

LUCID IN ATLAS DIFF2010

JACOB GROTH-JENSEN

concept and design electronics results from first data

LUCID IN ATLAS

LUCID: LUminosity Cherenkov Integrating Detector

Two symmetrical detectors around the beam pipe, located at 17 m from the IP

- Measure the LHC luminosity by counting charge particle tracks
 - Need absolute normalization (machine parameters, physics...)

- Trigger capability
 - Minimum bias
 - Forward and diffractive physics

Expected dose: 7 Mrad/year @ highest luminosity (10³⁴ cm⁻²s⁻¹)

DETECTOR LOCATION

|η| coverage: [5.6, 6.0]

- Array of 20 mechanically polished Aluminum tubes filled with Cherenkov gas (C₄F₁₀)
- C_4F_{10} pressure at 1.1 bar

DETECTOR PRINCIPLE

- Cherenkov threshold: in the gas (10 MeV for e- and 2.8 GeV for π)
- Tubes are pointing to the pp interaction region.
- The fast response (few ns) allows for single bunch crossing detection.

DETECTOR DESIGN

2×4 tubes are coupled to multi-anode PMT via optical quartz fibers. Better for high luminosity runs (MAPMT not exposed to high radiation doses).

TIME RESOLUTION

- 1. Stable over a large dynamic range (from 10^{27} to 10^{34} cm⁻²s⁻¹)
- 2. Stable in time and radiation hard (next slides)

The response of anti-size is initiation of interaction

3. A fast detector response (order of nanoseconds) allowing monitoring of individual bunches.

RADIATION HARDNESS

- Because of the very forward position of LUCID radiation hardness of the readout electronics is a key issue.
- A Hamamatsu R762 photomultiplier has been irradiated with a ⁶⁰Co source and the dark current and gain has been studied.

9

not a concern for the PMT lifetime !

READ-OUT DATAFLOW

INST. LUMINOSITY

Minimum Bias Trigger Scintillators : Array 16+16 scintillators, placed symmetrically to the IP, covering 2.1 < η < 3.8 Liquid Argon : Electromagnetic & Hadronic calorimeter covering the region $|\eta| < 4.9$

SUMMARY

- The LUCID detector is designed to be :
 - Radiation hard
 - Provide a fast response
 - .. and LUCID will provide ATLAS with:
 - Luminosity monitor on-line / off-line
 - Luminosity by Bunch Crossing and Integrated
- Analysis of first data has begun and the first results looks promising

BACK-UP SLIDES

