

Figures 3.26 to 3.28 show the effect of the two different interpretations

of the parameter Ri in the total hydrograph of the basin. Figure 3.26

shows the effect for different values of f, Figure 3.27 shows the effect for

different values of the anisotropy ratio and Figure 3.28 shows the effect for

different initial water table positions. The model is sensitive to the choice

of Ri in all cases.

Figure 3.29 shows the time evolution of the generation of runoff

compared to rainfall intensity. Figure 3.30 shows the effect of the different

runoff generation mechanisms on the total hydrograph. The choice of Ri

influences mostly the return flow generated in the areas of the basin

which are not permanently saturated. When Ri is considered as the

f=0.0001 mm-I ar=10 Avg init f=0.0003 mm-I ar=10 Avg init

Ri=recharge -- Ri=recharge

500 - 500

0 10 20 30 40 0 10 20 30 40

Time (hr) Time (hr)
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1000 - i ~......... 1000i.n....
- RiRirchgcharge

50 -- -0 4

Rirehag

~50 500- -

0 10 20 30 40 0 10 20 30 40

Time (hr) Time (hr)

Figure 3.26: Sensitivity of basin response to the interpretation of

parameter Ri for parameter f equal to 1 10-4, 3 10-4, 5 10-4 and 7 10-4 mm-1.

The results correspond to anisotropy ratio equal to 10 and initial state with

50% probability of exceedance.
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Figure 3.27: Sensitivity of basin response to the interpretation of
parameter Ri for anisotropy ratio equal to 1, 10, 100 and 500. The results
correspond to parameter f equal to 5 10-4 mm-1 and initial state with 50%

probability of exceedance.
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Figure 3.28: Sensitivity of basin response to the interpretation of
parameter Ri for initial states with 10%, 50% and 90% probability of

exceedance. The results correspond to parameter f equal to 5 10-4 mm-1
and anisotropy ratio equal to 10.
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Ri as moisture content
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Figure 3.29: Time evolution of different modes of runoff generation for
interpretation of parameter Ri as initial moisture content and as initial

recharge rate. The results correspond to parameter f equal to 5 10-4 mm-1,anisotropy ratio equal to 10 and initial state with 50% probability of
exceedance.
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Figure 3.30: Decomposition of basin response into different modes of
runoff generation for interpretation of parameter Ri as initial moisture

content and as initial recharge rate. The results correspond to parameter
f equal to 5 10-4 mm- 1, anisotropy ratio equal to 10 and initial state with

50% probability of exceedance.
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initial moisture content the areas where the water table is shallow are

almost saturated. A small infiltration can saturate them, and these areas

generate return flow. When Ri is considered as the initial recharge rate

the moisture content above the water table is homogeneous throughout the

basin, and it takes longer to saturate significant portions of the basin.

Sensitivity to surface routing parameters

A different set of computer runs was used to test sensitivity to surface

routing parameters. The model was run with a unique set of runoff-

generation parameters (the base case), and the surface-routing

parameters were changed to explore model sensitivity. The parameters

tested were the ratio of stream velocity to hillslope velocity, Kv, and the

coefficient cv and exponent r in the power law relating hillslope velocity

and discharge at the outlet (Equation 2.46). The numerical values of the

parameters are shown in Table 3.4.

Table 3.4 Parameter values for the sensitivity to surface routing

Parameter
Velocity ratio Kv 5 10 15 20
Coefficient cv (m h-1) 100 200 400 600
Exponent r 0.0 0.1 0.2 0.3

Figures 3.31 to 3.33 show the results of the sensitivity analysis to

routing parameters. Figure 3.31 shows sensitivity to the ratio of velocities

Kv, Figure 3.32 shows sensitivity to the coefficient co, and Figure 3.33

shows sensitivity to the exponent r. Sensitivity is very large in all cases,
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and, although total hydrograph volume is conserved in all plots, the

shapes are greatly affected by the routing parameters. The effects of Kv

and co are very similar, because both represent uniform increments in

travel velocities. In the case of Kv, the increments only correspond to

stream velocities, while in the case of co, the increments correspond to

both stream and hillslope velocities. In both cases the effect of a decrease

in the parameter is the dampening of the basin response, delaying the

occurrence of the peak and smoothing the shape of the hydrograph. It also

appears that stream velocities are dominant in configuring basin

response, at least for the range of parameter values tested here.

The effect of the exponent r is somewhat different than those of Kv or

cv. Increments of the exponent r produce a stronger narrowing of the

shape of the hydrograph than increments of the other parameters do. The

Cv=400 r=O.1
1200

l000 ..... ............. . ...... K v=~

dot-dash: K = 10

dash: Kv =15
800k

.600....... .-

400k...-- .

200 ..........

1000 1(X)5 1010 1015 1020 1025 1030 1035 1040 1045 1050

Time (hr)

Figure 3.31: Sensitivity of basin response to the ratio of stream and
hillslope velocities Kv. The results correspond to coefficient cv equal to 400

mh-1 and exponent r equal to 0.1.
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Figure 3.32: Sensitivity of basin response to coefficient cv. The results
correspond to velocity ratio Kv equal to 10 and exponent r equal to 0.1.
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Figure 3.33: Sensitivity of basin response to exponent r. The results
correspond to velocity ratio Kv equal to 10 and coefficient cv equal to 400
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explanation is that increments in r represent greater increments of travel

velocities when the discharge is high, and therefore, the velocities are

relatively higher around the peak and lower at the beginning and the end

of the hydrograph. This should be the basic criterion to identify non-

linearities in basin response.

3.2 Model calibration and evaluation

The ability of the model to reproduce observed stormflow is analyzed

in this section. The data available are described first, together with the

suggested methodology for model calibration. The original data were

divided in two groups, one for calibration and another for evaluation. The

results of the calibration process are shown in Section 3.2.2, and the

performance of the model with the evaluation set is analyzed in Section

3.3.3.

3.2.1 Calibration methodology

The model is applied to the Sieve basin, already described in Section

3.1.2. Data for the calibration are taken from Cabral (1990), which applied

a preliminary version of DBS to the Sieve basin. She collected data about

physical parameters and several observed storms.

Rainfall data at a temporal resolution of 20 minutes are available

from a number of recording stations in the Sieve basin area, shown in

Figure 3.11. Up to 1984, the only recording station located inside the basin

was Borgo San Lorenzo. On a Thiessen polygon analysis, Borgo San
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Lorenzo covers approximately 75% of the basin area, and other three

stations (Firenze-Ximeniano, Camaldoli and Vallombrosa) cover the

remaining portions. Increasingly higher spatial resolution is available

for more recent storms (since 1985), but no radar data are available yet.

Streamflow data are available from a stage gauge located at

Fornacina. The gauge does not operate continuously; it only functions

during storm periods which are considered to be potentially dangerous.

Stage readings are available on an hourly basis, and only cover a few

hours of each storm. No inter-storm flow data are available. A rating

curve is used to translate stage readings into streamflow data.

A total of ten storm events were selected for the calibration and

evaluation processes. The selection was made based on the simultaneous

availability of rainfall and streamflow information. Five storms were

selected for the calibration step, reserving other five storms for the

evaluation step. The storms included in the calibration process are

summarized in Table 3.5.

Table 3.5 Storms for calibration

Storm Total rainfall depth
(mm)

February 1977 33.04
January 1979 46.36
November 1982 74.45
February 1983 38.34
January 1985 25.88

As a conclusion of the sensitivity analysis, the following calibration

methodology was adopted. There are two processes that have to be

reproduced by the model: how much runoff is generated during the storm
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and how that runoff is transported through the drainage network to the

basin outlet. Athough they are obviously interconnected, because the

amount of water available affects flow velocity, the simplification of

analyzing both independently is made. Model structure supports this

strategy, since runoff generation and flow routing are two independent

steps in model inference. Of course, the strategy will work better for cases

where non-linearities in basin response are small. A second, fine-

tunning iteration can be carried out if flow velocity is found to be strongly

dependent on runoff volume.

Calibration of runoff generation

The first issue to address while calibrating runoff generation is

defining a well-posed problem. The model has a very large number of

parameters distributed over the basin, and observations are only available

for a few locations. Therefore, a number of a priori assumptions have to be

made about model parameters in order to keep the model parsimonious.

The goal is to fit as many model parameters as possible using means

other than calibration, and leaving only a few key parameters for the

calibration step. According to the sensitivity analyses, three model

parameters are crucial in determining surface runoff: surface hydraulic

conductivity, Kon, its rate of decrease with depth, f, and anisotropy ratio,

ar. Original data are contained in the DEM and in the soil study. The soil

study available for the Sieve basin provided information about the

hydraulic conductivity and porosity for each of 17 soil types identified in

the basin. The fact that hydraulic conductivity data are available

simplifies the calibration process, because it substracts one degree of
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freedom. Only two model parameters, f and ar, were left to be estimated

through calibration. Other model parameters are apparently less

important, and were fit by means other than direct calibration.

Normal hydraulic conductivity values were assigned to every soil type

according to the values proposed in the soil study, which were assumed to

represent vertical infiltration. However, the original data were uncertain,

with large variabilities within a given soil type, and the initial solution of

considering the mean value for each soil type was only preliminary, to be

revised during calibration if unreasonable results were obtained. Porosity

was also available in the soil study, but other soil properties of the Brooks-

Corey parameterization had to be estimated from published values in the

literature for soil with analogous conductivity and texture. Table 3.6

shows the original data contained in the soil study and the values adopted

for model parameters of each soil type.

Table 3.6Original data in the soil study and values adopted in the model
(from Cabral et al., 1990)

Soil texture

FS-FLA
FL-FLA

A
A

FA
A

FL-FLA
FL

F-FA
FS

FS-FA
FS-FA
FS-FA

F-FS-FA-FL
F-FS
FS

Detritic

Esimated K
(mm h-1)

2-41
0.2-7
0.25
0.25
45.
25.5
0.2-7
5.1
16.6
21.8

0.2-41
0.2-41
0.2-41
0.2-41
21.8
21.8
40

Kon
(mm hr-1)

21.5
3.6

0.01-0.5
0.01-0.5

20-70
1-50
3.6

0.2-10
0.2-33
2.7-41
20.6
20.6
20.6
20.6

2.7-41
2.7-41

40.
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Soil type

Type 1
Type 2
Type 3
Type 4
Type 5
Type 6
Type 7
Type 8
Type 9
Type 10
Type 11
Type 12
Type 13
Type 14
Type 15
Type 16
Type 17

OS

0.53
0.52
0.48
0.48
0.56
0.56
0.53
0.49
0.52
0.48
0.52
0.52
0.52
0.50
0.49
0.48
0.25

Or

0.02
0.036
0.09
0.09

0.109
0.09

0.109
0.109
0.064
0.036
0.072
0.072
0.072
0.07
0.03

0.041
0.02

E

3.6
3.6
7.5
7.5
3.6
7.5
3.6
3.6
3.5
3.4
3.6
3.6
3.6
3.6
3.5
3.6
3.4



The calibration problem was then posed as obtaining reasonable

values for f and ar that produced the best collective agreement between

computed and observed streamflow for the events reserved for calibration.

During the sensitivity analyses, f and a, were found to be relatively

independent. f controls the volume of infiltration-excess runoff and a,

controls the volume of subsurface runoff. The difference is observable,

since infiltration-excess runoff is directly related to rainfall, whereas

subsurface runoff may occur after precipitation has finished. Therefore,

the tail of the observed hydrograph can be used to obtain an estimate of

short-term subsurface runoff tuning the value of a,. The other component

of runoff is then estimated tuning the value of f. The process required a

thorough analysis of every storm available, trying to discriminate between

direct and subsurface runoff, and was based on qualitative hydrologic

judgement rather than on mathematical optimization of an objective

function. It was also complicated by the fact that the observations of runoff

were usually discontinued when water levels returned to normal values,

and therefore, only a small fraction of the tails of the hydrographs was

available.

Another important issue had to be addressed in the calibration of

runoff volume: the initial state. Basin initial state is characterized by the

position of the water table at every grid point and the initial moisture

content in the soil column, represented by Ri. In principle, the initial state

of the basin is either estimated based on remote sensing of surface

moisture distribution or computed with a long-term hydroclimatological

model that includes evapotranspiration. In practice, the only data

available for the Sieve basin were precipitation series at the recording

stations, but no other climatological measurements were taken.
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The estimation of the initial state based exclusively on precipitation is

too simplistic, since evapotranspiration is also an important factor.

Figure 3.34 and Table 3.7 show an analysis of this aspect for the Sieve data

set. Figure 3.34 shows the rainfall registered by the Borgo San Lorenzo

gauge during the 100 days prior to every storm event. Rainfall is presented

as cumulative values preceding the event, that is, with time running

backwards since the beginning of the storm. A good measure of the

antecedent moisture condition is the global runoff coefficient of the event,

although other factors, such as total volume and distribution of rainfall

also play a role. As Table 3.7 shows, there is no apparent consistent

relation between runoff coefficient and antecedent precipitation at

different time horizons for all five storms. The variability cannot be

explained only by total precipitation volume or average rainfall intensity,

Antecedent rainfall
600

500 S -------------- olid: Februar 977
Do'ahJn av 1979'!.............

Dash : November 1982
Dot: February 1983

2 400 -- .ash-circle .January 1985

300

CG

E
E 200

00 -- --------- |

0o 10 20 30 40 50 60 70 80 90 100

Days preceeding the storm

Figure 3.34: Antecedent rainfall corresponding to the storms in the
calibration set. The plot shows cummulative rainfall in mm preceeding

the storm as a function of time in days.
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and we can conclude that the antecedent moisture condition is not a

function of antecedent precipitation alone. No measurements were

available to estimate the influence of other variables, and therefore no

independent estimate of the initial state of the basin was available.

Table 3.7 Cumulative antecedent precipitation (mm)
for the storms in the calibration set

Storm I day 2 days 1 week 2 weeks 30 days Runoff Coeff.
February 1977 11 19 38 101 162 0.90
January 1979 0 0 7 41 135 0.85
November 1982 0 0 52 52 86 0.50
February 1983 7 9 59 90 97 0.80
January 1985 0 7 7 7 18 0.75

The solution adopted to deal with the problem of the initial state of the

basin was to leave it as another unknown to be estimated by calibration.

We make the initial state a function of just one variable, the uniform

recharge rate Ri that is in long-term equilibrium with observed

interstorm flows in the basin. Long-term records of streamflow in the

Arno river enable us to estimate the distribution of monthly averages of

inter-storm flow in the Sieve. For every month, a value of inter-storm

streamflow can be assigned to a given probability of exceedance. Flows

with low probability of exceedance represent wet states and flows with

high probability of exceedance represent dry states. For every month three

probability levels were selected: 0.1, 0.5 and 0.9, and the corresponding

inter-storm flows were obtained (see Cabral, 1990).

Inter-storm flows were assumed to be in equilibrium with a uniform

recharge rate in the basin, and the water table evolution model developed

by Cabral (1990) was used to obtain the distribution of water table depths in

the basin. According to the sensitivity analyses, the parameter Ri was
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interpreted as initial moisture content of every pixel. Three initial states

were thus defined for every month, and calibration was carried out in

parallel for all three states of the corresponding month in every storm.

This weakened considerably the calibration process, since a lot of the

variability in basin response can be explained through different initial

conditions, but no other independent means of estimating the initial state

were available.

Calibration of time of travel

The scheme followed in the calibration of the time of travel is much

simpler, since the hypothesis of constant velocity throughout the basin

reduces the complexity of the problem. The drainage network was defined

independently of the calibration, since there are physical bases to estimate

it. The network proposed by Cabral et al., (1990), based on studies of Carla

et al. (1986), was adopted. The drainage network is generated considering

a threshold contributing area of 8 elements, which corresponds to 1.28

km2. The resulting network has 1084 stream elements out of a total of 5252

for the whole basin.

Travel velocities are given by Equations (2.46) and (2.47). The

parameters to estimate are those of Equation (2.46), the coefficient cv and

the exponent r, and the ratio of stream velocity to hillslope velocity, Kv.

The estimation of cy and Kv was based on the comparison of the general

features of the hydrograph, notably the time at which the main peak

occurs.
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3.2.2 Results of the calibration process

A trial and error process was followed during calibration. Once

satisfactory values for the routing parameters were obtained, different

combinations of f and ar were tried until acceptable results were obtained.

The quality of the original data did not support a mathematical parameter

optimization, and the objective of the calibration was only to obtain a

rough estimate of the approximate values of the parameters. Therefore, ar

and f were taken from a discrete domain.

Table 3.8Parameter set which gave the best fit

Parameter Value
Parameter f (mm-1) 7 x 104
Anisotropy ratio ar 500
Velocity ratio Kv 12.75
Velocity coeffcient cv Kmh-1  5.2
Exponent r 0

All storms were simulated for the three initial conditions: dry (90%

probability of exceedance), average (50% probability of exceedance) and wet

(10% probability of exceedance). The evaluation of the results was made

considering all five storms simultaneously. The selection of the best

parameter set was made based on the comparison of the observed data

with the simulations corresponding to the three initial conditions. The

objective was to reproduce basic features of the observed flow, such as

peak discharge, time to peak and baseflow recession. Since the initial

state was not known, there was one degree of freedom in the results. The

evaluation of the results was obviously subjective, and the assumption
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was made that the storms available for calibration should be comprised

between the two limit initial conditions, 10% and 90% probability of

exceedance respectively. The parameter set which gave the best fit is listed

in Table 3.8.

Results obtained for what we consider the best fit are presented in

Figures 3.35 through 3.39. General characteristics of the basin response

are well captured by the model, but the fit between observed and computed

hydrographs is less than optimal, specially considering that the initial

state is a variable of the calibration process. However, the results can be

evaluated as acceptable, given the large uncertainty about the real rainfall

(75% of a basin of 840 km2 is covered by just one raingauge in most cases)

and the sporadic nature of the streamflow observations.

February 1977
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Figure 3.35: Observed and simulated hydrographs for the storm of
February 1977. Simulated results correspond to initial states with 10%,

50% and 90% probability of exceedance.
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January 1979
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Figure 3.36: Observed and simulated hydrographs for the storm of
January 1979. Simulated results correspond to initial states with 10%,

50% and 90% probability of exceedance.
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Observed and simulated hydrographs for the storm of
Simulated results correspond to initial states with 10%,
50% and 90% probability of exceedance.
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February 1983
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Figure 3.38: Observed and simulated hydrographs for the storm of
February 1983. Simulated results correspond to initial states with 10%,50% and 90% probability of exceedance.

January 1985
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Figure 3.39: Observed and simulated hydrographs for the storm of
January 1985. Simulated results correspond to initial states with 10%,

50% and 90% probability of exceedance.
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A subjective evaluation of the results of the calibration is presented in

Table 3.9. Two qualitative variables are included in the analysis: peak and

shape. Peak includes the ability to reproduce the values and specially the

timing of the observed peak discharge. Timing is considered more

important than absolute value, because the simulations cover a wide

range of possible values, due to the uncertainty of the initial state. Shape

is an overall evaluation of how the simulated hydrographs reproduce the

total runoff volume and its distribution in time. The table also includes an

estimation of the initial state that leads to the best fit between observed and

simulated hydrographs.

Table 3.9 Calibration. Summary of results

Storm Peak Shape Initial state Result
February 1977 Fair Fair 50%-10% Fair
January 1979 Good Good 50% Good
November 1982 Fair Good 90% Good
February 1983 Good Very poor 50% ? Poor
January 1985 Good Fair 90%-50% Fair

Peak value and time to peak are reasonably well reproduced, but the

overall shape of the simulated hydrographs differs considerably from that

of the observed ones. Total runoff volumes obtained in the simulations

appear to be larger than observed ones, but no conclusive assessment can

be made due to the lack of continuous streamflow recording. In two cases,

January 1979 and February 1983, the simulated hydrographs rise before

the observed ones, suggesting a drier initial state and higher initial

abstractions in the basin. Observed hydrographs also show an earlier

falling limb, but this aspect is less clear.
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The adjustment of the baseflow recession cannot be assessed

conclusively, because streamflow measurements are discontinued very

early. It seems that the early stages are acceptably well reproduced by the

model, and the fact that the best adjustment is obtained with a very high

anisotropy ratio is remarkable, hinting for a strong lateral flow. However,

these simulations also illustrate a weak aspect of model behavior. The

distributed model is event-based, and it only deals with storm water,

whereas in reality baseflow recession is the combined consequence of

storage of 'old' and 'new' water in the basin. As shown by the figures,

simulated baseflow recession in the drier basin state usually lasts longer,

since, in the model representation, the basin has a higher capacity to

store 'new' storm water. The wet initial state does not store so much

water, and, although baseflow rates are higher, the model, which only

uses storm water, cannot maintain baseflow for a long time. This result of

the model is in contradiction with experience, since it is clear that, in the

same basin, drier basin states originate shorter baseflow recessions.

3.2.3 Results of the evaluation step

Five storms were originally reserved for the evaluation step. The

evaluation storms are listed in Table 3.10. The model was run with the

optimum parameter set presented in the previous section, and results

were compared with observed discharge data for the five storms. No

previous attempts were made to run the model for the evaluation storms

with any parameter set.
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Table 3.10 Storms in the evaluation set

Storm

December 1968
January 1969
December 1975
December 1976
November 1987

Total rainfail depth
(mm)
31.77
41.56
51.67
26.61

103.03

The results are presented in Figures 3.40 to 3.44. Table 3.11 presents

a subjective evaluation of the results, considering the same criteria used

in the calibration step. The first general comment is that, although the

differences between observed and simulated hydrographs are apparent,

December 1968
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Figure 3.40: Observed and simulated hydrographs for the storm of

December 1968. Simulated results correspond to initial states with 10%,

50% and 90% probability of exceedance.
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January 1969
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Figure 3.41: Observed and simulated hydrographs for the storm of
January 1969. Simulated results correspond to initial states with 10%,

50% and 90% probability of exceedance.
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Figure 3.42: Observed and simulated hydrographs for the storm of
December 1975. Simulated results correspond to initial states with 10%,

50% and 90% probability of exceedance.
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Figure 3.43:
December 1976.
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Observed and simulated hydrographs for the storm of
Simulated results correspond to initial states with 10%,
50% and 90% probability of exceedance.

November 1987
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Figure 3.44: Observed and simulated hydrographs for the storm of
November 1987. Simulated results correspond to initial states with 10%,

50% and 90% probability of exceedance.
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model performance with the evaluation set is not considerably worse than

with the calibration set, which suggests that the calibration process was

successful in the sense of estimating the best parameter set for the basin.

If these other five storms were included in a new calibration process, the

values of the parameters probably would not change very much.

Table 3.11 Evaluation. Summary of results

Storm Peak Shape Initial state Result
December 1968 Poor Fair 90%-50% Fair
January 1969 Good Good 90% Good
December 1975 Poor Fair 90% Poor
December 1976 Fair Fair <10% Fair
November 1987 Fair Very poor >90%? Poor

Compared to the calibration set, a greater dispersion with respect to

the initial state is observed in this second set. While the December 1976

storm appears to correspond to a very wet initial state, the storms of

January 1969 and December 1975 suggest a very dry initial condition. In

general, model performance is acceptable in all storms except in

November 1987, in which the observed hydrograph clearly crosses the

simulated hydrographs for two initial states. The beginning and the end

of the hydrograph correspond to an initial state drier than that of 90%

probability of exceedance, whereas peak flow corresponds to the average

initial state. The model clearly does not capture the dynamics of the basin

in this case.

After the evaluation step was finished, data were received

corresponding to a new storm in the Sieve basin. The storm took place in

November, 1991, and the quality of the data was significantly better than

that of the previously available storms. Rainfall information was still
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obtained from a raingauge network, but network density was considerably

higher. A total of 30 raingauges were available, and 6 of them were

located inside the basin. Total rainfall depth in the basin was 111.14 mm.

Streamflow data were also of higher quality, since continuous streamflow

recording was available.

The model was run for this recent storm, and the results are shown

on Figure 3.45. The results are very encouraging. The model reproduces

the shape of the hydrograph with reasonable accuracy, and model

performance is better than in the other cases of the evaluation set and

even the calibration set. The simulation suggests a relatively dry initial

condition, which is consistent with the time of the year (beginning of the

rainy season). The timing of the rising and the falling limbs of the

hydrograph is acceptable, and the adjustments of the interstorm periods
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Figure 3.45: Observed and simulated hydrographs for the storm of
November 1991. Simulated results correspond to initial states with 10%,

50% and 90% probability of exceedance.
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are excellent, specially if we consider that baseflow recession is generated

through physically-based mechanisms using the same parameters as

other model processes, and not through conceptual recession equations

with specific parameters to fit baseflow.

Although this good model performance with a good data set could

very well be just a serendipitous coincidence, it strongly suggests that

model performance can be considerably improved with better data. In

particular, distributed rainfall information obtained from radar pictures

is crucial to evaluate the response of the different areas of the basin to

rainfall irregularly distributed in space.
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CHAPTER 4

Real-Time Use of the Model

In this chapter the real time operation of DBS is presented. Modeling

capabilities offered by the basin simulator are used to build an interactive

real-time environment for flood monitoring and forecasting. The package

is called Real-time Interactive Basin Simulator (RIBS). Requirements for

real time operation of a distributed, physically-based model are analyzed

first, and a description of the solutions adopted is presented next.

4.1 Real-time operation of physically-based models during floods

This section discusses the problem of real-time flood forecasting in a

generic sense. Since real-time flood forecasting is a very broad term,

which may mean very different things in different contexts, the first

subsection is dedicated to present the scope of the type of problems

addressed in this work. In the second subsection we review the

requirements of a flood forecasting system, which are taken as generic

design goals for the RIBS environment.
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4.1.1 Scope of the problem

In a broad sense, the goal of flood forecasting systems is to capture all

available information during a flood situation and process it to different

levels of complexity in order to present the user with information that can

be included more directly in the decision making process. Two issues are

of interest: how real-time information is captured and how it is processed

to facilitate decision making. The information available is usually

rainfall, either from a raingauge network or a meteorological radar, and

streamflow data at different points of the basin. Since the relationship

between rainfall and streamflow is complex, decision making is very

difficult without the use of modeling tools to translate rainfall information

into streamflow forecasts. Once streamflow forecasts at points of interest

are available, they can be related to possible flooding problems. A real-

time flood forecasting system must combine a real-time data acquisition

system and state-of-the-art hydrologic modeling to provide the decision

maker with the best information possible.

This work deals with the modeling aspect of the flood forecasting

problem. More specifically, it is focused on the use of physically-based

computer models in decision support systems for flood forecasting. In

physically-based modeling, an attempt is made at understanding and

reproducing the physical processes that take place in a river basin as it

responds to intense rainfall. Since the behavior of the basin is extremely

complex, strong assumptions and great simplifications are required to

formulate the problem in terms that can be represented and simulated in

a computer. Insufficient knowledge of the physical processes,

assumptions and lack of adequate calibration data introduce errors in the
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modeling process which lead to uncertainties about model results.

However uncertain, model results are still usable by the decision maker

because they enclose our best knowledge to interpret the available data.

Since information systems normally include real streamflow

measurements, model results can be compared with observed data, and

hydrologic judgement can be applied to extract valuable information from

the model behavior.

Since the decision-making process must be carried out in real time,

an adequate software environment is very important to facilitate the task

of model users, specially if the operation involves the use of complex and

data-intensive distributed models. The objective of this work is presenting

a methodology to develop software for physically-based models that are to

work in this context. The final goal is not only to implement the model

described in Chapter 2, but also to create a flexible and versatile software

environment in which the model can be used under a wide variety of

conditions and in which the user can have access to all the details of the

modeling process in real time. This work provides fully-computerized

support for all aspects of the decision-making process during a flood, and

therefore the software presented here is designed to interact not only with

human end-users but with other software modules which may be

included in a larger decision-support system.

With respect to the physical system, the temporal and spatial scales

of the problem should also be delimited. The structure of the forecasting

system is strongly conditioned by the time of response of the basin. The

river basin acts as a reservoir, delaying and dampening the effect of

rainfall as runoff is transported through the drainage network. That

effect is crucial in flood forecasting, since it enables the modeler to
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produce forecasts of future outputs based on past inputs on the basin. The

relative importance of future inputs on future outputs is marked by the

time of response of the basin. For small basins, future outputs are almost

exclusively a function of future inputs, and therefore the flood forecasting

problem is in practice a rainfall forecasting problem. For larger basins

past inputs have greater importance on future outputs, and reasonably

good estimates of future streamflow can be produced based on past

rainfalls, provided that a good rainfall-runoff model is available. For even

larger basins, rainfall-runoff modeling becomes less relevant, since

upstream discharge data are usually available. For these very large

basins, the flood forecasting problem is largely a flood routing problem.

Here we concentrate on midsize basins, with a time of response between 6

and 24 hours, for which the analysis is largely based on rainfall-runoff

modeling, and our problem is to design and build a real-time system in

which the rainfall-runoff model described in Chapters 2 and 3 is used at

its maximum potential.

4.1.2 Requirements of a real-time flood-forecasting system

The best way of stating the design objectives for the RIBS system is to

list the requirements that a successful real-time flood-forecasting system

should meet. Some requirements, such as model updating, are classical

in the field, and have been a main concern of research in real-time

hydrology for a long time. Other features, such as output versatility, have

been traditionally considered as less important because their value is

usually associated with off-line modeling. However, recent progress in

computer hardware and software suggests that it may soon be possible to
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include our current off-line calibration and simulation methodologies in

real-time systems. There are also requirements, such as real-time data

acquisition, which are not hydrologic in nature. They respond to practical

needs of real-time computer systems, but they have a significant impact

on the global performance of the decision-making process.

Next, we present a summary of the basic features that a real-time

software package for flood monitoring and forecasting should have.

Although the implementation of RIBS presented in this work does not

address all these requirements specifically, the importance of all of them

has been considered in the design process, and special care has been

taken to make specific modeling needs compatible with more general

operational requirements.

On-line operation

The first requirement is that the system must operate on line with a

real-time data-acquisition network. The system is intended to process data

at the rate at which they are collected by the network. Channels of

communication and operational methodologies must be established to

process data in real time without the direct intervention of a user to

manipulate the information. Since network reliability is not perfect, the

system should provide for mechanisms to check data accuracy and fill in

the blanks when necessary. It should also be ready to operate flexibly

under variable conditions, since regular data arrival to the processing

center cannot be guaranteed. In addition to on-line capabilities, the

software package should also provide calibration tools, enabling off-line
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simulations with historic or synthetic data sets for calibration and

training purposes.

Real-time response

The system should be able to produce results in time to be useful. The

time available for operation of the system is variable, depending on basin

size and time of response. Other variables are also important, such as the

time necessary for civil defense actions: warning dissemination,

evacuation, emergency rescue services, etc. In general, there is a lower

limit to the anticipation with which a system can operate, marked by the

inherent time of response of the decision-making process. That limit may

be set between one and two hours. Streamflow forecasts of less than two

hours of lead time are usually of little use to the decision maker, because

by the time he or she has finally access to them a comparable lapse of time

has passed since the original data were obtained. By real time operation

we mean the capacity to produce streamflow forecasts of at least two

hours of lead time is less than one hour of processing time.

Discrimination between measured and forecasted rainfall

From the standpoint of rainfall-runoff modeling, measured and

forecasted rainfall are treated in the same way, but from the standpoint of

decision making, the value of both analyses is significantly different.

Although measured rainfall is not free from uncertainties, it provides

more reliable information than forecasted rainfall. The nature of rainfall

forecasts is inherently more speculative and uncertain than the
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estimation of past rainfall based on measurements. As a consequence, the

results obtained using forecasted rainfall are always less reliable than

those obtained using measured rainfall.

It is therefore important that a real-time system can discriminate

between the fraction of basin response that is due to measured rainfall

and the fraction that is due to forecasted rainfall. Both pieces of

information play a different role in the decision making-process, and the

system should be able to separate them explicitly. The system should also

offer the user a variety of possibilities to play with measured and

forecasted rainfall independently and to explore the implications of

uncertain rainfall forecasts.

Real-time updating

The goal of real-time flood forecasting systems is to provide

information to make decisions during situations of crisis. Given the

current state of the art in hydrologic modeling, it is unlikely that a perfect

real-time forecasting system can be developed. Imperfections of current

modeling methodologies, lack of sufficiently long historical data and

limitations in measuring technologies are the main causes that lead to

less than optimal performance of real-time systems. Fortunately, real-

time data collection networks also offer measurements that can be used to

test model results. Any operational scheme to use a model in real time

should also provide means for updating certain aspects of model behavior

according to its performance. The system should account explicitly for the

possibility that successive model predictions do not agree with

observations. A higher-level process should be in charge of monitoring
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model results and comparing them to observations, deciding whether an

improvement in model performance can be obtained and how.

State information

The role of models in decision-support systems is strongly

conditioned by how good model performance is. In fields where well-tested

models are completely reliable, such as spacecraft guidance systems, for

instance, the model can be viewed by the decision maker as a black box,

since the decision can be reliably based on model results. In other fields,

such as operational hydrology, the state of the art of modeling techniques

cannot guarantee that models are always accurate, and the interpretation

of model results is a very important part of the decision-making process.

Of course, the fact that modeling is not without errors does not mean that

models cannot be used as decision-support tools. Models encompass the

best available knowledge to deal with the evolution of physical systems,

and, to the extent that they capture the relevant features of the behavior of

physical systems, they are extremely helpful tools in the analysis of

complex situations. But, in order to attain that goal, hydrologic models

must diversify their outputs, and offer information about basin state in

addition to the traditional streamflow forecasts.

Distributed models may be the answer to the problem. They attempt

to capture the relevant physical processes that play a role in basin

response, and they actually build a computer model of the basin that can

be explored in different ways. Their output is not only a hydrograph at the

outlet of the basin; it is composed of a number of variables that describe

basin state and characterize its response to future rainfall. If model
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performance is good enough to capture the main features of the processes

that lead to local saturation in certain areas of the basin and is successful

in describing the dynamics of the runoff generation mechanisms, the

knowledge of basin state as described by the model can be of valuable

importance to a decision maker.

Explanation facilities

In order to be adequately interpreted, models must explain their

results. They must provide the users with tools that enable them to

understand how the models got their results and why. Under some

circumstances, models produce inaccurate results because they are

working under unexpected conditions. Given the adequate tools,

experienced users can detect that circumstance and still extract useful

information from model results. In order to be useful, a real-time system

based on the use of a distributed model must provide easy access to the

basin representation used by the model and allow the user to follow model

inference in time. The access to the information must be versatile, flexible

and selective. A user should be able to specify how he or she wants to

consult model results and basin state from a wide array of possibilities.

The user should be able to decide which variables are of interest to him or

her at a given moment and be able to change his or her strategy to access

model output at any time during the storm according to variable needs.
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4.2 System concept

The integrated software package for real-time flood forecasting is

conceived as a high-level manipulation of basic modeling capabilities

considering operational hydrologic needs. This work is simultaneously

concerned with two methodological aspects of the problem of designing an

efficient flood forecasting system: the hydrologic approach and the

software engineering approach. We try to couple them together, so that

the hydrologic analysis of the problem is mapped onto a correlative

software organization. The general idea is to combine the important

contributions in the fields of theoretical computer science and numerical

hydrologic modeling, to mitigate the problems traditionally found when

only one of the approaches is applied in isolation.

Recent real-time packages for physically-based simulation (Widman

et al., 1989) are built around abstract software notions, with most

emphasis being placed on symbol manipulation. These developments

have produced advanced intelligent packages with remarkable flexibility.

However, the attempt to isolate the software design from the specific

domain in which it is intended to operate may lead to unnecessarily

complex systems, in which the potentials of physically-based simulation

are constrained by the needs of abstract representation. Moreover, the

prototype architectures proposed in the literature do not contemplate data

intensive applications, and their solutions are usually organized around

in-memory data storage and manipulation, which limits their scope to

small applications.

Physically-based simulation models, on the other hand, no not take

advantage of recent advances in software development techniques, and
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remain constrained by implicit limitations imposed by software design

and implementation in FORTRAN language. These models are

successful in the sense that they perform their computations efficiently

and accurately, but their interaction with the user is limited to the initial

data and final results, with no other possibility for user access to internal

states than the cumbersome trace functions, only valid for debugging

purposes. Software is organized upon the concept of function or

subroutine, which strongly limits the possibilities for reusability and

expansion.

4.2.1 Design considerations

We present a model development methodology in which software

design is effectively coupled to physically-based modeling with the final

objective of a better user access to internal model representations, both for

calibration and real-time use purposes. The methodology also addresses

the problems of data-intensive applications and coordination of several

processes that must be running simultaneously.

The final goal of the design is to specify a computer environment in

which the distributed rainfall-runoff model described in Chapter 2 can be

used to assist in decision making during a flood situation in real time. We

first review the two main elements that must be considered in the design:

data and procedures. Since distributed models deal with large amounts of

data, their effectiveness requires that the data be adequately structured

and organized. The use of distributed models involves the interaction with

a hydrologic data base, which plays a central role in the design process.

The system must deal efficiently with storage of and access to different
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kinds of data which may evolve in time. Data complexity also requires an

efficient interaction with the user, who must be aided in the task of

understanding and evaluating large quantities of data.

The second element of importance are the computer procedures that

generate and operate on the data. In order to simplify the design, the

global problem must be decomposed into simpler tasks, implemented as

computer procedures. The procedures must be run simultaneously and

must operate concurrently on the data base. The need for problem

decomposition is not so much a consequence of the size of the global task

as it is a consequence of its complexity. In order to attain flexibility, the

system must react to the current situation, rather than follow a pre-

specified sequence of operations. Higher-level control modules must be

able to handle other lower-level modules (which implement specific

operations) in a symbolic manner.

According to these two basic elements, system design is based on the

concepts of procedural and data abstraction (Abelson and Sussman, 1985).

Different tasks must be performed during model operation. The tasks are

treated symbolically as abstract procedures, regardless of the particular

implementation that is chosen for a given task. Similarly, data are

grouped in conceptual units that are handled symbolically, regardless of

the particular format or storage environment selected for them. The key

idea of model design is to identify self-contained data sets and procedures

that can be manipulated by a high-level manager that makes decisions.

This conceptualization allows for an easy global design that deals with

tasks and data at a high level, without having to consider implementation

details for them.
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4.2.2 System architecture

This section presents the philosophy of the system architecture

adopted for RIBS. System architecture follows a hierarchical design, as

shown in Figure 4.1. The foundation of the system is composed of three

layers: modules, functional units and software objects. All layers share

the same conceptual design, but correspond to different levels of analysis,

characterized by the detail of problem decomposition. The modules match

mostly the end-user view of the system, the functional units correspond to

the hydrologist's analysis and the software objects are the programmer's

interpretation. RIBS is not a single program, but a family of programs. A

final version of the RIBS system is composed of several modules operating

on a shared database and controlled by a general manager.

A module is an operational unit on its own that accomplishes one of

the basic tasks introduced in the previous section. Modules are self-

contained software units that interact with the whole system by operating

on the common database and by sending messages to the general

manager or to other modules. Modules can and should operate

concurrently, advancing in time as new data become available. In the

RIBS environment there are rainfall acquisition modules, rainfall

forecasting modules, rainfall-runoff transformation modules and user

interface modules. It is conceivable that several modules be defined to

accomplish the same task, either to attain redundancy in the process or to

offer different analyses of the same problem.

The building blocks of the modules are functional units, that are

combined to perform the task. Functional units represent hydrologic

concepts that are directly mapped into software functions. They
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correspond to real actions with hydrological meaning operating on the

data structures. Functional units can be symbolic or numeric in nature,

depending on whether they perform a qualitative or a quantitative

analysis. The main difference between modules and functional units is

-- Decision-maker

--- End user

Hydrologist

- - - Programmer

Figure 4.1: Schematic representation of the architecture of RIBS
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that functional units are interrelated, whereas modules are entirely self

contained. Therefore, functional units are building blocks that do not

produce final results by themselves, but contribute to the final outcome.

Functional units must be organized within a module to cooperate in the

generation of results. They are usually tightly coupled, in the sense that

there are strong interactions among them and intensive data transfer or

sharing.

On the lowest design layer, the environment is supported by a

number of software objects with behavior associated to them, following the

object-oriented design methodology. Objects are shared by different

functional units, so all modules are built upon a common structure and

share the same understanding of the data involved. In addition to

facilitating the design process and allowing reusability, object-oriented

development is a crucial factor in the construction of an interactive model

interface, since the same processing units are used in the modeling

modules and in the user interface modules, and the user is given access

exactly to the same operations on the data as the model is.

In this section we provide a general description of the basic modules

considered in RIBS and a discussion of the high-level management of

individual modules. The hydrologic analysis presented in the previous

section suggests four groups of procedural modules and a number of

static and time dependent data structures. We focus on what the modules

are expected to do and how the manager controls their behavior,

regardless of how those goals can be achieved. Since a full

implementation of all features of RIBS is beyond the scope of this work,

the software development presented here focuses only on two of the four

modules that integrate RIBS, namely the rainfall-runoff transformation
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module and the user interface module. However, a basic implementation

of the other two modules and of the general manager is also provided for

completeness. A description of software components and internal

organization is given in Chapters 5 and 6. There are also a user manual

and a design document, included as appendices, where low-level details

are presented.

4.2.3 Process handling

The term "procedural abstraction" refers to how a complex problem

is decomposed into individual tasks and how the system handles these

tasks symbolically to accomplish its goal. Following the paradigm of

procedural abstraction, the design of RIBS is modular, with high-level

modules represented by executable programs and low-level functional

units represented by object methods. We concentrate here on the

manipulation of modules by the system, and Section 4.4 discusses the

functional units that integrate the two main modules.

Functionally, modules can be viewed as black boxes. They retrieve

information from the database, operate on it and store results on the data

base again. Modules are integrated in a higher system architecture, and

hence they cooperate to attain global goals. Their operation must therefore

be concurrent. In order to allow for concurrency, once a module has

finished its task it must notify to the manager or to the other modules

affected that the state of the database has changed. Proper channels of

communication must be open to grant the possibility of module

interaction. Internally, modules are composed of elements tightly coupled

together, but the group of modules is a loosely coupled collection of
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elements, in the sense that each module is self-contained and module

interface is kept as minimum and as standard as possible.

Three main tasks are necessary in a real-time flood forecasting

system: data acquisition, rainfall forecasting and rainfall-runoff

modeling. In addition to that, the user must also gain access to the

internal results through an adequate user interface. Therefore, four basic

types of processes are considered in the design, as represented in Figure

4.2.

LtDistributed D.E.M Based
Rainfall-Runoff model

Real-Time
Data

Acquisition

Figure 4.2: Processes in a real-time flood-forecasting system

191

Real-time
- Data
- State
- Results

Presentation



Rainfall acquisition modules

Rainfall acquisition modules (RAM) scan the real-time data

acquisition network and extract rainfall information. The goal is to

generate periodically a distributed description of measured rainfall.

Rainfall information may come from a raingauge network, radar

pictures or both. The RAM analyzes the raw information and makes it

available to the rest of the system in a format which can be understood by

all other modules. Each measured rainfall generated by RAM has a time

tag, which is the time at which it was generated, and is assumed to

correspond to the time interval between its time tag and that

corresponding to the previous one. The RAM also takes care of data

verification, checking input information for consistency and filling in the

errors or blanks in the data received.

Different implementations can- be considered for the RAM,

depending on the data acquisition network available. The procedure or

procedures selected should include redundancy whenever possible, since

that reduces the probability of data blanks and offers better ground for

consistency checks. The acquisition of information from the network is

clearly a quantitative problem, in which the right algorithm has to be

applied to interpolate values of the rainfall field between raingauges or to

relate radar reflectivity at every point with rainfall intensity on the

ground. The analysis for data consistency is a more complex problem,

probably involving the comparison of measurements from several sensors

of different type. Since it is in general an ill-defined problem, qualitative

methods could be included to improve the performance of automatic

quantitative procedures.
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Rainfall forecasting modules

The rainfall forecasting modules (RFM) analyze measured rainfall

and generate rainfall forecasts. They take as input the rainfall description

generated by the RAM and, possibly, other meteorological information.

The output is expected future rainfall, with some additional attributes,

such as time of validity or probability of occurrence. The RFM may

include one or several forecasting procedures, and it does not have to be

limited to generating just one set of results. In fact, real-time, user-

defined future rainfall alternatives may be included through an adequate

interface module.

Rainfall-runoff transformation modules

The rainfall-runoff transformation modules (RRTM) transform

rainfall information into streamflow predictions at one or several points

within the river basin. A numerical model of the river basin is built to

reproduce how the basin responds to rainfall. The most important

characteristic that RRTM's must have is flexibility. RRTM's are used as a

decision making tools. Their function is to translate rainfall information

into predictions of streamflow at certain locations, and therefore their

operation is conditioned by specific circumstances. Depending on the

circumstances, the focus of attention will usually concentrate on different

areas during a storm. If the situation is critical on an area, abundant and

detailed information is required about a relatively reduced location, while

the situation on the rest of the basin is comparatively less important. An
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ideal RRTM must therefore have flexibility to offer streamflow at different

points in the basin at the user's request, reacting to the evolution of the

storm.

User interface modules

While the other three groups of modules are running, guided by the

availability of new rainfall information, the user must also have access to

intermediate calculations of the modules, and be able to obtain reports

about different variables concerning basin state. The user interface

modules (UIM) query the database to extract high-level descriptions of

basin state, lumped and distributed attributes, etc. The interface modules

must contemplate two types of users: software clients and human users.

Software clients are other programs that use the functionalities provided

by the UIM to access some aspects of model results. Human users are

also interested in model results as intermediate or final output of the

other software modules. The user interface should be designed to meet

requirements posed by both groups of users. An adequate user interface

design can greatly enhance the possibilities of communication between

different software applications and facilitate the processes of model

development and calibration.

There are two types of user interface modules: model driven and user

driven. The model-driven interface is a unidirectional channel of

communication between the model and the user. The model-driven

interface presents result updates as the model progresses. All setups in

the model-driven interface are defined before the beginning of the

simulation, and model results trigger output presentations. Object-
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oriented programming and multiuser operating systems offer the

possibility of user-driven interfaces in which the user requests which

results he or she wants to consult at any time. Setups in user-driven

interfaces can be redefined during the simulation and the events

triggering output presentations are external to the model itself.

4.2.4 Data handling

The second aspect that a large application has to deal with is data.

This section about data handling discusses how different modules share a

common language for data description through the process of data

abstraction. At a high level, the application data are lumped into

meaningful sets which are handled symbolically by the modules,

following the concepts of object-oriented design. Since all modules are

intended to share and transfer information, a common data storage and a

universal data description are needed. However, every module may keep a

particular internal data representation. That can achieved in practice

through a series of libraries used to interact with the data structure

adopted for external storage.

Data abstraction refers to the grouping of individual pieces of data

into homogeneous units of distinct meaning (Gorlen et al., 1990). That

collection of information configures an object which is manipulated as a

whole by programs dealing with it. From the standpoint of physical

storage, data structures are internal and external. Internal objects are

data stored in memory, and correspond to software entities which also

have a behavior associated to them. Internal data structures are the

result of the development of object-oriented approaches within the
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discipline of programming languages. The role of internal data

structures in RIBS is described in Chapters 5 and 6, where software

design is presented. In this section we concentrate on external data

structures, which are data kept in external storage. Data models for

external storage have followed a development parallel to that of

programming languages, evolving from first-generation file systems to

fourth-generation relational databases. The next generation of database

technology will probably follow an object-oriented model (Kim, 1990),

where in-memory software objects can be stored in an external database.

Practical reasons support the adoption of external data storage.

Ideally, objects should be kept in memory to minimize input/output

operations and reduce processing time. However, the amount of

information handled by the system is clearly larger than the memory that

can be expected in a workstation environment, and therefore, a solution

involving external data storage is certainly justified. Data sharing is

another reasons. Although there are available schemes to share data in

memory, external data storage is a simple way of sharing data among a

number of independent processes, as long as concurrent access to the files

is prevented.

Data can be classified according to their formal structure or to their

semantic content. The formal structure refers to the internal organization

of the data, which in our case maps the structure of physical variables

(distributed/punctual and static/dynamic data). The semantic content

refers to the specific meaning of the information contained in the data

structure (rainfall, discharge, elevation, etc.). According to the formal

structure, two main types of data format are of interest in this application:

the raster format, used to describe two-dimensional data structures and
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the hydrograph format, used to describe time series of discharge and

rainfall. These two and other auxiliary data formats are described in the

Appendix 3. We concentrate here on the discussion of data types

according to their semantic content, which is more relevant to the overall

design of the application. According to the semantic content, the following

data groups can be defined, as shown in Figure 4.3:

Basin description

This group corresponds to the static information required to describe

the basin from a hydrologic point of view. It includes the geometrical

description: location, shape, topography, slopes and other magnitudes

derived from a DEM. Data about hydrologic attributes and properties,

such as hydraulic conductivity, vegetation or soil texture also belong to

this group.

Two types of data structures are used to describe the river basin:

lumped and distributed. Lumped information refers to basin attributes

which are independent from spatial location or, at least, uniform

throughout the basin. One singe value is enough to characterize the whole

basin. Distributed information refers to attributes that have spatial

meaning and vary with location inside the basin. More than one value is

necessary to specify distributed information. The storage requirements

associated with a particular distributed variable depend on the format

selected for data representation and in the nature of the data themselves.

Distributed data may be originally distributed in nature, or may vary

through an indirect dependence on a common index, such in the case of

soil properties, which are a surrogate of soil types.
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Figure 4.3: Data flow in a real-time flood-forecasting system
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The software package presented here is built around the use of a

particular distributed model, and therefore it was considered that data

description should accommodate to the basin representation adopted by

the model. Therefore, the spatial structure that supports distributed data

representation is a rectangular grid. Every node in the grid is assigned a

value, following the raster format for data description proposed in the

literature about spatial information systems. The raster representation is

adequate, since most hydrological properties vary continuously

throughout the basin. A vector format does not offer a significant

improvement from the standpoint of storage requirements, and

introduces additional complications from the standpoint of computational

efficiency.

Measured and forecasted rainfall

Rainfall information should be stored in a format that can be directly

processed by the model. Rainfall information is distributed in nature.

However, some measurement schemes are based on the collection of

punctual information in a number of locations, and the application of

interpolation or other numerical procedures to obtain a continuous spatial

distribution. In other schemes, distributed information is directly

gathered in the form of digital maps from radar or satellite sensors, or a

mixed solution is adopted. In any case, maximum overall efficiency is

obtained if details about the measurement scheme are encoded only in the

rainfall acquisition module and hidden from the rest of the application.

Therefore, the format for permanent storage of rainfall information

should be independent from the original measurement format.
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Observed and computed hydrographs

Hydrographs are an important piece of information in the system.

Observed hydrographs are used by the model updating modules to

estimate basin state and correct model performance. Observed and

computed hydrographs must also be available for the end user. An

interesting aspect that differentiates observed and computed hydrographs

is that observed hydrographs have only one temporal dimension, which

corresponds to the time evolution of the observed variable, whereas

computed hydrographs are defined in two temporal dimensions: the time

dimension of the discharge and the time at which the hydrograph was

computed. Both temporal dimensions must taken into account in the data

storage system.

Basin state

The term "basin state" refers to the information needed at any time to

obtain the future basin response. The special formulation of the kinematic

model of infiltration in terms of state variables allows the computation of

basin evolution in terms of a previous state plus an incremental basin

response. Knowledge of the state variables plus the rainfall and the runoff

generation also permit to reproduce any derived concept defined in the

model. In order to characterize basin state, two types of information are

needed
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a) State variables of the infiltration model in all the nodes of the grid. The

state variables are necessary to compute the future evolution of the fronts

and obtain the runoff generation capabilities at any point.

- Position of the wetting front in the basin Nf(xy)

- Position of the top front in the basin Nt (x,y)

- Moisture content in the basin Mt (x,y)

b) Incremental hydrograph due to antecedent rainfall. That is the

expected contribution to the global hydrograph as a consequence of the

runoff generated by rainfall in the previous hours.

- Distributed runoff generation R(x,y)

- Previous incremental basin response Q, (t)

4.2.5 General management

Modules perform meaningful operations, but they are embedded in a

larger system which has more general goals than the individual goals of

each module. In addition to the proper functioning of every module, it is

the coordination of the individual modules what eventually produces a

helpful decision-support system. The general manager coordinates the

different modules and makes them compatible. The role of the general

manager is important to optimize model performance according to the

situation. The manager can schedule the tasks that it considers pertinent

given the time available for operation and the current storm situation.

Task scheduling through a manager also facilitates the possibility of

responding to user's request about the global functioning of the system,

since the role of the manager can be easily transferred to the user through

an adequate interface.



The architecture of the system is built around the common data base

shared by all modules. The operation of the modules on the database

resembles that of the blackboard architectures proposed in the literature

of knowledge-based systems (Nii, 1986). A central structure (blackboard)

supports the application data, and a group of knowledge sources can

operate on the data on the blackboard to generate more elaborate versions

of the original data. Each module is specialized on a certain type of

operation, which contributes to some aspect of the final goal. Modules take

data from the blackboard, operate on them and place their results back on

the blackboard again when they are finished.

The sequence of operations to follow cannot be specified a priori,

because it usually depends on the contents of the blackboard, but some

guidelines are known about which modules should be triggered whenever

an event occurs in the blackboard. The general manager contains the

knowledge and methodology to operate with the modules according to the

contents of the database in order to satisfy the general goals. Three

aspects of the operation of the general manager are of interest: module

coordination, time control and inter-module communication.

Module coordination

Two basic options are available to control module coordination:

centralized management and hierarchical management. In a

centralized-management architecture, all modules are triggered by a

process, the central manager. Modules also communicate the completion

of their tasks to the manager process. The manager in turn knows which

other modules should be notified of the event, and sends messages to
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them. For instance, whenever the rainfall acquisition module generates

new rainfall information, it sends a message to the manager. The

manager knows that active processes using the measured rainfall are the

rainfall forecasting module, the rainfall-runoff transformation module

and a graphic display of the user interface. It sends messages to those

processes to notify them that new information is available. The recipient

processes, which were in a dormant state waiting for that information,

get reactivated when they receive the message from the manager. They

then read the information from the database and operate on it, each one

notifying the manager when finished.

In a hierarchical-management architecture modules control one

another. Instead of a unique parent process and a group of child

processes, a tree of interrelated processes is formed, in which any process

can trigger child processes and keep control of them. The individual

modules have knowledge about which modules are affected by their

behavior, and propagate event messages accordingly. In our previous

example, the rainfall acquisition module would be the parent of the three

processes which depend on its actions, and it would send messages

directly to them whenever new rainfall information is available. The child

processes can in turn create other processes and control them through

direct messages.

Both architectures have advantages and disadvantages. The

centralized architecture provides a better control of process evolution, but

it requires a more efficient communication among the processes.

Hierarchical management is simpler, but it does not allow for closed loops

in process dependencies. In particular, it is difficult to include user

decisions about process evolution in real-time. The use of one or other type
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of management depends on the complexity of the problem and on the

nature of the relationship between modules. For simple problems in

which the sequence of operations can be specified a priori, hierarchical

architecture is an efficient and straightforward management method if

there are no mutual dependencies between processes. More complex

problems, involving decision making about task pertinence and priority

would probably require a centralized architecture, including knowledge

bases to reason about process control.

Time organization

The control of time is an important aspect of the general

management. In addition to triggering or reactivating the adequate

processes as a reaction to the occurrence of events, the manager must

also keep track of time evolution. Since the system is advancing in real

time, the time reference is dynamically changing as the storm

progresses. In order to allow for process interaction, a unified time

reference must be shared by all modules. Moreover, the system must also

be able to backtrack in time and offer images of past situations and

forecasts to compare with the actual storm evolution. If unacceptable

model performance is observed, the manager may decide to change some

model parameters, return to some previous state and continue model

evolution from there. Time organization should not be contemplated only

as a centralized control of linear time evolution, but as a branched process

in which model evolution can be interrupted at some point and reassumed

from a previous time with different model settings.



Inter process communications

Monitoring the time evolution of a flood is essentially a cyclic task, in

which several processes repeat the same activities as new data become

available or as new forecasts are required. Best use of computer resources

is achieved if those processes are run in parallel in a multiuser

environment. Management of parallelism requires that the processes

establish channels of communication between them. The UNIX

programming environment offers several possibilities for inter process

communication, which essentially represent the three basic modes for

interprocess communication: pipes, message queues and shared

memory.

The simplest mode of process communication is the use of pipes, in

which a parent process sends output to a child process, which accepts it

as input. Communication can only be established between two processes

in an unidirectional way. A message queue is a communication channel

that connects several process in a multidirectional way. All connected

processes can put messages in the queue and can retrieve messages from

it. A coding scheme enables processes to read only messages of interest to

them. A message queue can therefore support any type of inter process

communication, provided that the size of the messages passed between

processes is small. A third method of communication between processes

is a shared memory area, which is generally used when the size of the

information shared is large and access time is important. For the scope of

RIBS, a design based on either pipes or messages queues can adequately

support the required communication between modules, since messages

are usually short. A shared memory area would only be required for
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implementation reasons, for instance if different modules share large

amounts of information and the memory available in the system is

limiting. Pipe communication is adequate in a hierarchical management

strategy, where processes only receive information from their parent

process. The centralized management strategy requires a message queue,

since bidirectional communication with the manager is necessary.

4.3 RIBS prototype

This section describes a prototype implementation of RIBS built

around the distributed basin simulator described in Chapter 2. We

present a real-time operational loop that uses modeling capabilities of the

DBS to assist in real-time decision making. The goal is to use the

distributed model to monitor basin evolution during a storm and provide

detailed descriptions of basin state at the user's request. Only part of the

requirements for a real-time flood-forecasting system described in Section

4.1 are satisfied in this particular implementation. The application is not

complete, since no real-time update is contemplated, and only a very

simple coordination module is defined, but it illustrates basic capabilities

and shows how different software modules are shared by the rainfall-

runoff model, the user interface and the general manager. Model

structure and operation are designed so that the system can be easily

expanded to address other goals involving rainfall forecasting and model

updating. Modeling objectives are defined first, and then the architecture

design is presented. A description of the multiple modes of use of the



system is given in section 4.4.3, and as a first step towards code design,

the functional units involved are described in Section 4.4.

4.3.1 Modeling objectives

The objective of this prototype implementation of RIBS is to configure

a system that can operate the distributed model in real time, addressing

the issues of time coordination and easy user access to model results. The

work is focused on two areas: real-time hydrologic modeling and user

interface. The treatment of the other two areas, real-time rainfall

acquisition and rainfall forecasting is merely symbolic, but they are

included in the final package for the sake of completeness. From the point

of view of hydrologic modeling, DBS is used to fulfill two basic goals:

simulation with observed rainfall and simulation with forecasted rainfall.

Both objectives are interrelated, but they are different and involve distinct

operating procedures. The objective from the standpoint of model-user

interaction is to provide a versatile user-driven interface with enough

explanation facilities to understand model evolution in real time.

Simulation with observed rainfall provides an image of basin state up

to the current time and a forecast of the minimum streamflow that can be

expected. Given that model structure is incremental, the simulation with

observed rainfall should advance in parallel with the storm, obtaining a

new incremental basin response every time new rainfall observations are

available. Simulation with forecasted rainfall provides images of future

basin states and forecasts of streamflows for future rainfall. The user

should be able to compare the results using observed and forecasted

rainfall, to obtain an idea of how future rainfall might affect sreamflow. It
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is also useful to include in the comparison the prediction made in the last

time step, in order to appreciate the dynamics of storm evolution. The

specification for the operational use of DBS are therefore simple: DBS

should advance in parallel with the storm. Whenever new rainfall

arrives, it should compute basin evolution corresponding to that rainfall

and store results. Then, it should compute basin evolution with the

rainfall forecast and present all results to the user. At the beginning of

the next time step, the state of the basin at the end of the simulation with

observed rainfall should be recovered to continue the evolution with new

rainfall.

The user interface should have two versions, simultaneously

available to the user: a model-driven interface and a user-driven

interface. The model-driven interface must offer results as they become

available from the model. Results include at least hydrographs at

different points in the basin (defined by the user) and the state variables of

the model: position of the fronts and moisture content. Information about

measured and forecasted rainfall and runoff generation is also of interest.

Since that information is too abundant, the user should also be able to

select which of those variables are displayed at any given time, and

configure the user interface screen at his or her will.

. Another version of the user interface is also necessary. In addition to

being interested in the latest update of basin state, the user might also

want to consult basin state at a previous time, or time evolution of any

model variable. In order to get that, a user-driven interface is also

required. This interface would respond to user requests to display basin

state or any derived variable at any time up to the present, generate

hydrographs at the user's request or display the time evolution of any
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variable. Both interfaces should be easily operated through mouse-driven

menus, avoiding cumbersome text-based interaction or complex

command syntax.

To complete the system, a simple mechanisms to emulate real-time

arrival of rainfall information should also be made available. The rainfall

generation program must also include a simple module to generate

rainfall forecasts.

4.3.2 Architecture

This section describes the architecture adopted for the prototype

implementation of RIBS. The implementation follows the general

guidelines described in section 4.2. A central hydrologic database is

shared by a number of modules that operate on it. The overall design is

conceived with a workstation environment running the UNIX operating

system as target platform. Although individual modules could also run

on an advanced personal computer, the UNIX operating system is best

suited for its facilities for multitasking and interprocess communication.

Three aspects of model architecture are of interests: database

configuration, module definition and coordination between modules.

Database configuration

The term 'database' refers to all data handled by the application.

Since the volume of data involved is very large, in-memory data storage is

not feasible, and therefore an external data storage scheme is needed. The

solution adopted for external data storage is based on UNIX files. Other

209



solutions, such as a database management system or a geographic

information system are also equally feasible, but file interaction provides

the best efficiency in terms of storage requirements and access time.

Traditional advantages of database environments, such as consistency

checks, concurrency control or indirect queries are not relevant in this

particular application. Most of the interaction involves reading or writing

fixed portions of well-identified information with a stable structure, and

therefore lumping data in files is a solution adequately suited to the task.

Data are also well structured and permanent in nature, and their

organization in a hierarchy of directories is perfectly feasible. Moreover,

the use of operating system files offers the best solution in terms of

portability, since no additional software is required to handle data storage.

The solutions adopted for database organization, file naming

conventions and file format are detailed in Appendix 3. Files are of two

types: static and dynamic. Static files correspond to permanent concepts,

while dynamic files correspond to variables that evolve in time. Different

files are used to store variable values at every time. According to the

structure, two basic file formats are defined: raster format for two-

dimensional variables and time series format for hydrographs.

Additional formats for trace files are also defined, although they are not

included in the general database. Except for the time tag in dynamic files,

file names are defined by the user. The user is also free to structure files

within the directory tree according to his or her own interpretation of the

semantics of the data. Graphic tools are provided to display files of

different formats. All formats but the raster are text-based, and can be

directly edited by the user. A special compressed format was adopted for
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raster files, and convenient tools are provided to create and edit files of

this type.

Module definition

A total of seven executable modules conform the RIBS application,

organized as shown in Figure 4.4. Three groups correspond to the

hydrologic modeling area and four groups correspond to the user

interface area. The core of the hydrologic modeling area is the program

dbsim. dbsim is a distributed basin simulator that implements the model

described in chapter two. It is built to interact with the database, reading

rainfall description files and generating files describing basin state

variables and output hydrographs. Auxiliary programs are

rain-gen-gauge and pixel. rain-gen-gauge is a program that emulates

the arrival of rainfall information in real time. It reads hyetographs from

several raingauges and generates distributed rainfall maps over the basin

using a simple interpolation algorithm. rain-gen-gauge also generates

rainfall forecast, based on a simple AR(1) process. The program pixel

implements the one-dimensional model of infiltration for a soil column. It

was developed mostly for calibration purposes, in order to have a tool to

analyze the isolated behavior of one singe pixel of the basin.

The user interface area is composed of four modules. The core

program is xbview, an interactive X Windows-based application which

provides access to basin state at any given time. Auxiliary modules are

xrasgraf, xhydgraf and xpixgraf, interactive applications that present

raster files, hydrographs and pixel state to the user. User interface

applications appear on the screen as independent windows composed of a
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drawing area and a menu bar. The windows can be manipulated

individually by the user, and the user can dynamically reconfigure the

working screen according to his or her changing needs. Graphic displays

have zooming capabilities and most user interaction is mouse-driven.

Process coordination

There is a high-level process coordination, which combines the

individual capabilities of the different modules and coordinates them all

towards a concrete goal. Since the proposed model operation (simulation

with measured rainfall - writing of results - simulation with forecasted

rainfall) is very simple, a hierarchical management strategy was

adopted, and no specific manager module was programmed. However,

the design of individual modules is such that a more elaborate operational

strategy is feasible and relatively straightforward to implement.

Each module corresponds to a UNIX process. Processes are

organized in a hierarchical structure, which represents the logical

dependence between hydrologic processes. Figure 4.4 shows the

hierarchical dependency for the real-time mode of operation. The parent

process is the rainfall generator module, (rain-gen-gauge) which is

therefore the top-level manager. The rainfall generator controls the

rainfall-runoff module (dbsim) and several interface modules to display

measured and forecasted rainfall and hyetographs at selected locations.

The rainfall-runoff module controls interface modules to display results

and a real-time basin access module (xbview). Apart from that, another

basin viewer module can be started independently to access model results
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at a prior time. The basin viewer module also controls another set of

interface modules to display results.

The basic settings of the modules are specified through

environmental variables. Since in UNIX children processes inherit their

parents' environments, this solution guarantees that all processes in the

same hierarchy share the same context, in terms of paths, directories, file

ramn-gen-gauge

dbsim

Input
data
Fiur 4xbview

xrasgraf xhydgraf xpixgraf

X Server

End user

Figure 4.4: Process dependencies for the actual modules of RIBS
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names and model variables, and minimizes errors due to the use of

modules in different contexts.

Communication and control between different modules is

implemented through pipes. The parent process opens a pipe to the child

process and writes information concerning the child process into the pipe

whenever adequate. Once the child process is started, it waits for

instructions from the parent process on the standard input. The rainfall-

runoff module reads the time tag of new rainfall information, the display

modules read the name of the file to be displayed, and the basin viewer

reads the last time step finished by the process. The basic utilities

provided by the X Server are used in the interface modules to accept

simultaneous input from the screen and from the standard input, thus

allowing for interactive operation controlled by both the user and the

parent process.

4.3.3 Modes of operation

This section describes the user perspective of the prototype

implementation of RIBS. Although the intended use of the package is

real-time assistance in decision making during a flood, other user needs

should also be taken into consideration in order to configure a useful

application. We comment on the different functionalities offered by the

package, and how the same code is adapted to meet different

requirements. Four scenarios for the use of RIBS are contemplated: (1)

calibration mode, in which the model is used to perform several

simulations with the same storm data and different model parameters,

(2) simulation on line mode, in which the model in simulation mode is
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connected to the real-time data acquisition module to present results in

real time, (3) forecasting on line mode, in which the model also obtains

and presents results using forecasted rainfall, and (4) forecasting off line

mode, in which the model is run in forecasting mode, but with a pre-

existing rainfall information. The user manual included in Appendix 2

gives the specific operations required to run the model in each of these

modes. Here we discuss the user needs that each module is intended to

fulfill and the rationale behind the design.

Calibration mode

The calibration mode is the use of the distributed model in the most

simple form. The user is interested in generating effective runs of the

model with different parameters, but no monitoring of partial results is

required. The input data have been previously generated, and only a

limited number of results are of interest. Ease of operation and minimum

execution time are the relevant requirements for the calibration mode.

There are two main options to design an interface for model

calibration: interactive mode or batch mode. In an interactive calibration,

the user is presented with one or several screens in which he or she can

change model parameters according to the results. In a batch mode, the

user sets a script file with a number of prespecified runs, and checks the

results after the process is complete. Interactive calibration is adequate

for fast processes, since the user is usually waiting for results in front of

the screen. Batch calibration is intended for more complex processes, for

which the waiting time for the process to complete makes if unfeasible for

an interactive mode.
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In the case of RIBS, the response time of the model for a complete

storm is so long that the user cannot wait in front of the screen for model

results. Running the model on the background is preferable, and batch

operation was selected for the calibration mode. The goal is to allow the

user to make several simulations without having to interact directly with

the computer. With this operation scheme, the process can run on the

background of a multiuser machine without direct user supervision.

Another concern of the calibration mode is that a single run of the model

generates a number of files which require a sizeable amount of disk

space. If the user is only interested in final results, and no detailed

analysis of intermediate states is required, the abundance of output files

can be a great inconvenience and file writing operations deteriorate the

time efficiency of the model. Therefore, the calibration mode also includes

an optional inhibition of periodic writing of model results.

To facilitate the interaction between the computer and the user, the

different modules of the program are set to take arguments from the

command line, following the classic UNIX style. The user can prepare a

shell script for each model run with the adequate settings for the

environmental variables and the appropriate instructions on the

command line of dbsim. The user can optionally select the display of

model results on the screen, but model advance in this mode is usually so

fast that the time between successive updates is not enough for a detailed

analysis of model results. User access to model results is provided

through the user-driven off-line interface, the basin viewer.
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Simulation on-line mode

The simulation on-line mode consists on running the model with

data acquired in real time. Only measured rainfall is used, and the user

interface offers expected hydrographs corresponding to measured

rainfall, and a detailed description of basin state. The simulation on-line

mode is adequate when no reliable rainfall forecasting procedure is

available. The rainfall generation module and the rainfall-runoff module

should be activated. Two types of interfaces are provided for this case.

While RIBS is running, the ability to monitor partial model results is

provided by the model-driven interface, which presents results as they

become available during the simulation. Channels of communication are

available to present rainfall, basin state variables, runoff generation and

hydrographs at prespecified locations. The user can select which

information should appear on the screen as the model advances by

activating the corresponding environmental variable. The user-driven

interface can also be used by activating the environmental variable

corresponding to the basin viewer.

Forecast on-line mode

The forecast on-line mode is the final intended mode of operation of

RIBS. In this environment, the package is used to analyze input

information, generate rainfall forecast and evaluate basin response to

measured and forecasted rainfall. The results obtained from the model

are twofold. First, the user obtains streamflow forecasts in all points of

interest. Combining different future rainfall alternatives, associated to
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different probability levels, several possible scenarios can be analyzed.

Second, the model also provides information about basin state at current

and future times. Information about basin state is also very meaningful to

the decision maker, since it characterizes the runoff potential of the basin

for future rainfall. The user interface is analogous to the previous case,

and offers the possibility to explore basin state and obtain a detailed report

of several derived variables.

Forecast off-line mode

The forecast off-line mode simulates a real-time forecasting session,

but using previously obtained rainfall information. The goal is to provide

model users with an instrument to analyze and evaluate model

performance in real-time, either using previously recorded data sets or

synthetic storms. The forecast off-line mode includes the rainfall-runoff

module with the two user-interface modules. It is in practice like the on-

line mode, but changing the input channel. Rainfall file names can be

given through the standard input or read from the rainfall directory.

4.4 Functional units

We present in this section several examples of the functional units,

building blocks of the RIBS modules. The functional units represent high-

level computation blocks which are shared by different modules of the

environment. Two types of functional units are described in this section:

rainfall-runoff functional units and user interface functional units.

218



Rainfall-runoff functional units represent the behavior of physical

systems included in the rainfall-runoff simulation model, while user

interface functional units correspond to the graphic operations necessary

to display a certain type of information on the screen.

4.4.1 Rainfall-runoff functional units

There is a one-to-one correspondence between rainfall-runoff

functional units and the basic processes identified in the hydrologic

analysis of the problem, and therefore there is a strong coupling of

software design and and hydrologic modeling. Software objects represent

hydrologic entities and functional units reproduce their behavior. This

design facilitates the processes of hydrologic modeling and software

development, since both can evolve in parallel, introducing incremental

changes on previously developed concepts.

The rainfall-runoff functional units correspond to the individual

blocks of the nested operational scheme. A structure composed of three

nested loops is used, as shown schematically in Figure 4.5. The one-

dimensional model of infiltration is the basic building block of the basin-

scale runoff generation process, which, together with the routing scheme,

represent the basic model capabilities presented in chapter two. These

basic capabilities are used to evaluate basin state evolution and

incremental basin response every time step. We call that process the

"computational loop". On a larger time scale, that basic loop is repeated to

evaluate basin response to a period of uniform rainfall, in what we

designate the "rainfall loop". Another external loop (the "forecasting
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loop") can also be defined to evaluate basin response to different

alternatives of forecasted rainfall.

The one-dimensional model of infiltration

This functional unit coincides exactly with the behavior of a soil

column such as that defined in Chapter 2. The objective is to integrate

model equations to obtain the dynamics of front position and the evolution

of the moisture content of the column. The process follows three steps. In

the first step, the updated front positions are evaluated, using Equations

(2.16) and (2.17). These equations are integrated using an explicit

numerical scheme, where the values obtained in the previous step are

Figure 4.5: Organization of hydrologic functional units
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used to evaluate the, new front positions. Given the new front positions, the

infiltration capacity is evaluated according to Equations (2.28), (2.29) and

(2.30). Moisture balance is then performed, comparing rainfall to

infiltration capacity to obtain infiltration and infiltration excess runoff.

An important aspect of the unit is to control numerical issues that may

appear due to the unstable nature of model equations under certain

conditions.

The basin-scale runoff generation

This functional unit represent the process of runoff generation at the

basin scale. It involves the simulation of subsurface flow transfer among

pixels and the use of the previous functional unit to evaluate local runoff

generation at every grid point. Given the rainfall rate and the values of the

state variables in the basin, the excess runoff is evaluated in three steps.

In a first step, the disequilibrium moisture transfers QpOut (xy) are

evaluated, using the expression (2.27) for every pair of contiguous pixels.

That modifies the pixels' moisture content, but the value of their state

variables is not changed. The second step computes the evolution of every

grid point using the infiltration functional unit, and lateral flow using

Equation (2.20). Infiltration, disequilibrium moisture transfers and

upstream subsurface flow are moisture inputs to the soil columns and

downstream subsurface flow is the output from subsurface flow. The net

result is the new moisture content. If the new moisture content is greater

than soil capacity above the wetting front, return flow is evaluated as the

difference between moisture content and soil capacity, and moisture

content is set to soil capacity. Total runoff is the sum of infiltration excess



runoff and return flow. The final output is the distribution of runoff in the

basin Rf (x,y).

The distributed convolution

The distributed convolution reproduces the process of water transport

from the hillslope to the basin outlet. This unit takes the distribution of

runoff generation as an input and applies the routing process described in

Section 2.3 to obtain discharges at any point within the basin. The output

is the incremental basin response corresponding to the time step, q& (t).

The computation loop

The computation loop refers to the operations necessary to obtain the

evolution of the basin corresponding to a period At. The computation loop

has two phases:

- Evaluation of runoff in the basin R& (xy).

- Evaluation of the incremental response qAt (t) for every location of

interest.

The result of the computation loop is the incremental hydrograph in

points of interest plus the evolution of basin state during the time step.

The rainfall loop

Rainfall loop is the processing of basin evolution and incremental

response for a period of constant rainfall intensity. The rainfall loop is

invoked every time new rainfall information becomes available. It is
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assumed that the time of validity of rainfall TR is considerably larger than

the computation time step. Therefore, the core of the rainfall loop is the

simulation of basin evolution repeating the computation loop. However,

other elements are required as preprocessing or postprocessing

operations of the rainfall loop.

The first operation required is the activation of the loop. Since the

system is supposed to run in real time, a mechanism must be established

to trigger the rainfall loop whenever new rainfall becomes available or a

higher-level controller decides that the evaluation of a rainfall loop is

pertinent. Once the process is started, the sequence of operations to follow

is simple. First, information about the new rainfall must be obtained. The

information required basically refers to time span of validity of the rainfall

and details about how to read it (namely, file name if the implementation

adopted is a file system). Once rainfall is read, the basin state

corresponding to the time of beginning of the rainfall loop must be

recovered from the data base. Timing compatibility has also to be

considered, since only an integer number of cycles can be evaluated. This

involves either the decomposition of the time of validity of rainfall in an

integer number of computation time steps or the comparison of the time

span of the rainfall with a simulation clock to obtain an acceptable

approximation in terms of number of cycles. The computational loop is

then invoked, and, once finished, basin state and incremental response

may be stored for later use if needed.
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The forecasting loop

The forecasting loop is the processing of basin evolution and

incremental response for one or more alternatives of estimated future

rainfall. It is an outer loop built over the rainfall loop. A rainfall forecast

is composed of an ordered sequence of one or more rainfall values over

time. A rainfall loop is defined for every rainfall value in time. However,

two aspects are different. First, the forecasting loop considers rainfall in

the future, and therefore the validity of that rainfall is known a priori.

Secondly, it loops over different rainfall alternatives for different moments

in time.

4.4.2 User interface functional units

Since the user interface is intended to support communication

between the user and the rainfall-runoff model, it is built upon the

hydrologic functional units. However, specific functionalities are needed

to allow for interactive access to model results. The functional units of the

user interface are therefore the graphic tools that present model results

on the screen. In addition to low-level capabilities common to all

interactive graphic systems, the user interface requires high-level tools to

display persistent objects stored in the database and software objects

maintained in memory by the system. The interface is built upon three

basic types of display: pixel display, hydrograph display and basin display.



The pixel display

The pixel display presents a graphic display of the state of a soil column,

according to the one-dimensional model of infiltration presented in

Chapter 2. It is the graphical presentation of the Pixel software object,

discussed in Section 5.2. The pixel display represents the variation of the

moisture profile with depth, including initial moisture content and

moisture infiltrated during the storm. The profile also presents the

position of the fronts and the value of the saturated moisture content. An

example of the pixel viewer is presented in Figure 4.6. It can also generate

a cross-sectional view of the hillslope, representing streamlines of

infiltrating flow and displaying the position of the wetting front, the top

front and the water table.

Wetting front Top front

Figure 4.6: Example of a pixel display
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The hydrograph display

The hydrograph display is a graphic tool to display the time evolution

of several hydrologic variables on the screen. In is the graphical

presentation of the hydrograph objects stored in the database. Every

variable represents a hydrograph at a point, and is composed of two

values: rainfall in the contributing area and streamflow at that point.

Streamflow is represented as a line on the lower plot, while rainfall is

represented as a bar chart on the upper plot. Both time axes coincide.

Each variable represented is assigned a color code. An example of the

Fornacina(neas.rain)Fornacina(prev.step)
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Figure 4.7: Example of a hydrograph display
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The basin display

The basin display is a graphical display of the spatial distribution of a

variable. It is the graphical presentation of the raster objects stored in the

database. The values of the variable are represented as contour bands

using a color code, following a user-defined color palette and scale. The

color code is presented to the left of the graph, with a histogram of

frequencies of occurrences of every color. Figure 4.8 Shows an example.

Figure 4.8: Example of a basin display
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CHAPTER 5

Software Design of the
Distributed Basin Simulator

This chapter is dedicated to the discussion of the implementation of

the distributed basin simulator within the framework of RIBS. Software is

developed in C language for an engineering workstation running the

UNIX operating system. An overview of the design of the system is

presented first, highlighting system components and their behavior.

Then, a detailed description is given of the high-level software

components of the simulator. A detailed presentation of software

implementation is given in Appendix 5.

5.1 Design overview

This section presents an overview of the different components of the

software system that implement the distributed basin model. A brief

description of the software development methodology is given first, based

on the definition of software objects as elementary building blocks of the

system. The design process combines software and hydrologic model

development, in a sense that the final result is not an application which

satisfies a list of goals, but a software environment that can be used and

manipulated in a number of ways to satisfy concrete requirements. In the
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second part of this section, the structure and behavior of the four main

software objects that implement the distributed model are presented.

Software objects coincide with physical objects, meaningful to the

hydrologist. The building blocks are self-contained, reusable and

interchangeable. The software objects are shared by several modules, and

software development takes care of maintaining multiple compatibility

with all of them.

5.1.1 Programming methodology

System design followed the object-oriented methodology. The term

"object-oriented" identifies a design and programming methodology

centered around the notion of object, as opposed to other methodologies,

such as structured programming, traditionally centered around the

notion of function (Booch, 1991).

An object-oriented design approaches the solution to a problem

through the definition of a set of objects which are structured as a

hierarchy of entities sharing common properties and behaviors through

inheritance. Objects are internally characterized by their data structure,

which is private, and externally characterized by their behavior, which is

public. The data structure is a list of variables or other objects. The

behavior of an object is a list of functions which operate on its data

structure. For instance, the object Matrix has a data structure containing

information about dimensions and values. Its behavior would include

operations such as sum, multiplication, rank, transpose, etc. In an

object-oriented environment, both aspects, structure and behavior, are

intimately coupled forming a unique entity.
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Object-oriented techniques are usually associated with many specific

terms, such as class, message, data abstraction, encapsulation,

inheritance, etc., but two basic notions are crucial for the idea of object-

oriented programming (Stefik and Bobrow, 1986):

- The idea of building a large system as a collection of individual entities

with clearly defined boundaries to isolate them and standard protocols

for communication. We use the generic term "encapsulation" to refer

to this idea, although other words such as "data abstraction" are also

related to it.

- The idea of structuring those entities in such a way that new objects

can be derived from existing ones, specifying only the differences. This

concept is usually called "inheritance". For instance, the notion of

SquareMatrix can be derived from the notion of Matrix, specifying

restrictions on the dimensions and adding new operations, such as

inverse, trace, eigenvalues, etc.

The object-oriented approach in software development implements

the classical "divide and conquer" strategy to overcome in part the

inconveniences inherent to large software systems (Cox, 1986). The idea of

the decomposition of a big system into smaller parts has been around in

the software development community for many years under several

different approaches. The main difficulty identified in practice for these

design techniques has been the fact that a reduction in the size of

elementary tasks to be performed is almost inevitably accompanied by a

parallel increase in the complexity of the interactions among them. This

is the problem addressed by the object-oriented approach. The division

strategy is centered around "objects", as opposed to more traditional
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software development techniques, where the division strategy is centered

around functions or procedures. Rather than defining functions which

call each other passing data as arguments, object-oriented methodologies

define objects which interact sending messages to each other. Each object

responds to a message performing a certain function included in its

behavior. The main goal is to keep the interactions among the individual

components (objects) under a strict control through protocols for message

passing.

To design an object means defining a set of data together with some

operations which can access those data and provide information to the

rest of the application. The object integrates both data and procedures, as

opposed to the traditional approach of treating data and procedures

separately. Data contained in an object are private. They can only be

accessed through the operations previously specified to read or modify

them, so that unexpected side effects are kept under control. These

operations are the effective channels of communication among the

different objects which conform the entire system. Although objects may

correspond to abstract notions, the objects considered in RIBS have

physical meaning, and the operations defined for them correspond to

their real behavior in the physical world.

The flow of information among objects is implemented through

"messages". A message can be understood as a function call. Whenever

an object in the application needs to interact with another one, it sends a

message to it. The recipient object responds to the message performing

the operation requested. The advantage of this approach is that the caller

does not have to know anything about the particular implementation

details of the object it is dealing with (except, of course, that the
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functionality requested is in fact implemented for that object). An

application can obtain the inverse of a matrix just passing the message

"inverse" to the matrix. The implementation details of any particular

object are encapsulated inside its internal structure and are only

accessible to the caller through the object's specific procedures.

The objects of an application can also be structured into a hierarchy

of classes. Classes are the unit of modularity in an object oriented system.

A class describes the generic characteristics of a group of objects.

Individual objects in the application are particular instances of the

abstract concept represented by the class. The relation between a class

and an instance is similar to that between the concept 'river basin' and

the Sieve catchment. The operation of defining an instance of an object is

called "instantiation". It can be seen as defining a variable of a given type.

An instance matrixa of the class Matrix is an area in the memory which

stores a data structure of the type Matrix, just as the variable foo can store

a double precision floating-point data structure. The significant difference

is that the definition of Matrix also includes a list of operations that know

the data structure and operate on it.

From the standpoint of software engineering, the main benefit of the

object oriented-programming paradigm is the potential for software

reusability. Encapsulation provides a mean of isolating the objects within

a system, so that if they change, other parts of the system can remain

unchanged as long as the previous functionalities are maintained. In

principle, the internal organization of the Matrix class can be changed

without having to recompile all the applications using it.
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From the standpoint of physically-based modeling, object-oriented

design provides a way of mapping the hydrological analysis of the problem

into the software design of the application. A natural design identifies the

components of the physical system with the software objects in the

application. Great potential benefits can be obtained from the

identification of the entities manipulated by both processes, hydrologic

analysis and software design. Modularity also allows for several

approaches to the same hydrologic problem from different points of view,

manipulating differently the same concepts, represented by software

objects. Object-oriented design provides a mean of sharing common data

structures and functionalities among objects which have similar

characteristics.

The functional units discussed in Section 4.4.1 were the functional

design objectives for the distributed basin simulator. According to the

functional analysis, four main objects were identified as high-level

Simulator

Basin Gauge

Figure 5.1: High-level components of the distributed basin simulator
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components of DBS: the Pixel object, the Basin object, the Gauge object and

the Simulator object. Other objects are also necessary in the design as

auxiliary data structures with specific functions, but these four objects

constitute the core of DBS's architecture. Figure 5.1 shows the mutual

relations among them. The Pixel object represents a soil column as that

described in Chapter 2, and performs the local runoff generation. The

Basin object represents the collection of individual pixels as a whole, and

takes care of the spatial interactions in runoff generation. The Gauge

object controls surface water transport in the basin. The Simulator object

controls global model inference and is responsible for input/output

operations.

5.1.2 The Pixel object

The Pixel object implements the behavior of the soil column. Figure

5.2 represents its object diagram, including internal variables, related

objects and types of methods defined for it. The notation for the object

diagram follows the conventions proposed by Rumbaugh et al. (1990).

Objects are represented by a round-cornered rectangle with class

denomination on top of it. The upper half of the rectangle describes the

data structure and the lower part of the rectangle describes object

behavior. A hollow circle represents a one-to-one relationship, and a solid

circle represents a zero-or-more relationship, meaning that the parent

object may have none, one or more children of that type.
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Data structures

The Pixel object uses two auxiliary data structures: the StVars object

and the GlobData object. The StVars object contains information about the

state variables of the model, and is the core of pixel representation. The

GlobData structure actually belongs to the Basin object, but it is also made

available to the Pixel object, It contains information about pixel properties

which are uniform throughout the basin.

The Pixel structure contains pointers to state variables and global

data structures and other variables regarding the soil column. The

variables in the Pixel structure are of two types: pixel properties and

deduced variables. Pixel properties represent static attributes of the pixel

Figure 5.2: Structure of the Pixel object.
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(values which do not change during pixel evolution), such as soil

properties or topographic and geometric characteristics. Deduced

variables represent dynamic attributes of the pixel. They are either

boundary conditions, imposed by the neighboring pixels or the external

forcing, or derived values that can be obtained from the state variables and

the static properties. This last group would be more naturally represented

in an object oriented environment through return values of behavior

functions, but their inclusion in the Pixel data structure is justified by

reasons of computational efficiency.

Object behavior

The behavior of the Pixel object is represented through its member

functions. Pixel behavior implements the one-dimensional model of

infiltration described in Chapter 2, and it is described in detail in Section

5.2. Here we present an introduction of the groups of functions included.

There are three types of member functions in the Pixel object:

-Behavior functions: This group of functions implements the evolution of

the pixel during a computation time step. Behavior functions do not

return any value, but they generate side effects. They operate on the pixel

data structure modifying the values of one or several internal variables.

Examples of behavior functions are the computation of front evolution or

moisture balance in the soil column.

- Auxiliary functions: Auxiliary functions perform basic operations

needed by behavior functions. They refer to entities whose computation

involves enough complexity to justify a function call, but whose use is not

regular or frequent enough to justify a variable. They return a value, but
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they do not have any other side effect. Examples of auxiliary functions are

those that return the moisture content at a given depth, the equivalent

rainfall rate, the saturation level for a given rainfall rate, etc.

- Virtual variables: Virtual variables represent attributes that can be

directly obtained from the state of the pixel. This group of functions is

mainly intended for the user interface, and their number and complexity

is a function of user needs. Virtual variables return a floating point value

and do not have any side effects. Examples of virtual variables are the

surface infiltration capacity, the degree of saturation or the moisture

deficit until saturation.

5.1.3 The Basin object

The Basin object represents the aggregation of individual pixels that

conform the river basin. A schematic representation of the structure of

the Basin object is shown in Figure 5.3.

Data structures

Auxiliary objects for the Basin object are: GlobData, SoilData, Map

and BasinTrace. The Basin object stores global basin variables, the values

of the input, output and state variables of individual pixels, and

information about the topological relationships among them. It also

contains the necessary information to provide trace information at

different levels for debugging purposes. These different data groups are

briefly commented hereafter.
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The description of basin properties is represented in two data

structures: a GlobData structure and a list of SoilData structures.

GlobData contains global attributes which are assumed constant

throughout the basin, such as routing velocities or anisotropy ratio.

Attributes can be transferred easily between the GlobData group and the

list of distributed variables, since its definition is encapsulated in the

Basin object. This gives flexibility to the basin representation. SoilData

contains values of soil properties for a given soil type, such as saturation

Figure 5.3: Structure of the Basin object.
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moisture content or hydraulic conductivities. The assumption that soil

characteristics of individual pixels can be grouped in soil types is made,

and therefore only a limited number of soil types is needed to represent all

pixels in the basin. The information about different soil types is contained

in the SoilData structure within the Basin object.

The Basin object also groups distributed information about individual

pixels. In a pure object-oriented environment, the Basin object would

manage a list of Pixel objects, each one representing a single pixel

element. However, the large number of pixels in a particular basin means

large memory requirements to handle objects representing individual

pixels. Since pixels can be processed individually, the solution of keeping

only one Pixel object was adopted. During the computation loop, the Pixel

object gets successively reinitialized with values corresponding to

particular pixels. Permanent pixel properties and state variables are

stored in the Basin object in the form of arrays. In order to optimize

memory requirements, the topological structure of the basin is stored in a

Map object. The map keeps track of the spatial distribution of pixels and

provides utility functions to relate row and column index in the grid with

pixel position in the arrays.

Trace functions are performed by the Basin Trace object. The

BasinTrace object stores detailed information about how runoff generation

is distributed throughout the basin, both in terms of number of pixels in

every possible runoff-generating state and volumes of runoff generated by

pixels in every state. Since tracing is expensive in terms of resource and

computational requirements, the creation and processing of the trace

object is optional.
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Object behavior

The Basin object performs two basic functions: it manages storage

and retrieval of information regarding basin characteristics and state,

and evaluates the distribution of runoff generation over the basin.

Auxiliary functions are also available for the Basin object to initialize the

Pixel object, create trace objects and for general memory management.

The related objects (Map, BasinTrace) also perform specific functions

The information management functions are in charge of storing and

retrieving information regarding individual pixels. They basically

initialize the Pixel object for every soil column in the basin and store the

results offered by the Pixel object in the Basin data structure. The runoff

generation behavior of the Basin object is decomposed in two member

functions: parajflowloopO and hillloopO. parajflowloopO implements

the computation of moisture transfer between pixels due to lateral

disequilibrium of moisture content. hillloop0 implements the runoff

generation loop, including moisture transfer between elements in

homogeneous terrain. Both functions loop over the individual pixels in the

basin, initializing the Pixel object and applying the pertinent member

functions. The BasinTrace object offers optional update functions and

result dumping.

5.1.4 The Gauge object

The information about routing is stored in Gauge objects. A gauge

represents a point in the basin where discharges are to be computed. The

basin usually contains several instances of the Gauge object, one for every
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point in which information about streamflow is required. Figure 5.4

shows the internal structure and behavior of the Gauge object.

Data structures

The Gauge data structure contains basic information about the

gauge, such as location of the outlet, denomination and maximum

distance of travel, and three auxiliary data structures: RoutingMap,

Results and GaugeTrace objects. The RoutingMap object is a data

structure that contains the topological information of the contributing

RoutingMapF e Su u e Gagubet

-Upstream pixels -Lcto ytgah
-Gauge distance 0-Gnrldt yrgah

- Create-BeairfntosUde

Gaugrae

-Ueerldata
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area to the gauge location. The Results object stores several hyetographs

and hydrographs corresponding to the area upstream of the gauge

location. The GaugeTrace object provides additional information about

how streamflow is generated: time evolution of the different modes of

runoff generation.

Object behavior

The Gauge object implements the distributed convolution operation

for the catchment upstream the gauge location. It uses the runoff

generation information stored in the Basin object for every pixel and

routes it to the outlet. That basic functionality of the Gauge object can be

used by any client object. For instance, the Simulator object need only to

apply the routing function at high level for every instance of the Gauge

object in the basin. That is equivalent to routing for each gauge point

independently. The user interface can offer custom-made hydrographs at

any location within the basin because it only has to create a Gauge object

at that location and use its routing functionality. Gauge also implements

other functionalities needed by the user interface, such as unit

hydrograph evaluation or routing of individual pixel responses. The

Gauge object also creates and destroys instances of RoutingMap, Results

and GaugeTrace as needed. The GaugeTrace object can be activated to

produce a decomposition of runoff in different modes.
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5.1.5 The Simulator object

The Simulator object deals with the high-level managing of

simulations using the functionalities provided by the Basin and the Gauge

objects. In addition to governing the real-time operational loop, the

simulator is in charge of keeping track of time control and of performing

the input/output operations. Figure 5.5 shows an schematic

representation of the Simulator object.

Data structure

Auxiliary data structures for the Simulator object are a Timer and

an input/output data structure (object IOdata). The Timer objects includes

Timer

- Timing data

Figure 5.5: Structure of the Simulator object.
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information about start and end time of the simulation, computation time

increment, result time resolution, current time, etc. The input/output

data stores information about paths and file names for the different types

of data involved, number and locations of gauges, special settings for

output display in the user interface and file pointers for reading and

writing.

Object behavior

The behavior of the Simulator object covers two basic functionalities:

data handling and simulation control. The data handling operations

cover file reading and writing and interactions with the other elements of

the real-time system (communications with the rainfall generation

module and with the real-time interface). The read and write operations

are decomposed into several independent functions which may be called

from different contexts, thus providing flexibility to the scheme.

The simulation control refers to the management of the operational

loop. The three functional units related to basin simulation: computation

loop, rainfall loop and forecasting loop, are the basic tasks of the

Simulator. The simulator uses the functionalities of the Basin and Gauge

objects to simulate basin evolution according to the rainfall information

received. Since the duration of rainfall intervals is not specified a priori,

the simulator operates in an open loop, making decisions about reading

and writing information according to the information received from the

rainfall control module. The simulator is also in charge of creating and

controlling its children objects, such as Basin and Gauge, reserving and

releasing memory for them.
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5.2 Implementation of the 1-D model of infiltration

The one-dimensional kinematic infiltration model presented in

Chapter 2 is implemented in the Pixel object. The Pixel object is the core of

the DBS application, since it carries out the most significant part of model

inference. The Pixel object represents the state of a soil column, and it is

the local evolution of soil state that controls the patterns of runoff

generation throughout the basin. Furthermore, since the number of

pixels in a basin is typically of the order of several thousands,

implementation details of the Pixel object are extremely important in

terms of overall model efficiency. This section presents a discussion of the

solutions adopted to implement the basic functional unit of the

application, with special attention focussed on the numerical scheme

used to integrate model equations and the treatment of potential model

instabilities.

5.2.1 Methods of the Pixel object

The methods of the Pixel object can be classified in three main

groups. The functional unit assigned to the pixel object, the one-

dimensional model of infiltration, is implemented in the behavior

functions group. Other model equations of internal interest to the Pixel

object are grouped as auxiliary functions. The third group consists of

descriptive functions that are used by the user interface to offer

information about pixel state through the concept of virtual variable. We

only discuss behavior functions in detail, since the implementation of the

others is straightforward.
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Behavior functions

Behavior functions are those that implement the one-dimensional

kinematic model of infiltration for the pixel. They are offered to client

objects as external images of pixel behavior. A external client is only

interested in the apparent behavior of the pixel, such as runoff generation

or front position, but not in internal details of pixel evolution, such as

front speed. Behavior functions deal with the implementation of front and

moisture dynamics for the pixel and with the verification of model results,

checking for consistency among the values of all variables at the end of the

computations. The final outputs are the new values of state variables in

the pixel and its runoff generation. The implementation of behavior

functions is discussed in Section 5.2.2.

Auxiliary functions

The auxiliary functions provide convenient computation of several

magnitudes. They are intended for use only by the pixel object, not by

external clients. They are usually straightforward implementations of

model equations or formulas, which are defined as functions because they

appear frequently in different contexts. Examples of auxiliary functions

are ReO, which returns the equivalent rainfall rate for a given

unsaturated moisture content, MuO, which returns the unsaturated

moisture content, ThetaO, which returns moisture at a given level, etc.
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Descriptive functions

Given the parameterizations adopted by the model to describe the

vertical distribution of moisture, only three variables are needed to define

pixel state at any given time: position of the top and the wetting fronts and

moisture content. Descriptive functions offer derived magnitudes that can

be inferred from the value of the three state variables plus the intensity of

runoff generation. They are typically used by the user interface to offer

information about pixel state. Variables such as the degree of saturation

of the soil column or the infiltration capacity at the surface can be offered

to the user as a clarification of the practical implications of pixel state at

any given time.

5.2.2 The one-dimensional model of infiltration

The main behavior function of the Pixel object is hillpixO, which

computes pixel evolution and runoff generation for a soil column,

following the model presented in Chapter 2. Model equations are

formulated in terms of three state variables: wetting front position, top

front position and moisture content. Evolution equations are available for

the three state variables. This discussion deals with the specific problems

that arise when a numerical integration of model equations is attempted.

Two important issues arise in the basin-scale implementation of the

model. First, the solution of considering an equivalent rainfall rate to deal

with variable rainfall rates has important implications on the numerical

stability of the model. Second, the spatial patterns of drainage in a river

basin lead to subsurface flow accumulation in many points. For those grid
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elements that represent points of aggregation of subsurface flow, the

inflow is usually larger than the outflow, and the moisture evolution

equation may be dominated by the subsurface term. If that is the case, the

numerical stability of the model may also be affected, because it was

conceived for the case in which the vertical infiltration is dominant.

Model equations are solved in three consecutive steps. In the fist step

(function frontevolutionO), front dynamics are solved using an explicit

finite difference scheme. State-variable values at the beginning of the time

step are used to evaluate the coefficients in the equations, and proposed

values for the positions of the fronts at the end of the time step are

obtained. In the second step (function moistevolutionO), moisture

balance is performed, using the updated front positions to evaluate local

infiltration and subsurface outflow. The result is the new value of the

moisture content of the pixel. In the third step (function comp-runoff0)

the compatibility of front positions with the new moisture content of the

soil column is tested and the runoff generation in the pixel is evaluated.

Front dynamics

Front evolution equations are integrated using an explicit finite

difference scheme. The coefficients of the equations are evaluated using

the values of the state variables at the end of the previous time step. If the

integration time step is At, the value of the wetting front position for

unsaturated infiltration at time j+1 is given by

j+1N( i - R , ) cos(a)
Nj+ = Nf +I . 'At

f O(Re , NJf) - 9(Ri , Njf) (5.1)
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where the superscript represents the time step at which variables are

evaluated.

For saturated infiltration, two similar equations represent the

integration scheme for the wetting and the top front:

-+1 gq - R, cos(a)
Nj= N + - . At

O, - (Ri , Njf) (5.2a)

. - R cos(a)
Nj+1 = N +4 .- At

9,-e(R ,Nj) (5.2b)

where qa is the normal infiltration in the saturated area, evaluated as

f (Nj- N )
g= KO. cos(a)

e -e (5.3)

This integration scheme leads to very good approximations under most

conditions, since state variables change very slowly during a storm. There

are circumstances, however, under which the explicit scheme is

inaccurate or unstable, and additional precautions have to be adopted.

The explicit numerical scheme is inadequate when the normal

gradients of the equivalent moisture or the initial moisture content are

large. The unbalance between normal infiltration flow above and below

the front is translated into front advance via the difference between

moisture contents below and above front position at the end of the previous

time step. In reality, it is the integral of the difference between moisture
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functions what should be taken into account. If that difference varies

considerably from the initial to the final position of the front during the

time step, the approximation given by the numerical scheme is poor.

These situations are likely to occur when either the equivalent or the

initial moisture content are close to saturation, since the gradient of the

moisture function grows with depth. That translates into a very small

denominator in Equations (5.1) or (5.2) that leads to numerical

instabilities. Model implementation checks for that situation and applies

alternative numerical schemes when that occurs. The case in which

saturation develops in the pixel can be solved explicitly. When Nfj+l>

N*(Rei) saturation develops in the pixel. In this case, the evolution of Nt

may be obtained by taking the limit in Equation (2.17b) when Nt

approaches Nf and N*. Substituting 6(R,Nt) and qn by their respective

expressions (Equations 2.7 and 2.12) and taking limits in (2.17b) we obtain

dNt e R cos(a)
Nt wN* dt es-0r (5.4)

Other cases of small denominator are solved iteratively. The scheme

applied is based on substituting 6(Rei,Nl) on Equation (5.2a) by the

6(Rei,Nfi) + 6(Rei,NfI+1)
average 2 . The resulting implicit expression is

solved iteratively until a satisfactory value for N1+1 is obtained. Since only

a few pixels are in this situation, the overall computational efficiency of

the scheme is not affected by the iterative solution. A small denominator

in Equation (5.1) can also occur when Re is very close to Ri, but in this case

the numerical scheme is adequate because both functions are similar

along all the profile.
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After front evolution has been computed, additional checks are

performed to verify two basic constraints. First, the wetting front should

not get deeper than the water table. Normal infiltration capacity below the

water table is effectively null, because the water table position is in

equilibrium with inter-storm subsurface saturated flow. Therefore, when

the wetting front reaches the water table its position remains constant

and the infiltration flow below it is now zero. The net effect is a local rise

in the water table (the saturated area) in the pixel, since moisture now

accumulates above the wetting front. The evolution equations used when

the wetting front reaches the water table are

Nj+= NI (5.5a)

.+ Re cos(a)
Ni NJ-. At

s -- 0(Re,Ni) (5.5b)

The second check deals with the relative position of Nt and N*. N* is

the level at which the equivalent moisture profile Re reaches saturation,

and is given by Equation (2.9). In the original model formulation the

rainfall intensity is a constant, and therefore front evolution equations are

obtained considering that only Nf and Nt change with time (see Cabral et

al., 1990). If R is substituted by an equivalent rainfall intensity Re to deal
dRewith variable rainfall, model equations should in theory account for .

That is extremely difficult in practice, since no analytical expression is

available for Re. However, Re changes very slowly during the storm, and
dRe has little effect of front evolution and is usually negligible.
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Nevertheless, there is one case under which the variation of Re has

important consequences, and that is when Nt is near N*, because the

application of the explicit scheme to obtain the evolution of Nt may lead to

a position of Nt incompatible with the value of Re in the next time step. Nf,

Nt and N* must always satisfy the relation: Nf k N* 2 Nt. Lack of accuracy

in the numerical scheme may lead to a value for Nt+l < N*(Re+1).

Therefore, the value obtained for Nt must be checked to correct this

inconsistency.

The function frontitransitionO, which computes the values incrNf

and incr _Nt (rates of change of Nf and Nt during the time step)

implements the numerical scheme described above. The function

differentiates five basic pixel states. Interesting situations arise whenever

the pixel changes from one state to another, since state transitions are

usually associated with numerical instabilities. The function first verifies

pixel state, and applies the equations corresponding to that state to obtain

front evolution. It also controls the possible state transitions to guarantee

numerical stability. The actions for every state are as follows.

-Unsaturated pixel: It is characterized by N=Nt. The evolution of both

fronts is evaluated considering Equation (5.1). Transitions out of this state

may be due to three factors. The most usual transition is to the saturated

pixel state, and is marked by Nf becoming greater than N*. The second

transition represents the emptying of the pixel, and is marked by Re

becoming less than Ri. In this case, the state variables are reset to their

initial values. The third possible transition occurs when the wetting front

reaches the water table. If the water table is located at the saturation level

for the initial moisture content, this transition is not possible, since the

pixel should become saturated first.
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- Perched-saturated pixel: In this situation 0 < Nt < Nf. Governing

equations for front dynamics are (5.2a) and (5.2b). Transitions out of this

state may lead to any other state. Transition to the unsaturated state

occurs when Nt becomes equal to Nf. Transition to the surface-saturated

state occurs when Nt reaches the surface. The pixel may also reach the

deep-saturated state if the wetting front reaches the water table before the

top front reaches the surface. This transition is also numerically

unstable, since the numerator of Equation (5.2a) becomes zero. A

numerical stability check is performed in this situation. Finally, although

it is extremely unlikely, this pixel may evolve to a fully-saturated state if

the top front reaches the surface and simultaneously the wetting front

reaches the water table.

-Deep-saturated pixel: This situation is characterized by 0 < Nt < Nf = Nwt.

Front evolution is governed by Equations (5.5.a) and (5.5b). The pixel may

evolve to a fully-saturated state when the top front reaches the surface or

to an unsaturated state if the top front reaches the water table. If the

initial moisture content leads to saturation at the water table, this

transition means that the pixel has dried out, and therefore the state

variables are reset to 0.

- Surface-saturated pixel: A pixel is surface-saturated if 0 = Nt < Nf < Nwt.
dNt

Front evolution is governed by Equations (5.2a) and (5.2b), applying & = 0

in case Equation (5.2b) gives negative front velocity. Possible transitions
dNt

are to the perched-saturated state if d > 0 in Equation (5.2b) or to fully-

saturated state when Nf becomes grater than Nwt.

- Fully-saturated pixel:In this situation 0 = Nt > Nf = Nwt. Unless

moisture outflows are greater than moisture inflows, front situation is
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static. The only possible state transition is to a deep-saturated state, when

Nt becomes greater than zero.

Moisture balance

Once front evolution has been computed, the equation for moisture

evolution in the pixel is solved in the function moisevolutionO. The

updated front positions are used to obtain moisture inflows into and

outflows from the pixel, in order to evaluate more accurately the moisture

balance. Moisture evolution is given by the numerical approximation of

Equation (2.33):

( +1 +1

+ 1= + (Rjd + (4 Att At+ 1  t At (5.6)

Rinf is the infiltration rate, given by the comparison of rainfall intensity in

that time step with infiltration capacity. Infiltration capacity is obtained

as a function of surface hydraulic conductivity and front position,

according to Equations (2.28), (2.29) and (2.30). Qin is the sum of

subsurface inflows into the pixel, obtained as a result of computations for

the upstream pixels. Qout is the subsurface outflow from the pixel,

obtained as a function of front position applying Equation (2.20). The only

numerical check that needs to be done is the verification that the storm

moisture content is positive. If outflows are larger than inflows for a given

time step, moisture content decreases during that time step. If moisture

becomes negative it means that the pixel has dried out. In that case, the

value of Qout is corrected and the pixel is reset to the initial condition.
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Runoff evaluation

The last step in pixel computation is the evaluation of runoff,

implemented in the function comp-runoffO. Two types of runoff are

considered: Hortonian runoff and return flow. Hortonian runoff is

obtained comparing rainfall intensity and infiltration capacity. Return

flow is generated if inflows into the pixel exceed the water holding

capacity of the soil column. If the total moisture content of the pixel is

higher than that corresponding to total saturation above the wetting front,

return flow is generated

Total moisture content Mt above the wetting front is the sum of the

moisture content corresponding to the initial condition Mi and the storm

moisture content M.. Mi is given as the integral of the initial moisture

profile from Nf to the surface

Mi= f9(Ri , n) dn
0 (5.7)

and Mg is given by Equation(5.6). The maximum water-holding capacity of

the soil column is Mmax = 6,Nf cos(a). Therefore, return flow is given by

Rr=M - OSNf if Mt> OSNf
cos(a) cos(a) (5.8a)

Rr=O if Mt< OSNf
cos(a) (5.8b)
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If return flow is generated, the moisture content is set to

M= -S f_ 4cos(a) (5.9)

State verification

The algorithm described above works well for most conditions. There

are, however, certain cases for which the consecutive application of front

evolution and moisture balance equations leads to inconsistent results.

These situations are frequent in pixels with shallow water table or high

anisotropy ratio. A number of verifications are performed in the last step

of the pixel response function. Most problems are usually related with the

equivalent rainfall rate. After the new front positions and moisture

content have been evaluated, it must be checked that Re > Ri and that Nt <

N*.

Re is obtained as a redistribution of the moisture content in the

unsaturated area Mu. Mu is the moisture above the wetting front, and it is

given by

MU= M, (Nf - Nt)

cos(a) (5.10)

Re is then given by Equation (2.19). If the resulting Re is smaller than Ri,

the actual moisture distribution in the pixel does not coincide with that

assumed by the front evolution equations. This situation may appear in

pixels with high anisotropy ratio, for which the dynamics of the pixel are

dominated by subsurface lateral flow, rather than by normal infiltration.
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If the saturated profile (Nf - Nt) is large compared to Nt the subsurface

outflow from the pixel may be significant. Subsurface outflow does not

affect directly the position of the fronts; only in the next time step will the

decreased moisture content affect the front evolution equations. Therefore,

it is possible to find a perched-saturated pixel with a large saturated area

that finishes the time step with an empty unsaturated area. The solution

adopted in this cases is a compromise. The top front position is lowered in

order to extract moisture from the saturated area and fill in part the

unsaturated portion of the soil column. Since only an extremely small

fraction of the pixels during all time step are in this situation, this

solution does not affect the overall behavior of the basin, and is only used

to maintain the simulation within physically meaningful limits.

Another possibility is that the evolution of the moisture content lead

to an excessive moisture in the unsaturated area. This is the opposite of

the situation discussed previously. Here subsurface inflow is the

disturbing factor, and the consequence is that the moisture content in the

unsaturated area cannot be accommodated above the top front. That is

equivalent to having N* (saturation level for Re) above Nt. The solution

adopted is to move up the position of the top front until a value of Mu is

found that satisfies the restrictions. A trial and error iterative procedure

is used to get the new value of Nt.

5.3 Implementation of basin response

The simulation of basin response in the Distributed Basin Simulator

is divided in two independent procedures: runoff generation and flow
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routing. This section deals therefore with the implementation of the two

functional units: basin-scale runoff generation and distributed

convolution, related to the mentioned procedures. The first one is

associated with the Basin object and the second one is associated with the

Gauge object.

5.3.1 Implementation of runoff generation

The Basin object implements the evaluation of runoff generation at

the basin scale. The basin is an organized collection of pixels, related

through the link 'drains to'. The behavior of individual pixels is

implemented in the Pixel object, and therefore, all the Basin object has to

do is apply the functionalities of the Pixel object and take care of the

connectivity between pixels. Two kinds of methods are of interest in the

Basin object: administrative functions, which are necessary for

management of children objects (creation, destruction, memory allocation

and release, etc.) and behavior functions, which implement the basic

functionalities for client objects.

Administrative functions

The functions initjpixelO and end-pixelO are the links between the

Basin and the Pixel objects. A basin is typically composed of several

thousand pixels, and therefore it is impractical to create a Pixel object for

every grid node in the basin, because memory requirements are excessive.

The solution adopted is to maintain only as many Pixel data structures as

are simultaneously necessary to perform the basic basin operations, and
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use member functions of the Basin object to initialize and terminate the

instances of the Pixel object. The functions initjpixelO and end-pixelO

are used to transfer information between the Basin and the Pixel data

structures. init-pixelO takes the information corresponding to a

particular pixel in the basin and stores it in the variables of the Pixel data

structure. Once the pixel has been initialized, client objects can request

from it the operations encoded in its behavior. The function end-pixelO

can be used to store back in the Basin data structure the modified

variables of the pixel: state variables and runoff generation.

Other administrative functions of the Basin object are those which

control memory allocation for itself and for its child object, Basin Trace.

The memory necessary to store the distributed variables in the basin is

allocated in the function basstartO, which should be called after the

instance of Basin has been created, in order to obtain the size of the

arrays. initbasjtraceO and endbastraceO create and destroy instances

of BasinTrace objects.

Behavior functions

Basin behavior implements the spatial runoff generation mechanism

in the basin. It uses the functionalities provided by the Pixel object to infer

local runoff generation in individual pixels, but it must add

functionalities to deal with spatial interactions between pixels, basically

related to subsurface moisture transfer between pixels. Two types of

interactions are of interest: lateral flows for homogeneous terrain and

lateral flows resulting from the spatial variability. Modeling philosophy
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and model equations have been described in Section 2.2.3. Here we deal

only with the implementation details of model equations.

The two mechanisms considered for lateral flow generation are

essentially different in the sense that one is a unidirectional process,

whose order is imposed by the relation 'drains to' and the other is a

bidirectional process in which two neighboring pixels mutually interact

with each other. That means that lateral flow must be evaluated in two

separated steps. Lateral flows for homogeneous terrain can be evaluated

at the same time as the runoff loop is being evaluated, as long as

upstream pixels are processed first, but lateral flows resulting from

spatial variability must be evaluated in a loop in which all pixels are at the

same stage of computation.

Two different functions are therefore needed to evaluate the two types

of lateral flows. Lateral flow for homogeneous terrain is evaluated in a

function called hillloopO, which also evaluates pixel evolution.

hilljloopO operates on all the pixels of the basin in an orderly way,

starting for the most upstream pixels. It uses the routing map of the

gauge number 0, which always corresponds to the total basin outlet, in

which the pixels are arranged following the inverse of the recursive

relation 'drains from'. hillloopO calls initjpixelO to initialize the Pixel

data structure, calls hillpixO, a method of the Pixel object, to evaluate

pixel runoff and lateral flow, and stores the results calling end-pixelO.

end-pixelO also accumulates the lateral flow resulting from the pixel into

the lateral inflow variable corresponding to the pixel located downslope of

it.

Lateral flows resulting from spatial variability are evaluated in the

function parajflow-loopO. parajflow-loop() initializes the Pixel data
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structure and evaluates the Pixel member function outflow.complementO

for the pixel of concern and for the one located downslope of it, and takes

the average as described in Chapter 2. outflow-complementO is just a

straightforward implementation of Equation (2.27). Finally,

parajflowjloopO stores the results as subsurface inflow for the downslope

pixel.

The children objects, Pixel, Map and BasinTrace also have member

functions. The behavior of the Pixel object was already discussed in

Section 5.2. The Map object is the link between the Raster and the Basin

objects. Distributed variables are stored as arrays in the Basin object.

When these variables are stored in a file, the actual values are combined

with topological information about the spatial location of every grid point,

and the combination constitutes a Raster object, which can be stored in

the database using the I/O functions available. The Map object stores

information about the correspondence between locations in the Raster

structure (identified by row and column) and positions in the basin arrays

(identified by array index). Its methods get-posO and get-locO provide one

piece of information given the other. The BasinTrace object keeps a

detailed accounting of the origin of the runoff generated in the basin at

every time step. It controls the number of pixels in every runoff-

generating state and the actual volume of runoff generated in every mode.

If the basin trace is activated, hill_loopo calls the function trjupdateO to

store information about every pixel in the trace structure.
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5.3.2 Implementatin of surface flow routing

Surface flow routing is implemented as a functionality of the Gauge

object. The surface flow routing algorithm is applied in two main

contexts. First, it is a necessary part of model inference, and it must be

offered as a functionality to the Simulator object to be included in the

computation loop. But it can also be offered to the user interface as a

possibility to generate on-line hydrographs at a point selected by the user

within the basin. The same algorithm is applied, and the only difference

is that in the first case it operates on the results of the runoff generation

during one time step of the computation loop and in the second case it

uses the average runoff generation during a period of uniform rainfall.

Other variants of the algorithm can also be conceived, such as the

generation of a unit hydrograph, which characterizes basin state by

evaluating basin response to uniform rainfall of unit intensity and a given

duration. The methods of the Gauge object are reviewed hereafter. Two

groups are of interest: administrative functions and behavior functions.

Administrative functions

Administrative functions take care of the creation and destruction of

the data structures related to the Gauge object. The main initialization

function is initrouting(). initrouting() performs the necessary

operations to initialize an instance of the Gauge data structure for a point

in the basin identified by its coordinates. It uses the get.areaO function of

the Basin object to obtain the contributing area to the point, and allocates

memory for the routing map. It then calls the function initroutemap(),
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which initializes the data structures that store the neccessary

information about the pixels located upstream the outlet. At the end of the

initialization, Gauge contains information about which pixels are located

upstream the outlet and their corresponding distances of travel along

hillslope and channel. Other initialization functions are initresultsO

and init-gautraceO, which allocate memory for hydrograph storage and

trace infromation respectively. Destruction functions free the memory

allocated for the corresponding objects when they are no longer needed.

Behavior functions

The Gauge object controls the routing operations, and therefore, its

behavior functions implement several versions of the distributed

convolution described in Chapter 2, adapted to different circumstances.

The main behavior function is route-hydrographO, which obtains the

incremental basin response for a computation time step. It first obtains

the travel velocities in hillslope and channel as a function of the discharge

at the basin final outlet for that time step, using Equations (2.46) and

(2.47). Then, route-hydrographO loops over the pixels upstream the gauge

and estimates the time of travel for them, according to expression (2.40). It

finally stores the contribution of the pixel to basin response, delayed by the

time of travel. unithydrographO and route-pixO implement variants of

the algorithm for the cases in which the objective is to obtain the response

of the basin to uniform rainfall or the hydrograph generated by one single

pixel. There are also other methods of the Gauge object that implement

convenient functions, such as setdistanceO or setveocityO.
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The GaugeTrace object offers complementary functionalities, mostly

for debugging and calibration purposes. If the trace is activated, the

function update traceO is called during the loop. The trace provides a

decomposition of the origin of basin response, differentiating runoff

according to two criteria. The first one refers to the runoff-generation

mechanism, and discriminates between infiltration-excess runoff and

return flow . The second criterion refers to location within the basin, and

discriminates between runoff generated in areas which are permanently

saturated because the water table is initially at the surface and runoff

generated in areas which become saturated during the storm as a

consequence of the dynamics of the model. The activation of the trace

increases the computation time, but, combined with the basin trace,

provides excellent information about the dynamics of runoff generation.

5.4 Implementation of simulation management

The Simulator object is in charge of controlling the simulations

performed with the model. The Simulator object has two main functions:

(1) it interacts with the operating system to get information from the

hydrologic database and to store and display model results, and (2) it

controls the evolution of model operation, deciding when new data should

be read or when results should be stored. Model operation is based on

three functional units: computation loop, rainfall loop, forecasting loop.
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5.4.1 Input-output operations

Most of the input/output information is stored in the IOData data

structure. All input/output operations are carried out by the Simulator

object. It handles the different channels of communication, depending on

the mode of operation and the input source selected. Input operations are

of two main classes: those carried out during model initialization and

those carried out periodically during model operation.

Initial input operations are encoded in the functions readenv-var(

and read-gen-dataO. The function readenvvarO reads from the UNIX

environment the settings corresponding to the simulation, mainly paths

and file keywords for the different types of information and values of

model lumped parameters. The function read-gendata() reads the files

corresponding to the static distributed variables. read-gendata() is also

in charge of building the basin map, according to the header description

of the raster format. It is assumed that all distributed variables

correspond to the same basic Raster structure, and therefore only one

map is needed to relate raster and vector descriptions of the variables.

Periodic input operations are those repeated cyclically during the

operational loop. Two types of periodic input operations are considered:

rainfall input and basin state. Rainfall input refers to measured rain and

to the optional forecasted rain. The functions get-nextmrain() and

get-next-frain obtain the time tag of the next rain file from the active

input channel at that time (either the standard input or a collection of files

in a directory). The functions readmeasrainO and read_fore-rainO

compose the adequate file names using the path and file naming

information stored in IOdata and load the contents of the raster files into
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the corresponding array of the basin structure. The functions

set input_listO, orderO, compmeas() and comp_fore() are auxiliary

functions to scan and sort the directory in the case of input from existing

files.

Basin state is defined by the three state variables: wetting front

position, top front position and moisture content. When forecasted rainfall

is used or when the basin is initialized at an initial state different from

zero, basin state is read using readinitial state() (first time) or

readinterstateO (periodically). These functions construct the adequate

file names combining path, root, time tag and extension and call the

auxiliary functions read _last nf(, read last nt(, read last _dMtO and

readlast-hydO.

Output operations are very similar to periodic input operations, since

the same variables, path, and file names are involved. The functions

writeinter stateO, writeinterhyd() and write Jore hydO are used to

write intermediate and final results (basin state variables and

hydrographs). Other functions involving output operations are those

writing trace results. They are invoked periodically or at the end of the

simulation for the active traces.

5.4.2 Model operation

The second group of functions of the Simulator object are those

related to the control of model operation, which involves computational,

rainfall and forecasting loops. The computational loop is defined in the

function hydrograph-loopO, and corresponds to one single computation

time step. The rainfall loop corresponds to computations during a period
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of constant rainfall, and usually involves several computational loops.

The forecasting loop corresponds to the operational cycle 'measured

rainfall-forecasted rainfall', and involves one or more rainfall loops. The

rainfall and forecasting loops are implemented in the function

simloopO, which follows the simple scheme 'get new rainfall - compute'

for the simulation mode and 'get measured rainfall - compute - get

forecasted rainfall - compute' for the forecasting mode. Each 'compute'

stage involves calling the rainfall loop.

The computational loop corresponds to the inference of basin

evolution during a computation time step. The simulator object only

coordinates the functionalities of the Basin and the Gauge objects to

compute basin evolution. The sequence of operations if the following: first,

the lateral flow resulting from non-uniform distribution is computed,

using the Basin function parajflowjloopO. Then, the infiltration model

loop is called (function hillloopO). When pixel evolution is completed, the

routing functions (hydrographjloopO) are called for the active gauges in

the list.

The function simloopO provides the functional units of the rainfall

and the forecasting loops. The basic task of Simulator in model operation

is time control. The time step of the computational loop is fixed, but the

duration of the rainfall cycles is not known a priori. Therefore, the

Simulator object must decide the number of repetitions of the

computational loop that correspond to each rainfall file received.

Obviously, there is a trade-off between operational flexibility and

computational efficiency, since a small time step reduces the error in

rainfall validity time but increases computation time. In any case, model
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operation is greatly simplified if rainfall files are guaranteed to be equally

spaced in time.

The treatment of measured rain and forecasted rain is different.

When a new measured rain file is received, it is assumed to correspond to

the time interval transcurred since the last measured rain file, and the

number of computation loops is decided accordingly. The duration of

rainfall forecasts is known a priori, and therefore its operation is simpler.

During model operation, simoop(O calls the necessary I/O functions to

obtain and store basin state, according to the active operation mode. In

simulation mode, no state files are written unless explicitly stated by the

user. In forecasting mode, either on-line or off-line, basin state is written

at the end of the measured rainfall loop, and read again at the beginning

of the new operational cycle.
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CHAPTER 6

Software Design of the User Interface

The interface between RIBS and model users is discussed in this

chapter. We first describe the software environment in which the

interface is developed and the overall concept of user-model interaction.

RIBS provides two user interfaces: a model-driven interface which

advances synchronously with the model and a user-driven interface

which is intended for off-line consultation of the database. A presentation

of the software components of both interfaces is given in this chapter.

Appendix 2, RIBS user manual, gives an overview of user interface

functionalities, and a detailed description of software implementation is

given in Appendix 5.

6.1 Design overview

This section presents an overview of the different components of the

graphic software developed for user interaction. The system is intended to

run on an engineering workstation over a computer network. Graphics in

the RIBS system are hardware independent and network transparent

because all graphic operations are conducted through the X Window

protocol. The possibilities offered by the X Window programming

environment are discussed first, and a description of the motivation and

the design goals of the user interface is offered in Section 6.1.2.

271



--I

6.1.1 The X Windows programming environment

The X Window system (Scheifer and Gettys, 1991) is a software

environment for engineering workstations. It provides a client-server

model where client applications can use a local program (the X Server) to

handle input-output functions. The X Window system is network

transparent and device independent. Network transparency implies that

applications can be run on whatever host cpu is most convenient. The

client programs and the X Server can reside in the same machine or

reside in different machines and communicate through a computer

network. Server and client programs communicate using a network

protocol of messages that specifies graphic operations. The existence of a

standard protocol confers device independence, since client programs do

not need to know anything about the hardware they are using to interact

with the user. The hardware is directly controlled by the X Server, which

translates requests from the clients into graphic operations on the screen

and sends user input back to the client programs.

From the standpoint of application programming, the existence of

the X protocol means that X applications are portable. An application can

be run remotely on a host machine over the network and display graphic

results in different types of hardware. The application is therefore

simultaneously available to all terminals connected through the network,

and does not require additional software to be run on newly developed

hardware. Conversely, from the user standpoint, an X workstation

appears as connected to a number of different hosts at the same time, to
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the point that applications running locally cannot be distinguished from

applications running on remote hosts.

Application programmers do not use the X Window protocol directly.

They usually gain access to the protocol through a number of libraries

whose purpose is to let the application interface with the protocol and hide

the complexity of the window system. The C language function library

known as Xlib (O'Reilly, 1989) is used in this work. Xlib provides a model

for raster graphic specification and a basic set of primitive window

operations.

The X Window system also provides other libraries to develop user

interfaces, called "X toolkits". A toolkit is a framework to combine user

interface components, called "widgets", to produce complete user

interface operations. The standard X Window toolkit intrinsics library (Xt

library) is used in this thesis, together with the Athena widget set. The X

toolkit intrinsics library offers general purpose user-interface functions

and the widget set offers a number of graphical objects, such as simulated

buttons, which are usually found in user interface applications. The

widgets themselves are not a part of the X Window system. They are

provided by other software vendors. The Athena widget set was selected

because of its availability as part of the standard X Window instalation.

However, only very simple widgets are used in the RIBS user interface,

and therefore the adaptation of the code to more advanced widget sets,

such as the Motif or the Open Look, is straightforward.

RIBS, as any other X application, also uses the functionalities

provided by an specific program, called the "window manager", to handle

user interaction. The window manager runs locally on the display

workstation, and is in charge of interfacing between the X Server and the
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client applications. The window manager lets the user control

interactively certain parameters of the windows created by the

applications, such as position, size or stacking order in the screen. It is

up to client applications to provide the neccesary software to react to user

actions on the windows. For instance, the window manager lets the user

change the size of a window, but it does not update the contents of the

window according to the new size. It simply sends a message to the client

application notifying the new window parameters.

The RIBS user interface is therefore made up of four layers which

interact with the user though a window manager. The lowest layer is the

interface with the X Window protocol, Xlib. The next layer is the Xt toolkit

intrinsic library, which, as Xlib, is part of standard X. The third layer

consists of the widgets available in the Athena widget set, and the top

layer is the RIBS application code, presented in this chapter.

6.1.2 The concept of RIBS user interface

The user interface is intended to coordinate interaction between the

user and the model. The high-level design of the user interface answers

two basic questions: (1) what information should be made available and (2)

when should it be presented. The low-level design focuses on how those

goals are achieved. The high-level and low-level design concepts applied

in RIBS are discussed in this section.
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High-level design

Two strategies are possible to specify the high-level design: model

control and user control. Under a model-controlled strategy, the program

makes automatic decisions about the presentation of results, without any

feedback from the user. Model-controlled strategies are widely used in

real-time systems, where models present results as they become available

from the computations. Under a user-controlled strategy, it is the user

who makes the decisions about which model results should be presented

and how, and therefore the model must establish some interactive

channel of communication to get user input. User-controlled strategies

are mostly used in off-line contexts, to access data previously generated by

other processes, such as in a database management system. The user-

controlled strategy is obviously more versatile, but it involves a more

complex software environment and a greater use of computer resources.

The model-controlled strategy has the advantage of being able to respond

to model events which might otherwise pass unnoticed by the user, but it

cannot be made interactive.

The design of RIBS user interface is based on a combination of both

strategies, because none of them can satisfy the requirements in isolation.

Model results are too abundant to be presented simultaneously on one

single computer screen, and therefore a model-controlled strategy would

have to alternate the presentation of different variables, making it difficult

for the user to follow the presentation. On the other hand, a user-

controlled strategy is unaware of the state of model evolution, and the

model does not have a mechanism to notify the user of important events,

such as the completion of a time step and the availablilty of new model
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results. Two modes of user-computer interface are included in RIBS: a

model driven interface and a user driven interface. The model driven

interface is basically model-controlled, but it lets the user interact with the

computer to specify the format of the presentation. The user driven

interface is basically user-controlled and is intended for off-line result

analysis, but is has an open channel of communication with the model

and can also be used in real time.

Low-level design

Two features of the distributed basin simulator characterize the low-

level design of the user interface: the abundance and diversity of the data

involved and the need for real time operation. Both features have

interconnected effects. The model should run in real time, producing a

dynamically changing image of basin state which should be offered to the

user. Since model results are so abundant, they cannot be presented

simultaneously to the user. On the other hand, the model evolves slowly,

and the presentation of final output alone (model hydrographs

exclusively) may be too simplistic. The typical time scale of changes in

basin situation is of the order of hours. There is enough time for the user

to assimilate and understand a significant portion of the results produced

by the model as it advances in real time. The consequence is that a large

volume of results are produced by the model and the user is potentially

interested in all of them, but only a fraction will actually be analized in

real time. The criteria to select relevant results change over time, as the

model helps the user understand the complex situation in the basin.

Different areas of the basin and different variables are of interest,
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according to the situation. The user interface should offer optional access

to very detailed representations of model results.

The strategy adopted to deal with abundant information is to

distribute the presentation of results in several independent windows. On

an X Window system workstation, the windows can be regarded as

overlapping sheets of paper stacked on the screen. The window manager

allows the user to manipulate each window individually, changing its

stacking order, resizing it or iconifying it. The window manager also lets

the user move windows around the screen. If the underlying application

programs have capabilities to react to the different events generated by the

window manager (exposure, resizing, iconization), as far as the user is

concerned, the computer screen is just like his or her working desk top.

Each window is like a sheet of paper that can be moved, stacked, put away

and recovered. The design goal for the RIBS user interfaces is to create a

working environment similar to the one just described to consult model

results.

For the model-driven interface, results are presented on-line, as they

are being generated by the numerical processes. Software is developed to

present all types of results, but the user can select which results should be

available for a particular run, in order to control the computational load.

Once the model is running, windows with different variables are

automatically updated as the model advances. The user can resize, iconify

or magnify windows according to the situation. Zooming capabilities let

the user focus on specific areas of the basin or analyze portions of the

hydrographs with great detail.

The goal of the user-driven interface is to offer full access to the

hydrologic database. The interface is conceived as an off-line analysis tool
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which interactively offers some of the modeling capabilities of RIBS. RIBS

stores intermediate basin states in the database. The user-driven interface

is basically a program that retrieves the representation of basin state held

by the model at any given time and operates on it to present specific

information at the user's request. It can generate hydrographs at any

point within the basin, display the time evolution of model variables for

any grid element, or represent the spatial distribution of basic or derived

variables. The user-driven interface provides access to a very large

volume of model results without imposing the computational burden of

generating those results on the model as it works in real time. These

results about specific aspects are only computed when the user actually

requests them.

The second problem of the low-level design of the interface is the need

to operate in real time, which means that the model must be run

concurrently with the interface. If result presentation is to be interactive,

the process taking care of it must be waiting for user input, ready to react

to user requests. The model, however, must follow the operational loop,

and model evolution is driven by the arrival of rainfall information, not by

user actions. When new rainfall arrives, the model must use its

computational resources to process the information, and defining a cycle

to attend periodically to user requests is computationally too expensive.

From the standpoint of the user interface, the possibility to react promptly

to XEvents means that the application must be running a loop waiting for

events to arrive in order to process them. Therefore, the interactive user-

interface must constitute a different process from the model itself.

The solution adopted is to have the model run in the background and

let it present results using independent processes. That requires the
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definition of isolated modules for result presentation and channels of

communication between the model and the interface modules to

guarantee prompt update of model results. The general manager starts

the model and the user interface modules and controls communications

between them. User interface modules can also start new modules.

In both interfaces, each module appears as an independent window

with an identifying name. The interface as a whole is a group of processes

which appears as a hierarchy of windows. The operating system takes

care of the distribution of computational resources among all running

modules and the window manager lets the user configure the global

appearance of the screen. Windows containing information not required

at a given time can be put away by iconifying them. Iconified windows

display an icon resembling the application, which can be used to magnify

them again. Resizing and zooming operations can also be performed in

all graphic displays, and most user interaction is mouse-driven. The

user can therefore customize the access to model results, choosing the

variables that should be included in the presentation for every run and

selecting which variables should be displayed on the screen at any given

time.

6.2 The model-driven user interface

This section presents an overview of the different software

components of the model-driven user interface. The general structure is

summarized in Figure 6.1. The interface is composed of three basic

modules: the pixel viewer, the hydrograph viewer and the raster viewer.
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Each module is composed of a menu bar for user interaction and a

graphic object. Graphic objects are derived from the Image class, which

contains the core specifications for the RIBS graphic obects. Three

subclasses of the Image class (one for each module) are defined:

PixImage, HydImage and RasImage. The graphic objects are based on

lower level objects for graphic operations and on the X Windows libraries.

The low-level objects developed to deal with graphic operations are

presented first. Then, the specifications for the Image class and derived

subclasses are presented. The executable modules and their management

by the interface are presented in the last subsection.

Figure 6.1: High-level components of the model-driven user interface.



6.2.1 Basic objects

In addition to the Xlib and Xt libraries and the Athena widget set, the

user interface is based on three basic graphic objects: GrContext,

GrReferenceSystem, and Graph. GrContext deals with the graphic

context as defined in the X model: colors, fonts, stipples, etc.

GrReferenceSystem deals with the screen coordinate system, and Graph

contains a basic graphic display based on the two previous objects. The

object diagram of the basic graphic objects is shown in Figure 6.2.

Graph

- Drawable area
- Basic geometry

High-level drawing

GrContext

- Graphic context
- Font
- Colormap

- Select font
- Allocate colors

Figure 6.2: Structure of the basic graphic objects.
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GrContext

GrContext is a data structure which contains information about the

graphic context used by a graphic object. The concept of graphic context is

central in X Windows graphics. Graphic primitives requested by

applications are processed by a graphic pipeline to convert graphic

requests into pixels in the screen. The attribute values in the graphic

context control several aspects about how the conversion is made. The Xlib

library provides a corresponding graphic context data structure, GC,

which specifies the attributes to use when drawing. The object GrContext

encapsulates this data structure and allows the rest of the application to

handle high-level graphic context descriptions. The GrContext object

stores information about fonts and colors, and hides the black and white -

color differentiation from the rest of the application.

GrContext contains pointers to the Xlib structures representing the

graphic context (GC), font (XFontStruct) and color description

(Colormap), and an array of XPixmaps to store shading patters for a

grayscale. It also contains information about font geometry, number of

colors or gray intensities and RGB color descriptions. Functionalities of

the GrContext structure allow the user to select the adequate font

according to the current screen size, and allocate and select colors from a

user-defined color palette. If the screen does not have color capabilities,

the GrContext object reserves a gray scale with different stipple patterns.

Clients of the GrContext can therefore obtain information about front size

or number of colors available and set graphic parameters according to

simple high-level descriptions.
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GrReferenceSystem

The function of the GrReferenceSystem object is to enable drawing

using application-defined coordinate systems. Since all drawing functions

in the Xlib library take arguments referred to the standard screen

coordinate system, their use in high-level graphic applications is

cumbersome. The GrReferenceSystem object maintains the equivalence

between a user-defined coordinate system and the current screen

coordinate system, which is a function of screen size, and provides

drawing functionalities equivalent to those offered by the Xlib library, but

referenced to the local coordinate system.

GrReferenceSystem stores the description of the current coordinate

system in terms of position of the origin, transformation scales in both

axes and angle of rotation. GrReferenceSystem provides two types of

functionalities: geometric transformations and drawing facilities.

Geometric transformations enable the user to change the local coordinate

system and offer two-way coordinate transformations. Drawing facilities

offer point, line and area drawing in the local coordinate system. The user

can also place text with different alignment parameters.

Graph

Graph is a higher-level object that uses the functionalities of the

GrContext and the GrReferenceSystem objects to perform generic

drawing operations. Graph holds a XPixmap pointer to represent the area

where drawing operations are to be performed. Since the pixmap can be

either a window on the screen or a memory area, Graph can be used to
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store images in order to display them in sequence later. Graph also

maintains a graphic context, a reference system and basic geometric

information. According to how many drawing areas are simultaneously

maintained in the same widget, an application can create as many

instances of the Graph object as required, and draw on them using

different contexts or reference systems. Graph also offers methods to

draw simple graphic figures, such as coordinate axes, grids or labels in

plots, based on high-level descriptions and parameters.

6.2.2 RIBS graphic objects

The class Image contains the basic definition of RIBS objects

requiring graphic representation. From the standpoint of object-oriented

design, an image is the graphic representation of an object, and should

remain attached to it as another attribute. In practice, however, it is more

efficient to define graphic objects as independent entities in the hierarchy,

in order to specify collective graphic operations for all of them. Graphic

objects in RIBS are therefore defined independently from their

corresponding physical objects. The essential structure and behavior of

graphic objects are defined in the Image class. Graphic objects

corresponding to specific physical objects are represented as subclasses of

the Image class, and inherit the basic definition.

Only three RIBS objects are represented graphically in the user

interface: Raster, Hydrograph and Pixel. Two of them, Raster and

Hydrograph, are interesting because they are the objects stored in the

database, and the third is the core object of the DBS model and of the

application. RIBS graphic objects represent the connection between the
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original data in the objects and their representation in the application

window. The three graphic objects are RasImage, HydImage and

PixImage, which are subclasses of the Image class. Figure 6.3 illustrates

the structure of the Image class and its subclasses.

The Image class

In RIBS, an Image is a group of Graph objects which are collectively

represented in the same widget and can react to basic graphic events. All

graphic objects have the same graphic capabilities, inherited from the

PixImage

- Pixel data

- Create plot
- Streamlines

HydImage

- Hydrograph data

- Create plot

Raslmage

- Raster data
- Scale
- Color palette

- Create plot
- Get pixel value

Figure 6.3: Structure of the Image class.
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parent class, Image. Graphic objects are represented on a window which

is resizeable by the user. They must therefore respond to two basic graphic

events: expose and resize.

An expose event is sent by the X Server to the application whenever

the window exposure changes. That announces that part or all the

window needs redrawing because some other window has just stopped

covering it. Although certain window managers store backups of hidden

areas of windows and can take care of redrawing whenever appropriate,

this feature is not guaranteed in the Xlib standard, and client applications

must process expose events to prevent that other applications whose

windows pop up or are relocated leave holes in the window of interest

when they are removed.

Objects of the Image class handle the expose event in the redisplayO

function. They apply the standard technique of drawing into a backup

graphic buffer (an instance of the Graph object), instead of drawing

directly on the screen. The image is therefore stored in an auxiliary

memory area, and whenever an expose event is generated for the window,

the backup image is copied on the window again. Since the XCopyAreaO

function is significantly faster than the resizeO functions that generate

the drawing, the extra memory requirement is justified by the fact that

the window can be redrawn as many times as neccessary with almost no

processing time.

A resize event is generated whenever the window manager changes

the external size of a window, either due to a user request or to some

resource modification in the programs. Objects in the Image class react to

resize events by redrawing the image, adjusting it to the new window size.

Every subclass of the Image class implements a different version of the
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resize0 method, since it involves displaying a diferent data structure on

the screen. The fraction of resize() shared by all subclasses of Image

involves querying the X Server for the new values of the widget size

resources, adjusting the reference system to the new screen coordinates

and selecting the font size adequate to the new window size. Once the new

settings heve been defined, the specific function to draw the image is

called. Since objects in the Image class usually draw in the pixmap of the

Graph object associated to them, they must also copy the image on the

screen by calling the method redisplayO.

In addition to the mentioned facitilies to react to window managing,

the Image class also offers interactive zooming capabilities, implemented

in the functions do zoomO and dounzoom(. The zoomming functions

follow a two-step process. In the first step, the new focus area must be

selected from the picture on the window. dozoom() uses interactive

rubber-banding techniques: the user clicks the mouse on the picture to

select in one of the corners of the new image. Then, as the mouse slides

within the picture with the button pressed, a rectangle is drawn on the

screen showing the current selected boundary for the new image. When

the button is released, the selection is finished and the rectangle is erased.

In the second step, the screen coordinates are transformed into the local

coordinate system to obtain the new image boundaries. The reference

system is then changed and the picture is drawn again with the new

settings. The dounzoom() function follows an inverse procedure,

resetting the picture to its original boundaries.
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PixImage

The PixImage object is the graphic representation of the RIBS Pixel

object. The PixImage object implements the functional unit described in

Section 4.5.2, and generates the picture shown in Figure 4.6. It also may

optionally pop up a window and display a cross section along the line of

maximum slope, displaying flow streamlines. The variables stored in the

PixImage object are those required to draw the moisture profile of the soil

column: front and water table positions, moisture content, terrain slope,

Brooks-Corey parameters and initial recharge rate. It also stores the pixel

denomination and Graph objects to store the drawings of the moisture

profile and streamlines. PixImage offers the basic functionalities

included in the Image class, plus the function createpixplotO, which

actually draws the picture shown in Figure 4.6. create-pixplotO is used by

resize() to generate the drawing after the new window size has been

specified.

HydImage

The HydImage object displays hydrographs stored in the database. It

generates the graph shown in Figure 4.7. The data structure of the object

HydImage includes the definition of the hydrographs and hyetographs:

number and denomination of the hydrographs, number of data points in

every one, and actual values. It also contains the Graph object that is used

to store the drawing. In addition to the methods of its parent class, the

object HydImage has the method create-plot() to generate the actual

picture of the hydrograph display.
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RasImage

The object RasImage represents the image of a Raster object in the

application window, as shown in Figure 4.8. Although the RasImage

object is also a subclass of the Image class, it has a more complex

structure than the other two subclasses. The picture consists of four

areas, each one associated to a different widget: The title widget, the

raster widget, the scale widget and the label widget. All but the label

widget are drawing areas, and are therefore represented by Graph

objects. The RasImage data structure also holds a pointer to the

RasterHeader and an array with the actual values. Finally, the RasImage

object also contains information about the scale and the color codes used to

represent different values of the distributed variable.

The RasImage object represents the values of the distributed variable

following a color code. The color code is decided according to a linear

scale, which divides the total range in a number of intervals. Pixels whose

value is within the limits of an interval are drawn in the color associated

with the interval. Also, special colors are reserved for pixels that

underflow or overflow the current scale. Both the scale (upper and lower

limits and number of intervals) and the color code (color palette) can be

specified by the user. In order to provide a reference, a scale is shown on

the left of the plot. The scale shows the colors which are actually

represented in the plot, together with the maximum and minimum

values of the variable. The display is completed with a title bar that

includes generic information (variable designation and coordinate

system, size and location of the plot) and a label on the upper left which is

289



used to display specific information (such as the actual value of a selected

pixel).

RasImage inherits the functionalities of its parent class to handle the

graphic display. The function createimageO is used by resizeO to draw

the scale and the raster display on the auxiliary Graph objects. It also

implements specific functions to define and change the color palette

(set-paletteO) or the scale (set-scaleO), which can be activated either at

the beginning, to define initial settings, or at run-time, to change settings

for a given picture. Another functionality provided by RasImage is the

display of values of individual pixels. The user selects a single pixel in the

display by clicking the mouse, and the variable value for that pixel

appears in the label screen on the upper left corner of the window.

6.2.3 Executable modules

Three executable modules are built using the functionalities of the

Image class: the pixel viewer (x-pixgraf), the hydrograph viewer

(xjhydgraf) and the raster viewer (x-rasgraf). Although specific software

was written for each module, the executable modules for the object

viewers were all built using the same scheme. A high-level main()

function creates the necessary objects and widget hierarchy and uses the

Image class methods as callback functions for the different events.

Additional functions are also written to create the graphic context and to

initialize the Image objects reading the files from the database.

The layout of the object viewer modules is shown in Figure 6.4. The

main application window is a pane widget divided in two areas: an upper

command area containing a menu bar and a main graphic area
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containing the display of the Image object. The command area is a box

widget that contains several command button widgets. Each button

provides access to one functionality and is linked to a method of the Image

class or the corresponding subclass. Buttons are activated by clicking the

mouse within them.

Four basic command buttons are available in all object viewers: File,

Zoom, Unzoom and Quit. Applications can also define new buttons to

provide access to other functionalities. The Quit button, which terminates

the application, is optional, since in some cases the viewer must be

controlled by its parent process and cannot be terminated by the user. The

Zoom and Unzoom buttons provide access to the zooming capabilities

described in the previous section. The File button allows the user to

change the file currrently being displayed. A window pops up with the

Main window

Button 1 Button 2 Button n Command button
area

Display area Zoom

Resize

Figure 6.4: Basic window layout for the object viewers.



contents of the current directory and the user can interactively select a

new file to display. The application must have a callback function to react

to this event, reading the contents of the new file and calling the

corresponding resizeO function to display it on the screen. In addition to

this menu-driven file change, the applications also accept new file names

from the standard input. The user (or the parent process if the viewer was

started from a pipe) can type a file name and the application reacts

displaying the new file on the window.

The graphic area is another box widget which contains the widgets of

the corresponding subclass of the Image class. The graphic area is

created with a default size, but the user can resize it using the window

manager. The application must take care of assigning the adequate event

handlers to the expose (function redisplayO) and resize (function resizeO)

events.

From the software engineering perspective, individual applications

must take care of two main activities: initialization of the widget

hierarchy and definition of the environment. The widget hierarchy is the

structure of widgets maintained by the application. Widgets are created

and initialized in the mainO function of the corresponding application.

The user can define widget resources, such as window names, colors or

geometries, either in the .Xdefaults file or in the command line. If no

user-specified parameters are declared, widgets are initialized using

fallback resources that are hardcoded in the program.

Applications must also provide functions to initialize the graphic

environment and access the database. The initialization of the graphic

environment is carried out in the function initializedata(). If a color

display is available, initializedata0 allocates color cells in the active color
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map. If the color map has free cells (not used by other aplications), the

colors are initialized with the exact user-defined RGB values. If no more

color cells are available, initializedata() selects for every color the cell

that more closely matches the user definition. If the available display is in

black and white, a gray scale of shadings is loaded instead. The

initailization function also allocates memory for the GrContext and

GrReferenceSystem objects and loads the font structure.

Database access is provided by the function read_fileO, which is used

by the callback functions that react to 'new file name' events, comming

either from the standard input or from the File button. read fileO reads

the corresponding file from the database and stores the data into the

Image object.

6.±4 The model-driven interface

The synchronous user-interface is part of the general manager, and

it is built upon two object viewer modules: xrasgraf and x-hydgraf.

Several processes corresponding to these modules are running

simultaneously. Each module presents a variable or hydrograph as a

graphic object, allowing for user interaction. Processes have open

channels of communication with the numerical models, and are ready to

change the display according to model evolution. Object viewer modules

accept new file names from the standard input as a part of the Xt main

loop, and therefore their parent processes can send them messages

through standard input every time a new file needs to be displayed. Each

variable appears on the screen in an individual window, which is ready to

accept user input to resize, zoom or perform specific functions.
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Two types of information are presented in the interface: rainfall

information and basin state information. The rainfall information

includes raster displays of measured and forecasted rainfall and a

hydrograph display of hyetographs of rainfall registered at selected

locations in the basin. The basin state information inlcudes raster

displays of the three basin state variables: top front, wetting front and

moisture content, raster display of runoff generation and hydrographs at

points of interest in the basin.

The user decides which of those possible displays should be active for

a particular run. Color palettes and scales can also be specified by the

user. Each graphic object appears as an independent window with an

identifying name. If windows are iconified they display a icon resembling

the application. As the model progresses, new files are being generated.

The displays are periodically updated with the latest information, but they

also let the user select previous files using the File option. The user can

therefore customize the access to model results, choosing the variables

that should be included in the presentation for every run and selecting

which variables should be displayed on the screen at any given time.

6.3 The user-driven interface

The idea of the user-driven interface is derived from the concept of

object-oriented design. RIBS is basically an object-oriented modeling

environment that obtains the state of physical objects as it evolves in time.

Since the time evolution of model objects cannot be maintained in

memory, objects defining the state of the system are stored in a database.
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The user-driven interface can retrieve those objects from the database and

apply the modeling capabilities of the object-oriented environment to

them. Furthermore, it also offers graphic interactive facilities to

communicate with the user.

The objective of the user-driven interface is twofold. First, it provides

an integrated mechanism to access the entities in the hydrologic

database: basin variables and hydrographs. That same objective could be

attained by the individual modules of the model-driven interface presented

in the previous section, but they only deal with the variables as individual

data files. The user-driven interface deals with state variables in an

integrated fashion, adding knowledge about time evolution and the

meaning of the variables involved. It understands how data are organized

in the database and guides the user during the consultation. The user-

dirven interface knows about the time organization of RIBS, and can

interpret the semantic content of the different data files. It knows which

variables represent rainfall, runoff, front positions, etc, and can apply

different scales or color codes to the different types of variables.

The second objective of the user-driven interface is to provide

additional modeling capabilities for the RIBS environment. The

distributed basin simulator has a modular structure, where the

evaluation of basin evolution and the generation of basin response

constitute independent processes. Once basin states have been obtained for

a particular storm, the modeling environment offers a large number of

possibilities with little additional effort. However, the automatic

evaluation of all the variables and results that can be of potential interest

to the user is neither essential nor efficient for a process intended to work

in real time. Therefore, the on-line version of DBS focuses in basin



evolution and in obtaining a reduced number of basin hydrographs,

leaving additional modeling capabilities for a complementary process.

This second process, the user-driven interface, is directly controlled by the

user, and only performs the computations that are considered relevant by

the decision maker.

The user-driven interface should therefore work asynchronously

with respect to the model. It should be guided by the user, not by model

evolution. The objective is to build an environment where the user decides

which previous basin state should be retrieved and what operations

should be performed on it. The basic modules for graphic interaction are

already available from the model-driven interface. The specific design for

the user-driven interface should concentrate on enhancing the

capabilities of the Simulator object to manage model inference and

providing adequate interactive access within the context of the user

interface. The basic object developed to perform that function is described

in Section 6.3.1, and the executable module that implements the interface

is presented in section 6.3.2.

6.3.1 The Viewer object

The Viewer object is the basic object of the asynchronous user

interface. It consists basically of a Simulator object and an Image object,

as shown in Figure 6.5. The Viewer object is just a manager of the

functionalities provided by the other two objects, and does not store any

other data structure. The Viewer uses the methods of the Image object to

control interaction with the user and the methods of the Simulator object

to carry out model computations. The Simulator in turn manages the



functionalities of the Pixel, Basin and Gauge objects. The user interface is

therefore built as an interactive model interpreter, in which different

aspects of model capabilities are offered to the user.

Functionalities added by the Viewer object are based on its capability

to interact with the database to access past model results. The Viewer

object offers the possibility to recover from the data base the model state

corresponding to any past time. Model state is defined by the basin state

variables (wetting front, top front and moisture content), and the forcing

(the rainfall intensity and the runoff rate). Two methods of the Simulator,

readinitialstateO and readinitial-forcingO, are used by the Viewer to

obtain the state of the basin corresponding to a certain time tag. The

request for a model state may come directly from the user (through menu

- Function methods
- Hydrograph methods
- Pixel methods

Figure 6.5: Structure of the Viewer object.
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interaction), from an external parent process updating the Viewer

(through the standard input), or as part of some Viewer method (through

message passing). Once model state has been recovered, member

functions of any of the physical objects can be applied to reconstruct model

computations or to generate new results based on basin state.

The methods of the Viewer object belong to three basic groups:

function methods, pixel methods and hydrograph methods. They

correspond to the three main types of computations carried out by the

viewer: function methods apply a function to several pixels in the basin at

a given time, pixel methods apply a function to a single pixel at several

times and hydrograph methods apply the convolution operation. Each

group of methods is represented as a different option in the menu bar.

Function methods

Function methods are used to display virtual variables on the screen.

Virtual variables are magnitudes which can be derived from basin state,

as defined in the basin viewer: wetting and top front position, moisture

content, runoff generation rate and rainfall rate. A complete list of the

methods available in this group is given in Appendix 2. The list includes

variables available in the current implementation of RIBS, but it can be

easily modified to include other variables. The structure of all these

methods is the same: the function that defines the virtual variable is

applied to every pixel in the domain of application, and the resulting

distributed variable is displyed on the window using the Image object.

The availability of virtual variable is extremely useful for model

development and understanding. Most quantities used during model
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inference can be represented as virtual variables. Model dynamics are

formulated in terms of the state variables, and a wealth of information

about the soil column can be obtained from their knowledge. Ultimately,

any quantity defined for the one-dimensional model of infiltration can be

expressed in terms of the three state variables and the external forcing.

The only quantities which cannot be formulated using only local

knowledge are those which refer to pixel interactions. Examples of

derived magnitudes are surface infiltration capacity, front speeds,

moisture storage in different areas, normal and parallel flow at any

depth, total lateral flow, etc. The user can test and understand model

behavior by visualizing the proper variables: the distribution of surface

and subsurface runoff, the distribution of pixels in every state, runoff

generated by pixels in a certain state, etc. The great advantage of using

object-oriented programing is that the same code (object methods) used in

model computation is also applied in user interface presentations.

Therefore, every single step of model inference can be made available to

the user for detailed analysis.

Pixel methods

Pixel methods consider one single pixel in isolation. The most simple

method, do-pixvalO, just offers the value for that pixel of the currently

active virtual variable. This method uses the auxiliary function

get-pixel-coordO, which lets the user select a pixel interactively with the

mouse. As the user moves the mouse with the button pressed, the

corresponding pixel is highlighted and the position of the pixel and the

value of the variable are displayed in the label widget of the Image object.
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The method dojpixdisO presents the complete state of a pixel. The user

selects the pixel, and a report of pixel state is generated and presented

through a xjpixgraf process.

The third pixel method, implemented in the function do-pixrepO,

offers the time evolution of the currently active virtual variable for a pixel.

The method involves recovering all basin states since the beginning of the

simulation until the currently active time and applying the virtual

function to the pixel. The time series generated is stored in a Results data

structure and is displayed using a x-hydgraf process. The display

includes also a report of the hyetograph in the pixel, both for ease of

interpretation of the variable evolution (which will obviously be related to

rainfall) and for completeness in the presentation. All displays of

temporal evolutions are simultaneously maintained in the screen until

the user explicitly terminates the process. The do-pixrepO method is a

very powerful tool to compare the evolution of a variable for several pixels

or to compare the evolution of several variables for the same pixel.

Hydrograph methods

The goal of hydrograph methods is to generate different types of

hydrographs at specific locations selected by the user. Since basin state

includes the average runoff generation rate for every rain step, all the

viewer needs to do to generate hydrographs at any point in the basin is to

apply the distributed convolution to the area located upstream the selected

point. During model inference, DBS works at computation time steps and

only writes basin state when new rainfall information arrives. Modules in

the user interface must work at the resolution at which model results are
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available, and that introduces a small error in hydrographs generated by

the Viewer object compared with those generated by DBS. Nevertheless,

the error is usually negligible, because the variability of basin state within

a period of uniform rainfall is very small.

The function do-hydO implements the basic hydrograph-generating

operation. dohydO calls get-pixelcoordO to obtain the location of the

outlet. Then it creates an instance of the Gauge object at that point calling

the Simulator method init-hydgaugeO. The function hydrographjloopO,

which is also a Simulator method, is applied to obtain the basin response

at the gauge. The last step is to write the results and start a xhydgraf

process to present the results. Most of the computational burden of DBS is

placed on the estimation of runoff generation, and the surface flow

routing is a much faster process whose application is perfectly feasible in

an interactive fashion. Although these custom-made hydrographs involve

reading the runoff generation file several times, they are generated in a

relatively short time and they are a very powerful tool for real-time

decision making. Streamflow forecasts can be available at any point in the

basin, and the user can concentrate the computational efforts where they

are needed the most.

In addition to these local hydrographs, other variants of the

convolution operation can also be applied to model results. The behavior of

individual pixels can be tested by computing their contribution to the total

hydrograph, as in the method dojpixhydO. Also, if time of travel is

eliminated from the convolution, the result is the time evolution of runoff

generation in any portion of the basin, which can be compared with

rainfall to obtain the global runoff-generating behavior of the subbasin.

Lastly, a type of surface-runoff unit hydrograph can also be generated.
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Given basin state at a certain time, the viewer applies the function

dounit-hyd() to evaluate the surface runoff response to a uniform

rainfall of unit intensity during a time step. Since basin state changes

over time, the result obtained is not a unit hydrograph in the traditional

sense of the term, it is rather the unit response function of the basin

corresponding to a certain duration of rainfall. In any case, these unit

response functions are extremely useful to characterize global basin state

at some time. They are available for any point within the basin, and they

can be used either to obtain a quick and rough estimate of basin response

to future rainfall or to analyze the dynamic character of the runoff

generation potential of the basin during the storm.

Child window 1

P IW~f Conmad buuon

Diaplay area

Main window: basin viewer

Option 1 Option 2 Option n Menu bar
------ Option 2.1

Pulldown Option 2.2
menu ----- Zoom N

Option 2.n

L444-

Child window n

Display area
Display &no

Resize

Figure 6.6: Basic window layout for the user-driven interface.
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6.3.2 The executable module

The program xbviewer is the executable module that implements

the asynchronous user interface. xbviewer is simply an object-oriented

graphic interface that connects the user with the functionalities offered by

the Viewer object. The layout of the basin viewer main window is shown

in Figure 6.6. The main window consists of a menu bar and a graphic

area. The menu bar contains entries for several pulldown menu options.

The graphic area contains the display of a RasImage object, as described

in Section 6.2.2. The graphic area is used to display distributed basin

variables and always shows the currently active virtual variable. Other

results, such as hydrographs, temporal evolution of variables or pixel

File Edit Variable Hydrograph Pixel
Time Zoom
Quit Unzoom

Wetting front
Top front
Moisture content
Runoff generation
Rainfall
Hydraulic conductivity
Infiltration capacity
Flow at front
Upper deficit
Upper saturation
Lower deficit
Total deficit
Total saturation
Distance to stream

Local hydrograph Pixel value
Pixel hydrograph Pixel display
Unit hydrograph Variable report

Figure 6.7: Options in the pulldown menus of the basin viewer.
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states, are displayed using children windows which pop up as required.

Children windows are actually entirely independent x-hydgraf or

x-pixgraf processes, which are directly managed by the user.

Menu options of x_bviewer are detailed in Figure 6.7. The File menu

option allows interaction with the database. Since the basin viewer is used

to access results for a specific storm, the only File option available is a

change in the time tag displayed. Time change can also be achieved by

writing the new time tag in the standard input, and therefore the

x_bviewer process can be controlled by a parent process in the same

fashion as the other members of the user interface class. The Edit option

allows user manipulation of the distributed basin display, such as

changes in scale, color palettes or zooming operations. The other three

menu options, Variable, Pixel and Hydrograph, give access to the specific

methods of the Viewer object as classified in the previous section.

Variable contains a list of the available virtual variables. Pixel contains

options to consult variable values, display pixel states or present time

evolution of the currently active virtual variable for individual pixels. The

Hydrograph option allows the user to generate basin hydrographs or pixel

hydrographs at a given location, obtain the current unit response function

of the basin or compare rainfall with runoff generation.

The user recovers intermediate model states, and can then apply

pieces of model inference to those states, testing model evolution. He can

perform global consistency checks, by defining special variables, or he can

just elaborate on primitive variables to obtain meaningful representations

of basin state.

The user-driven interface is intended to run independently from the

simulation model itself. It is basically a tool for detailed data analysis, and
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therefore some of its capabilities are of little use in a real-time situation.

However, it can also be run on-line with the simulation model, in which

case it is automatically reset to the current time every time the model

obtains a new set of results.
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CHAPTER 7

Conclusion

7.1 Summary of results

This work presents a computer package called Real-time Interactive

Basin Simulator. RIBS is a prototype computer implementation of a flood

forecasting system. The system integrates a distributed rainfall-runoff

model and a hydrologic database within a graphic computer environment

which allows for real-time operational use. Although the RIBS system

has a wider scope, the presentation concentrates on the distributed basin

simulator and on the user interface.

The distributed basin simulator is a topography-based, rainfall-

runoff model which can be used for real-time flood forecasting in midsize

and large basins. Model use is specially attractive in connection with a

meteorological radar and distributed rainfall forecasting methods. The

model captures the main features of runoff generation processes in

forested watersheds while keeping computational efficiency for real-time

use. It accounts for the effects of slope, anisotropy and soil heterogeneity

on subsurface flow and runoff production through a simple analytical

formulation of infiltration processes at the hillslope scale. Basin-scale

processes of subsurface and surface water transport are also adequately

represented through discretized schemes on a rectangular grid.
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Model conceptualization of the distributed basin simulator offers a

variety of possibilities form the standpoint of its practical use in flood-

forecasting schemes:

- It is based on the same spatial discretization as that used in Digital

Elevation Maps, and therefore it can effectively incorporate very

detailed topographical information.

- Basin state can be described with a reduced number of state variables.

Model formulation in terms of state variables offers the possibility of

storing intermediate basin states in the database for later retrieval.

This feature can be used to present interactive reports of basin state

and evolution or to split model evolution in several lines of action,

considering, for instance, different future rainfall alternatives.

- The model can offer hydrographs at different locations in the basin

simultaneously. This possibility is extended to be applicable in real

time, with hydrographs being generated for points chosen interactively

by the user.

- Model conceptualization is modular. The simulator is composed of a

number of modular entities which are relatively self-contained. The

evaluation of the runoff generation is entirely independent from its

routing to the outlet, and both processes are separated from the

management of the operational cycle. The same building modules can

be used in different contexts.

The model was tested on an 840 km2 catchment in the Arno basin

(Italy), under the average "less-than-ideal" conditions that can be

expected in a practical application, using a DEM of coarse spatial

resolution, a previously available soil study, and a short record of ten
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events. Rainfall was recorded on a sparse raingauge network and

streamflow was measured only at one location. Five storms were used for

calibration, saving the rest for an evaluation test. Calibration was based

on the independence of the two main model parameters, which are

responsible for surface and subsurface runoff respectively. Results of the

evaluation process were encouraging, showing that, except for the

definition of the initial state, the model can be calibrated to acceptable

levels of performance with a limited data set.

The hydrologic model was implemented in C language using object-

oriented design techniques. Rather than a single computer program, the

product of the software development process is a library of simulation

tools for distributed hydrology which can be used for a variety of purposes.

The code implements the one-dimensional infiltration model applied at

the subgrid scale, basin processes of runoff generation and flow routing,

real-time simulation management and interaction with the hydrological

database.

Model capabilities are accessed through a versatile user interface.

Interface functions are used to present model results in real time and to

access previous basin states stored in the database. The interface consists

of interactive graphic programs working on a window environment, but

interface functions are wider in scope, since they can be used by any other

application to extract model results from the database.

The work presented here is significant because it integrates together

a number of previously separate techniques and lays the foundation for

possible future systems. Increasing data availability and computational

power will probably lead to widespread use of distributed models in

hydrology. The combination of hydrologic modeling techniques and
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software development methods as presented here seems a promising

alternative to apply physically-based concepts to flood forecasting.

7.2 Suggestions for future work

In the area of hydrologic modeling, the most important problem left

unresolved in this work is the definition of basin state at the beginning of

the storm. Event-based hydrologic modeling is basically an initial value

problem. Moisture conditions at the beginning of the storm are crucial to

estimate basin response, and future research should address this

problem. Initial state in DBS is determined by the water table depth and

the moisture content of the soil column above the water table. There are

basically three ways of approaching the definition of an initial condition

for DBS: (1) measure it, (2) model it and (3) estimate it in real time using

streamflow measurements.

At the intended scale of operation of DBS, the measurement of soil

moisture is clearly a problem of the future. Present remote-sensing

techniques only provide an estimation of the moisture content of a very

superficial soil layer, but future developments in the field may be able to

measure greater depths, thus providing a reliable estimate of initial

saturated areas at reasonable cost. An approximate estimate of the initial

state can also be obtained applying an inter-storm soil moisture model.

Model conceptualization in DBS is event-oriented, and does not include the

capillary-controlled processes that govern soil moisture distribution on

the long term. It is possible, however, to expand DBS, adding a different

conceptualization to operate during inter-storm periods. A combination of
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a vertically-averaged model of capillary soil moisture, similar to that of

Blain and Milly (1991), and a water table position model, similar to that of

Cabral et al. (1990), including moisture transfer between the saturated

and the unsaturated zone, is probably the best scheme.

The third option to provide DBS with an initial state is to estimate it

from streamflow measurements. This option assumes that the model is

properly calibrated, and the initial condition is the only unknown of the

problem. If that is true, a comparison of model predictions with actual

measurements can be used as a basis for real-time model update,

selecting the initial state which best reproduces the measurements. In

order to keep the parsimony of the problem, the number or structure of

possible initial states should be limited. The availability of several

discharge measurements distributed throughout the basin can greatly

benefit the filtering scheme.

The problem of subgrid variability is another hydrologic-modeling

issue which is worth further research. The fact that the one-dimensional

infiltration model is applied to grid cells in DBS is explained by the

assumption that the conditions under which the infiltration model was

derived are applicable to grid cells, and therefore all variables are

considered uniform throughout the cell. In practice, the model should

account for spatial heterogeneity, specially in large grid cells, where the

assumptions of uniform slopes and front surfaces parallel to the terrain

surface are weaker. If model variables represent spatial averages of

random functions over the cell, the effect of their distributions on model

equations should be investigated. Given the non-linearities in runoff

generation, a stochastic version of the infiltration model could account for
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subgrid heterogeneity and lead to different equations to characterize the

external behavior of the cell.

From the point of view of practical use of the model, it is extremely

interesting to test model behavior with actual radar-generated rainfall

maps. The work initiated by Pessoa et al. (1992) with the preliminary

version of the distributed rainfall-runoff model should be continued. The

short-term goal would be to evaluate model performance with better data

sets, but the generic final goal is the study of the influence of the spatial

distribution of rainfall on basin response, which may have important

implications in the fields of network design and real-time operational

forecasting.

Given the limited scope of this work, the presentation of the RIBS

package is incomplete from the standpoint of real-time operation. This

work presents real-time simulation tools. In practice, at least two basic

aspects should be added to model operation: distributed rainfall forecast

and real-time update. Model operation can greatly benefit from the

introduction of one or more radar-based rainfall-forecasting procedures.

The model could be used to explore the implications of rainfall forecasts in

terms of streamflows or water levels at different points in the basin. Also,

if discharge measurements are available, the real-time operation system

should account for them, updating model results and correcting model

performance according to the measurements. As it was mentioned above,

the single most important variable to modify in real time is the estimate of

basin state at the beginning of the storm. However, if independent

estimates of initial state are available, other model parameters, notably f

and a, could also be tuned in real time using filtering schemes.
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To complete a real-time decision-support system, the problem of

general model inference should also be addressed. This work has

concentrated on the definition of efficient simulation tools, but the

automatic use of modeling in real time also requires the definition of

inference strategies which use the simulation tools to approach the

problem. The complexity of the changing situation during a flood will

probably require the combination of numerical analysis with heuristic

knowledge, leading to mixed architectures, as in other fields of

engineering problem solving.
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APPENDIX 1

A Kinematic Model of Infiltration
in Vertically Heterogeneous,
Anisotropic and Sloped Soils

by

Mariza C. Cabral, Luis Garrote, Rafael L. Bras and Dara Entekhabi*

Al Introduction

It has long been recognized that infiltrating rainfall on a hillslope

results in subsurface flow lines that often are not vertical, but have a

downslope component. This paper is motivated by the runoff-generation

implications of subsurface flow geometry, with flood forecasting as the

ultimate goal. Lateral subsurface flux originating during a rainfall event

may generate storm runoff by two different mechanisms. First, lateral

flux may emerge at the surface under certain conditions, becoming

overland flow. This is subsurface storm runoff and it may represent a

significant portion of the storm hydrograph. Second, lateral subsurface

flux leads to moisture concentration at the bottom of the hillslopes,

especially if the hillslopes are concave and convergent. Commonly the

bottom of these hillslopes are also areas of shallow water table, and

therefore subsurface inputs to these areas, combined with direct rainfall,

* This appendix is a reprint of a paper describing the local infiltration model used in the Distributed Basin
Simulator. The paper is accepted for publication in Advances in Water Resources.
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cause rapid water table rise and the development and growth of saturated

areas that are effectively impermeable to rainfall. From this perspective,

topography plays an important role in storm runoff generation. The

availability of detailed topographical information in the form of digital

elevation models (DEM) facilitates the use of topography in a distributed

flood simulation model. However, in order to obtain a distributed model

that can operate at the fine resolution given by DEM's it is necessary to

develop a computationally efficient model of infiltration that can represent

the most relevant features of the subsurface flow from the standpoint of

storm runoff generation. The infiltration model should nevertheless

include the role of sloped terrains, anisotropic soil layering and other

factors distributing moisture in the vertical soil column.

Capillary forces, soil layering, anisotropy and slope are the main

mechanisms through which flow deviations from the vertical have been

explained in the literature. Zaslavsky and Rogowski [1969] introduce some

qualitative and quantitative considerations in modeling the influence of

anisotropy and terrain slope on the magnitude and direction of

unsaturated downhill flow. Zaslavsky and Sinai [1981] study the effects of

soil heterogeneity, specifically soils consisting of distinct and plane-

parallel layers. Successive layers of homogeneous and isotropic soil with

different hydraulic properties behave as a nonisotropic soil matrix with a

resultant downstream flow component parallel to the soil surface.

McCord and Stephens [1987] analyze soil moisture data from an

experimental basin in order to characterize the influence of topography on

subsurface lateral flow paths in the unsaturated zone.

An infinite-series solution to the full equation of flow in a

homogeneous anisotropic sloped soil is presented by Philip [1991]. He
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finds that total horizontal unsaturated flow is generally directed into the

hillslope for isotropic soils. The integrated resultant flow, nevertheless,

has a constant downslope component which is proportional to the square

root of time for small times. He also considers two types of anisotropy. In

the first type the principal directions of anisotropy are parallel and

normal to the soil surface. In the second type, principal directions of

anisotropy are horizontal and vertical. Philip [1991] finds markedly

different behavior in both cases, depending on which component of the

flow obtained for the isotropic case, the parallel or the horizontal, is

magnified by the anisotropy ratio.

Series and numerical solutions to the flow equation provide a good

insight to the main features of the physical description of the

phenomenon, but they are computationally too complex to be included in

distributed basin-scale models. In this paper, several simplifying

assumptions are made in order to obtain a simple analytical solution

feasible for application at the basin scale. Runoff generation during floods

is of concern, and therefore an adequate mapping of the saturated areas is

the main objective of the model. Rainfall over these saturated subregions

is responsible for a large fraction of the peak in the storm hydrograph.

The case analyzed here is similar to that in Philip [1991], considering

anisotropy parallel to the hillslope for a particular case of soil

heterogeneity. The simplification introduced consists of neglecting the

effect of capillary forces in unsaturated infiltration in what is usually

referred to as the kinematic approximation. Kinematic infiltration has

been studied in the context of gravity-dominated flow in homogeneous and

isotropic soils [Beven et al., 1981; Smith and Herbert, 1983; Charbeneau,

1984]. It has been found to be an adequate approximation to obtain
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subsurface stormflow by Beven [1981] for a wide range of values of

hydraulic conductivity and terrain slope. Here we consider kinematic

infiltration in anisotropic soils within sloping surfaces where the

saturated hydraulic conductivity decreases exponentially with depth. For

the sake of mathematical tractability, it is assumed that the soil column

has a large length scale in the direction of its surface slope so that

boundary conditions do not have an effect on the local infiltration. Philip

[1991] finds this assumption not too restrictive for most practical cases.

However, this assumption should be revised for application in a

distributed model, since the spatial variability of hillslope geometry and

soil properties introduces lateral flow gradients . Here we are concerned

with one dimensional infiltration only; therefore variabilities in the

direction parallel to the slope will not be considered.

A1.2 Soil Model

Flow equations are derived in the reference system defined by the

directions normal (n) and parallel (p) to the slope; in and ip are unit

vectors in these directions. The distance n is taken positive in the

downward direction and p is taken positive in the downslope direction.

Flow is also described in the alternative reference system defined by the

vertical (z) and horizontal (x) directions. iz and ix are unit vectors in these

directions. The two reference systems form an angle a, the angle of

terrain slope (see Figure 1).

The analytical solutions to the kinematic infiltration are developed

for the following model of the soil column.
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1) The soil is sloped at an angle a with respect to the horizontal

direction. Soil characteristics may vary only in the direction normal to the

surface. The terrain model is therefore layered parallel to the surface.

Figure 1: Representation of the coordinate directions on a hillslope of
constant slope, tan(a).

2) Saturated hydraulic conductivity decreases with depth normal to

the sloped surface. The decrease of hydraulic conductivity with depth is a

key assumption in the model, since it is the mechanism that leads to the

formation of a perched saturated zone. Different functional forms could

be adopted to parameterize the decrease of hydraulic conductivity with

depth. Here we adopt an exponential decrease with normal depth. Beven

[1982] finds that a number of soil data sets from a variety of basins were



well represented by such a model of hydraulic conductivity. It is

important to note that results can be obtained for other parameterizations

for the decrease of saturated conductivity with depth.

The directions parallel and normal to the soil surface are the main

directions of the hydraulic conductivity tensor, and for them, the

saturated hydraulic conductivities are given by

KS(n) =Ko e (la)

Ks,(n)= KO e (lb)

where Ksn(n) and Ks,(n) are the saturated conductivities at depth n

perpendicular to the surface; Kon and Kop are the saturated hydraulic

conductivities in directions n and p at the soil surface; and f is a

parameter of dimension [L- 1]. The parameter f controls the decay of the

saturated hydraulic conductivity with depth.

The saturated hydraulic conductivities in directions n and p are

related through the dimensionless anisotropy ratio ar, defined as

KO
ar = > 1 (2)

This relationship is assumed to be valid for all depths.

3) The Brooks-Corey [Brooks and Corey, 1964] parameterization of

unsaturated hydraulic conductivity is used. Upon substitution of

Equations (la) and (1b) for the saturated conductivities in directions n and

p, the Brooks-Corey parameterization gives,
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Kn (9,n)= Ko e (3a)

K, (,n)= Ko e - s - r (3b)

where Kn(9,n) and Kp(O,n) are the hydraulic conductivities in directions n

and p at moisture content 0 and at depth n; Os is the saturated moisture

content; Or is the residual moisture content, defined as the value below

which moisture is immobile; and E is a pore size distribution index.

There is correlation between each of the parameters Or, 9s, and e and

the saturated hydraulic conductivity. For saturated conductivity varying

with depth, these parameters should correspondingly be functions of

depth. Nevertheless, parameters 0 r, O, and e have less variability for

different soil types [Clapp and Hornberger, 1978; Mualem, 1978], and for

simplicity we consider them to be constant with depth. The same

approach has been adopted by other authors [Dagan and Bressler, 1983;

Yeh et al, 1985; etc.]. While saturated hydraulic conductivity varies over

many orders of magnitude in heterogeneous soils, the pore size

distribution index for the same soils varies well below even one order of

magnitude. Given these considerations, it is evident that anisotropy of

saturated conductivities is duplicated for unsaturated flow as well.
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A1.3 Analysis of unsaturated flow

When the rainfall rate is lower than the initial infiltration capacity,

the movement of water in the soil column occurs under unsaturated

conditions. In a soil where conductivity decreases with depth, perched

saturation may develop under prolonged infiltration. All equations

presented in this Section refer to flow in the unsaturated region from the

surface to the wetting front in the early stages of infiltration. Flow under

saturated conditions is the subject of Section 4.

A1.3.1 Flow geometry

The flow vector q may be expressed in term of its components in the

main directions of anisotropy,

q=qni.+qi, =-KnJni. - KJi, (4)

where qn and qp are the components of discharge per unit area in

directions n and p and Jn and J, are the components of the hydraulic

gradient vector J in those directions. If the soil is unsaturated, water

pressure is less than atmospheric, because it is affected by surface

tension. However, under the kinematic assumption the effect of negative

water pressure due to capillarity is neglected and the hydraulic gradient

is only gravitational,

J= J i +J, i =- cos(a) i - sin(a) ip (5)
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Substituting Jn and J, given by Equation (5) into Equation (4), and using

Equation (2) we write

q = Kn cos(a) in + K, sin(a) i, = Kn cos(a) in + a, Kn sin(a) ip (6)

Soil anisotropy deflects the unsaturated flow at an angle, designated

u, with respect to the direction of the hydraulic gradient (the subscript in

u is used to indicate unsaturated infiltration). From Figure 2 and

Equations (2), (4) and (6),

tan(a + p=) % = ar tan(a)
(7)

Figure 2: Components of flow in the z and x, and p and n directions. Flow
is in the direction indicated by the vector q.
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Solving for $.,

$,= tan-1(ar tan(a)) - a (8)

Angle pu is constant with depth since the ratio ar is constant with

depth. It is larger for higher anisotropy ratios and steeper terrain slopes.

For ar = 1, Equation (8) gives pu equal to zero. That is, for an isotropic soil

the above equations give unsaturated flow strictly in the vertical direction.

Since flow direction is constant in the unsaturated area, we can

derive an expression for the steady state flow vector q from continuity

considerations. Let us consider rainfall at a rate R. In steady state there

must be no moisture changes in the soil. From continuity, the flow per

unit width perpendicular to segment a (which has unit length) must

equal the flow per unit width perpendicular to segment b in Figure 3.

Designating the direction of the resultant flow vector by s,

R a= q, b (9)

From geometrical considerations, we can write

cos(a + $u)
b= (10)

cos(a)

Substituting (9) into (10) and solving for qs we obtain

cos(a)
cos(a+ I) R(11)
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Figure 3: Unsaturated infiltration in a laterally anisotropic soil.

The component of flow in the normal direction qn, is related

geometrically to q through

q = cos(a + P) c6 (12)

which combines with Equation (11) into

q =R cos(a) (13)

From Equations (13) and (6) we obtain

Kn(9,n) = R (14)
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which is evident for kinematic flow in porous media.

Using the above in Equation (3a) we obtain a description of the soil

moisture profile under steady infiltration at rate R

0(R,n) = - E (s ~ Or) exp (- + e,
KO E

(15)

Equation (15) shows that in steady state conditions, the moisture

content above the wetting front increases exponentially with depth, in

order to maintain the normal hydraulic conductivity equal to the rainfall

rate R. Figure 4 represents moisture profiles corresponding to various

steady infiltration rates.

Figure 4: Moisture profiles for various rainfall rates lower than the soil
surface saturated conductivity.
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Given that saturated soil conductivity decreases with depth, for any

rainfall rate R lower than the surface normal hydraulic conductivity (R <

Kon), a corresponding depth within the soil profile N*(R) will have the

saturated conductivity in the normal direction equal to the rainfall rate,

i.e.

Kn (0s,N*) = R (16)

Substituting Os and N* in the expression for K.(N*) (Equation (3a)) and

solving for N* in Equation (16) we obtain,

*1N(R)=- fT (17)

Note that Equation (17) applies only for R Kon. For R > Kon, the

saturated level is at the surface, and there is no unsaturated area above

the wetting front.

Letting n = N*(R) in Equation (15), we obtain q(RN*) = q.. Therefore,

N*(R) represents the depth at which saturation develops under a steady

infiltration rate R. For n > N*(R), we have Ks,(n) < R and the soil can no

longer transmit flow at the rate of infiltration to depths beyond N*(R).

Water accumulates above that level and perched saturation develops.

A1.3.2 Vertical and horizontal components of flow

Combining Equations (6), (7), (13), and (16) the expression for the flow

vector q is
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q = R cos(a) i. + a, R sin(a) ip (18)

Vertical and horizontal components of flow are obtained by projecting the

flow vector q on the z and x axes:

qz= qn cos(a) + q, sin(a) = [R cos(a)] cos(a) + [ar R sin(a)] sin(a) (19a)

q,= - qn sin(a) + q, cos(a)= - [R cos(a)] sin(a) + [ar R sin(a)] cos(a) (19b)

Upon simplification,

qz= R [cos2(a) + ar. sin2(CC)] (20a)

q,= R cos(a) sin(a) (a, - 1) (20b)

Both vertical and horizontal components of flow are constant over depth.

For anisotropy ratios greater than one, horizontal flow goes in the

downhill direction and is maximum for slopes at 450 angle .

A1.33 Wetting front advance in the unsaturated zone

Equations relevant to the geometry and magnitude of the unsaturated

flow have been derived under the steady state assumption. In this section

we present the equation for the time evolution of the moisture front in the

soil column. We assume that the initial state of the soil can be described by

a moisture distribution given by Equation (15) for a small initial

infiltration rate Ri. We also consider a constant rainfall rate R, R > Ri,
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over a given time interval. Under the kinematic approximation, a sharp

discontinuity in moisture content separates the area affected by the

propagation of the infiltration wave and the undisturbed area below the

front.

Figure 5: Wetting front described by the kinematic model of infiltration.

We consider that the expression governing the flow of moisture in the

unsaturated area in steady state (Equation (18)) is valid for both areas just

above and below the wetting front. Furthermore, we assume that the

wetting front is parallel to the surface and advances perpendicular to it.

Its location below the surface datum is represented by the distance Nf (see

Figure 5). In the initial phase of infiltration, i.e. while Nf < N*(R), the soil

between the surface and depth Nf is unsaturated. The evolution of Nf is

given by
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dNf (R - Ri) cos(a)

dt 0(R, Nf) - O(Ri, N) (21)

which is derived in the Appendix (Section A1.9).

The rate of advance of the wetting front depends on the difference

between the rainfall rate and the initial recharge rate (R - Ri) and the

difference between the moisture distributions corresponding to R and Ri

at the depth of the wetting front. Once the wetting front reaches the

critical depth N*(R), soil conductivity will equal the infiltration rate.

From that point downwards, the soil can no longer increase its moisture

content to keep normal hydraulic conductivity equal to the rainfall rate,

and therefore perched saturation develops at and above the wetting front.

Flow in this saturated zone is the subject of next Section.

A1.4 Analysis of saturated flow

The soil column above the wetting front is saturated in two cases; 1)

when the rainfall rate is higher than the surface saturated conductivity

(R > Kon), or 2) when the wetting front has penetrated beyond the critical

depth (Nf > N*(R)).

In the first case, the entire wetted soil (i.e., from the surface to Nf) is

saturated. In the second case, as the front reaches N*(R) infiltration can

only be less than recharge from above, and moisture progressively

accumulates above the wetting front. A zone of perched saturation

develops and grows upward from N*(R), as well as downward as the front

progresses. In order to fully describe the soil moisture profile in this case,
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it is necessary to specify not only the depth of the wetting front but also the

depth of the top of the zone of perched saturation. Therefore, we introduce

a new variable Nt, defined as Nf minus the height of the zone of perched

saturation. If there is a zone of perched saturation, this definition

corresponds to the normal distance from the top of the zone of saturation

to the soil surface. If the whole wetted soil is unsaturated (Nf < N*(R)),

then Nt equals Nf. Equations of evolution for Nt as well as for Nf are

derived below. Figure 6 represents the progression of the wetting front in

time, showing the development of a zone of saturation and the upward

evolution of Nt.

A1.4.1 Flow geometry

The first term in the continuity equation (Al) is zero within the zone

of saturation since 0(t) = OS and the saturated flow is laterally non-

divergent. Since we have also assumed that all derivatives in the p

direction are zero, the non-divergence of flow translates into

aq,
an (22)

Equation (22) yields q(n) as constant in the n direction. Since the

elevation gradient is constant and hydraulic conductivity decreases with

depth, constant normal flow within the saturated zone implies a positive

pressure buildup within it. Pressure gradient compensates for the

different hydraulic conductivities of the successive layers of the saturated

zone in order to keep normal flow constant. Therefore, the hydraulic
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Figure 6: Evolution of the moisture profile over four
steps, tj through t4 , under constant rainfall

consecutive time
rate R.
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gradient within the saturated zone has to account for the gradient of that

positive pressure distribution,

J = Jn in + Jp ip=( cos(a)+ n i - sin(a) i, (23)

where scalar ' is a positive pore pressure, which varies only with normal

depth alone.

The flow equation in the saturated zone is,

q=qn i+qi =- K, Jn in - K, JP iP Ko e "J in - KO e" JP i(

Substituting the value of the hydraulic gradient in the n direction Ja into

the expression of qn,

qn (n) = (cos(a) ) KO ef (25)

Upon substitution of Equation (25) into Equation (22) we obtain the

differential equation that governs pressure distribution within the

saturated zone,

a c[ ( a 

32 V

2 f + f cos(a))=0
an 2 a

(26)
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Pressure at both fronts Nt and Nf can be assumed atmospheric given

that they are in contact with the unsaturated zones, which have zero

pressure according to the kinematic model of infiltration. The area above

the top front is directly in contact with the atmosphere. The area below the

wetting front can be assumed to be open to atmospheric pressure given the

spatial variability in the real moisture distribution at the basin scale.

Integration of Equation (26) with the boundary conditions {(Nf) = 'P(Nt) = 0

leads to

fn fn t (N + 
P(n) = cos(a) n + - Nt + f m e (N27

- f ef - e f e _ -e . (27)

The hydraulic potential can be obtained upon differentiation of the

pressure distribution,

f f(Nf-Nt) e)cos(a) i. - sin(a) i,
e f - e (28)

Substitution of Jn in the flow Equation (24) gives the expression for the

normal flow in the saturated area,

qn= Kon e-f Jn = K On f (N - cos(a)
e f - e (29)

Normal flow is constant in the saturated area. We can define an

"equivalent hydraulic conductivity" for the saturated area, Keq, as the

normal hydraulic conductivity of a homogeneous soil with the same
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normal flow q given by Equation (29). The equivalent hydraulic

conductivity is given by

f (N, - Nt)
Keq(N,Nt) = KO

e f - e (30)

This equivalent conductivity also corresponds to the harmonic mean of the

conductivities over the saturated depth,

N fdnN
Keq (Nf,Nt) N

JNt sn) (1

We may also designate by "equivalent depth", Neq, the normal depth

which has conductivity equal to Keq(NfNt). From equations (la) and (30),

Neq(NfNt)=- In [f(N- Nt)](.e -~_e Nt (32)

Neq is also the depth at which the pressure distribution (Equation

(27)) is maximum, because for that point the pressure gradient is zero and

flow is controlled only by the unit gravitational gradient. For depths

smaller than Neq, that is Nt < n < Neq, the saturated hydraulic

conductivity is greater than Keq, and the pressure gradient is positive

(increasing pressure with depth) to compensate for the excess in

hydraulic conductivity and to maintain constant normal flow. For depths

greater than Neq, that is Neq < n < Nf, the saturated hydraulic
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conductivity is smaller than Keq, and constant normal flow implies a

negative pressure gradient in that area, up to the wetting front, where

pressure is again atmospheric.

The parallel component of J is entirely gravitational, and the flow in

this direction is given by

q,= - KO e J , = KO, e~f sin(a) (33)

Within the saturated zone above the wetting front normal flow is

constrained by continuity, but parallel flow is not affected by the pressure

gradient in the normal direction. As a consequence, flow above the

wetting front is deflected laterally. Because conductivity is a function of

normal depth n, the angle of flow deflection and the components of flow in

directions p and n are also functions of n. The angle of flow with the

vertical direction within the zone of saturation is designated ps(n), and is

obtained from (29) and (33),

-p = tan(a + p,(n)) = a tan(c) e
qn f (Nf -N) (34)

and solving for Ps(n),

p(n) = tan a, tan(a) e - a
f (Nf -Nt) (35)

Flow deflection with respect to the vertical direction in the saturated

area is due to two superimposed effects. First, the hydraulic gradient is at
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an angle y(n), due to its pressure component. The angle y(n) can be

obtained from Equation (28)

p e -et _fn= tan( + y(n)) = tan(a) eNf - N) (36)

For depths smaller than Neq, Nt n < Neq, y(n) is positive and the

hydraulic gradient is deflected downslope, but for depths greater than

Neq, Neq < n Nf, y(n) is negative and the gradient is directed into the

slope.

Comparison of Equations (34) and (36) shows that besides the

deflection due to the hydraulic gradient, soil anisotropy is a second cause

by which flow may be deflected in the saturated zone. Flow is deflected

from the direction of the hydraulic gradient towards the direction of

higher hydraulic conductivity, that is in the downslope direction.

Depending on the values of f, Nf, Nt and ar, the saturated flow can take

different directions. For a given depth n, ps(n) increases with the

anisotropy ratio, with the depth of the wetting front and with the thickness

of the perched saturation zone. The angle of flow is never larger than 90 -

a (i.e. parallel to the surface), but for small values of ar, it can be negative

for some values of n (flow is directed into the slope). For ar = 1, that is, for

an isotropic soil, flow is directed into the slope for all depths greater than

Neq.
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A1.4.2 Vertical and horizontal components of flow

The vertical and horizontal components of flow are obtained by

projecting the flow vector q on the z and x axes. Since there is no variation

of front normal depth in the p direction, the values of Nf and Nt are

constant for all the hillslope, and therefore independent from vertical

depth z.

qz(n) = qn cos(a) + q, sin(c)=

K f (Nf - N) Cos(a) cos(a) + [Ko e~f" sin(a)] sin(a)
. e f - efNt (37a)

q,(n) = - qn sin(a) + q, cos(a)=

- Kon f NtN cos(a)] sin(cx) + [KO e-f" sin(cz)] cos(a)
" em, _ em, I (37b)

Upon simplification of Equations (37a) and (37b),

qz(z) = KO [ ar e-fcos(a) sin2(aX) + f (Nf - N) Cos2(a)
e'f - e~t (38a)

q,(z) = KO sin(a) cos(a) ar e acos(a) _ f (Nf - Nt)

Le f - e (38b)

As a consequence of flow deflection, vertical infiltration in the saturated

zone is not constant with depth. It is the sum of a constant term and a

term which decays exponentially with depth. The resulting horizontal
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flow may be positive or negative ( directed in the downslope or upslope

direction), depending on the relative values of ar, f, Nf and Nt. Its

component directed into the slope is constant with vertical depth z, but its

component directed out of the slope decreases exponentially with depth.

A1.4.3 Wetting and top front evolution in saturated infiltration

As in the case of unsaturated infiltration, detailed in the Appendix

(Section A1.9), the equation of evolution of Nf is obtained through

integration of the continuity equation upon substitution of the kinematic

flow equation. The domain of integration Q is now defined by Nt < ni < Nf <

n2. Normal flow qn is given by Equation (29) at the level of ni (saturated

zone) and by Ri cos(a) at the level of n2 (initial recharge rate). Integration

of the two-dimensional continuity Equation (Al) over Q gives,

f (Nf - Nt)
dNf 

cos(a)
dt O, - 0 (Ri,Nf) (39)

Derivation of the equation of evolution for Nt is entirely analogous to

that for Nf. The domain of integration is now delimited by ni and n 2

defined by ni < Nt < n 2 < Nf. Normal flow is given by Equation(13) at depth

ni and by Equation(29) at depth n2. Top front evolution is given by

f (Nf - Nt)

dN t " e. f , _ efg

dt O - 0 (R,Nt) coa)(0
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Since we have R cos(a) > gn in the saturated zone, the time derivative

of Nt is negative, i.e., Nt approaches the terrain surface. Eventually, Nt

will reach the surface (Nt = 0), and from then on we must have

Nt = 0; dNt = 0(41)

A1.5 The infiltration model

For Nt = 0, compatibility of (41) with (40) requires that R = qn in the

saturated zone, with R now representing the rate of infiltration. The rate

of infiltration is now smaller than the rainfall rate and infiltration excess

runoff is generated. This situation also applies to the case R > Kon. If

rainfall rate is higher than the saturated hydraulic conductivity at the

surface, there is no initial unsaturated infiltration. Infiltration occurs

under saturated conditions from the beginning. The top front is

permanently at the surface and wetting front evolution is only governed by

Equation (39).

In summary, if we designate the rate of infiltration by Rinf and the

rate of runoff by Rr,

Nt> 0: R cos(a)

Rinf = f Nf (42)

(efNf.1) cos(a)

Rr = R - Rinf (43)
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When the top front reaches the surface of the soil, infiltration into the

soil is no longer controlled by the infiltration capacity of the upper layer

(surface normal hydraulic conductivity Kon), but by the infiltration

capacity of all the saturated profile, equal to the equivalent hydraulic

conductivity Keq (harmonic mean of the hydraulic conductivities of the

saturated zone). Since for a constant rainfall rate R the saturated area is

expanding, the infiltration capacity of the saturated area decreases in

time.

A1.6 Lateral subsurface discharge from a vertical cross-section

In this Section we obtain an expression for the lateral discharge from

a vertical cross-section of the hillslope soil. The total discharge from the

wetted soil, represented by Q, from a vertical cross-section of width W is
Nfobtained through integration over the wetted depth (i.e. from 0 to cos(a) of

the horizontal component of flow,

Nf

Q=W jO q, (z) dz (44)

Replacing this integral by its components within the unsaturated

and saturated zones,

Q=W. cosa)qx (z) dz+ N qx(z) dz
cos(a) (45)
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Substituting Equations (20b) and (38b) in the first and second integrals of

Equation (45), respectively, we obtain

~ ar m - f (Nf - Nt)Q = W sin(a) [Nt R (a, - 1)]+ KO 2 (eCt -e f) -[K0  e - 2 (46)1 ~ ~ . ef f - e t_

For a rainfall rate lower than the initial infiltration capacity, i.e. for

R < Kon, lateral discharge is given by the first square-bracketed term of

(46) while we have Nt = Nf < N*(R). In this case, lateral discharge

increases with the anisotropy ratio. After perched saturation has

developed, i.e. for Nt < N*(R) < Nf, lateral discharge is given by all three

terms of Equation (46) while we have Nt > 0. In the advanced stages of

infiltration, we have Nt = 0 and Nf very large. Therefore, the first term in

Equation (46) equals zero, the third approaches zero and the second term

has a limit value for large Nf, given by,

lim Q = W sin(a) Ko -r
t -> - n f (47)

The limit value increases with the anisotropy ratio and the surface

saturated hydraulic conductivity and decreases with the rate of

conductivity decay with depth, f.
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A1.7 Infiltration model sensitivities

We present model results for various soil parameter values, rainfall

rates, and terrain inclinations. A soil with the following basic

characteristics was selected to obtain numerical results:

Kon : 20 mm h-1

Os :0.5

Or : 0.05

E : 4.0

The soil is assumed to be almost dry at the beginning of the event. An

initial recharge rate of Ri = 0.01 mm h-1 defines this initial moisture

distribution.

Table 1: Numerical values used in the simulations

Parameter Reference
values

Rainfall rates (mm h-1) 2 5 7 10
Slope angle (0) 0 10 20 45

Anisotropy ratio 1 5 10 100
Parameter f (m-1) 10 5 1 0.1

Sensitivity analyses were carried out for the rest of the variables that

affect the results, namely: rainfall rate (R), terrain slope angle (a),

anisotropy ratio (ar) and decrease of permeability with depth (parameter

f. Table 1 shows the numerical values adopted for the variables in the

sensitivity analysis. A basic set of values (central column) was adopted as

a reference. Sensitivity analyses were performed changing only one

variable at a time, setting the rest to their basic reference values. The
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model basically involves the numerical integration of the evolution

equations (21), (39), and (40) for a period equal to 60 hours.

Figures (7) to (9) show the position of both the wetting front and the

top of the zone of perched saturation for a variety of rain rates, f-values

and slopes. The top front is shown to often diverge from the bottom front,

indicating the development and growth of a zone of perched saturation.

Figure (7) shows the evolution in time of front depth for different rainfall

intensities. It can be seen that except for the case with lowest rainfall

intensity, saturation is reached at a relatively shallow position. Figure (8)

shows the importance of the parameter f for the definition of the depth

N*, and consequently in the position of the fronts and evolution of the

saturated area. Figure (9) shows that the sensitivity to the slope angle a is

small except for steep inclinations. There is no sensitivity analysis to the
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Figure 7: Front position as a function of time for different rainfall
intensities. The slope angle is 20* Normal hydraulic conductivity at the

surface is 20 mm.h-1 , with an exponential decay rate of 0.005 mm-1 . The
soil is anisotropic, with an anisotropy ratio of 10.
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Figure 8: Front position as a function of time for different values of the
exponential decay rate of hydraulic conductivity (parameter f). Normal

hydraulic conductivity at the surface is 20 mm.h- 1, the rainfall intensity
is 10 mm.h- 1, the slope angle is 200 and the anisotropy ratio is 10.
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Figure 9: Front position as a function of time for different slope angles.
Rainfall intensity is 5 mm.h- 1, normal hydraulic conductivity at the

surface is 20 mm.h- 1, the exponential decay rate is 0.005 mm- 1 and the
anisotropy ratio is 10.
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anisotropy ratio because front evolution (and therefore front position) is

independent of soil anisotropy parallel to the soil surface.

Figures (10) to (12) show the effect of model parameters in the

generation of hillslope runoff. All rainfall intensities used in Figure (10)

are smaller than the surface normal saturated conductivity (20 mm h-1)-

three of them generate hillslope runoff during the first 60 hours of storm

and in a relatively dry soil. At the beginning of the event, the infiltration

rate is equal to rainfall intensity because the process is controlled by the

infiltration capacity of the unsaturated upper layers of the soil. When the

top front eventually reaches the surface, infiltration is controlled by the

equivalent permeability of the saturated area, which is an average of the

normal conductivities of the saturated zone. Average conductivity is

smaller than that of the upper layers of the soil and smaller than rainfall
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Figure 10: Hillslope runoff generation as a function of time for different
rainfall intensities. The slope angle is 20 , normal hydraulic conductivity
at the surface is 20 mm.h-1 , the exponential decay rate is 0.005 mm-1 and

the soil is anisotropic, with an anisotropy ratio of 10.
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Figure 11: Hillslope runoff generation as a function of time for different
vales of the exponential decay rate of hydraulic conductivity (parameter ,).
Normal hydraulic conductivity at the surface is 20 mm.h- 1, the rainfall

intensity is 10 mm.h-1 , the slope angle is 200 and the anisotropy ratio is 10.
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Figure 12: Hillslope runoff generation as a function of time for different
slope angles. Rainfall intensity is 5 mm.h-1 , normal hydraulic

conductivity at the surface is 20 mm.h-1 , then exponential decay rate is
0.005 mm-1 and the anisotropy ratio is 10.
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intensity. That produces a sharp decrease in the infiltration capacity of

the soil and the consequent increase in the runoff. From that point on,

runoff generation is controlled by the equivalent permeability of the

saturated area, which decreases as the wetting front advances further

into the soil. Figures (11) and (12) show the sensitivity of runoff generation

to the conductivity parameter f and to the slope angle, with similar effects

to those already commented for the front evolution.

Figures (13) to (18) show streamlines at different stages of front

evolution for soils with anisotropy ratios of 1 and 10. Figures (13) and (14)

correspond to front position after 5 hours of rainfall. Most of the wetted

area is unsaturated and, therefore streamlines are vertical lines for the

case ar = 1 and at an angle $u = tan-1[10 tan(100 )] - 100 for the case ar = 10.

Figures (15) and (16) show the streamlines after 10 hours of rainfall, when

the top front is almost at the surface and most of the wetted area is

saturated. Since the saturated area is still relatively shallow the

curvature of the streamlines is not large, specially for the case ar =1.

Figures (17) and (18) show the streamlines after 60 hours of rainfall, with

the entire wetted profile (up to the wetting front) saturated. As it can be

seen in Figure (17) (isotropic case), soil heterogeneity translates into an

overall downslope deviation of flow, although flow in the lower part of the

saturated area is directed into the slope. Figure (18) illustrates how

anisotropy affects the direction of flow. After many hours of rainfall, flow

in the upper part of the saturated area is almost parallel to the surface,

and therefore parallel flow dominates over vertical flow. These results are

consistent with field observations of subsurface storm runoff generation

[Tanaka et al.,1987], that link storm runoff mostly to the movement of

shallow groundwater parallel to the surface. This phenomenon is usually
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Figure 13: Representation of flow lines after 5 hours of infiltration for an
isotropic soil with slope angle of 100. Normal hydraulic conductivity at the
surface is 20 mm.h-1 , the exponential decay rate is 0.005 mm-1 and the

rainfall intensity is 10 mm.h-1.

Figure 14: Representation of flow lines after 5 hours of infiltration for a
soil with slope angle of 100 and anisotropy ratio of 10. The normal

hydraulic conductivity at the surface is 20 mm.h-1, the exponential decay
rate is 0.005 mm-1 and the rainfall intensity is 10 mm.h- 1.
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Figure 15: Representation of flow lines after 10 hours of infiltration for an
isotropic soil with slope angle of 10. The normal hydraulic conductivity at

the surface is 20 mm.h-1, the exponential decay rate is 0.005 mm-1 and
the rainfall intensity is 10 mm.h- 1.
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Figure 16: Representation of flow lines after 10 hours of infiltration for a
soil with slope angle of 100 and anisotropy ratio of 10. The normal

hydraulic conductivity at the surface is 20 mm.h-1, the exponential decay
rate is 0.005 mm-1 and the rainfall intensity is 10 mm.h-1 .



Figure 17: Representation of flow lines after 60 hours of infiltration for an
isotropic soil with slope angle of 100. The normal hydraulic conductivity at

the surface is 20 mm.h-1 , the exponential decay rate is 0.005 mm- 1 and
the rainfall intensity is 10 mm.h-1 .

Figure 18: Representation of flow lines after 60 hours of infiltration for a
soil with slope angle of 100 and anisotropy ratio of 10. the normal

hydraulic conductivity at the surface is 20 mm.h-1 , the exponential decay
rate is 0.005 mm-4 and the rainfall intensity is 10 mm.h-1 .
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attributed in the literature to macropore flow, but it can be to some extent

represented by Darcian matrix flow with a high anisotropy ratio.

A1.8 Conclusions

A one-dimensional model of infiltration and subsurface lateral flows

that considers the effects of anisotropy and vertical heterogeneity has been

presented. The model is based on the kinematic approximation and on a

simplified mathematical description of soil anisotropy and heterogeneity

which allow for analytical treatment of the problem. Outputs of the model

are the wetting front advance, the evolution of a perched saturation zone,

and the generation of lateral unsaturated and saturated subsurface flow.

The kinematic approximation leads to the formation of a sharp

wetting front. With hydraulic conductivity decreasing with depth,

prolonged infiltration leads to the development of saturation at a depth in

the soil profile where infiltration capacity equals the percolation rate. As

the wetting front progresses further below this critical depth, discharge is

limited by the lower conductivity at the wetting front and moisture

progressively accumulates within a zone of perched saturation. Evolution

equations for the location of the wetting front and the growth of the zone of

perched saturation have been derived.

The effect of soil heterogeneity and anisotropy on infiltration is flow

deflection in the downslope direction. Flow deviation with respect to the

vertical has been analyzed for both unsaturated and saturated regimes.

Numerical results have been presented to illustrate how this one-
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dimensional model can reproduce some of the observed two-dimensional

effects of subsurface stormflow generation in sloped soils .

Since simple analytical expressions for front advance are derived, the

one-dimensional infiltration model presented here is computationally

efficient. It can be used as the basis for estimating local runoff generation

in a distributed basin model. The expression for horizontal flow in a

vertical cross section allows for horizontal flow transfer between the

distributed elements. Further reports will focus on the adaptation of the

model to variable rainfall rates and to address the problem of the

variability in the parallel direction.

A1.9 Appendix to the paper

In this Appendix the equation for the time evolution of the wetting

front is derived. The continuity equation in the (n,p) coordinate system is

Do +aqn+ aq =0(Al)
at an aq,

Equation (Al) can be integrated in the domain W that includes the wetting

front (see Figure Al).Domain 0 is delineated by the planes p=pi, P=P2,

n=ni and n=n2, with ni < Nf< n2. Integration of the continuity equation

in the domain K2 gives

S an +qp ae an aq, = 0aTat an ap )at )n -)dQ+j ap (A2)
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Interchanging the integral and the derivative in the first term and

applying Green's theorem to the second term gives

d ) +Q ( q .iN) da = 0 (A3)

where iN is a unit vector normal to the boundary of Q, dQ. The time rate of

change in moisture content within Q is balanced by the flux of q across its

encompassing boundary d2.

Figure Al: Integration domain D for the continuity equation. The wetting
front Nf is between ni and n2.

The soil moisture profile is given by Equation (15). The rainfall rate is

R above the wetting front (nl<n<Nf). Prior to the initiation of rainfall the

soil moisture profile can be described by a flow rate Ri < R. Therefore, the

initial moisture profile is given by (15) upon substitution of R by Ri for
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depths below Nf (Nf<n<n 2), a region still unaffected by the moisture wave.

Upon substitution of the soil moisture profile in the integral of the first

term of Equation (A3),

Sd = P2n20(n) dn dp = (P2 - Pd (n) dn + n29(n) dn =J d 1 fn u un P l[ f

(p2 - Pdi[o- (s - 0r) ( (e N e n1) +

1

r(N-ni) +

-- (9 S- or) (-E(e E2 - e-Nf) + Or(n 2-Nf)]Ko nfI
(A4)

Differentiation of (A4) with respect to time yields the first term in Equation

(A3),

0 dG = (P2 - Pi

1

s - Or) e Nf + r] -

1R E f dNf
, S- Or E +Or]~ dt (A5)

Recalling the expression for 9(Rn) given by Equation (15),

df dQ = (P2 - PI) [0 (R , N) - 0 (Ri, N)] dNf

(A6)

The second term of Equation (A3) is the flux of the vector q across the

boundary of K, which leads to
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n2P2 n2 P2

(q. iN) d = -qp Ip=p1 dn - qn nni dp + q1|P=P2 dn + JgnSP q=2 dp (A7)
1a nn p pI

Since the rate of flow parallel to the hillslope is constant with depth

q I p= q 2 n

and

(q. iNd - n n d+ Sn I, dp
a nnn P1  (A8)

For all depths above the wetting front (n < Nf), qn is a function of R, given

by Equation (13). Below the wetting front (n>Nf) qa is also given by

Equation (13), substituting R by Ri. It then follows that the terms of

Equation (A8) are

- 5 P2 1 P2

- P qn Idp = - R cos(cc) dp =-R cos(a) (P2 - Pid
P1  1 P 1

JPp2  (mp2
qn i dp = Ri cos(a) dp = Ri cos(a) (p2 - P)

P1 n~2 P1

Using Equations (A6), (A7), and (A8) in (A3) we obtain the rate of

movement of the wetting front,

dNf (R - Ri) cos(a)

it =(R , Nf) - O(Ri, Nf) (A9)

366



The rate of advance of the wetting front depends on the difference between

the rainfall rate and the initial recharge (R - Ri) and the difference

between the moisture distributions corresponding to R and Ri at the depth

of the wetting front.
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APPENDIX 2

Data Description

This appendix contains format descriptions and naming conventions

for the files used by the RIBS environment. The core of the external

storage system is the hydrologic database, which contains distributed

variables and hydrographs. There are also other auxiliary input and

output files used by the different programs in the system.

A2.1 Naming conventions and file organization

Data are stored in files located in different directories in a unix

system, and they are accessed through path and file name. There are two

types of files: static and dynamic files. Static files correspond to variables

which do not change during a simulation, and dynamic files correspond

to variables which change over time, and therefore, have a time tag

associated with them. The most general file name corresponds to the

dynamic files and consists of three sections, separated by dot (.) symbols.

The first section is designated 'root', the second section is designated

'time tag' and the third section is designated 'extension'. A full filename

is therefore 'pathroot.time tag.extension'. Static files do not have a time

tag section, and only consist of root and extension: 'pathroot.ext.
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The root section is used to identify different basins or different model

runs for the same basin within a given directory. The time tag section

contains the time tag of the file, in the format hhhh:mm. The time tag

may have different interpretations, depending on the variable. If the

variable stored in the file is an instantaneous value, the time tag

represents the time at which the file was generated. If the variable is an

average or cumulative value, the time tag is interpreted as the beginning

or the end of the time interval associated with the variable. For instance, a

rainfall file corresponding to cumulative rainfall between 16:00 and 17:30

hours of February 7th would have a time tag of 0904:30, even if the file is

actually generated some time later (for instance, at 17:48 hours). The

extension is used to differentiate between different variables of the same

group.

Files are organized by the user within the directory tree. Six groups

of files are considered, each one of which can be stored in a different

directory. A model of file organization is shown in Figure A2.1, although

other user-defined models are also valid. File groups are organized as

follows:

- Geomorphology directory: Contains geometric and pedologic data about

the basin. All data stored in this directory are permanent, and correspond

to the basin, not to a single storm or model run. The directory contains

raster descriptions of distributed variables and a file of special format: the

soil types file, which contains parameter values for every soil type.

- Auxiliary rainfall directory. Contains data used by the rainfall

acquisition module to emulate the arrival of rainfall information in time.
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- Measured rainfall directory: Contains measured rainfall files. All files

corresponding to the same storm share the same root and extension, and

are differentiated by their time tags.

- Forecasted rainfall directory: Contains forecasted rainfall files. All files

corresponding to the same model run share the same root and extension,

and are differentiated by their time tags.

- State variables directory: Contains basin state variables. All files

corresponding to the same run share the same root. There are four state

variables, and each one has a different extension. Files corresponding to

the same state variable are differentiated by their time tags.

-Hydrographs directory: Contains basin hydrographs. There are as many

file groups as gauges are defined by the user. Each gauge has a different

root name, but all share the same extension. Files corresponding to the

same gauge are differentiated by their time tags.

Figure A2.1 Proposed generic structure of the directory tree to store files
in the RIBS system
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The user can specify paths, roots and extensions. Time tags are

automatically assigned by the system. File organization is therefore

defined by the user within the constraints imposed by the system. The

user can store all files in the same directory (by setting all directories to

the same path) or distribute them in different directories. Root names

may correspond to a basin, to a storm or to a particular model run with a

given parameter set. A sample file organization, corresponding to the

storm of November 1991 for the Sieve case study, is shown in Figure A2.2.

Figure A2.2 Sample file organization for the case study of the November
1991 storm in the Sieve basin
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A2.2 File format

The RIBS system deals with several file types. This section specifies

the file format for every file type. Files can be classified in three groups.

The first group consists of the dynamic database, which contains model

data and results. The second group consists of trace files, and contains

secondary output from the model, not included in the model user

interface. The third group consists of auxiliary files, which contain

information needed by the model, but whose format cannot be adapted to

the standards of the database. Formats of file types in every group are

defined as follows.

A2.2.1 Database files

The database stores information in a format accessible by the user

interface. It is composed of RIBS objects which can be stored into files by

the system. Three types of objects have a permanent representation in the

RIBS environment: Raster, Hydrograph and Pixel. Files representing the

spatial distribution of a variable are stored in the Raster format, files

representing the temporal distribution of one or more variables, generally

hydrographs, are stored in the Hydrograph format and files representing

the state of a pixel are stored in the Pixel format.

Raster format

The raster format is used to store spatial information in an efficient

way. The raster format adopted by RIBS follows the specifications
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developed by Becchi et al, (1991) for distributed data structures in the Arno

project. What follows here is a summary of the standard format.

The data stored in the raster are distributed spatially in the nodes of a

rectangular grid. In order to optimize space storage for sparse grids, only

the nodes which contain data values are stored in the raster. The nodes

within the boundaries of the basin are grouped in rows. Each row is

composed of one or more clusters, which are groups of contiguous non-

empty nodes. Data are stored into and retrieved from the raster through a

row and cluster indexing system, so that there is a one-to-one

correspondence between position in the raster and coordinates in the

basin. Figure A2.3 illustrates the raster respresentation of the basin.

Within the raster, data are stored in binary format, assigning only

four significant digits to every quantity. That resolution is usually

enough, considering that raster files store the spatial distribution of

physical variables, and it is unlikely that the precision of the

measurement or estimation be higher than four orders of magnitude. In

order to facilitate the storage, data are transformed according to the

equations

R = (V - a) 10-m (A2.la)

V=a+RlO m  (A2.lb)

where V is the real value, R is the value stored in the raster and a, m are

the transformation parameters. a and m are defined so that the range of

values to store can be covered by the range 0 - 32767 offered by the binary

format.
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Figure A2.3: Basin representation in raster format
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A raster file consists of a header section, which contains basic

information about the localization and spatial structure, and a data

section, which contains the data. The header section is divided in four

areas:

- ASCII header section: contains general information about the location

and coordinate system. Relevant variables are:

- Cartographic denomination

- Measurement units of the data

- Coordinate system

- Reference of the coordinate system

- Denomination of agency producing the file

- East coordinate of the lower-left corner

- North coordinate of the lower-left corner

- Date and time of creation of the file

- Date and time of last update of the file

- Binary header section: contains numerical information about technical

aspects, such as:

- Reference value for data section (parameter a)

- Maximum value of the data section

- Minimum value of the data section

- Value to express missing data

- Number of rows of the map

- Number of columns of the map

- X dimension of the cell

- Y dimension of the cell

- Data multiplier for integer representation (parameter m)
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-Rows archive section: contains the list of all the lines that compose the

raster. Each register is composed of:

- Identification label of the row

- Pointer to the first cluster in the cluster archive section

- Cluster archive section: contains the list of all the cluster that compose

the raster. Each register is composed of:

- Identification label of the row

- Number of the first column of the cluster

- Pointer to the first value in the data section

- Number of values in the cluster

The data section contains the raw list of all the data about the nodes

belonging to the raster, stored in binary integer format. Values are stored

consequently, according to the order of the cluster index. Individual

values must be accessed through the row and cluster indices.

The following types of files are stored in Raster format:

- Geomorphologic description of the basin:

* Soil types (sieve.soi in the example)

* Pointers (sieve.ptr) in the example

* Slopes (sieve.slp in the example)

* Distance to nearest stream (sieve.std in the example)

- Rainfall description: Files in the measured and forecasted rainfall

directories. In the example, they are called sieve.hhhh:mm.mrf and

sieve. hhhh:mm.frf respectively
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- State variables:

* Wetting front depth (sieve.hhhh:mm.snf in the example)

* Top front depth (sieve.hhhh:mm.snt in the example)

* Moisture content (sieve.hhhh:mm.smc in the example)

* Runoff generation (sieve.hhhh:mm.srf in the example)

Hydrograph format

The Arno project database (Becchi et al., 1991) also contains a

standard specification for efficient storage of time series. However, this

format was not adopted in RIBS because its design was intended to store

long records of a single hydrologic variable at a particular location, not

hydrographs corresponding to a storm event in a basin. Furthermore, the

data compression strategy was based on the high autocorrelation of long-

term hydrologic series, and it was of little use in the RIBS environment,

adding a significant computational load. Therefore, a specific format, the

hydrograph format, was developed to store RIBS time series in the

database.

The Hydrograph format is used to store several hydrographs. Each

hydrograph is represented as a time series of rainfall and streamflow

measurements. The header section contains the number and

identification of the hydrographs. The data section contains the values of

the time series of rainfall and discharge. Registers contain four fields:

- Variable identification (integer from 0 to n-1, with n the number of

variables stored in the file)

- Time tag, in the format hhhh:mm.

- Value1, representing streamflow.
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- Value2, representing rainfall.

Data corresponding to different variables can be stored in any order,

as long as they keep temporal precedence for every variable. An example

of the file format, containing three hydrographs generated for the

Fornacina gauge during the storm of November 1991 in the Sieve basin,

can be seen in Figure A2.4.

Header section

t o

Data section

3 < INumber of hydrographs
Fornncnn(prev-step) (Label 0)
Fornacina(meas.rain) (Label 1) .- Denomination of the hydrographs
Fornacina(fore.rain) (Label 2)
0 0336:30 0.003802 0.001545
0 0337:00 0.0096270.000145
0 0337:30 0.010192 0.004790
0 0338:00 0.025072 0.007786
0 0338:30 0.036670 0.001252

Rainfall value

Discharge value
Time tag
T he This corres onds to theJ

pfirst hydrograph: Previous step

0361:30
0362:00
0362:30
0363:00

0.0334510.000000
0.000000 0.000000
0.000000 0.000000
0.000000 0.000000

Figure A2.4 Example of the Hydrograph file format

Pixel format

The Pixel file format contains the data required to define pixel state at

a given time: static properties and state variables. It is composed of an

identification line, containing the denomination of the pixel, and a list of
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pixel variables, in this order:

- Water table depth Nwt (mm)

- Current wetting front depth Nf (mm)

- Current top front depth Nt (mm)

- Current moisture content of the unsaturated zone Mu (mm)

- Current total moisture content Mt (mm)

- Slope tan(a)

- Parameter e

- Parameter f (mm- 1)

- Saturation moisture content 6

- Residual moisture content 6r

- Anisotropy ratio ar

- Normal hydraulic conductivity at the surface Kon (mm/h)

Figure A2.5 contains an example of the Pixel format, generated by

RIBS for the Sieve case study.

i41j87.1014:00.px
1113.000000 :
1113.000000 .:
0.000000 <
7.616391 <
11.546391 <

0.327000 C
3.500000
0.000700 <
0.520000
0.064000
10.000000
16.600000

Denomination
Water table depth Nwt (mm)
Wetting front depth Nf (mm)
Top front depth Nt (mm)
Unsaturated moisture content Mu (mm)
Total moisture content Mt (mm)
Slope (tan a)
Parameter e
Parameter f (mm-1)

Saturation moisture content Os
Residual moisture content Or
Anisotropy ratio ar
Surface hydraulic conductivity Kon (mm h-1)

Figure A2.5 Eample of the Pixel file format
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A2.2.2 Trace formats

Trace files contain secondary output from the model. They are

intended for detailed analysis of model behavior, mainly for debugging

purposes. Trace files are not connected to any type of graphical

presentation within RIBS, and their design goal is to offer large amounts

of information, rather than to obtain easy readability. They are therefore

hard to interpret by the non-specialized user. Three types of trace files are

generated by RIBS: pixel traces, basin traces and gauge traces, which are

revised as follows.

Pixel trace

The pixel trace contains information about pixel variables for every

computation time step. It is intended for debugging purposes (detailed

analysis of pixel evolution when unexpected behavior is detected) and

therefore the variables included in the output can and should change

frequently during system development. The current version includes the

following variables:

- Basin array index of the pixel

- Wetting front depth (mm)

- Wetting front speed in the time step (mm/h)

- Top front depth (mm)

- Top front speed in the time step (mm/h)

- Moisture content (mm)

- Moisture content in the unsaturated zone (mm)

- Subsurface inflow rate (mm/h)
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- Subsurface outflow (mm/h)

- Rainfall rate (mm/h)

- Equivalent rainfall rate (mm/h)

- Saturation level corresponding to the equivalent rainfall rate (mm)

A line containing the above variables is printed every computation

time step for pixels in the trace list.

Basin trace

Basin traces provide information about how runoff is generated in

the basin. Two files are created. The first file contains information about

number of pixels in each state. The second file contains information about

runoff volume generated by pixels in each state. In both files, one line

containing a list of variables is written at the end of every time step.

For the number file the list of variables is:

- Number of pixels with water table at the surface

- Number of pixels with water table at the surface generating return

flow

- Number of stream pixels

- Number of stream pixels generating return flow

- Number of unsaturated pixels

- Number of unsaturated pixels generating infiltration-excess runoff

- Number of perched-saturated pixels

- Number of perched-saturated pixels generating infiltration-excess

runoff
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- Number of surface-saturated pixels

- Number of surface-saturated pixels generating infiltration runoff

- Number of surface-saturated pixels generating return flow

- Number of fully-saturated pixels

- Number of fully-saturated pixels generating return flow

For the volume file the list of variables is:

- Volume of infiltration-excess runoff generated by pixels with water

table at the surface in mm

- Volume of return flow generated by pixels with water table at the

surface in mm

- Volume of infiltration-excess runoff generated by stream pixels in

m m

- Volume of return flow generated by stream pixels in mm

- Volume of infiltration-excess runoff generated by unsaturated pixels

in mm

- Volume of infiltration-excess runoff generated by perched-saturated

pixels in mm

- Volume of infiltration-excess runoff generated by surface-saturated

pixels in mm

- Volume of return flow generated by surface-saturated pixels in mm

- Volume of infiltration-excess runoff generated by fully-saturated

pixels in mm

- Volume of return flow generated by fully-saturated pixels in mm
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Gauge trace

The gauge trace contains information about the decomposition of the

total hydrograph in the different types of runoff generation modes. The

register of the gauge trace contains five fields. The first field is the time

reference, in the format hhhh:mm. The other four fields correspond to the

four hydrographs generated:

- Return flow in permanently saturated pixels in m3/s

- Return flow in temporary saturated pixels in m3/s

- Infiltration-excess runoff in permanently saturated pixels in m3/s

- Infiltration-excess runoff in temporary saturated pixels in m3/s

A2.2.3 Auxiliary files

Auxiliary files contain additional information used by the RIBS

package. The program that generates rainfall distribution from

raingauge measurements uses to input files, and two other files are

needed by the rainfall-runoff module.

Raingauge description

The raingauge description file contains the list of raingauges used to

generate the spatial distribution of rainfall. Each line of the file contains

the following variables:

- Raingauge identification label: integer number.

-X coordinate of the raingauge location (in m)

- Y coordinate of the raingauge location (in m)
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- Raingauge denomination

Figure A2.6 shows an example of the raingauge identification file,

raingauges.tab.

1 714720 4857420 Vallucciole
2 718165 4853380 Stia
3 710960 4846530 Montemignaio

30 691880 4870070 BorgoS._jorenzo

Denomination (1 word)
X coordinate (m)

38
39

i cooUdnate kim)

Raingauge

708090 4823860 Montevarchi
694960 4849630 Nave_diRosano

Figure A2.6 Example of the raingauge identification file

Rainfall data

The rainfall data file contains the readings of the raingauges. It is

used by the rainfall acquisition module to emulate the arrival of

distributed rainfall information. For each time step, the rainfall data

contains three sections: the time identification section, the raingauge

identification section and the rainfall values section. The time

identification section contains the following fields:

- The keyword 'RG' to identify raingauge rainfall data (in case the

application is expanded to accept other types of input)

- Time tag, in the format hhhh:mm, which corresponds to the time at

which the measurement is generated.
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- Number of raingauges with valid reading in this time step.

- Duration of the rainfall in this time step (min)

The raingauge identification section contains a list of the

identification labels of the raingauges which obtained valid readings in

this time step. The rainfall values section contains the readings of the

raingauges in the same order as they appear in the previous section. The

reading is expressed as rainfall depth in mm. Figure A2.7 shows an

example of rainfall data file, corresponding to the storm of November 1991

for the Sieve basin, rain9l.chn.

RG 0385:00 30 30 < Identification

Time 1 1 2 3 4 5 6 7 ......30 3132 33 35 37 * -Raingauges

16.000 5.200 13.600 .... 16.000 3.200 5.600 +- Data values
RG 0385:30 2530

Time 2 1 2 4 5 6 7 ..... 30 31 33 35 37
12.000 10.400 3.400 .... 8.400 6.000 5.600

RG 0392:30 2530

Duration of rainfall (min)
Number of raingauges
Time tag
Raingauge keyword

1 2 4 5 6 7 ...... 30 31333537 Raingauge
identification number

11.000 2.700 10.100 .... 11.000 2.800 8.600 4-dph(m

RG 0405:1528 45
Time n 1 3 4 5 6 8 ...... 3032343537

1.000 0.000 0.000.... 0.000 0.200 0.000

Figure A2.7 Example of the rainfall data file
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Soil types

The soil types file contains the numerical values of the Brooks-Corey

parameters for the soil classes. The first line of the file contains the

number of soil classes, and then each register contains a soil class, with

the variables:

- Normal hydraulic conductivity at the surface Kon (mm/h)

- Saturation moisture content 6s

- Residual moisture content 6r

- Parameter E

Figure A2.8 shows an example of the soil types file used in the Sieve

case study, sieve.sdat.

0.02 3.6
0.036 3.6

- Number of soil classes
-"t- Soil class 0
--- Soil class 1

16.6 0.52 0.064 3.5

Parameter e
Residual moisture content Or
Saturation moisture content Os
Surface hydraulic conductivity Kon (mm h-1)

21.8 0.48 0.041 3.6
40. 0.25 0.02 3.4

<- Soil class 15
-- Soil class 16

Figure A2.8 Example of the soil types file format
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Order of computations

The order of computations file contains a list of the basin pixels on

the order in which they should be evaluated in the basin loop. The first two

fields in the file correspond to number of hillslope pixels and number of

stream pixels. Then, each pixel is presented in a register containing the

row index and the column index. The order of computations file may be

generated using a program which reads the pointer raster file and

generates the list of pixels applying the recursive relation 'drains to'.

Figure A2.9 shows the order of computation file corresponding to the Sieve

basin: sieve.ord.

Hillslope
pixels

Stream
pixels

4168 4- Number of hillslope pixels
1084 4- Number of stream pixels
91 30 <-Pixel 1
90 29 4- Pixel 2
90 31 4- Pixel 3
8926 4- Pixel 4

2565

Column index
Row index

669
568
467

<- Pixel 5152
<- Pixel 5153
<- Pixel 5154

Figure A2.9 Example of the order of computations file format
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APPENDIX 3

RIBS User Manual

This appendix constitutes the user manual for the RIBS package.

The core of RIBS is composed of three executable modules: a rainfall

acquisition module (rain-gen-gaug), a rainfall-runoff module (dbsim)

and a basin viewer (x_bviewer). The executable modules use three other

graphic programs: the raster viewer (x-rasgraf), the hydrograph viewer

(x-hydgraf) and the pixel viewer (xjpixgraf), which can also be executed

independently by the user. There are also several auxiliary programs to

facilitate handling of distributed data (gtr, mtr and rtm).

Executable modules in RIBS read information from the unix

environment, from arguments in the command line and from data files.

Before starting a module, the user must define the adequate data files and

set the required environmental variables. The definition of environmental

variables can be done directly on the computer terminal, but it is usually

more convenient to prepare a script file with the definition of the

environmental variables and the system call to the executable module.

Therefore, a typical run of a RIBS module consists simply of running the

shell script previously prepared for it. This appendix contains

information about the contents of the script files necessary to run the

modules in their different modes of operation. For every module we

provide information about the necessary input files, the program call with

their arguments and the interactive behavior.
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A number of examples are presented to illustrate the practical use of

the model. They are built using the database available for the Sieve basin,

already introduced in Appendix 2 (Figure A2.2). All files in the example

are under the directory "/model", which represents the home directory of

the model user. Executable modules are stored in "/model/bin", and data

files are stored in "/model/data". Geomorphologic data correspond to the

Sieve basin, and are stored in "/model /data /sieve". This directory also

includes a subdirectory, iniwt, where several files containing initial water

table levels in the basin are stored. All examples correspond to the storm

of November, 1991, and their results are stored in the directory

"/model/data/st9l", under five different subdirectories: mrain, frain,

stvar, hydrg and rainaux.

The starting point to run RIBS applications is the following list of

input and data files:

- Rainfall input files, stored in st9l Irainaux:

* rainfall data file: rain9l.chn, ASCII file.

* raingauge identification list: raingauges.tab, ASCII file.

- Geomorphologic input files, stored in sieve:

* soil types: sieve.soi, raster file.

* pointers: sieve.ptr, raster file.

* distance to stream: sieve.std, raster file.

* slopes: sieve.slp, raster file.

* soil data: sieve.sdat, ASCII file.

* order of computations: sieve.ord, ASCII file.
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- Initial state files, stored in sieve! iniwt:

* water table depth: sieve.47jan50ar.nwt, raster file.

Other files included in Figure A2.2 correspond to results generated

by the RIBS package. Input files in ASCII format can be created with any

standard text editor, using the format descriptions provided in Appendix

2. The generation of input files in raster format requires specific software.

The RIBS package provides three auxiliary programs to create raster files

from matrix descriptions and to transfer data from matrix to raster

format and back. These programs are described first. Then, the usage of

the rainfall acquisition and the rainfall-runoff modules is discussed.

Finally, the interactive programs of the user interface are described.

A3.1 Raster file handling

The three following programs are available to manipulate data in

raster format:

- Program gtr (grid to raster), to create the raster format file

corresponding to a basin discretization on a rectangular grid.

- Program mtr (matrix to raster), to create a raster file with the data

contained in an ASCII matrix file.

- Program rtm (raster to matrix), to create an ASCII matrix file with the

data contained in a raster file.

To create raster files for a given basin the user follows a two-step

procedure. The user must run the gtr program to create the first file in

raster format for the basin, and then use matrix descriptions of the
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distributed variables and the raster template file to generate raster files of

the variables with the program mtr.

A3.1.1 The program gtr

The program gtr generates a raster file description of a basin. The

objective is to create a Raster header structure, with all the generic

information corresponding to basin shape, location and coordinate

system. gtr defines the rows and clusters corresponding to the basin

boundaries, but it leaves the values section empty, since only file structure

is of concern.

The operation of the gtr program is represented in Figure A3.1. The

user must generate an input file describing the basin shape in a matrix

whose rows and columns follow the rectangular grid. The file must

contain the number of rows and columns of the matrix, pixel size and

coordinates of the lower left pixel. Basin shape is described by assigning

different values to matrix cells located inside and outside the basin

boundaries. Cell values are defined by the user.

The standard format to call gtr is:

% gtr BasinMask RasterFileName vmin vmax option

- BasinMask is the name of the file describing the basin shape.

- RasterFileName is the name of the raster file to be generated.

- vmin and vmax are the minimum and maximum values of cells inside

the basin boundaries. gtr considers that all matrix elements with

values between umin and vmax belong to the basin. Matrix elements
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11 14 number of rows and columns

0.5 0.5 dx, dy in km

315.0 450.5 coordinates of lower left in km

0 0 0 0 1 0 0 0 0 0 1 0 0 0

0 0 0 1 1 1 0 0 0 1 1 1 0 0

111 1 1 1 0 0 1 1 1 1 1
111 1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1 1 1 0 0
0 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 1 1 1 1 0 0
0 0 0 1 1 1 1 1 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

Matrix description of basin boundaries

Prgram gtr

111 1110 1 1 1

Raster file format

Figure A3.1: Schematic operation of the program gtr( grid to raster), used
to transform grid basin data into a templa.e raster file
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with values smaller than vmin or greater than vmax are considered to

be outside the basin boundaries.

- option describes the format of the input file, according to the following

keywords:

* a : input file is in ASCII format

* f: input file is in floating point format

* s input file is in short integer format

* I: input file is in long integer format

For instance, if sieve.mask is an ASCII file (similar to that in the

upper part of Figure A3.1) containing the description of the Sieve basin in

terms of zeros (outside) and ones (inside), the call:

% gtr sleve.mask sleve.ras 1 1 a

would generate the raster file sieve.ras, with the structure of the Sieve

basin.

A3.1.2 The program mtr

The program mtr generates a data file in raster format given an

ASCII file containing the data and a raster file template corresponding to

the same basin. If no raster file is previously available for the basin, it can

be generated using the program gtr.

The operation of the mtr program is represented in Figure A3.2. The

user must provide a raster template of the basin and a file with the data in

matrix format. The data file must specify the number of rows and column

of the matrix and the cell size. Matrix cells outside the boundaries of the

basin are ignored. The user can reserve a special value to represent
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Raster file format Matrix description of data

P gram mrPIF3D

Raster data file

Figure A3.2: Schematic operation of the program mtr: matrix to raster,
used to transform a matrix file into a raster file

11 14 number of rows and columns

500 500 dx, dy in m

0 0 0 0 1 0 0 0 0 0 2 0 0 0
0 0 0 1 2 3 0 0 0 4 3 1 0 0
3 3 3 2 2 1 1 0 0 1 2 3 1 1
2 3 2 2 1 1 3 3 1 2 3 1 2 1
0 1 1 2 1 4 1 2 1 0 2 2 0 0
0 2 2 3 1 3 2 1 4 2 1 1 0 0
0 0 4 3 4 0 0 1 4 4 1 1 0 0
0 0 1 1 2 1 2 3 2 3 1 1 0 0
0 0 1 1 2 3 3 3 3 1 1 2 0 0
0 0 0 2 1 1 1 2 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

-1 2 S- 71 -
3 1112 2 .1 1 .1 2 1 1 .1
2 3 2 2 1 -1 :3 3 1 2 3 -1 2 -1

1 1 .2 111. 0 2 2'
2 23:1- a :* 2 1 2 1' I

4 31 4: 0 0 3 4@ 1. .
1- 1 2 1 2 3 2 3. 1- *
1 ..1 2:3.83 . 1 2

2 11 1 2 1 1

.... . . .- . . .. .. .

.....



missing data inside the basin boundaries. All other values are stored in

the output raster file.

The standard format to call mtr is:

% mtr MatrixFile RasterMask RasterOutput MissingValue [multi [shift]

- MatrixFile is the name of the file containing the data in matrix format.

- RasterMask is the name of a raster file corresponding to the same

basin. It is used as a template to store the new data.

- RasterOutput is the name of the raster file to be generated.

- MissingValue is the value representing missing data in the matrix.

- mult is the exponent m in Equations A2.1a and A2.1b. If mult is not

specified, it is taken as 0, and data are stored with their original

values. mult must correspond to the order of magnitude of the data

values. If, after the transformation, an overflow of the maximum

storage value of 32767 occurs, the program prints an error message

and stops. No output file is generated.

- shift is the coefficient a in Equations A2.1a and A2.1b. If shift is not

specified, it is taken as 0. If, after the transformation, an overflow of

the maximum storage value of 32767 occurs, the program prints an

error message and stops. No output file is generated.

For instance, if soils.grid is an ASCII file (similar to that in the

upper part of Figure A3.2) containing the soil types for the Sieve basin, the

call:

% mtr solls.grid sleve.ras sleve.sol -1

would generate the raster file sieve.soi, with the soil types of the Sieve

basin. Missing values are represented by -1, and no transformation is

applied to the data, since neither mult nor shift are defined.
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A3.1.3 The program rtm

The program rtm generates a data file in matrix format

corresponding to a given raster file. The purpose of rtm is to offer editing

possibilities for raster files. If the user wishes to change some values in a

raster file, he or she may create a matrix version with mtr, edit the

resulting ASCII file to make the changes, and generate the raster file

again with mtr.

The operation of the rtm program is represented in Figure A3.3.

Given a raster file, rtm generates a file with a matrix description of the

data. The resulting file can be used directly as input to mtr. Matrix cells

outside the boundaries of the basin are assigned the missing data value.

The standard format to call rtm is:

% mtr RasterFile MatrlxOutput MlssingValue

- RasterFile is the name of the input file, in raster format.

- MatrixOutput is the name of the output file containing the data in

matrix format.

- MissingValue is the value assigned to the empty cells.

For instance, given the sieve.soi raster file, an ASCII file (similar to

that in the lower part of Figure A3.3) containing the soil types for the Sieve

basin may be generated with the call:

% rtm sleve.sol solls.grld.new -3

The file soils.grid.new contains a matrix description of the soil types of the

Sieve basin. Missing values are represented by -3.
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-1- 2

1 2 3 3 1

3 3 3 2 2 1i1 1 2 3T'1 1
2 1 2 2.1. 1 3 3.1. 21 2 1

1 -1:2 1 1 2 '1',O 2 2

2 2 .3 2. 1 4:2 .1. 1
0 0 .. -l'.

.l.1 2 1 2 3 2 3 .l. 1
' 1 2 3 3 3 3 1 - 2

2.. 1.1. 2 .l 1

Raster data file

Program rtm

11 14 number of rows and columns

500 500 dx, dy in m

-3 -3 -3 -3 1 -3 -3-3 -3 -3 2 -3 -3 -3

-3-3-3 1 2 3 -3-3 -3 4 3 1 -3 -3

3 3 3 2 2 1 1 -3 -3 1 2 3 1 1
2 3 2 2 1 1 3 3 1 2 3 1 2 1
-3 1 1 2 1 4 1 2 1 0 2 2 -3 -3

-3 2 2 3 1 3 2 1 4 2 1 1 -3-3
-3 -3 4 3 4 0 0 1 4 4 1 1 -3 -3
-3-3 1 1 2 1 2 3 2 3 1 1 -3-3
-3 -3 1 1 2 3 3 3 3 1 1 2 -3 -3

-3 -3 -3 2 1 1 1 2 -3 -3 1 1 -3-3
-3 -3 -3 -3 -3 -3 -3 -3-3 -3 -3 -3 -3-3

Matrix description of data

Figure A3.3: Schematic operation of the program rtm: raster to matrix,
used to transform a raster file into a matrix file
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A3.2 Rainfal acquisition module

In this prototype implementation of RIBS, the rainfall acquisition

module is substituted by the program rain-gengauge. rain-gen-gauge

simulates the arrival of rainfall in time taking raingauge measurements

from a file and generating raster files with the spatial distribution of

rainfall in the basin. It also generates rainfall forecasts based on a

simple AR(1) model. rain-gen-gauge can optionally display measured

and forecasted rainfall and hyetographs of rainfall registered in several

raingauges. The rainfall acquisition module needs two data files: the

rainfall data file and the raingauge identification. Format for both files is

described in Appendix 2.

The standard format to call raingengaug is:

% rain gengaug RasterMask RainChannel Raingauges exponent [GaugeList]

- RasterMask is any raster file corresponding to the same basin

boundaries. It is used by rain-gen-gaug as a template to generate

rainfall in the same raster format (boundaries and spatial

discretization).

- RainChannel is the name of the file which contains the rainfall data,

as described in Appendix 2.

- Raingauges is the name of the file which contains the description of

raingauges: identification label and denomination, as described in

Appendix 2.

- exponent is the absolute value of the negative exponent in the power

law governing the interpolation of rainfall. If exponent is given a very
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raingauges.tab

Raingauge description file

F sed rainfallfs

Forecasted rainfall files

xGrasgaf xragf

Figure A3.4: Schematic operation of the program raingen-gauge, used
simulate the arrival of distributed rainfall information
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large value, a distribution similar to the Thiessen polygons is obtained.

If exponent is zero, rainfall is uniformly distributed in the basin, and

equal to the average of the raingauges involved.

- GaugeList is the list of raingauges to appear in the hyetograph report,

if activated. The format for the list if keyl key2 ... keyn, where keyi is

the identification label of raingauge i.

rain-gen-gauge also takes information from environmental

variables, which should be defined in the script file, before calling the

main program. Environmental variables define paths and file name

descriptions for output files and offer information about which processes

should be activated. The following variables control the conditional

activation of child processes.

- RIBS_EXE_DBS If this variable is defined, the rainfall-runoff module

dbsim is activated by rain-en-gauge. In this case, rain-gengauge

notifies dbsim every time it generates new rainfall information.If this

variable is not defined, RIBS is run only in rainfall-generation mode.

Rainfall files are generated, but no rainfall-runoff modeling is

performed.

- RIBSDISPFORERAIN If this variable is defined, the on-line

presentation of forecasted rainfall is activated by rain-gengauge. In

this case, a x-rasgraf process is started by raingen-gauge. The

process creates a raster viewer window which presents the updated

forecasted rainfall every time rain-gen-gauge generates new rainfall

information.

- RIBSDISPMEASRAIN If this variable is defined, the on-line

presentation of measured rainfall is activated by raingengauge. In
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this case, a xrasgraf process is started by rain-gengauge. The

process creates a raster viewer window which presents the updated

measured rainfall every time rain-gen-gauge generates new rainfall

information.

- RIBSDISPMONIRAIN If this variable is defined, the on-line

presentation of hyetographs is activated by rain-gen-gauge. In this

case, a xjhydgraf process is started by rain-gen-gauge. The process

creates a raster viewer window which presents the updated

hyetographs for the selected raingauges every time rain-gen-gauge

generates new rainfall information.

The operation of rain-gen-gauge is summarized in Figure A3.4. By

activating or inhibiting the child processes, the user can operate the

rainfall acquisition module in different modes: with or without graphic

display of results and with or without connection to the rainfall-runoff

transformation module.

The following shell script can be used to activate the rain-gen-gauge

in rainfall-generation mode in the example. Note that path, root and

extension of the file names are defined through environmental variables.

Environmental variables are also used to activate presentation processes.

setenv RIBSTGENESTART 0336:00
setenv RIBSTBEGIN 0336:00
setenv RIBSTGENEEND 0424:00

setenv RIBS PATH MEAS RAIN /model/data/st9l/mrain
setenv RIBSPATHFORERAIN /model/data/st91/f rain
setenv RIBSPATHHISTRAIN /model/data/st9l/rainaux

setenv RIBSROOTMEASRAIN sieve
setenv RIBS ROOT FORE RAIN sieve
setenv RIBSROOTHIST_RAIN rain

setenv RIBSEXTMEASRAIN mrf
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setenv RIBSEXT FORE RAIN frf
setenv RIBSEXTHIST RAIN hst

setenv RIBSDISPMEASRAIN "/model/bln/x_rasgraf -N25 -

C/model/data/fablo.pal \
-X 0.0001 10.0 -Q -n MeasuredRain"

setenv RIBSDISPFORERAIN "/modet/bin/x_rasgraf -N25 -

C/model/data/fablo.pal \
-X 0.0001 10.0 -Q -n ForecastedRain"

setenv RIBSDISPMONIRAIN "/model/bIn/xhydgraf -Q -n Raingauges"

/model/bin/raIn_gengaug /model/data/sleve/geomr/sleve.soI
/model/data/st9l/rainaux/rain9l.chn /
/model/data/st9l/rainaux/raingauges.tab 2.0 22 30

Execution of this script file generates a list of raster files in the

directories / model / data / st9l / mrain (measured) and / model /data / st9l Ifrain

(forecasted), containing the rainfall intensity distribution which

corresponds to the rainfall data stored in rain9l.chn. Rainfall intensity is

generated from raingauge data using a weighting scheme based on the

inverse of the distance squared. The program also generates a list of files

in the directory / model/data /st9l /rainaux containing hyetographs of the

rainfall registered in gauges number 22 and 30. Files names are

generated with the format: sieve.hhhh:mm.mrf, with the time tag

hhhh:mm taken from the input data file rain9l.chn.

Since the variable RIBSEXE_DBS is not defined, no rainfall-runoff

modeling is performed. The variables RIBSDISPMEASRAIN,

RIBSDISPFORERAIN and RIBSDISPMONIRAIN are defined,

and therefore the corresponding graphic presentation processes are

activated. Forecasted and measured rainfall distributions appear in two

independent windows containing raster viewers. Another window

contains a hydrograph viewer which presents hyetographs.
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A3.3 The rainfall-runoff transformation module

The rainfall runoff transformation module, dbsim, takes rainfall

information and generates model results. It can be operated in several

different modes, controlled by the arguments in the command line and by

the setting of environmental variables. Input files are located in three

directories: the geomorphology directory, which stores permanent basin

information, the measured rainfall directory and the forecasted rainfall

directory.

The following input files are needed by the rainfall-runoff module:

- Geomorphologic files: soil types, pointers, distance to stream, distance

to gauge, slopes, soil data, order of computations and initial water

table.

- Rainfall files: measured and forecasted rainfall.

The rainfall-runoff module can generate raster files with the

evolution of basin state variables and hydrograph files with streamflow

forecasts at several points in the basin. In certain modes of operation, the

generation of intermediate results is optional.

The standard format to call dbsim is:

% dbsim [-A] [-R] [-F] [-Shhhh:mm] [-Gn gauge1 ... gaugen]

The arguments in brackets are optional. Arguments in cursive stand

for text which must be provided by the user. All other arguments must be

typed textually in order to activate the corresponding mode of operation.

The interpretation of the arguments is the following:

-F : Forecasting mode. The -F option activates forecasting mode. The

model reads both measured and forecasted rainfall and performs the
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full forecasting loop. It can be used either on-line (connected with the

rainfall-acquisition module) or off-line.

-A : Automatic rainfall input. Rainfall information is taken from the

files existing in the measured and forecasted rainfall directories,

instead of from the standard input. This option is used for off-line

simulations, when the whole storm is previously available and dbsim

is not used in connection with the rainfall acquisition module.

-R : Intermediate result writing. When the model is run in simulation

mode (no forecasted rainfall computation) and graphic presentations

are not activated, intermediate basin state and result files are not

required for model operation, and therefore they are not generated. In

these conditions, the model writes intermediate results only if the -R

option is activated.

-S : Initial state. The -S option allows model initialization with an

intermediate basin state. It must be followed by the time tag of the

state, in the format hhhh:mm. Basin state files and hydrographs

should be available for that time tag. Hydrographs should correspond

exactly to the same model parameters (gauges, result time step and

initial time) as the present run. This option can be used off-line or to

resume an interrupted computation on-line.

-G : Gauge declaration. This option lets the user define the points in the

basin for which hydrographs are to be generated. The format is -Gn

rowgO columngO .. columngn, where n is the number of gauges

required, and rowgi and columngi are the row and column numbers of

gauge i. Gauge denominations must be defined in the corresponding

environmental variables. If the -G argument is not specified, the

model assumes one single gauge located at the final basin outlet.
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In addition to the command line, dbsim also takes information from

the environmental variables defined in the script. It reads paths and file

name descriptions for input and output files, obtains model and

simulation parameters and gets information about which processes

should be activated, checking the following variables.

- RIBSDISPNF If this variable is defined, the on-line presentation of

wetting front depth is activated by dbsim. In this case, a x-rasgraf

process is started by dbsim. The process presents the updated wetting

front depth every time dbsim writes intermediate results.

- RIBSDISPNT If this variable is defined, the on-line presentation of

top front depth is activated by dbsim. In this case, a xjrasgraf process

is started by dbsim. The process presents the updated top front depth

every time dbsim writes intermediate results.

- RIBSDISPMC If this variable is defined, the on-line presentation of

moisture content is activated by dbsim. In this case, a x-rasgraf

process is started by dbsim. The process presents the updated moisture

content every time dbsim writes intermediate results.

- RIBSDISPRF If this variable is defined, the on-line presentation of

runoff generation rate is activated by dbsim. In this case, a x-rasgraf

process is started by dbsim. The process presents the updated runoff

generation rate every time dbsim writes intermediate results.

- RIBSDISPHYDRO If this variable is defined, the on-line

presentation of hydrographs is activated by dbsim. In this case, as

many x-rasgraf processes as gauges are defined by the user are

started by dbsim. Each process presents the updated hydrograph at a

gauge site every time dbsim writes intermediate results.
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Combining arguments in the command line and environmental

variables, the user can operate the rainfall-runoff transformation module

in different modes: with or without connection with the rainfall-

generation module, with or without inclusion of forecasted rainfall loop

and with or without graphic display of results.

For instance, the following shell script can be used to run the

rainfall-runoff module off-line in simulation mode:

setenv RIBSTGENESTART 0336:00
setenv RIBSTBEGIN 0336:00
setenv RIBSTGENEEND 0424:00
setenv RIBSDTCALC 10.
setenv RIBSDTRAIN 30.
setenv RIBSDTRES 30.

setenv RIBSPATHMEASRAIN /model/data/st9l/mrain
setenv RIBSPATHFORERAIN /model/data/st91/f rain
setenv RIBSPATHGEOMORF /model/data/sleve/geomr
setenv RIBSPATHSTATES /model/data/st9l/stvar
setenv RIBSPATHWATERTABLE /model/data/sIeve/InIwt
setenv RIBSPATHHYDROS /model/data/st9l/hydrg

setenv RIBSROOTGEOMORF sieve
setenv RIBSROOTMEASRAIN sieve
setenv RIBSROOTFORERAIN sieve
setenv RIBSROOTHYDROO Fornacina
setenv RIBSROOTHYDRO1 BorgoSL
setenv RIBS ROOT HYDRO2 DIcomano
setenv RIBSROOTHYDRO3 PVecchlo
setenv RIBS ROOT STATES sieve
setenv RIBS ROOT ORCALC sieve
setenv RIBSROOTSOILDAT sieve

setenv RIBSWATERTABLEFILE 47jan5Oar

setenv RIBSEXTPOINTERS ptr
setenv RIBS EXT SOILS sol
setenv RIBS EXT STREAM DIST std
setenv RIBSEXTSLOPES sip
setenv RIBS EXTWATER TABLE nwt
setenv RIBS EXT STATE NT snt
setenv RIBSEXTSTATENF snf
setenv RIBS EXT STATE MC smc
setenv RIBS EXTSTATERF srf
setenv RIBSEXTHYDRO_MR hydf
setenv RIBS EXT MEAS RAIN mrf
setenv RIBS EXTFORERAIN frf
setenv RIBS EXT ORCALC ord
setenv RIBSEXTSOILDAT sdat
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setenv RIBS PAR EXP DECAY 7.e-4
setenv RIBS PAR ANIS RATIO 500.
setenv RIBSPARRECHARGERATE 0.
setenv RIBS PARVEL RATIO 12.75
setenv RIBS PAR VEL COEF 400.
setenv RIBS PAR VEL EXP 0.
setenv RIBSPARBASEFLOW 0.

setenv RIBSDISPHYDRO "/model/bin/x_hydgraf -0"

/model/bin/dbsim -A -R -G2 4 67 25 46

The option -A means that the model takes input files directly from

their corresponding directory. The -F option is not selected, and therefore

computations will only consider measured rainfall. The model would list

all the files in the directory /model/data /st9l/mrain matching the

template sieve.hhhh:mm.mrf and would use those with time tags

between 0336:00 (initial time) and 0424:00 (end time) to compute basin

evolution.

Since the -R option is activated, execution of this script generates a

list of raster files in the directory /model/data /st9l /stvar containing the

distribution of wetting front depth (extension snf), top front depth

(extension snt), moisture content (extension smc) and runoff generation

(extension srf). Files are also generated in the /model/data /st91 /hydrg

directory. The -G option means that 2 gauges are selected for hydrograph

generation, located at coordinates (4,67) and (25,46). File names for the

first gauge follow the format Fornacina.hhhh:mm.hyd, and for the

second gauge, BorgoSL.hhhh:mm.hyd.

The only display variable which is activated is RIBSDISPHYDRO,

and therefore, only two windows would appear on the screen, each one

corresponding to an x-hydgraf process showing hydrographs at the

selected gauges. Other display processes can be activated defining the
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corresponding variables. For instance, if the user wants to see the

distribution of runoff generation, the following line must be added to the

script:

setenv RIBSDISP RF "/model/bn/x_rasgraf -N25 -C/model/data/fablo.pal \
-X 0.0001 10.0 -Q"

It activates the x-rasgraf process with the proper command line

arguments.

Other variants of the off-line use are also straightforward. If the user

wants also model evolution for forecasted rainfall, the last line of the

script must be substituted by:

/model/bin/dbsim -A -F -G2 4 67 25 46

In this case the -R option is not necessary because model evolution with

forecasted rainfall already implies writing intermediate results.

If the user is interested in hydrographs at other locations in the

basin, the correct call is:

/model/bin/dbsim -A -R -G4 4 67 25 46 15 42 19 61

In this case, the gauges at Dicomano and Ponte Vecchio would also be

added to model results.

To run the model on-line it must be used in connection with the

rainfall generation module. The script file to use in this case must define

the environmental variables required both by the rainfall generation

module and by the rainfall-runoff transformation module. To activate the

rainfall-runoff module in connection with the rainfall generation module

the variable RIBSEXE_DBS must be defined. RIBSEXE_DBS contains

the system call to run the rainfall-runoff module:

setenv RIBSEXEDBS "/model/bln/dbsm -F -G2 4 67 25 46"
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This declaration means that the model is run in forecasting mode

generating hydrographs in two gauges: Fornacina and Borgo San

Lorenzo. The option -A is now suppressed, since dbsim must read the

names of input files from the standard input, as rain-gen-gauge

generates them.

A3.4 The graphic display modules

There are three graphic display modules in RIBS: the raster viewer

(x-rasgraf), the hydrograph viewer (x-hydgraf) and the pixel viewer

(x-pixgraf). All of them share the same basic format and operation

modes. They are programs to display files stored in the RIBS data base,

and can be run without any additional data input. The raster viewer can,

however, read another input file containing the description of the color

palette. Programs read the name of the file to be displayed from the

standard input. When the viewers are used in interactive mode, the user

must type the file name at the computer terminal. When the viewers are

used by a parent process, the parent must write the file name on the pipe

communicating both processes.

The standard call to run display modules is:

% programname [-Q] [XWndows resources] [raster special options]

The arguments in brackets are optional. The interpretation of the

arguments is the following:

-Q : Inhibit quit button. When the viewers are started by a parent

process, termination of the viewer using the quit button breaks the
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pipeline between the parent and the child processes and may cause the

parent to abort. To prevent that situation, the parent can call the

viewer with the -Q option, which gives it total control about the

termination of the process. To terminate the program in this case, the

parent process should write STOP on the pipe.

X Window resource declaration: In standard X Window programs,

resources which are not hardcoded can always be specified in the

command line. The viewers also allow that possibility, because they

pass the command line to XtlnitializeO for interpretation. Standard X

Window resources, such as window size or name, icon name, font

type, etc., can therefore be included in the arguments to the viewers.

Check the X Window reference for a complete listing of standard

resource names and possible values.

Special options available in the raster viewer are the following:

-N: Number of divisions in the scale. The user may define the resolution

used in the presentation. The format is -Nn, where n is an integer,

indicating the number of divisions. If no value is specified, the number

of divisions is taken from the default value specified in the raster file.

-C : Color palette file. The user may specify a color palette to use in the

display. The format is -Cfile-name. This option is not compatible with

a black and white display. If no color palette is specified, a default

grayscale palette is used.

-X: Scale limits. The user may specify the upper and lower limits of the

scale used by the raster display. The format is -X low up, where low is

the lower limit and up is the upper limit. If values in the raster are

higher than the upper limit or lower than the lower limit, special
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colors are used to display them. If no scale limits are specified, upper

and lower limits are set to the maximum and minimum values in the

raster.

Examples of system calls to start the graphic display modules are

available in the script files presented for the rainfall generation module

and the rainfall-runoff transformation module. For instance, the

declaration:

setenv RIBSDISPMEASRAIN "/model/bin/x rasgraf -N25
-C/model/data/fablo.pal -X 0.0001 10.0 -0 -n MeasuredRain"

contains the system call to start the raster viewer for measured rainfall

presentation. The viewer is started with a scale of 25 divisions, ranging

from 0.0001 to 10.0. Color code is taken from the palette described in

fabio.pal. No quit button is offered to the user. Window name is set by the

X Window resource -n, which is set to "MeasuredRain".

Interactive use

Interactive use is controlled by the window manager and the

command buttons in the application. The window manager lets the user

manage the application window. When the window is iconified, resized or

restacked the application responds showing the image corresponding to

the new conditions. The command buttons are used to transmit user

requests to the application. The following command buttons are available

in all viewers:
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- File button: is used to specify a new file name. When the button is

activated, a window pops up and prompts the user for the new file name.

After the name is introduced, the new file is displayed.

- Zoom button: is used to zoom on the graphic image. When the button is

activated, control is transferred to the user. The user clicks the mouse

button in one of the corners of the new image and slides the mouse with

the button pressed to the other corner. As the user slides the mouse, a

rectangle is drawn, identifying the new image borders. When the mouse

button is released, the new image is displayed. The raster viewer

maintains the aspect ratio of the figure, and therefore the rectangle

shown on the screen does not necessarily coincide with the position of the

mouse, because it must keep the same aspect ratio as the display window.

- Unzoom button: is used to recover the original image. When the button is

activated the image is displayed with its original boundaries.

- Quit button: is used to terminate the application. When the button is

activated, the display window disappears.

There are also special command buttons in some viewers:

- Include wt button: is used in the pixel viewer to include or exclude the

water table from view. The Include wt button is a toggle button, which

alternates between the on and off position. When the button is 'off, the

picture includes the soil column between the wetting front and the

surface. When the button is 'on', the button is highlighted and the picture

includes the soil column between the water table and the surface. It is a

convenient option for pixels in which the water table is very deep.

- Streamlines button: is used by the pixel viewer to display a cross-

sectional view of the pixel showing the flowpaths and front positions.
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When the button is activated, a window pops up and presents the display.

The popup window cannot be resized.

- Pixel value button: is used by the raster viewer to display the actual value

corresponding to one pixel. When the button is activated, control is

transferred to the user. When the user clicks on a pixel, the pixel

rectangle is highlighted and the label widget shows the pixel's row,

column and raster value. As the user slides the mouse with the button

pressed, different pixels are highlighted and their values shown, until the

button is released.

A3.5 The basin viewer module

The basin viewer, x-bviewer, is a program used to analyze model

results produced by RIBS. It requires all the input files of dbsim plus the

result files generated by a model run.

The standard call for the basin viewer is:

% xbvlewer hhhh:mm [X Windows resources] [-N] [-C]

The arguments in brackets are optional. The interpretation of the

arguments is the following:

- hhhh:mm is the time tag of the basin state that is recovered. It must

coincide with one of the intermediate basin states generated by the

rainfall-runoff model.

X Windows : In standard X Window programs, resources which are not

hardcoded can always be specified in the command line. The basin

viewer also allows that possibility, because it passes the command line
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to XtlnitializeO for interpretation. Standard X Window resources, such

as window size or name, icon name, font type, etc., can therefore be

included in the arguments to the basin viewer. Check the X Window

reference for a complete listing of standard resource names and

possible values.

-N: Number of divisions in the scale. The user may define the resolution

used by the basin viewer in the presentation of distributed variables.

The format is -Nn, where n is an integer, indicating the number of

divisions.

-C : Color palette file. The user may specify a color palette to use in the

display of the basin viewer. The format is -Cfilename. This option is

not compatible with a black and white display. If no color palette is

specified, a default grayscale palette is used.

The call to the basin viewer must be preceded by the declaration of all

the required environmental variables. The basin viewer needs all the

environmental variables of the rainfall-runoff module plus the display

variables to present hydrographs and pixel states. The script for the basin

viewer call should contain all the environmental variable declaration of

the script presented in Section A3.3 plus the following:

setenv RIBSDISPHYDRO "/model/bln/xhydgraf"
setenv RIBSDISPPIXEL "/model/bIn/x_pixgraf"

/model/bin/xbviewer 0365:00 -C/model/data/fablo.pal -N25 -n \
BasInStateViewer

Note that the display module calls do not include the option -Q, since

individual processes must be killed by the user. Upon execution of this

415



script, the basin viewer presents basin state at time 0365:00. The graphic

display uses the color palette fabio.pal, with a scale of 25 units. The option

-n is an X Window resource declaration, and its effect is naming the

application window "BasinStateViewer".

Interactive use

Interactive use of x_bviewer is controlled by the window manager

and the menus in the application. The window manager lets the user

manage the application window. When the window is iconified, resized or

restacked the application responds showing the image corresponding to

the new conditions. The menus are used to transmit user requests to the

application. The following pulldown menus are available in the

application menu bar:

File menu

The File menu is used to interact with the database. It has two

options:

- Time : is used to change the current time analyzed by the viewer. When

the option is selected, a window pops up containing all the time tags

available for the current model run. The user selects the required time by

clicking on one of the items displayed and activating the OK button. After

the time tag is selected, the basin viewer displays the same variable for the

new time reference.

- Quit : is used to terminate the application. When the option is selected,

the display window disappears. The application does not close the open
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pipes to children processes, which should be killed independently by the

user.

Edit menu

The Edit menu is used to configure the display. It has two options:

- Zoom : is used to zoom on the graphic image. When the option is

selected, control is transferred to the user. The user clicks the mouse

button in one of the corners of the new image and slides the mouse with

the button pressed to the other corner. As the user slides the mouse, a

rectangle is drawn, identifying the new image borders. When the mouse

button is released, the new image is displayed. The basin viewer

maintains the aspect ratio of the figure, and therefore the rectangle

shown on the screen does not necessarily coincide with the mouse

position, because it must keep the same aspect ratio as the display

window.

- Unzoom : is used to recover the original image. When the option is

selected the image is displayed with its original boundaries.

Variable menu

The Variable menu is used to select the virtual variable which should

be displayed. When the application starts, it displays the wetting front

depth. There are eleven options:

- Wetting front: is used to display the wetting front position. When the

option is selected the variable is displayed.
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- Top front: is used to display the top front position. When the option is

selected the variable is displayed.

- Moisture content: is used to display the moisture content in the pixel.

When the option is selected the variable is displayed.

- Runoff generation: is used to display the runoff generation. When the

option is selected the variable is displayed.

- Rainfall: is used to display the rainfall rate. When the option is selected

the variable is displayed.

- Hydraulic conductivity: is used to display the surface normal hydraulic

conductivity. When the option is selected the variable is displayed.

- Infiltration capacity: is used to display the pixel maximum infiltration

capacity. When the option is selected the variable is displayed.

- Flow at front: is used to display the normal flow at the level of the wetting

front. When the option is selected the variable is displayed.

- Upper deficit: is used to display the moisture deficit above the wetting

front. When the option is selected the variable is displayed.

- Upper saturation: is used to display the moisture deficit above the

wetting front (% with respect to saturation). When the option is selected

the variable is displayed.

- Lower deficit: is used to display the moisture deficit between the wetting

front and the. When the option is selected the variable is displayed.

- Total deficit: is used to display the total moisture deficit in the column.

When the option is selected the variable is displayed.

- Total saturation: is used to display the moisture deficit in the soil

column (% with respect to saturation). When the option is selected the

variable is displayed.

418



- Distance to stream: is used to display the distance to nearest stream.

When the option is selected the variable is displayed.

Hydrograph menu

The Hydrograph menu is used to obtain different types of

hydrographs. Three options are available:

- Local hydrograph: is used to generate the hydrograph at a point in the

basin. The hydrograph is generated from the beginning of the storm up to

the current time. When the option is selected, control is transferred to the

user. When the user clicks on a pixel, the pixel rectangle is highlighted.

As the user slides the mouse with the button pressed, different pixels are

highlighted and their row and column indices shown in the label widget,

until the button is released. When the button is released, the viewer

creates a gauge at the selected location, recovers all previous basin states

and generates the hydrograph, writing results to a file. The format of the

file name is irnjcn.hhhh:mm.ext, where rn is the row number, cn is the

column number, hhhh:mm is the current time tag and ext is the

extension, taken from the environmental variable RIBSEXTHYDROS.

x_bviewer then starts a x-hydgraf process to display the results. The

child process pops up an independent window, which is controlled by the

user.

- Pixel hydrograph: is used to generate the hydrograph generated by a

single pixel in the basin. The hydrograph is generated from the beginning

of the storm up to the current time. When the option is selected, control is

transferred to the user. When the user clicks on a pixel, the pixel

rectangle is highlighted. As the user slides the mouse with the button
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pressed, different pixels are highlighted and their row and column

indices shown in the label widget, until the button is released. When the

button is released, the viewer creates a gauge at the selected location.

recovers all previous basin states and generates the hydrograph, writing

results to a file. The format of the file name is irnjcn.hhhh:mm.phd,

where rn is the row number, cn is the column number, hhhh:mm is the

current time tag and phd is the extension. xbviewer then starts a

x_hydgraf process to display the results. The child process pops up an

independent window, which is controlled by the user.

- Unit hydrograph: is used to generate the unit basin response function at

a point in the basin. The unit hydrograph is obtained for basin state at the

current time. When the option is selected, control is transferred to the

user. When the user clicks on a pixel, the pixel rectangle is highlighted.

As the user slides the mouse with the button pressed, different pixels are

highlighted and their row and column indices shown in the label widget,

until the button is released. When the button is released, the viewer

creates a gauge at the selected location, evaluates the infiltration-excess

runoff for unit rainfall upstream the gauge and generates the

hydrograph, writing results to a file. The format of the file name is

irnjcn.hhhh:mm.uhy, where rn is the row number, cn is the column

number, hhhh:mm is the current time tag and uhy is the extension.

x_bviewer then starts a xhydgraf process to display the results. The

child process pops up an independent window, which is controlled by the

user.
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Pixel menu

The Pixel menu is used to obtain information about an individual

pixel. Three options are available:

- Variable report: is used to generate a report of the time evolution of the

currently active virtual variable for a pixel. The report is generated from

the beginning of the storm up to the current time. When the option is

selected, control is transferred to the user. When the user clicks on a

pixel, the pixel rectangle is highlighted. As the user slides the mouse

with the button pressed, different pixels are highlighted and their row

and column indices shown in the label widget, until the button is

released. When the button is released, the viewer recovers all previous

basin states and generates the time evolution of the variable, writing

results to a hydrograph file. The format of the file name is

irnjcn.hhhh:mm.rep, where rn is the row number, cn is the column

number, hhhh:mm is the current time tag and rep is the extension.

x_bviewer then starts a xhydgraf process to display the results. The

child process pops up an independent window, which is controlled by the

user.

- Pixel value: is used to display the actual value of the active virtual

variable corresponding to a pixel. When the button is activated, control is

transferred to the user. When the user clicks on a pixel, the pixel

rectangle is highlighted and the label widget shows the pixel's row,

column and raster value. As the user slides the mouse with the button

pressed, different pixels are highlighted and their values shown, until the

button is released.
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- Pixel display is used to present a graphic display showing the moisture

profile of the pixel. When the option is selected, control is transferred to

the user. When the user clicks on a pixel, the pixel rectangle is

highlighted. As the user slides the mouse with the button pressed,

different pixels are highlighted and their row and column indices shown

in the label widget, until the button is released. When the button is

released, the viewer generates a pixel file containing all variables needed

to determine the state of that pixel. The format of the file name is

irnjcn.hhhh:mm.pxl, where rn is the row number, cn is the column

number, hhhh:mm is the current time tag and pxl is the extension.

x_bviewer then starts a xjpixgraf process to display the results. The child

process pops up an independent window, which is controlled by the user.

A3.6 Environmental variables

This section presents the environmental variables used by the RIBS

package. Name, format and meaning are provided for every variable.

General simulation parameters

Name: RIBS_T_GENESTART

Format: hhhh:mm (hours since the beginning of the year)

Meaning: Generic time start. Corresponds to the time reference since the

beginning of the storm.

Name: RIBS_T_GENEEND
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Format: hhhh:mm (hours since the beginning of the year)

Meaning: Generic time end. End of model computations.

Name: RIBSTBEGIN

Format: hhhh:mm (hours since the beginning of the year)

Meaning: Starting time of model computations. May not correspond to the

generic time start if the model is initialized at some intermediate state.

Name: RIBSDTCALC

Format: Floating point value (minutes)

Meaning: Computation time increment.

Name: RIBSDTRAIN

Format: Floating point value (minutes)

Meaning: Duration of the forecasted rainfall. The duration of the

measured rainfall is inferred from the time tag of the previous file.

Name: RIBSDTRES

Format: Floating point value (minutes)

Meaning: Time step in the presentation of model results.

Path variables

Name: RIBSPATHMEASRAIN

Format: String of less than 80 characters

Meaning: Path for measured rainfall files
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Name: RIBSPATHFORERAIN

Format: String of less than 80 characters

Meaning: Path for forecasted rainfall files

Name: RIBSPATHHISTRAIN

Format: String of less than 80 characters

Meaning: Path for hyetograph files

Name: RIBSPATHGEOMORF

Format: String of less than 80 characters

Meaning: Path for files containing the geomorphologic and pedologic

description of the basin.

Name: RIBSPATHSTATES

Format: String of less than 80 characters

Meaning: Path for state variable files

Name: RIBS PATHHYDROS

Format: String of less than 80 characters

Meaning: Path for hydrograph files

Root file names

Name: RIBSROOTGEOMORF

Format: String of less than 80 characters

Meaning: Root name of geomorphology files
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Name: RIBSROOTMEASRAIN

Format: String of less than 80 characters

Meaning: Root name of measured rain files

Name: RIBSROOTFORERAIN

Format: String of less than 80 characters

Meaning: Root name of forecasted rain files.

Name: RIBSROOTHISTRAIN

Format: String of less than 80 characters

Meaning: Root name of hyetograph files.

Name: RIBSROOTHYDROn, where n is a non-negative integer

Format: String of less than 80 characters

Meaning: Root name of hydrograph files corresponding to gauge n.

Name: RIBSROOTSTATES

Format: String of less than 80 characters

Meaning: Root name of state variable files.

Name: RIBS ROOT ORCALC

Format: String of less than 80 characters

Meaning: Root name of file containing the order of computation.

Name: RIBSROOTSOILDAT

Format: String of less than 80 characters

Meaning: Root name of file containing the soil types.
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Name: RIBS_WATERTABLEFILE

Format: string of less than 80 characters

Meaning: File name of the initial water table position

Extension file names

Name: RIBSEXTPOINTERS

Format: String of less than 10 characters

Meaning: Extension for the file containing the basin pointers.

Name: RIBSEXTSOILS

Format: String of less than 10 characters

Meaning: Extension for the file containing the basin soil classes.

Name: RIBSEXTSTREAMDIST

Format: String of less than 10 characters

Meaning: Extension for the file containing the distance to the nearest

stream.

Name: RIBSEXTGAUGEDIST

Format: String of less than 10 characters

Meaning: Extension for the file containing the distance to basin outlet

along stream channels.

Name: RIBSEXTSLOPES

Format: String of less than 10 characters
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Meaning: Extension for the file containing the basin slopes.

Name: RIBSEXTWATERTABLE

Format: String of less than 10 characters

Meaning: Extension for the file containing the initial water table depth.

Name: RIBSEXTSTATENT

Format: String of less than 10 characters

Meaning: Extension for the files containing the top front depth.

Name: RIBSEXTSTATENF

Format: String of less than 10 characters

Meaning: Extension for the files containing the wetting front depth

Name: RIBSEXTSTATEMC

Format: String of less than 10 characters

Meaning: Extension for the moisture content files.

Name: RIBSEXTSTATERF

Format: String of less than 10 characters

Meaning: Extension for the files containing the runoff generation rate.

Name: RIBSEXTHYDROMR

Format: String of less than 10 characters

Meaning: Extension for the hydrograph files.

Name: RIBSEXTMEASRAIN
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Format: String of less than 10 characters

Meaning: Extension for the measured rainfall files.

Name: RIBS-EXTFORERAIN

Format: String of less than 10 characters

Meaning: Extension for the forecasted rainfall files.

Name: RIBSEXTHISTRAIN

Format: String of less than 10 characters

Meaning: Extension for the hyetograph files.

Name: RIBSEXTORCALC

Format: String of less than 10 characters

Meaning: Extension for the file containing the basin pointers

Name: RIBSEXTSOILDAT

Format: String of less than 10 characters

Meaning: Extension for the file containing the basin pointers

Model parameters

Name: RIBS_PARRECHARGERATE

Format: Floating point value (mm/h)

Meaning: Recharge rate in the basin. If set to 0.0, recharge rate is

obtained considering saturation at the water table level.

Name: RIBSPAREXPDECAY
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Format: Floating point value (mm- 1)

Meaning: Parameter f: length scale controlling the exponential decay of

hydraulic conductivity with depth.

Name: RIBSPARANISRATIO

Format: Floating point value

Meaning: Anisotropy ratio of hydraulic conductivity.

Name: RIBS PAR VEL RATIO

Format: Floating point value

Meaning: Ratio of channel to hillslope velocity.

Name: RIBSPARVELCOEF

Format: Floating point value (m/h)

Meaning: Coefficient of the power law relating hillslope velocity and

discharge at the outlet.

Name: RIBSPARVELEXP

Format: Floating point value

Meaning: Exponent of the power law relating hillslope velocity and

discharge at the outlet.

Name: RIBSPARBASEFLOW

Format: Floating point value (m3/s)

Meaning: Baseflow at the basin final outlet.



System calls

Name: RIBSEXEDBS

Format: System call in one single line

Meaning: System call to start the rainfall-runoff module from the rainfall

acquisition module. It contains the full pathname of the executable file

and the proper arguments. If the variable is not defined, the process is not

started.

Name: RIBSDISPMEASRAIN

Format: System call in one single line

Meaning: System call to start the process to display measured rainfall

from the rainfall acquisition module. It contains the full pathname of the

executable file and the proper arguments. If the variable is not defined,

the process is not started.

Name: RIBSDISPFORERAIN

Format: System call in one single line

Meaning: System call to start the process to display forecasted rainfall

from the rainfall acquisition module. It contains the full pathname of the

executable file and the proper arguments. If the variable is not defined,

the process is not started.

Name: RIBSDISPMONIRAIN

Format: System call in one single line

Meaning: System call to start the process to display hyetographs from the

rainfall acquisition module. It contains the full pathname of the
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executable file and the proper arguments. If the variable is not defined,

the process is not started.

Name: RIBSDISPNF

Format: System call in one single line

Meaning: System call to start the process to display wetting front depth

from the rainfall-runoff module. It contains the full pathname of the

executable file and the proper arguments. If the variable is not defined,

the process is not started.

Name: RIBSDISPNT

Format: System call in one single line

Meaning: System call to start the process to display top front depth from

the rainfall-runoff module. It contains the full pathname of the executable

file and the proper arguments. If the variable is not defined, the process is

not started.

Name: RIBSDISPMC

Format: System call in one single line

Meaning: System call to start the process to display moisture content from

the rainfall-runoff module. It contains the full pathname of the executable

file and the proper arguments. If the variable is not defined, the process is

not started.

Name: RIBS DISP RF

Format: System call in one single line
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Meaning: System call to start the process to display runoff generation rate

from the rainfall-runoff module. It contains the full pathname of the

executable file and the proper arguments. If the variable is not defined,

the process is not started.

Name: RIBSDISPHYDRO

Format: System call in one single line

Meaning: System call to start the process to display hydrographs from the

rainfall-runoff module. It contains the full pathname of the executable file

and the proper arguments. If the variable is not defined, the process is not

started.
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APPENDIX 4

RIBS Sample Run

This appendix illustrates the possibilities of the real-time use of the

RIBS environment. The objective is to provide an overview of system

capabilities through two sample runs of the distributed model. The

examples shown here correspond to the case study of the Sieve basin. The

model-driven interface is illustrated with the November 1991 storm and

the user-driven interface is illustrated with the November 1982 storm.

The model was run on a DecStation 3100 and results were presented

through a computer network on another identical workstation with black

and white display. Computer resources were shared between the

numerical model and the graphical display processes. A total of 12

different processes were simultaneously active on the remote host.

Rainfall data for the November 1991 storm had a temporal resolution of 30

min. The model was run with computation time steps of 10 min in

forecasting mode. In these conditions, the model updates results for a full

forecasting cycle in less than 1 min, with acceptable performance in the

graphic operations.

The appendix consists of a series of reproductions of the computer

screen as the model is running. The first 8 figures correspond to the

model-driven interface, and the remaining 5 figures correspond to the

user-driven interface.
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This figure presents the basic rainfall information offered by the

model-driven interface of RIBS. Two raster viewer processes present

rainfall distribution in the basin. The window on the upper left corner

presents measured rainfall and the window on the upper right corner

presents forecasted rainfall. The window on the lower right corner is a

hydrograph viewer which presents hyetographs of two raingauges in the

basin: Vallombrosa and Borgo San Lorenzo. The upper plot in this

window presents rainfall intensity and the lower plot presents curnula Live

rainrall. The lower left corner shows the icon box, where other RIBS

windows can be accessed.
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Windows in the RIBS environment are directly managed by the user.

The position, stacking order and size can be changed with simple mouse

operations. This image presents another screen configuration for rainfall

information. The measured rainfall window has been enlarged, and the

image is zoomed on the central part of the basin, where rainfall intensity

is maximum. The forecasted rain window and the hyetograph window

remain on the background. These and all other windows managed by the

model-driven interface are automatically updated every time the model

generates new results. The user can rearrange window positions and

configurations, but window contents at any time are controlled by RIBS.

435



Ai BorgaSL - Dicomano

clear fluab za. mm cleat flt I oa[ m

3er~in.i. .eapb me.Wsn.(mme. reinP eer.e=.r emn seiemmepeew-eqpi *aimnae~a.eans umeom e. 1any

g.g , , , . 4.

a 0(

a------------------------------------------------------ II

4.. .e 0 .

.e.e M.0e .e MA.e se.e ,ste 314.. 
he ,,0.e ,..e .. .. .L.

fjo ecchmeo

w.eeb*a(pvee.etapi ,veeekha(eaaa.1a~I PiSe.bha(f..u. mmml

I a a a

e.e
ass.e as.e 342. se.6 se.e aSL 854.e au5.e 36.0

- III.oa'ecaoted..Rain"
- o - ;recasted..Rain"

Sessi DISP-MONI.RAIN "/usra

Session
Applications )ISP-HYDRO "/usr/user-
Customize DrsP-RF -tuor/users/
Print Screen
setenv FORE.DISP-NF "/usr/users/q
-Q"*

- ona: /usr/auers/garte/inOdel/i-he,

;"I WI
Il-

Forecasted-Rain

Raingauges

fl = =-Z

WettingFro

TopFrnt

F CummutativeInfiltration

Dm ano

Fornacina

PN!ecchio

____ _________ C

This figure presents the basic streamflow information offered by the

model. Model results for the four active gauges are simultaneously shown

in the screen. The upper left is Borgo San Lorenzo, the upper right is

Dicomano, the lower left is Ponte Vecchio and the lower right is

Fornacina, the final outlet. Since the model is running in forecasting

mode, each hydrograph viewer presents three time series of rainfall and

streamflow: model predictions in the last time step, model predictions

considering only measured rainfall and model predictions considering

measured and forecasted rainfall.
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This picture shows the Borgo San Lorenzo window enlarged for a

more detailed analysis. The three hydrographs provided by the model offer

a dynamic picture of the situation at that location. Recent and future

changes can be analyzed comparing model results for the previous,

current and future time steps. Local information at that point can be

compared with information obtained at other locations in the basin, to

analyze the spatially varying effects of rainfall.
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This image presents the basin state information offered by the model-

driven interface of RIBS. The window on the upper left corner presents

the spatial distribution of wetting front depths. The upper right corner

corresponds to top front depths. The third state variable, moisture content,

is shown on the lower right corner. The model also offers information

about the spatial distribution of runoff generation in the basin, presented

here in the window on the lower left corner.
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As in previous cases, these windows can be reconfigured by the user

to analyze particular aspects. This image shows the runoff-generation

window enlarged and focused on the northeastern area of the Sieve basin,

where soils have lower permeability. This area shows many pixels in the

surface-saturated state, which are generating runoff while the rainfall

intensity is lower than their surface hydraulic conductivity.
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The eleven result windows presented so far can be combined in any

way. Icons of all windows with their corresponding names are located in

the icon box, which is shown on the upper right corner of the figure. Icons

of magnified windows appear highlighted, while icons of non-active

windows appear dimmed. The user can magnify any window by selecting

its icon in the icon box. The configuration shown in the figure presents

measured and forecasted rainfall compared with runoff generation in the

basin.
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The user can magnify as many windows as he or she wishes. This

image shows the six raster viewers and the hydrograph at the outlet,

together with the icon box. Zooming and resizing capabilities are

simultaneously active for all processes. The basic idea of this interface

style is to offer large amounts of information to the user in a flexible way,

so that he or she can dynamically select which aspects to consult

according to the changing situation.
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This is the first image corresponding to the user-driven interface,

which can be used to access the results and states stored in the database.

The user can simultaneously run several basin viewers to consult

different aspects of model evolution. In this example, four different

viewers present four variables at the same stage of model evolution. The

window on the upper left corner presents the current infiltration capacity,

showing the extent of saturated areas. The window on the upper right

corner presents the surface hydraulic conductivity for comparison. Model

state variables, such as moisture content (lower right) or results, such as

runoff generation (lower left) are also available in the basin viewers.
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Unlike the processes of the model-driven interface, the basin viewer

allows the user to set the time at which results are to be consulted. This

feature can be used, for instance, to analyze the time evolution of

distributed variables. This example shows the spatial distribution of the

degree of saturation above the wetting front at four different times. The

upper left window corresponds to 1002:00, the upper right to 1004:00, the

lower left to 1007:00 and the lower right to 1014:00. The dynamic nature of

the saturated areas in the basin during the storm is apparent in this

image.
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This image illustrates the possibilities offered by the Hydrograph

menu of the basin viewer. The option Local Hydrograph has been used to

generate hydrographs at five different locations in the basin, which are

identified by the coordinates of the pixel and the time tag. The points were

interactively selected by the user, by clicking on the mouse at the desired

location. The basin viewer responds creating a new process which

presents the requested hydrograph. That process appears on an

independent window which can be directly managed by the user. The

response time is of the order of a few seconds, and depends on how many

previous model states have to be consulted to generate the hydrographs.
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The basin viewer also offers the possibility of generating reports of the

time evolution of virtual variables for an individual pixel. This image

shows the time evolution of the wetting and top front depths, moisture

content, local runoff generation and degree of saturation above the wetting

front for the pixel located at row 72, column 78. The example illustrates

the effect of perched saturation. The pixel only generates runoff when it is

in the surface-saturated state (between times 1006:00 and 1017:00), which

can be identified because the top front is at the surface or because the

degree of saturation is 1. Comparative analysis of different variables helps

the user understand model evolution and identify possible errors.
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The option to display pixel state is used in this example to explain the

behavior of the pixel (72,78) presented in the previous image. Pixel state

has been generated for six different times. The pixel is unsaturated in the

first one (upper left, 1003:00). It reaches the perched-saturated state at

time 1005:00 (upper center), and at time 1006:00 (upper right) the top front

reaches the surface and the pixel becomes surface-saturated. Penetration

of the wetting front can be observed in the fourth window (lower left,

1014:00). The image at 1020:00 shows how the pixel becomes perched-

saturated again when rainfall stops. Eventually (lower right, 1030:00), the

wetting front reaches the water table level.
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APPENDIX 5

Software Documentation

This appendix presents the software documentation of the RIBS

package. The intended readers are future programmers who work in

system maintenace or expansion, or in higher-level applications which

use the modeling capabilities of RIBS. As it is customary in object-

oriented programming, the documentation is centered around the objects

that integrate the system.

Three aspects are presented for every object: purpose, object structure

and object methods. The purpose section briefly summarizes the intended

use of the object. The object structure section lists object variables, their

meaning and units. The object methods section describes the member

functions of the object. For every function, the following information is

provided:

- Calling syntax.

- Argument list: types, meaning and units.

- Preconditions: variables which are assumed to be computed when the

function is called.

- Objective: brief description of the purpose of the method.

- Return value: meaning and units.

- Side effect: any changes originated by the function in the object or in

related objects.
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- Algorithm: detailed pseudo-code description of the algorithm chosen

for implementation.

Since several objects are only intended to store information and do not

have behavior associated to them, the methods section is optional.

A5.1 Objects of the distributed simulator

The relationships between the objects of the distributed simulator are

represented in Figure A5.1. Details for every object are presented hereof.

Figure A5.1 Hierarchical relationships between the objects of the
Distributed Basin Simulator
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GlobData Object

Purpose

Stores the variables which are uniform throughout the basin

Object structure

double dx;
double dy;
double pixarea;
double f;
double anisratio;

Pixel x size in m

Pixel y size in m
Pixel area in m2

Rate of decrease of permeability with depth in mm-1
Anisotropy ratio

StVars Object

Purpose

Stores the pixel state variables

Object structure

double Nf;
double Nt;

double d_Mt;

Depth of the wetting front in mm
Depth of the top front in mm
Moisture content of the pixel in mm
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KPixel Object

Purpose

The KPixel represents a soil column whose behavior is governed by the

kinematic model of infiltration

Object structure

General data

GlobData *global

StVars *stv;

double dt_calc;

int state;

Soil properties

double kOn;

double e;

double ths;

double thr;

Pixel properties

double alpha;
double s;

double
double
double
double

cos-alphE
sin-alpha

strjdist;
nwt;

A pointer to global basin data
Pointer to state variables of the pixel

Computation time step
Indicator of the state of the pixel

Hydraulic conductivity normal to the surface in mm/h

Pore size distribution index (epsilon) in Brooks-Corey

Saturation moisture content

Residual moisture content in Brooks-Corey

Slope angle

Tangent of slope angle

L; Cosine of slope angle

; Sine of slope angle

Distance to nearest stream in m

Water table depth for every pixel in mm

Values deduced from geometry and state variables

double W; Width of the pixel normal to the flow in m

double L; Length of the pixel parallel to the flow in m

double iinitrecharge; Initial recharge rate in mm/h

double timeg; Time of travel in hours

double Nstar; Saturation level in mm

double NRistar; Saturation level in mm for initial recharge rate

double d_Mu; Unsaturated moisture content of the pixel in mm
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doubleqn_Nf; Normal flow at the wetting front level in mm/h

State variable increments

double incrNf; Rate of change of the depth of the wetting front in

mm/s
double incrNt; Rate of change of the depth of the top front in mm/s
double incr_d_Mt; Rate of change of moisture content of the pixel in

mm/s
double incr_M_rain; Change of Mt due to rain in mm/s
double incr_M_Q; Change of Mt due to balance of i_Qin and iQout

in mm/s
double incr_M_front; Change of Mt due to front advance in mm/s

Mass balance variables:

i_ : intensity variable mm/h

d_ : depth variable mm

v_ : volume variable m3

double irain; Rainfall rate at every time step in mm/h
double drain; Pixel rainfall in mm
double i-eq-rain; Equivalent rainfall rate at every time step in mm/h
double iinfiltration; Hillslope infiltration (intensity) in mm/h
double dinfiltration; Depth of infiltration in the pixel in mm
double drainrunoff; Hortonian runoff in the pixel in mm
double d_M_runoff; Subsurface runoff in the pixel in mm
double drunoff; Runoff generated in the pixel in mm
double vrunoff; Pixel contribution to surface runoff in m3
double irunoff; Average rate of surface runoff in mm/h
double i_Qin; Discharge into the pixel in mm/h
double i_Qout; Moisture out of the pixel (discharge) in mm/h

Object methods

Function: hillpix(pxl,numpix)
Arguments: pointer to KPixel data structure.

int: Number of pixel identification.
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Preconditions: NfNt,d_Mt,nwt,soil parameters
Objective: Compute pixel evolution for a time step and evaluate pixel
runoff.

Return value: double: Runoff volume during the time step
Side effects: Front position and moisture content are updated. Other

related values, such as Nstar, Re, etc. are also updated according to new

pixel state.
Algorithm:

obtain rainfall depth
if water table at the surface

runoff = rainfall depth
else

obtain equivalent rain
compute subsurface outflow
compute flow at wetting front
update front position
update moisture evolution
evaluate runoff

update trace

Function: strpix(pxl)

Arguments: pointer to KPixel data structure.
Preconditions: soil parameters
Objective: Compute pixel evolution for a time step and evaluate pixel
runoff in a stream pixel
Return value: double: Runoff volume during the time step
Side effects: none
Algorithm:

obtain rainfall depth
runoff equals rainfall depth

Function: Re(pxl)

Arguments: pointer to KPixel data structure.
Preconditions: dMu,NfNt,i initrecharge,irain,soil parameters
Objective: obtain the steady rainfall rate which would produce the same
moisture status

Return value: double: Equivalent recharge rate (mm/h)
Side effects: none

Algorithm:
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if top front is close to the surface
Re = i rain

else
apply equation:
if base of power function is positive

apply formula
else

Re = Ri

Function: Theta(pxl,r,n)
Arguments: pointer to KPixel data structure.

double: Rainfall rate in mm/h
double: depth in mm

Preconditions: soil parameters
Objective: obtain moisture content at some depth for a given a steady
rainfall rate
Return value: double: Moisture content (dimensionless)
Side effects: none
Algorithm:

apply Theta equation

Function: Mu(pxl,rn)

Arguments: pointer to KPixel data structure.
double: rainfall rate in mm/h
double: depth in mm

Preconditions: soil parameters
Objective: obtain pixel moisture content in the unsaturated area up to
some depth for a given equivalent rainfall rate
Return value: double: moisture depth in mm
Side effects: none
Algorithm:

apply Mu equation

Function: suboutflow(pxl)

Arguments: pointer to KPixel data structure.
Preconditions: NfNt,ieqrain,soil parameters
Objective: obtain subsurface outflow in homogeneous terrain
Return value: double: Subsurface outflow in mm/h
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Side effects: The variables iQoutsat and i_Qoutunsat are assigned

their values

Algorithm:
if there is unsaturated area

compute i_Qout-unsat
if there is saturated area

compute i_Qout-sat

Function flow-atfront(pxl)

Arguments: KPixel data structure.

Preconditions: Nf, Nt, dMt, nwt, i_eqrain, soil parameters

Objective: compute normal flow at the wetting front level

Return value: double: normal flow in mm/h

Side effects: none
Algorithm:
if the wetting front is at nwt or NRistar

normal flow is zero.
otherwise

if there is no saturated zone
normal flow is equivalent rain

if the saturated zone is very thin
normal flow is normal hydraulic conductivity at the front.

else
normal flow is average flow over the saturated area.

Function: fronttransition(pxl,numpix)

Arguments: pointer to KPixel data structure.

int: Number of pixel identification.

Preconditions: Nf, Nt, dMt, nwt, ieq_rain, soil parameters

Objective: obtain rates of advance of wetting and top front according to the

pixel initial state (proposed increments)

Return value: void

Side effects: evaluate incrNf, incrNt

Algorithm:
if Nf is at the water table

wetting front advance is zero
flow in saturated area is zero
apply deep-saturated equation to obtain top front advance:

if denominator is small (close to N*)
if pixel is filling

iterate with Nt increments until Nt>N*
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if pixel is draining
top front increment is zero (there is no instability)

elseif Nf is at the saturation level for Ri (NRi*)
wetting front advance is zero
flow in saturated area is zero
apply deep-saturated equation to obtain top front advance:

if denominator is small (close to N*)
if pixel is filling

iterate with Nt increments until Nt>N*
if pixel is draining

top front increment is zero (there is no instability)
else
if the pixel does not have a saturated zone

if flow at front is smaller than equivalent rain (still unsaturated)
apply unsaturated equation to obtain wetting front advance:

if denominator is smaller than zero (pixel has drained out)
wetting front advance is zero

else
wetting front advance is given by equation

top front advance is equal to wetting front advance
else (saturation begins at this time step)

apply unsaturated equation to obtain wetting front advance:
if denominator is very small (seems absurd, but it happens!)
wetting front advance is zero

else
wetting front advance is given by equation

top front advance is given by limit equation
else (the pixel has a saturated zone)

apply saturated equation to obtain wetting front advance:
if denominator is very small (Nf very close to NRi*)

set wetting front advance to reach NRi* (maximum)
else

wetting front advance is given by equation
apply saturated equation to obtain top front advance:
if denominator is very small (Nt very close to N*)

if flow in saturated zone is greater than equivalent rain
(front goes down)
top front advance is given by limit equation

else (front goes up)
set top front advance to reach N* (maximum)

else
top front advance is given by equation

Function: moisturetransition(pxl)

Arguments: pointer to KPixel data structure.
Preconditions: Nf, Nt, d._Mt, incrNf, incrNt, i-eq-rain, soil
parameters, i_Qin, iQout
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Objective: obtain terms in the moisture balance equation: moisture

increments due to front advance, infiltration and subsurface flows.

Function should be evaluated with updated front positions

Return value: void

Side effects: the variables incr_M_front, incr_M_rain, incr_M_Q and

incr_d_Mt are assigned their values

Algorithm:
incr_M due to front advance is incrNf times average moisture
obtain infiltration capacity
incrM due to infiltration is min(rain, infiltration capacity)
incrM due to subsurface flow in inflow minus outflow

Function: infcapacity(pxl)
Arguments: pointer to KPixel data structure.

Preconditions: Nf, Nt, dMt, nwt, i_eq-rain, qnNf, soil parameters

Objective: obtain maximum surface infiltration capacity for the pixel

Return value: double: infiltration capacity in mm/h

Side effects: none

Algorithm:
if top front is at the surface

infiltration capacity is flow in the saturated area / cos(alpha)
else

infiltration capacity is normal hydraulic conductivity / cos(alpha)

Function: comp-runoff(pxl,numpix)
Arguments: pointer to KPixel data structure.

int: Number of pixel identification.
Preconditions: Nf, Nt, dMt, incr Nf, incrNt, incr_d_Mt, nwt,

i-eq-rain, soil parameters

Objective: obtain both modes of runoff (surface runoff and return flow) and

verify that all other variables are mutually consistent. Fix variables if

inconsistencies are found.

Return value: double: runoff depth during the time step in mm

Side effects: the variables drainrunoff and d_M_runoff are assigned

their values. Corrects the proposed Nf, Nt and dMt values according to

the results of the moisture balance

Algorithm:
obtain return flow:
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obtain moisture content of the fully saturated pixel: maxsat
obtain moisture content due to the initial state dMu_min
obtain moisture error: errmois = (maxsat-dMu-min) - dMt

if moisture error is negative
if Nf is very small (pixel was dry: all input is subsurface moisture)

increase iteratively Nf to accomodate subsurface inflow:
if the pixel becomes fully saturated (yes, it happens!)

wetting front is at the water table
top front is at the surface
total moisture is max-sat
the remaining is return flow

else (subsurface inflow causes return flow)
top front is at the surface
error moisture is return flow
total moisture is max-sat

else (moisture error is positive)
return flow is zero
if moisture error is very small (saturation, for practical purposes)

top front is at the surface
total moisture is max-sat

else (moisture content corresponds to unsaturated, verify Nt and Re)
if top front is at the surface (verify Nt)

(front dynamics gave saturation, but subsurface outflows
emptied the pixel)
obtain iteratively a new top front position, with Nt<N*

else (verify Re)
obtain unsaturated moisture
obtain equivalent rainfall
if Re is smaller than Ri

(unsaturated area dried out because of subsurface outflow)
obtain iteratively a new top front position, with Re>Ri
if there was a saturated area

if Nt becomes > Nf and Re is still < Ri
pixel has completely dried out
reset front positions and moisture content to zero

else (no saturated area)
pixel has completely dried out
reset front positions and moisture content to zero

elseif equivalent rain is smaller than normal conductivity
obtain N*
if N*<Nt

obtain iteratively a new top front position, with Nt<N*
else (Nt is very small -> saturation, for practical purposes)

top front is at the surface
define wetting front according to moisture content

obtain surface runoff

Function: outflow-complement(pxl)
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Arguments: pointer to KPixel data structure.

Preconditions: NfNt,nwt,soil parameters

Objective: evaluate subsurface outflow from the pixel due to pressure

distribution in the saturated zone. Only this pixel is considered

Return value: double: subsurface outflow in mm/h

Side effects: none
Algorithm:

if there is saturated area
evaluate flow according to equation

else
flow is zero

Function: checkmoisture(pxl,numpix)

Arguments: pointer to KPixel data structure.

int: Number of pixel identification.

Preconditions: Nf, Nt, d_- Mt, nwt, i_Qout, soil parameters

Objective: solve the problem of the empty pixel: moisture transition is such

that the pixel dries out.

Return value: void

Side effects: corrects iQout, and Nf, Nt, Mt are reset to zero

Algorithm:
if i_Qout is larger than incrMt in absolute value

i_Qout is set to -dMt
wetting and top fronts are reset to the surface.
moisture content is reset to zero

Function: getNf(pxl)

Arguments: pointer to KPixel data structure.

Preconditions: pixel state
Objective: obtain wetting front postion
Return value: double: wetting front depth in mm

Side effects: none

Algorithm:
return wetting front depth

Function: getNt(pxl)

Arguments: pointer to KPixel data structure.

Preconditions: pixel state
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Objective: obtain top front postion
Return value: double: top front depth in mm
Side effects: none
Algorithm:

return top front depth

Function: get Mt(pxl)

Arguments: pointer to KPixel data structure.
Preconditions: pixel state

Objective: obtain moisture content in the pixel
Return value: double: moisture content in mm
Side effects: none
Algorithm:

return moisture content

Function: get-runoff(pxl)
Arguments: pointer to KPixel data structure.
Preconditions: runoff generation
Objective: obtain runoff generation
Return value: double: runoff generatiuon rate in mm/h
Side effects: none
Algorithm:

return runoff generation rate

Function: get-rain(pxl)
Arguments: pointer to KPixel data structure.
Preconditions: rainfall rate
Objective: obtain rainfall rate
Return value: double: rainfall rate in mm/h
Side effects: none
Algorithm:

return rainfall rate

Function: getkO(pxl)

Arguments: pointer to KPixel data structure.
Preconditions: pixel properties
Objective: obtain surface normal hydraulic conductivity
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Return value: double: hydraulic conductivity in mm/h

Side effects: none

Algorithm:
return hydraulic conductivity

Function: get-ic(pxl)
Arguments: pointer to KPixel data structure.

Preconditions: pixel properties, pixel state

Objective: obtain pixel maximum infiltration capacity

Return value: double: infiltration capacity in mm/h

Side effects: none

Algorithm:
return infiltration capacity

Function: get ff(pxl)
Arguments: pointer to KPixel data structure.
Preconditions: pixel properties, pixel state
Objective: obtain normal flow at the level of the wetting front

Return value: double: flow rate in mm/h
Side effects: none
Algorithm:

return flow at wetting front

Function: get-upper-deficit(pxl)
Arguments: pointer to KPixel data structure.
Preconditions: pixel properties, pixel state
Objective: obtain moisture deficit above the wetting front
Return value: double: moisture deficit in mm
Side effects: none
Algorithm:

if water table at the surface
return zero

if wetting front at the surface
return zero

get maximim saturated moisture content
get initial moisture content
return moisture deficit
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Function: get-upper-saturation(pxl)
Arguments: pointer to KPixel data structure.
Preconditions: pixel properties, pixel state
Objective: obtain moisture deficit above the wetting front % with respect to
saturation
Return value: double: saturation (dimensionless)
Side effects: none
Algorithm:

if water table at the surface
return one

if wetting front at the surface
return zero

get maximim saturated moisture content
get initial moisture content
return ratio of moisture content to maximum capacity

Function: get lower-deficit(pxl)

Arguments: pointer to KPixel data structure.
Preconditions: pixel properties, pixel state
Objective: obtain moisture deficit between the wetting front and the water
table
Return value: double: moisture deficit in mm
Side effects: none
Algorithm:

if water table at the surface
return zero

if wetting front at the surface
return zero

get maximim saturated moisture content up to the wetting front
get maximim saturated moisture content up to the water table
get initial moisture content up to the wetting front
get initial moisture content up to the water table
return lower moisture deficit

Function: get-total deficit(pxl)
Arguments: pointer to KIPixel data structure.
Preconditions: pixel properties, pixel state
Objective: obtain total moisture deficit in the column
Return value: double: moisture deficit in mm
Side effects: none
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Algorithm:
if water table at the surface

return zero
if wetting front at the surface

return zero
get maximim saturated moisture content up to the water table
get initial moisture content up to the water table
return moisture deficit

Function: get-total saturation(pxl)

Arguments: pointer to KPixel data structure.

Preconditions: pixel properties, pixel state

Objective: obtain moisture deficit in the soil column (% with respect to

saturation)
Return value: double: saturation (dimensionless)

Side effects: none

Algorithm:
if water table at the surface

return one
if wetting front at the surface

return zero
get maximim saturated moisture content up to the water table
get initial moisture content up to the water table
return ratio of moisture content to maximum capacity

Function: get-stream-dist(pxl)

Arguments: pointer to KPixel data structure.

Preconditions: pixel properties

Objective: obtain distance to nearest stream

Return value: double: distance to nearest stream in m

Side effects: none

Algorithm:
return stream distance
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SoilData Object

Purpose

Stores soil properties arranged in soil groups

Object structure

int maxclass;
double *kOm;
double *thsm;

double *thrm;
double *em;

Number of soil classes
Array [maxclass]: Hydraulic conductivity
Array [maxclass]: Saturation moisture content
Array [maxclass]: Residual moisture content
Array[maxclass]: Brooks-Corey parameter

Table Object

Purpose

Stores the order of computation which should be followed in the basin

state loop. Keeps track of row and column of every pixel and of the position

in the basin arrays

Object structure

int hpixels;
int s-pixels;
int *list[2];

int *self;

int *next;

Number of hillslope pixels
Number of stream pixels
Array[2] : pointers to order of computation
[0]: column , [1]: row

Array [n-pixels + spixels]:
position of pixel in basin array
Array [npixels + spixels]:
position of downstream pixel in basin array
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Cluster Object

Purpose

Represents the structure of a cluster in the raster format.

Object structure

int row;
int col;
int posval;
int ncells;

Row of the cluster

Column of first position in the cluster

Position in basin arrays of first cell in the cluster

Number of cells

Map Object

Purpose

Stores the equivalence between the raster format and the basin array.

Provides functions to transform one into the other

Object structure

int nrows;
int ncols;
int nclus;
int *rows;
Cluster *clus;

Number of rows in the basin

Number of columns in the basin

Number of clusters in the raster

Array [nrows]: First cluster of every row

Array [nclus]: Clusters

Object methods

Function: gen-map(map,hr)

Arguments: pointer to Map data structure.
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pointer to Raster data structure.
Preconditions: none

Objective: allocate memory and initialize the basin map given the raster
structure of the basin. The row array contains the first cluster of every
row, and the clusters array contains row, column and position of first

element and number of cells in the cluster
Return value: void
Side effects: pointers are allocated, and basin map is initialized
Algorithm:

get number of rows, columns and clusters
allocate memory for rows and cluster arrays
for all clusters in the raster:
if it is the first cluster in the row

initialize row value
initialize cluster data structure

Function: get-pos(map,iric)
Arguments: pointer to Map data structure.

int: row index
int: column index

Preconditions: Map data structure. Row and column are assumed greater
than zero
Objective: return the index of the basin arrays corresponding to a pixel
identified by its row and column
Return value: int: array index, or negative if pixel is outside the basin
Side effects: none

Algorithm:
if row is greater than number of rows, return -1
for all clusters in that row:
if column is between the first and last positions of the cluster

return position
return -1 (pixel is not in the clusters of that row)
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BasinTrace Object

Purpose

BasinTrace stores information about how runoff is generated in the basin.

It keeps track of number of pixels in every state and runoff volume

generated in every mode.

Object structure

General data
int npixels;
double dtcalc;

double facres;
FILE *filnum;
FILE *filvol;

Global values

double ahr;
double ahrf;

double cumrr;

double trvol;

Water table at the
int nwts;
double dwts1;
int nwts2;

double dwts2;

Stream pixels
int nstp;
double dstpl;
int nstp2;
double dstp2;

Number of pixels in the basin

Computation time step

Factor in the result = pixel area/secs in result time step

Pointer to file for number of pixels

Pointer to file for runoff volume

Cummulative (in time) pixel rainfall (spatial) average

Cummulative (t) pixel runoff (sp) average

Cumulative rainfall in all the basin every time step

Total runoff generated in every time step

surface
Number of pixels with water table at the surface

Volume of infiltration-excess runoff generated

Number of pixels with water table at the surface

generating return flow

Volume of return flow generated

Number of stream pixels

Volume of infiltration-excess runoff generated

Number of stream pixels generating return flow

Volume of return flow generated

Unsaturated pixels
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int nust;
int nust1;

double d_ust1;

Perched-saturated

int ndst;
int ndstl;

double ddstl;

Number of unsaturated pixels

Number of unsaturated pixels generating infiltration-

excess runoff

Volume of infiltration-excess runoff generated

pixels

Number of perched-saturated pixels

Number of perched-saturated pixels generating

infiltration-excess runoff

Volume of infiltration-excess runoff generated

Surface-saturated pixels

int nsst; Number of
int nsstl; Number of

infiltration

double d_sstl; Volume of

int nsst2; Number of
flow

double dsst2; Volume of

Fully-saturated pixels

int nwst; Number of
double dwstl; Volume of

int nwst2; Number of
double dwst2; Volume of

surface-saturated pixels

surface-saturated pixels generating

runoff

infiltration-excess runoff generated

surface-saturated pixels generating return

return flow generated

fully-saturated pixels
infiltration-excess runoff generated

fully-saturated pixels generating return flow

return flow generated

Object methods

Function: btrjupdate(trpixel)
Arguments: pointer to BasTrace data structure.

pointer to KPixel data structure.
Preconditions: pixel state variables and runoff
Objective: update the basin trace variables with the results for that pixel
Return value: void
Side effects: trace variables (number of pixels and runoff volume) updated

Algorithm:
according to pixel state
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increment counter of number of pixels in the state
increment surface runoff for the state
increment subsurface runoff for the state

increment global counters

Function: btrres-dump(tr)

Arguments: pointer to BasTrace data structure.

Preconditions: all basin trace information

Objective: writing basin trace results to the corresponding files

Return value: void

Side effects: none
Algorithm:

print number of pixels in every state
print runoff volume generated by pixels in every state

Function: btrreset(tr)

Arguments: pointer to BasTrace data structure.

Preconditions: none
Objective: reset basin trace after a time step

Return value: void
Side effects: all trace variables set to zero
Algorithm:
set everything to zero

Timer Object

Purpose

The Timer keeps track of the basic time settings for the simulation, and

provides functions to transform from actual time in hours to simulation

or results time steps.

Object structure

double starthour; Generic time start in hours
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double finalhour; Generic last time in hours
double dt-calc; Time step of calculations in min(read)/hour(used)
double dt-res; Time step of results in min(read)/hour(used)
double dtres_sec; Time step of results in sec
double tO; Time at the beginning of every step

Object methods

Function: simstep (timer,t)

Arguments: pointer to Timer data structure.
double: current time in h

Preconditions: timer data
Objective: obtain the simulation step corresponding to a given time
Return value: int: number of simulation step
Side effects: none
Algorithm:

obtain simulation step

Function: resstep (timer,t)
Arguments: pointer to Timer data structure.

double: result time in h
Preconditions: timer data
Objective: obtain the result step corresponding to a given time
Return value: int: number of result step
Side effects: none
Algorithm:

obtain result step

Function: resstep-hyd(timert)

Arguments: pointer to Timer data structure.
double: result time in h

Preconditions: timer data
Objective: obtain the result step for the extra gauge corresponding to a
given time

Return value: int: number of result step
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Side effects: none

Algorithm:
obtain result step

Basin Object

Purpose

Stores the distributed variables in the basin. It controls interactions

between pixels during model inference. The Basin object also manages

several children objects, such as BasinTrace, Map and Pixel.

Object structure

Related objects
GlobData *global;

SoilData *soil;

KPixel *pixel;

Table order;
RasHead hdr;

Map header-map;

Timer *timer;

BasinTrace *trace;

Pointer to global data

Pointer to soil types

Pointer to pixel

Table with the order of computations

Raster head to store distributed variables

Basin map

Pointer to simulation timer

Pointer to basin trace data structure

Basin variables and parameters

int npixels;
int nraster;
double width[8];

double length[8];

double hillvel;

double strevel;

double velratio;

double velcoef;

double vel-exp;

Total number of pixels in the basin

Total number of pixels in the raster

Array: Pixel width in m in every direction

Array: Pixel length in m in every direction

Hillslope velocity (km h-1)

Stream velocity (km h-1)

Ratio of stream to hillslope velocity.

Coefficient of the vel-disch relationship

Exponent of the vel-disch relationship
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double baseflow; Baseflow discharge in m3 s- 1(artificially added)
double recharge; Initial recharge rate

Derived basin data

double timegmax; Maximum travel time : time of response
double disthillmax; Maximum distance for the fartest pixel
double diststreammax; Value for the fartest pixel

Basin arrays: distributed variables and parameters

int *dir;
int *class;
double *slope;
double *nwtm;

double *nf;

double *nt;

double *dMtm;
double *vrunoff;

double *vretflow;

Array

Array
Array
Array
Array

Array
Array

Array
m3

[nraster]: Pointer

[nraster]: Soil type

[nraster]: Slope
[nraster]: Water table depth in mm

[nraster]: Wetting front depth in mm

[nraster]: Top front in mm

[nraster]: Moisture content in the pixel in mm
[nraster]: Total runoff volume in every pixel in

Array [nraster]: Return flow volume in every pixel
in m3

double *rf;

double *iQinm;

double *iQoutm;

double
double
double

*distg;
*dists;
*rain;

Array [nraster]:

pixel in mm/h
Array [nraster]:
in mm/h
Array [nraster]:
mm/h

Array [nraster]:
Array [nraster]:
Array [nraster]:

Average runoff generated at every

Subsurface discharge into the pixel

Parallel discharge out of the pixel in

Distance to gage in m
Distance to stream in m
Rainfall intensity in mm/h

Object methods

Function: initstv-pixel(basin,ip)

Arguments: pointer to Basin data structure.
int: Pixel array index

Preconditions: basin state arrays

471



Objective: initialize pixel state variables

Return value: void

Side effects: the sty pointer in the pixel data structure is initialized

Algorithm:
Nf, Nt, Mt values are taken from the basin arrays

Function: initjixel(basin,ip)
Arguments: pointer to Basin data structure.

Preconditions: State arrays, properties arrays

Objective: make the pixel point to basin position ip

Return value: void

Side effects: the pixel data structure is fully initialized

Algorithm:
initialize state variables
get soil class
initialize soil properties
obtain initial recharge rate
obtain unsaturated moisture content
obtain NRi*

Function: hillloop(basin)
Arguments: pointer to Basin data structure.

Preconditions: Map structure, basin state arrays (previous time step),

properties arrays, rainfall array

Objective: evaluate state evolution and runoff generation during a

computation time step for al pixels in the basin

Return value: void

Side effects: state arrays and runoff generation array are updated

Algorithm:
for all pixels in basin order:

obtain array position
obtain row and column
get rainfall rate from array
initialize pixel
evaluate pixel runoff
if basin trace is active

update trace
store results in arrays
store iQout as subsurface inflow for downslope pixel
reset subsurface inflow to zero
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Function: streloop(basin)
Arguments: pointer to Basin data structure.
Preconditions: Map structure, basin state arrays (previous time step),
rainfall array

Objective: evaluate state evolution and runoff generation during a
computation time step for stream pixels in the basin
Return value: void
Side effects: runoff generation array is updated
Algorithm:

for all pixels in basin order:
obtain array position
obtain row and column
get rainfall rate from array
get subsurface inflow from array
evaluate pixel runoff
if basin trace is active

update trace
store runoff in array
reset subsurface inflow to zero

Function: basstart(basin)
Arguments: pointer to Basin data structure.
Preconditions: number of elements in arrays
Objective: allocate memory for the arrays and initialize them
Return value: void
Side effects: array pointers initialized
Algorithm:

call calloc for evary array, checking for errors

Function: parajflowloop(basin)

Arguments: pointer to Basin data structure.
Preconditions: Map structure, basin state arrays, properties arrays
Objective: obtain subsurface transfer of moisture between pixels due to
lateral pressure gradients in the saturated zone
Return value: void
Side effects: the subsurface inflow array is initialized for all pixels
containing the corresponding flow
Algorithm:

for all pixels in basin order:
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obtain array position
initialize state variables in pixel
obtain outflow
obtain array position of the downslope pixel
initialize state variables in pixel
get subsurface inflow from array for downslope pixel
obtain outflow for downslope pixel
evaluate pixel runoff
obtain average lateral hydraulic conductivity
obtain total outflow as outflow from the pixel minus

outflow from the downslope pixel
store subsurface inflow in downslope pixel

Function: get-area(basin, ip, ij)

Arguments: pointer to Basin data structure.

int: Pixel array index

int: Pixel row

int: Pixel column

Preconditions: Map structure

Objective: obtain contributing area to a pixel in the basin

Return value: int: number of contributing pixels or zero, if not in basin

Side effects: none
Algoritm:

if pixel is outside basin return 0
else
initialize area to 1 (that pixel)
get pointer from the array
for all surrounding pixels:

obtain row and column
get pixel array index
if pixel is in basin

if surrounding pixel drains to pixel
increment area by the area of surrounding pixel

return area

Function: initbastrace(basin)

Arguments: pointer to Basin data structure.

Preconditions: number of pixels, simulation timer

Objective: allocate memory and initialize the basin trace data structure

Return value: void

Side effects: files open, pointers initialized

Algoritm:
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Open files
Allocate memory
Set initial values

Function: endbas-trace(basin)

Arguments: pointer to Basin data structure.
Preconditions: files open
Objective: terminate the basin trace data structure
Return value: void
Side effects: files closed, pointers released
Algoritm:

close files
free memory

RoutingMap Object

Purpose

Stores the pixels located upstream of the gauge, sorted according to the

inverse of the recursive 'drains to' relationship.

Object structure

int n-pixels;
int *pxl;
double *distg;

Number of pixels
Array [npixels]: Position in basin array of pixel
Array [npixels]: Distance from pixel to gauge along
channels
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Results Object

Purpose

Stores hyetographs and hydrographs obtained for a gauge. It keeps track

of previous and current rainfall and previous, current and future

hydrographs.

Object structure

General data
int limit;
int iimax;

Size of results array

Last non-zero position of results array

Hydrograph and hyetograph arrays

double *phydro; Array [limit]: Previous hydrograph (expected

response) in m3/s

double *hhydro; Array [limit]: Response with measured rain in m 3/s

double *shydro; Array [limit]: Response with measured and

forecasted rain in m 3/s

double *prr; Array [limit]: Previous rainfall in mm

double *crr; Array [limit]: Rainfall in the time step in mm

GaugeTrace Object

Purpose

Gauge trace stores the decomposition of the hydrograph into the different

modes of runoff generation
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Object structure

General data
int npixels;
double dtscalc;

double facres;

FILE *monitor30;

Hydrograph arrays

double *retperm;

double *rettemp;

double *iex-perm;

double *iextemp;

Number of pixels in the gauge
Computation time step
Factor in the result = Pixel area/secs in result time

step
Pointer to file

Array [limres]: Return flow in permanently
saturated pixels in m3/s
Array [limres]: Return flow in temporary
saturated pixels in m3/s
Array [limres]: Infiltration-excess runoff in
permanently saturated pixels in m3/s
Array [limres]: Infiltration-excess runoff in
temporary saturated pixels in m3/s

Object methods

Function: gtrupdate(trbas,rasposih)
Arguments: pointer to GaugeTrace data structure.

pointer to Basin data structure.
int: position in basin arrays
int: time index

Preconditions: basin state and behavior, result time step
Objective: update the gauge trace data structure for a pixel
Return value: void
Side effects: the trace results are updated
Algorithm:

if saturation is permanent
update permanent surface runoff
update permanent return flow

else
update transient surface runoff
update transient return flow
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Gauge Object

Purpose

Obtains hydrographs at a point in the basin. It performs the distributed

convolution operation on the pixels upstream the gauge.

Object structure

char identification[80];

Results *res;

Basin *basin;

GaugeTrace *trace;

RoutingMap order;

double timegmax;
double diststreammax;

Denomination of the gauge

Pointer to hydrographs

Pointer to the basin

Pointer to gauge trace data structure

Pointer to routing map

Maximum time of travel

Maximum distance to stream

Object methods

Function: initresults(gauge)

Arguments: pointer to Gauge data structure.

Preconditions: basin velocities and timer data

Objective: allocate memory and initialize the Results data structure

Return value: void

Side effects: maximum number of points and pointers initialized

Algorithm:
set velocity for Q=O
get result step for end of simulation plus time of response
allocate memory for the hydrographs
obtain gauge baseflow
initialize hydrographs to zero

Function: free-results(gauge)

Arguments: pointer to Gauge data structure.

Preconditions: Results data structure initialized

Objective: terminate the Results data structure and free memory
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Return value: void
Side effects: all pointers set to NULL
Algorithm:

free all pointers

Function: routeloop(gauge)

Arguments: pointer to Gauge data structure.
Preconditions: basin velocities, basin runoff generation, rainfall, timer
data
Objective: evaluate the distributed convolution for a computation time step
Return value: void
Side effects: none

Algorithm:
set common factor for runoff
for all pixels in gauge order:

get basin array index
obtain travel time
obtain result step for rainfall
obtain result step for discharge
store rainfall result
store discharge result
if gauge trace is active

update gauge trace

Function: initrouting(gauge,ij)
Arguments: pointer to Gauge data structure.

int: row position
int: column position

Preconditions: basin map, timer data
Objective: initialize the Gauge data structure and children objects
Return value: void
Side effects: memory allocated, routing map built, and number of pixels
and maximum distance to gauge initialized
Algorithm:

obtain basin array index for pixel (ij)
obtain contributing area
allocate memory for order and distance to gauge
build the routing map
initialize maximum distance to gauge
for all pixels in routing map:
obtain basin array index
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verify distance to gauge
update maximum distance to gauge

Function: free-routing(gauge)
Arguments: pointer to Gauge data structure.

Preconditions: Gauge children initialized

Objective: free memory in the Gauge data structure

Return value: void
Side effects: none

Algorithm:
free pointers

Function: buildroute-map(gauge,ip,i,j,count,dist)
Arguments: pointer to Gauge data structure.

int: basin array index
int: row position
int: column position

pointer to int: gauge index counter

double: current distance to gauge
Preconditions: basin arrays, basin map, contributing area
Objective: initialize the routing map. The routing map contains the pixels

upstream the gauge sorted in the order in which they should be

processed, with upstream pixels frist. The order is given by applying

recursively the relation drains to.

Return value: void
Side effects: order and distance to gauge data structures are initialized for

the gauge
Algorithm:

get basin pointer
get length of the pixel
decrement counter
increment distance to gauge by pixel length
store current pixel in order array
store current distance in distance array
for all surrounding pixels:

get row and column
get basin array position
if surrounding pixel drains to current pixel

call build route map
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Function: init-gau-trace(gauge)
Arguments: pointer to Gauge data structure.

Preconditions: Results data structure initialized, timer data
Objective: allocate memory and initialize the gauge trace data structure
Return value: void

Side effects: pointers and variables in gauge trace initialized
Algorithm:

allocate pointers
initialize variables

Function: end-gau-trace(gauge)
Arguments: pointer to Gauge data structure.
Preconditions: Gauge trace updated
Objective: write results and terminate the gauge trace data structure
Return value: void
Side effects: memory released and pointers set to NULL
Algorithm:

compose file name
open file
for all points in trace results array:

write values
close file
free pointers

Function: setvelocity(gaugeihour)

Arguments: pointer to Gauge data structure.
int: result step

Preconditions: basin velocities, results arrays up to ihour, timer data
Objective: set basin hillslope and stream velocities according to the power
relation. The equation takes streamflow in gauge at time ihour
Return value: void
Side effects: basin variables stre vel and hill vel set
Algorithm:

obtain streamflow at ihour
obtain exponent in power law
apply equation to hillslope velocity
obtain stream velocity from hillsope velocity
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Function: route-hydrograph(gauge,factorq,factorr)

Arguments: pointer to Gauge data structure.

double: factor to apply to streamflow

double: factor to apply to rainfall

Preconditions: basin velocities, basin runoff generation, rainfall, timer

data

Objective: evaluate the distributed convolution for a rainfall time step

Return value: void

Side effects: Results data structure updated

Algorithm:
for all pixels in gauge order:

get basin array index
obtain travel time
obtain result step for rainfall
obtain result step for discharge
store rainfall result
store discharge result

Function: init-pixevol(gauge,ij)

Arguments: pointer to Gauge data structure.

int: row position
int: column position

Preconditions: basin map, timer data

Objective: Initialize the Gauge data structure and children objects for a

basin composed of a single pixel

Return value: void

Side effects: memory allocated, routing map built, and number of pixels

and maximum distance to gauge initialized

Algorithm:
obtain basin array index for pixel (ij)
set contributing area to 1
allocate memory for order and distance to gauge
initialize the routing map
initialize maximum distance to gauge

Function: route-pix(gauge,factorq,factorr)

Arguments: pointer to Gauge data structure.

double: factor to apply to streamflow

double: factor to apply to rainfall
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Preconditions: Pixel runoff generation, rainfall, timer data

Objective: Evaluate instantaneous hydrograph contribution during a

rainfall time step

Return value: void

Side effects: Results data structure updated

Algorithm:
for all pixels in gauge order:

get basin array index
obtain result step
store rainfall result
store discharge result

Function: setdistance(gauge)

Arguments: pointer to Gauge data structure.

Preconditions: basin velocities, maximum distances

Objective: evaluate maximum distance to outlet for the contributing area

Return value: void

Side effects: variable timegmax updated

Algorithm:
apply equation

Function: unithydrograph(gauge,factorq,factorr)

Arguments: pointer to Gauge data structure.

double: factor to apply to streamflow

double: factor to apply to rainfall

Preconditions: basin velocities, basin state arrays, timer data

Objective: evaluate hortonian runoff generation and the distributed

convolution for uniform rainfall of unit intensity during a rainfall time

step
Return value: void

Side effects: results data structure updated

Algorithm:
for all pixels in gauge order:

get basin array index
initialize pixel data structure
obtain travel time
get local runoff generation for unit rainfall
obtain result step for rainfall
obtain result step for discharge
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store rainfall result
store discharge result

IOdata Object

Purpose

The IOdata object maintains information about input and output

operations: paths, file names, file pointers, etc.

Object structure

Input/Output Variables
char geomrpath[80];

char stvarpath[80];
char stvarpathjroot[80];

char mrainpath[80];

char frainpath[80];
char mraindir[80];
char fraindir[80];
char laststvarpath[80];
char mrainfile[80];
char frainfile[80];

char last -ntfile[80];

char lastnffile[80];
char last_d_Mtfile[80];
char lastjrffile[80];

Control variables
char lastmeasrain[8];

char lastforerain[8];

char laststate[8];

char forerainlabel;

char first_time;

char ini_state;

Path for geomorphology variables
Path for basin state variables

Basic path for basin state variables

Path for measured rainfall

Path for forecasted rainfall
Measured rainfall directory

Forecasted rainfall directory

Path for geomorphology variables

Measured rainfall file name

Forecasted rainfall file name

Wetting front file name

Top front file name
Moisture content file name

Runoff generation file name

Time tag of last measured rain

Time tag of last forecasted rain rain

Time tag of last basin state

Forecasted rain Y or N
First computation loop Y or N

Read initial state Y or N
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char state[8];
char auto_list;
char interresults;

Time tag of current time

Automatic file listing Y or N
Write intermediate results Y or N

Automatic listing of rainfall files

struct direct *(*mrainlist); List of measured rain files

int nummrlist; Number of elements in the mrain list

int curmr-list; Current element of the mrain list

struct direct *(*frainlist); List of forecasted rain files

int numfrlist; Number of elements in the mrain list

int curfr-list; Current element of the frain list

Gauge names
char **hydrpath;
char **hydrofile;

char **last-hydrof

File pointers for the
FILE *nf pipe;
FILE *nt pipe;
FILE *mt-pipe;

FILE *rf pipe;
FILE **grafpipe;

Pointer to array of gauge paths

Pointer to array of hydrograph file names

Pointer to array of last hydrograph file namesile;

user interface
Pipe to display wetting front

Pipe to display top front

Pipe to display moisture content

Pipe to display runoff generation

Pointer to array of pipes to display hydrographs

Simulator Object

Purpose

Controls the simulation loops during model inference. It is also in charge

of all input/output operations using the data stored in IOdata.

Object structure

Related objects

Basin *basin;

IOdata *inout;

Timer *timer;

Pointer to basin data structure

Pointer to input/output data structure

Pointer to timer
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Gauges in the basin

int n-gauges;
Gauge **output;
int *gauge-i;
int *gaugej;
Gauge *hyd-gauge;
int hyd_gaugei;
int hyd_gaugej;

Timing data
double dtrain;

double
double

double

double

double

lfrhour;
lmrhour;

beginhour;
interhour;

endhour;

Number of gauges

Pointer to array of gauges

Array [ngauges]: column of the gauge

Array [n-gauges]: row of the gauge

Extra gauge for 'custom made hydrographs'

Column of extra gauge

Row of extra gauge

Time step of rain information in min (read) / hour

(used)
Time tag of last forecasted rainfall in hours

Time tag of last measured rainfall in hours

Time tag of initial time in hours

Time tag of intermediate results in hours

Final hour of every loop

Object methods

Function: readenvvar(simul)

Arguments: pointer to Simulator data structure.

Preconditions: nothing

Objective: allocate memory for children data structures and initialize part

of the Simulator data structure reading variables from the unix

environment.

Return value: void

Side effects: path and parameter variables initialized. Order of

computations and soil data are also set.

Algorithm:
get path for geomorphology
compose order of computations file name
open orderfile
read number of pixels
allocate memory for order data structure
read orderfile
get path for state variables
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compose root of state variables file name
get path for measured rain
compose root of measured rain file name
compose soil data file name
open soildata file
read number of soil classes
allocate memory for soil data structure
read soildata file
get model parameters

Function: readgeneraldata(simul)

Arguments: pointer to Simulator data structure.

Preconditions: input/output data, number of pixels

Objective: initialize timer data structure and allocate memory and

initialize basin arrays
Return value: void

Side effects: timer values set. Basin arrays initialized
Algorithm:

read timer data
compose stream distance file name
open stream distance file
load stream distance array with raster file data
set pixel geometry data: dx, dy, width, length
start basin
compose gauge distance file name
open gauge distance file
load gauge distance array with raster file data
initialize maximum distance
for all pixels in order array:

compute distance to outlet
update maximum distance

compose pointers file name
open pointers file
load pointers array with raster file data
generate basin map
for all pixels in order array: (set 'self position)

get row index
get column index
get basin array position
store basin array position in 'self field of order data structure

for all pixels in order array: (set 'next' position)
get basin array position of current pixel
get pointer of current pixel
get row index of current pixel
get column index of current pixel
get row index of downstream pixel
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get column index of downstream pixel
get basin array position of downstream pixel
store basin array position of downstream pixel in 'next' field of

order data structure
compose slopes file name
open slopes file
load slopes array with raster file data
compose soil type file name
open soil type file
load soil type array with raster file data
get path for initial water table file
compose initial water table file name
open initial water table file
load initial water table array with raster file data

Function: readlast nf(simul)

Arguments: pointer to Simulator data structure.

Preconditions: input/output data: wetting front file name

Objective: read wetting front file

Return value: void

Side effects: array nf updated

Algorithm:
open wetting front file
load wetting front array with raster data
close file

Function: readlastnt(simul)

Arguments: pointer to Simulator data structure.

Preconditions: input/output data: top front file name

Objective: read top front file

Return value: void

Side effects: array nt updated

Algorithm:
open top front file
load top front array with raster data
close file

Function: readlast_d_Mt(simul)

Arguments: pointer to Simulator data structure.

Preconditions: input/output data: moisture content file name

Objective: read moisture content file
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Return value: void
Side effects: array dMt updated
Algorithm:

open moisture content file
load moisture content array with raster data
close file

Function: readlast rf(simul)

Arguments: pointer to Simulator data structure.

Preconditions: input/output data: runoff generation file name
Objective: read runoff generation file

Return value: void
Side effects: array rf updated

Algorithm:
open runoff generation file
load runoff generation array with raster data
close file

Function: readlasthyd(simul,igauge)
Arguments: pointer to Simulator data structure.

int: number of gauge
Preconditions: input/output data: path and file names
Objective: read hydrographs
Return value: void
Side effects: result hydrographs updated
Algorithm:

get gauge baseflow
open hydro file
read headings
until end of file:
if type tag is one

read streamflow and rainfall corresponding to previous step
else

discard data
close file

Function: readmeasrain(simul)

Arguments: pointer to Simulator data structure.
Preconditions: input/output data: measured rainfall file name
Objective: read measured rainfall file
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Return value: void

Side effects: array rain updated

Algorithm:
open measured rainfall file
load measured rainfall array with raster data
close file

Function: read-fore-rain(simul)

Arguments: pointer to Simulator data structure.

Preconditions: input/output data: forecasted rainfall file name

Objective: read forecasted rainfall file

Return value: void
Side effects: array rain updated

Algorithm:
open forecasted rainfall file
load forecasted rainfall array with raster data
close file

Function: readinterstate(simul)
Arguments: pointer to Simulator data structure.

Preconditions: input/output data: file names
Objective: read last state variables

Return value: void
Side effects: arrays nf, nt and d_Mt updated

Algorithm:
read last wetting front
read last top front
read last moisture content
read last hydrograph

Function: readinter-forcing(simul)

Arguments: pointer to Simulator data structure.

Preconditions: input/output data: file names
Objective: read rainfall and runoff generation
Return value: void

Side effects: arrays rain and rf updated

Algorithm:
read last runoff generation
read last rainfall
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Function: readinitialstate(simul,ref)
Arguments: pointer to Simulator data structure.

pointer to char: time tag
Preconditions: input/output data: path names
Objective: read initial state variables
Return value: void
Side effects: file names set, result hydrographs and arrays Nf, Nt and
dMt updated
Algorithm:

get time tag
compose file name for wetting front
compose file name for top front
compose file name for moisture content
for all gauges in gauge list:

compose file name for gauge
read inter state

Function: readinitialjforcing(simul,ref)
Arguments: pointer to Simulator data structure.

pointer to char: time tag
Preconditions: input/output data: path names
Objective: read initial rainfall and runoff generation
Return value: void
Side effects: file names set and arrays rain and rf updated
Algorithm:

get time tag
compose file name for runoff generation
compose file name for measured rainfall
read inter forcing

Function: write jorhyd(simuligauge)
Arguments: pointer to Simulator data structure.

int: number of gauge
Preconditions: input/output data: path and file names, hydrographs
Objective: write hydrograph corresponding to forecasted rain
Return value: void
Side effects: none
Algorithm:
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open hydro file
get maximum range in array
for index in array range:

write streanflow and rainfall corresponding to current step

Function: writeinterhyd(simul,igauge)

Arguments: pointer to Simulator data structure.

int: number of gauge

Preconditions: input/output data: path and file names, hydrographs

Objective: write hydrographs corresponding to measured rain

Return value: void

Side effects: none

Algorithm:
open hydro file
get maximum range in array
if forecasted rain is active

write headings for three variables
else

write headings for two variables
for index in array range:

write type tag 0
write streamflow and rainfall corresponding to previous step

for index in array range:
write type tag 1
write streamflow and rainfall corresponding to current step

copy hydro file name as last hydro file

Function: writeextrahyd(simul, name)

Arguments: pointer to Simulator data structure.

pointer to char: file name

Preconditions: input/output data: path and file names, hydrographs

Objective: write hydrographs for the extra gauge. The extra gauge is used

to store virtual variables for the user interface. Values stored are not

neccessarily hydrographs. Reports of time evolution of virtual variables

are also stored here
Return value: void

Side effects: none

Algorithm:
open hydro file
get maximum range in array
write headings for one variable
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for index in array range:
write streamflow and rainfall corresponding to current step

Function: writeintersta(simul)
Arguments: pointer to Simulator data structure.
Preconditions: input/output data: path names, hydrographs and basin
state arrays
Objective: write basin state variables and result hydrographs
Return value: void
Side effects: none
Algorithm:

get current time tag
get state variables path
add time tag to state variables path
for all gauges in gauge list:

get hydro path
add time tag to hydro path
compose gauge file name
write hydrograph

compose raster title for wetting front
compose file name for wetting front
open wetting front file
write wetting front array on raster file
close wetting front file
copy wetting front file name as last wetting front file
compose raster title for top front
compose file name for top front
open top front file
write top front array on raster file
close top front file
copy top front file name as last top front file
compose raster title for moisture content
compose file name for moisture content
open moisture file
write moisture content array on raster file
close moisture file
copy moisture file name as last moisture file
compose raster title for runoff generation
compose file name for runoff generation
open runoff file
write runoff generation array on raster file
close runoff file
copy runoff file name as last runoff file

Function: setlinput-list(simul)
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Arguments: pointer to Simulator data structure.

Preconditions: rain paths

Objective: build a list containing all rainfall files in the directory. Rainfall

files are identified by root and extension. The list is sorted according to

time tag in ascending order.

Return value: void

Side effects: rainlist initialized

Algorithm:
set pointers to functions to select and to sort
scan measured rain directory for file names
set number of elements in list
set current element in list to zero
if fore rain tag is yes

scan forecasted rain directory for file names
set number of elements in list
set current element in list to zero

Function: comprmeas(chain)
Arguments: pointer to direct data structure.

Preconditions: none

Objective: function to select file names in the measured rain directory. It

takes the measured rain root and extension and discards items in the

directory which do not match.

Return value: void

Side effects: none

Algorithm:
get root name
select portion of item name corresponding to root
if compare names is not zero, return zero
select portion of item name corresponding to dot after root
select portion of item name corresponding to colon in time tag
select portion of item name corresponding to dot after time tag
if compare is not zero, return zero
get extension name
select portion of item name corresponding to extension
if compare names is not zero, return zero
return 1

Function: compjfore(chain)
Arguments: pointer to direct data structure.

Preconditions: none
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Objective: function to select file names in the forecasted rain directory. It

takes the measured rain root and extension and discards items in the

directory which do not match.
Return value: void
Side effects: none
Algorithm:

get root name
select portion of item name corresponding to root
if compare names is not zero, return zero
select portion of item name corresponding to dot after root
select portion of item name corresponding to colon in time tag
select portion of item name corresponding to dot after time tag
if compare is not zero, return zero
get extension name
select portion of item name corresponding to extension
if compare names is not zero, return zero
return 1

Function: order(dl,d2)
Arguments: pointer to direct data structure: first item to compare

pointer to direct data structure: second item to compare
Preconditions: none
Objective: function to sort file names. It takes the time tag and sorts
according to it.

Return value: void
Side effects: none
Algorithm:

return comparison of file names

Function: get-next-mrain(simul,mode)

Arguments: pointer to Simulator data structure.
int: channel for rainfall input: STDINPUT or
AUTOINPUT

Preconditions: rain paths, measured rain list
Objective: get the next measured file name and evaluate duration of the
rainfall loop

Return value: void

Side effects: measured rain file defined, and timer data updated
Algorithm:
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if mode is STDINPUT
read next item in standard input
if item is STOP return 1
get measured rain path
compose measured rain file name

else if mode is AUTOINPUT
increment measured list counter

get next element in list
get measured rain path
compose measured rain file name

get time tag of measured rain
if time tag is greater than end time return 1
set parameters for the computation loop: dt_rain and endhour

Function: getnext frain(simul,mode)
Arguments: pointer to Simulator data structure.

int: channel for rainfall input: STDINPUT or

AUTOINPUT
Preconditions: rain paths, forecasted rain list

Objective: get the next forecasted file name and evaluate duration of the

rainfall loop
Return value: void
Side effects: forecasted rain file defined, and timer data updated

Algorithm:
if mode is STD INPUT

read next item in standard input
if item is STOP return 1
get forecasted rain path
compose forecasted rain file name

else if mode is AUTOINPUT
increment forecasted list counter
get next element in list
get forecasted rain path
compose forecasted rain file name

get time tag of forecasted rain
if time tag is greater than end time return 1
set parameters for the computation loop: endhour

Function: init.gauge(simul)

Arguments: pointer to Simulator data structure.

Preconditions: number of gauges, path names

Objective: allocate memory and initialize the gauges in the basin

Return value: void
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Side effects: gauges initialized
Algorithm:

if no gauges defined by the user
set default gauge

allocate memory for Gauge pointer
allocate memory path names pointers
for all gauges in gauge list:

allocate memory for the gauge
get gauge name
allocate memory for path names
compose gauge name
initialize routing map
allocate memory for results
initialize results
if gauge trace is active

allocate memory for gauge trace
initialize gauge trace

Function: inithyd-gauge(simul,ij)

Arguments: pointer to Simulator data structure.
int: row index
int: column index

Preconditions: path names
Objective: allocate memory and initialize the extra gauge when it is going
to be used for hydrographs. The extra gauge is used by the user interface
to store time evolution of virtual variables and user-defined hydrographs
Return value: void

Side effects: extra gauge initialized
Algorithm:

if extra gauge is initialized
free extra gauge

allocate memory for the gauge
compose gauge name
initialize routing map
allocate memory for results
initialize results

Function: initaix-gauge(simul,i,j)

Arguments: pointer to Simulator data structure.
int: row index
int: column index

Preconditions: path names
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Objective: allocate memory and initialize the extra gauge when it is going

to be used for virtual variables. The extra gauge is used by the user

interface to store either time evolution of virtual variables or user-defined

hydrographs

Return value: void

Side effects: extra gauge initialized

Algorithm:
if extra gauge is initialized

free extra gauge
allocate memory for the gauge
compose gauge name
initialize pixel evolution
allocate memory for results
initialize results

Function: startextra-gauges(simul,ngauges)

Arguments: pointer to Simulator data structure.

int: number of gauges

Preconditions: nothing

Objective: allocate memory to store location of user-defined gauges

Return value: void

Side effects: memory allocated

Algorithm:
allocate pointers

Function: free-hyd-gauge(simul)

Arguments: pointer to Simulator data structure.

Preconditions: extra gauge initialized

Objective: liberate memory tnd terminate the extra gauge.

Return value: void

Side effects: pointers free
Algorithm:

free pointers

Function: simloop(simul)

Arguments: pointer to Simulator data structure.

Preconditions: basin properties, timer data, input/output data
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Objective: rainfall and forecasting loops for the whole basin. It computes
basin evolution with measured rain, write results if needed and computes
basin evolution with forecasted rain if forecasting loop is active.
Return value: void
Side effects: basin state updated, results written. If forecasting loop is
active, basin state at the end of the loop does not correspond to the current

time, and must be retrieved from the database again if needed.

Algorithm:
get timer information and define number of steps
read measured rain
for all steps in dtrain:
set initial time of the step
compute basin velocities
compute subsurface flow due to lateral heterogeneities
if step corresponds to forecasted rainfall

read forecasted rain
if basin trace is active

reset basin trace variables
compute basin evolution (computation loop)
for all gauges in gauge list:

compute contribution to the hydrograph
if basin trace is active

write basin trace variables
if step corresponds to end of rain

if writing results is active
write basin state and results

Function: hydrographjloop(simul)
Arguments: pointer to Simulator data structure.
Preconditions: basin states, timer data, input/output data
Objective: compute hydrograph retrieving basin states from the database
Return value: void
Side effects: results of extra gauge updated. No side effects in timer
Algorithm:

get current time
set factors for rain and streamflow
set rainfall list
for all elements in rainfall list:
get time of next rain file
if time is earlier than begin time

discard
else if time is after current time

break
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else
set timer information
read measured rain
read runoff generation
set initial time of the step
compute basin velocities
compute incremental basin response (convolution loop)

Function: pixjloop(simul)

Arguments: pointer to Simulator data structure.

Preconditions: basin states, timer data, input/output data

Objective: compute hydrograph for one single pixel retrieving basin states

from the database

Return value: void

Side effects: results of extra gauge updated. No side effects in timer

Algorithm:
get current time
set factors for rain and streamflow
set rainfall list
for all elements in rainfall list:
get time of next rain file
if time is earlier than begin time

discard
else if time is after current time
break

else
set timer information
read measured rain
read runoff generation
set initial time of the step
compute incremental pixel response

Function: rep-loop(simul)

Arguments: pointer to Simulator data structure.

Preconditions: basin states, timer data, input/output data

Objective: generate report of time evolution of a virtual variable for a pixel

retrieving basin states from the database

Return value: void

Side effects: results of extra gauge updated. No side effects in timer

Algorithm:
get current time
set factors for rain and streamflow
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set rainfall list
for all elements in rainfall list:
get time of next rain file

if time is earlier than begin time
discard

else if time is after current time
break

else
set timer information
read measured rain
read runoff generation
read basin state
set initial time of the step
initialize pixel
apply virtual function to pixel
store return value in results of extra gauge
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