JET QUENCHING MEASUREMENTS

WITH ATLAS AT LHC

WILL BROOKS
FOR THE ATLAS COLLABORATION

VIII LATIN AMERICAN SYMPOSIUM ON NUCLEAR PHYSICS AND APPLICATIONS SANTIAGO DE CHILE, DECEMBER 2009

OUTLINE

- Jet quenching: context
- Introduction to ATLAS
- Survey of ATLAS heavy-ion program
- Jet suppression physics
- Conclusion

Context

- The Relativistic Heavy Ion Collider (RHIC/BNL) has discovered a new state of matter in heavy ion collisions
- Experimental evidence indicates it is a hot, dense, strongly interacting system that behaves as a liquid with ultra-low viscosity
- The most compelling evidence that a super-dense medium is formed is jet quenching - the disappearance
 of one of the jets in high- p_{T} two-jet events:

- The phenomenon is qualitatively understood, but a number of puzzles remain
- The study of jet quenching in heavy ion collisions at LHC offers many new possibilities:
- Much wider kinematic range and larger cross sections
- Well-defined jets
- Heavy quark jets

INTRODUCTION TO THE ATLAS EXPERIMENT

The ATLAS EXPERIMENT

The ATLAS Collaboration and G Aad et al 2008 JINST 3 S08003

2700 collaborators (700 students)
7000 tons, 22 m diameter, 46 m long
Superconducting solenoid and toroid magnets 88 million detector channels
550 M CF

ATLAS PHYSICS

PROGRAMME

- B Physics
- Exotics
- Heavy Ions
- Higgs
- Standard Model
- SUSY
- Top Quark Physics

ATLAS Detector Status

Subdetector	Number of Channels	Approximate Operational Fraction
Pixels	80 M	98.0%
SCT Silicon Strips	6.3 M	99.3%
TRT Transition Radiation Tracker	350 k	98.2%
LAr EM Calorimeter	170 k	98.8%
Tile calorimeter	9800	99.5%
Hadronic endcap LAr calorimeter	5600	99.9%
Forward LAr calorimeter	3500	100%
MDT Muon Drift Tubes	350 k	99.7%
CSC Cathode Strip Chambers	31 k	98.4%
RPC Barrel Muon Trigger	370 k	$>97 \%$
TGC Endcap Muon Trigger	320 k	99.8%
LVL1 Calo trigger	7160	99.8%

Operational fraction as of 28 September 2009

ATLAS:
 CHANNEL COUNT, READINESS

A Jet event in ATLAS

FROM THIS WEEK!

THE ATLAS HEAVY-ION PROGRAM

FIRST YEAR's Pb-Pb COLLISION DATA

- Baseline measurements for 2010 HI run:
- RHIC data at $\mathrm{E}_{\mathrm{CM}}=200 \mathrm{GeV}$
- ATLAS p-p data ($\mathrm{E}_{\mathrm{cm}}=7 \mathrm{TeV} \rightarrow 14 \mathrm{TeV}$)
- For HI, $\mathrm{E}_{\mathrm{CM}}=2.75 \mathrm{TeV} \rightarrow 5.5 \mathrm{TeV}$ (per nucleon)
- Factor of up to 30 increase in energy means basic features are unknown; focus on:
- Global properties of collisions
- Quarkonia
- Hard probes

MEASUREMENT OF IMPACT PARAMETER

GLOBAL EVENT PROPERTIES

EXTRAPOLATIONS OF ENERGY

DEPENDENCE OF MULTIPLICITY

GLOBAL EVENT PROPERTIES

PIXEL HITS IN
FIRST, SECOND, AND LAYERS INDEPENDENTLY DETERMINE dN charged $/ d \eta$
A. Truzpek, ATL-PHYS-PROC-2009-090

MULTIPLICITY RECONSTRUCTION FROM PIXEL CLUSTER FOR A SINGLE HIJING EVENT

GLOBAL EVENT PROPERTIES

SUM OVER EM AND HADRONIC

CALORIMETER CELLS

GOOD EVENT-BY-EVENT MEASURE OF E_{T}

SINGLE EVENT RECONSTRUCTION OF TRANSVERSE ENERGY VS PSEUDORAPIDITY

ELLIPTIC FLOW

Asymmetry of particle emission relative to the event plane

ELLIPTIC FLOW

Asymmetry of particle emission relative to the event plane

ELLiptic FLOW

Elliptic FLOW

Asymmetry of particle emission relative to the event plane

$$
d N / d(\phi-\Psi)=N_{0}\left(1+2 v_{1} \cos (\phi-\Psi)+2 v_{2} \cos (2(\phi-\Psi))+\ldots\right)
$$

HEAVY QUARKONIA - c̄,$b \bar{b}$

TEST PREDICTIONS THAT DIFFERENT QUARKONIUM STATES DISASSOCIATE AT DIFFERENT PLASMA TEMPERATURES GOOD RATE, GOOD MASS RESOLUTION - CAN STUDY COLOR SCREENING THROUGH UPSILON AND J/U SUPPRESSION

METHOD REQUIRES

SUBTRACTION OF BACKGROUND FROM UNDERLYING HEAVY ION EVENT

INCLUSIVE JET

RECONSTRUCTION

M. Spousta, ATL-PHYS-PROC-2009-002.pdf

FEASIBLE TO EXTRACT ACCURATE

 FRAGMENTATION FUNCTIONSCAN EXTRACT JET QUENCHING IF IT IS OF THE SIZE GIVEN BY PYQUEN
M. Spousta, ATL-PHYS-PROC-2009-002.pdf N. Grau, ATL-PHYS-PROC-2009-046.pdf

PHOTON IS ~UNAFFECTED BY THE MEDIUM

M. Baker, Nucl. Phys. A830:499c-502c, 2009

DIRECT PHOTONS,

GAMMA-JET

 CORRELATIONSTHE EXCELLENT ATLAS CALORIMETRY PERMITS GOOD NEUTRAL HADRON REJECTION

CLEAN γ-JET SIGNAL IDEAL FOR JET SUPPRESSION STUDIES

HEAVY QUARK JET SUPPRESSION

$$
R_{A A}=\frac{1}{N_{\text {coll }}} \frac{\left.\frac{d N}{d p_{T}}\right|_{A A}}{\left.\frac{d N}{d p_{T}}\right|_{p p}}
$$

- Naive radiative energy loss picture predicts minimal suppression of heavy quarks
- Radiation and collisional losses in 2 and 3-body interactions provide only partial explanation
- This puzzle can be probed at LHC with much higher p_{t}, better statistics, and potentially with directly identified heavy mesons

Ko and Liu, Nuclear Physics A 783 (2007) 233c-240c

HEAVY QUARK JET SUPPRESSION

$$
R_{A A}=\frac{1}{N_{\text {coll }} l} \frac{\left.\frac{d N}{p_{T}}\right|_{A A}}{\left.d N_{1}\right|_{p p}}
$$

- Naive radiative energy loss picture predicts minimal suppression of heavy quarks
- Radiation and collisional losses in 2 and 3-body interactions provide only partial explanation
- This puzzle can be probed at LHC with much higher p_{t}, better statistics, and potentially with directly identified heavy mesons

[^0]

Ko and Liu, Nuclear Physics A 783 (2007) 233c-240c

Heavy Quark Jets via MuON-TAGging in ATLAS

- Semi-leptonic decay of heavy quarks can be tagged by muons
- Clean environment in standalone muon system, trigger by single / double tracks
- High purity for muon E_{T} above $\sim 50 \mathrm{GeV}$

CONCLUSIONS

- Exciting physics program for heavy ions with ATLAS
- ATLAS instrumentation is ideal for measuring jet quenching
- Methods of global event characterization are understood; ready for first data
- Heavy-quark jet quenching may yield new insights

[^0]: "KPS" = B. Z. Kopeliovich, I. K. Potashnikova,
 I. Schmidt, J. Phys. G35:054001, 2008

