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Abstract

We address the question how string compactifications with D-branes are
consistent with the black hole bound, which arises in any theory with
number of particle species to which the black holes can evaporate. For
the Kaluza-Klein particles, both longitudinal and transversal to the D-
branes, it is relatively easy to see that the black hole bound is saturated,
and the geometric relations can be understood in the language of species-
counting. We next address the question of the black hole evaporation into
the higher string states and discover, that contrary to the naive intuition,
the exponentially growing number of Regge states does not preclude the
existence of semi-classical black holes of sub-stringy size. Our analysis
indicates that the effective number of string resonances to which such micro
black holes evaporate is not exponentially large but is bounded by N =
1/g2

s , which suggests the interpretation of the well-known relation between
the Planck and string scales as the saturation of the black hole bound on
the species number. In addition, we also discuss some other issues in D-
brane compactifications with a low string scale of order TeV, such as the
masses of light moduli fields.
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1 Introduction

String theory, being the theory of one-dimensional extended objects, contains an
infinite number of elementary particles, when seen from the field theory point of
view. Specifically, the excitation spectrum of a relativistic string contains a tower
of infinitely many higher spin excitations, whose number grows exponentially with
the masses of the excited string modes. In fact, these states follow the well-known
Regge excitation pattern with masses

M2
n = nM2

s , (1)

where Ms is the intrinsic string scale (M−2
s = α′), and n counts the nth. excitation

level.
In string compactifications from ten to four space-time dimensions there are

several additional generic mass scales and particles, which are related to the
internal geometry of the compact space. These are Kaluza-Klein (KK) particles,
whose masses scale inversely with some internal radii, possible winding states, as
well as moduli fields that determine the parameters of the underlying geometry.
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In particular, in intersecting D-brane compactifications, there are several distinct
mass scales and moduli fields, which could be also of experimental relevance.
Basically, each of these mass scales is related to the Compton wave-lengths of
some particles, which generically arise during the compactification process.

A particularly interesting scenario is given by D-brane compactifications with
a string scale Ms being near the scale of the Standard Model (SM), i.e. Ms =
O(TeV) [1], which implies that some of the extra dimensions must be much larger
than M−1

s . Moreover, since Ms sets the fundamental scale of gravity in the higher
dimensional space, the gravitational effects will start to play an important role
already at low energies, and possibly be accessible experimentally. In fact, in
this scenario there is an explosion of string states at the TeV scale, and some
spectacular model-independent stringy signatures are expected at the LHC in
case the string scale is low [2, 3, 4]. D-brane compactifications with a low string
scale are indeed possible, because the open string gauge interactions are confined
to the lower dimensional world volumes of the D-branes. On the other hand,
the gravitational force is enormously weakened by the fact, that the closed string
gravitons can leak out into the large transversal bulk space. Of course, one has
to investigate, if low strings scale D-brane compactifications can be dynamically
realized by a certain moduli potential, a question, which is not a focus of our
paper, but which we shall only briefly touch later.

Low string scale D-brane models are a concrete, microscopic realization of
the large extra-dimension scenario of ADD, which was originally introduced as a
phenomenologically-motivated solution to the hierarchy problem [5]. Of course, in
string theory compactifications, some new phenomenological questions compared
to ADD arise, such as the appearance of several new mass scales, the existence
of additional states and in particular the problem of light moduli at tree level,
which typically arise in case of a large internal string manifold. We will discuss
the light moduli problem and radiative mass corrections to the moduli fields later
on.

The main focus of the present paper is to investigate how the string theory
compactifications, viewed as the theories of many particle species, cope with the
consistency requirements of the semi-classical black hole (BH) physics [6, 7, 8, 9].

This question emerges already at the level of high-dimensional field theo-
ries. Indeed, from the point of view of a four-dimensional observer, any high-
dimensional theory is a theory of large number of particle species, since every
high-dimensional field (e.g., a graviton) produces a tower of KK excitations. An
each member of this tower represents a four-dimensional particle with a definite
mass and other quantum numbers. The intrinsic geometric property of large
extra dimensional scenarios is the hierarchy between the four-dimensional (M4)
and high-dimensional (M4+d) Planck scales produced by the large compactifica-
tion volume

M2
4 = M2

4+d(M
d
4+dV

(d)) , (2)
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where the quantity Md
4+dV

(d) is the volume of the compact manifold measured in
the units of the high-dimensional Planck length l4+d ≡ M−1

4+d.
Recently [6, 7, 8, 9], it was understood that the above simple geometric rela-

tion, is in fact a particular realization of a much more general bound, according
to which in any theory with N particle species, there is an inevitable hierarchy
between the Planck mass and the fundamental gravitational cutoff of the theory,
which we shall denote by M∗. Among several possible equivalent definitions of
M∗, we shall use the one in which l∗ ≡ M−1

∗ is the size of the smallest possible
semi-classical neutral non-rotating BH. In four-dimensions, the bound then reads
[6, 8, 9]:3

M∗ =
M4√
N4

. (3)

Correspondingly in 4 + d-dimensions we have

M∗ =
M4+d

N
1

2+d

4+d

, (4)

where both M4+d and N4+d must be understood from the point of view of 4 + d-
dimensional theory. That is, N4+d counts the number of 4+d-dimensional species.
Notice, that since the scale M∗ is unique for any given theory, the saturation of
the bound in a high-dimensional theory automatically implies its saturation in a
dimensionally-reduced theory. This implies, that the geometric relation between
the Planck masses of high and low dimensional theories is controlled by the
number of KK species.

As said above, the scale l∗ marks the size below which BH can no longer
maintain their semi-classical properties, such as, the small relative rate of the
temperature change,

1

T 2

dT

dt
≪ 1 , (5)

where the temperature is the inverse of the gravitational radius rg = T−1. The
latter relation must hold for any static, neutral and non-rotating semi-classical
BH. The bounds (3) and (4) follow from the fact that the semi-classicality con-
dition (5) is violated for any BH smaller than l∗, due to an unsustainably high
rate of Hawking evaporation into the N particle species [6].

Alternatively [8], the bound follows from the fact that at length scales shorter
than l∗, the resolution of species is impossible in principle, since any detector
capable of differentiating among the species at such a short length-scale would
itself collapse into a BH.

It is obvious, that the geometric relation (2) is a particular form of (3). For
seeing this, it is enough to notice that the factor Md

4+dV
(d) ≡ NKK simply

counts the number of KK species, whereas the high-dimensional Planck length is
an obvious cutoff of the high-dimensional gravity theory.

3This bound has been generalized for de Sitter spaces and cosmological backgrounds in [7].
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As it follows from (3), in case the mass M∗ is of order TeV, one expects
N = 1032 different species at or below this scale, and the strength of the gravi-
tational interactions is diluted to its observed value due to the existence of this
large number of particles. Therefore, ADD model can be viewed as a particular
representative of much more general class of the large species models that address
the hierarchy problem between the Planck scale and the TeV scale.

The purpose of the present work is to explore the physical meaning of (3)
and (4) in string theory. As explained above, from the effective field theory
perspective, string theory is a theory of infinite number of particle species. Since,
the bound relies on the BH evaporation, it is thus crucial to understand which are
the relevant string species participating in this process. The question we would
like to address now is, which particles play the role of the different species in
D-brane string compactifications, and how the black hole bound eqs.(3) and (4)
is satisfied in these string models.

In other words, we wish to understand how the string compactifications fit
into the large species scenario. Thus, the following questions will be addressed:

• What is relation of the different mass scales in D-brane compactifications
to the different particle species participating in BH evaporation?

• How is the black hole bound satisfied by the stringy excitations?

As we shall see these questions can be relatively easily answered for the KK
modes, both for KK modes corresponding to the open strings on the wrapped
D-branes and also for the closed string KK modes in the bulk space, transversal
to the D-branes. However, the most interesting and more subtle question is,
how the stringy excitation modes (Regge states) respect the bound (4), because
naively the exponentially growing number of these states seems to violate it for
any semi-classical BH smaller than the string length.

There are the two regimes that we shall explore.

1.1 Super-Stringy Black Holes

The first regime explores the BHs with the gravitational radius larger than the
string length rg > ls, where ls ≡ M−1

s . Such BHs can only evaporate into the
lowest closed and open strings modes and their KK excitations. An obvious
requirement, that such BHs must be semi-classical, implies the absolute upper
bound on the value of the string scale

Ms 6
M4+d

N
1

2+d

4+d (m < Ms)
, (6)

where N4+d(m < Ms) counts the number of all 4+d-dimensional elementary par-
ticle species with masses below the string scale. In a consistent compactification,
the bound must be satisfied for any d, and as we shall see, it indeed is.
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1.2 Sub-Stringy Black Holes

The second regime, in which BHs horizon shrink below the string length, rg < ls,
is much more profound. The naive impression is, that such BHs simply cannot
exist as semi-classical objects with the well-defined Hawking temperature, since
for T > Ms the number of thermally-accessible species diverges exponentially
and one is bound by the Hagedorn effect. The result would be an exponential
increase of BH evaporation channels and the semi-classicality condition (5) would
be violated almost immediately. We shall see, that this naive argument is false,
and it alone cannot prevent the semi-classical BHs from continuing existence in
sub-ls domain. The reason is, that although number of states is indeed expo-
nentially large, only few of them are effectively produced in the BH evaporation.
Our findings indicate that the effective number of emitted string resonances is
maximum

Neff ∼ 1/g2
s , (7)

where gs is the string coupling constant4.
In order to illustrate this suppression, we shall develop an effective theory

of BH evaporation into the string resonances. The emission of a given string
resonance is suppressed by a power of T/M4+d defined by the oscillator number.
A crude intuitive understanding of this suppression can come from thinking of
higher string resonances as of vibrating long strings. Production of such a string
by a tiny BH is only possible for certain patterns of the string vibration, namely
if during its vibration the strings contracts down to a BH size. For the other
vibration patterns, the production must be suppressed.

This simple qualitative picture is also supported by a toy model, which allows
for a microscopic field-theoretic description of the BHs evaporation into stringy
states. The latter model is an SU(n)-QCD coupled to Einsteinian gravity. The
advantage of this system is, that it allows for the complementary descriptions of
the micro BH evaporation both in the language of closed strings (glueballs), as
well as in the language of elementary gluons. The latter description reproduces
(7).

Remarkably, the relation (7) when substituted in (4), reproduces the known
relation between the string and the Planck scales

M8
10 =

1

g2
s

M8
s . (8)

Although this remarkable connection is indicative of intrinsic consistency of mi-
cro BH physics in string theory, it has to be interpreted with care. In particular,
it cannot be regarded as a derivation of (8) from the species bound (4). From
the way we arrived to it, this relation by no means indicates that the BH semi-
classicality scale is bounded by ls. This would be the case if all Neff modes

4The alternative evidence [11] for this bound comes from applying the arguments of [8] that
are restricting the information-storage by use of species
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were opening up at or below the scale Ms. However, they open up gradually at
higher energies and for gs ≪ 1 most of them are crowded up at the tempera-
tures T ≫ Ms. This is why, the BHs smaller than ls are not inconsistent with
semiclassical BH physics.

Our results have some fundamental as well as phenomenological implications.
On one hand they indicate, that BH semi-classicality properties combined with
the exponentially large number of string resonances do not a priory prevent the
small BHs from probing distances shorter than the string length ls. In this
respect, micro BHs seem to share some properties of D-branes, which are known
to probe the scales parametrically shorter than the string length [12].

Secondly, our findings shed some light at the expected properties of the micro
BH that may be produced in particle collisions at super-stringy energies, e.g.,
in the high energy cosmic rays or at LHC. Since even in the most optimistic
scenarios, the largest produced BHs at LHC will still be much smaller than the
size of the extra dimensions, their evaporation will not be democratic in species
[13]. Instead, such BHs will predominantly evaporate into the species whose
wave-function profiles in the extra dimensions have maximal overlaps with the
BH localization site. In this respect, democracy of the evaporation products will
be a function of the BH size (and thus of the center of mass energy in LHC col-
lisions). Observation of the mass-dependent democracy will be most easy within
the Standard Model species, e.g., for the different quark and lepton families, since
these species cannot be too far displaced in the extra space, due to their gauge
quantum numbers. For example, by gauge invariance, all the electrically-charged
states must have the same overlap with the photon wave-function. Thus, in this
case, variation in BH democracy may be in principle noticeable even for a rela-
tively small variations of the BH mass. For example, heavier BHs produced in
the collision of the first generation quarks, must evaporate more democratically
into other flavors, than the lighter BHs produced in the same collision.

Finally, after shrinking to the size ls BHs must evaporate into Neff ∼ 1/g2
s

string resonances, some of which which may then be identified via their decay
channels into the SM particles.

2 Preliminaries

2.1 The three fundamental length scales in brane com-

pactifications:

In the following we will consider type II orientifold compactifications with D-
branes (for reviews see [14, 15]). Let us recall that there are three basic, di-
mensional parameters in type II string compactifications with wrapped and/or
intersecting D-branes.

Of course, first there is the fundamental string scale, given in terms of the slope
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parameter α′ as:

(1) : Ms =
1√
α′
. (9)

The string scale is related to the fundamental 10-dimensional Planck mass M10

through a dimensionless string coupling constant gs via the relation (8)
Second, we have to compactify from ten to four dimensions on an internal

6-dimensional space M6. So as the second basic string mass scale, we introduce
the scale defined by the volume V (6) of the internal space:

(2) : m6 ≡ 1

(V (6))1/6
. (10)

When measuring masses in terms of Planck units, it is useful to introduce a
dimensionless overall volume, given in 10-dimensional Planck mass units, as

V ′
6 = V (6)M6

10 =
M2

4

g
1/2
s M2

s

. (11)

We are considering scenarios, where the SM is located at some stacks of
D(3+p)-branes, which are wrapped around some internal p-cycles inside M6:

Σp ⊂ M6. So, the third basic string mass scale is related to the volume V
‖
p of

the sub-space Σp, around which the D-branes are wrapped:

(3) : m‖
p =

1

(V
‖
p )1/p

. (12)

Alternatively we can introduce the volume V ⊥
6−p of the space transversal to the

D-branes,

(3′) : m⊥
6−p =

1

(V ⊥
6−p)

1/(6−p)
, (13)

where the following relation holds:

V (6) = V ‖
p V

⊥
6−p . (14)

These three fundamental dimensional parameters of D-brane models are linked
to two 4D physical observables in the following way:

(A) the strength of gravitational interactions, as determined by the 4D Planck
mass:

(A) : M2
4 = g−2

s M8
s V

(6) . (15)

(B) the strength of the gauge interactions, as determined by the 4D gauge cou-
pling:

(B) : g−2
Dp = Mp

s g
−1
s V ‖

p . (16)
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Hence, for fixed string coupling gs, knowing M4 and g−2
Dp leaves one of the three

dimensionful string parameters undetermined (unlike for the heterotic string).
Since the 4D gauge coupling must not be too small, we take it of order unity.
This fixes (V

‖
p )−1/p to be of order Ms, i.e. (V

‖
p )−1/p ≃ Ms. This leaves only Ms

(or V (6)) as free parameter. Then, the transversal volume V ⊥
6−p is of the oder

V ⊥
6−p = V (6)Mp

s . (17)

From the model-building perspective there are several “natural choices” for
Ms which scan the mass scales starting from just below M4 ∼ 1019 GeV all
the way to TeV scale. The later choice being motivated by the solution to the
hierarchy problem, as well as by the prospect of the experimental discovery of
string theory in particle physics and in table-top experiments.

2.2 Choices of Ms and low string scale compactifications

Although in our discussion Ms will be kept as a free parameter, we wish to briefly
display some phenomenologically-motivated choices for it.

We shall consider cases of (V (6))−1/6 ∼ Ms and (V (6))−1/6 ≪ Ms separately.
The choice (V (6))−1/6 ∼ Ms is special, since in this case the super-ls-size (rg ≫
ls) BHs evaporate only into the zero modes of the lowest string excitations, and
never in their KK or Regge resonances. In the other words, for this choice the
semi-classical BHs directly jump from four-dimensional Einsteinian regime to the
stringy one in which they start evaporation into the Regge excitations. Notice,
that in every other case, there is an intermediate regime, when semi-classical BHs
become high-dimensional and evaporate in KK resonances but not in the Regge
ones.

2.2.1 String Length Compactifications: High String Scale

We shall first focus on the choice (V (6))−1/6 ∼ Ms. Notice, that for any given gs

this choice corresponds to the maximal proximity between the string and four-
dimensional Planck masses. This choice is also rather special from the point of
view of species counting. As said above, in this case the larger than the ls BHs are
automatically four-dimensional Einstein BHs, with the temperature T < Ms, m6.
Thus, none of the KK or Regge excitations are thermally accessible. Thus, the
bound on species automatically translates as the bound on the possible number
of the four-dimensional zero modes. We shall now express this bound as the
relation between the number of zero modes and the string coupling.

The relation between Ms and M4 is given by

Ms =
M4

gs
, (18)
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which follows from the relation (15) and (2) and from setting the compactification
radius equal to ls.

The realistic numerical value of Ms can be estimated by using (16) and as-
suming the standard UV boundary condition for the running gauge coupling gDp.
We thus get the estimate for the highest phenomenologically-consistent choice of
Ms in the weakly-coupled description (which is similar to the value in heterotic
string compactifications):

Ms ∼ 1017−18 GeV . (19)

The masses of all the KK excitations as well as of the string Regge modes are
at or above Ms and are irrelevant for the dynamics of semi-classical BHs of size
rg ≫ ls. Since such BHs are larger than both the string length as well as the the
compactification radius, they are well within the domain of semiclassical descrip-
tion and for all practical purposes represent the four-dimensional Schwarzschild
BHs. Their semi-classicality immediately implies the bound (3), which dictates
that the number of all possible zero modes in such compactifications is automat-
ically restricted by

Nzero .
1

g2
s

. (20)

This bound is absolute, since, by default, at distances ≫ ls there are no new
gravitational modes available that could modify the universal thermal properties
of the Einsteinian BHs. The only gravitational degree of freedom at large dis-
tances is a four-dimensional massless graviton. Because of this, the classical met-
ric of neutral BHs, by standard no-hair theorems [23], is exactly Schwarzschild.
Thus, the energy loss of such a BH is

dMBH

dt
= −T 2Nzero , (21)

which implies the breakdown of the semi-classicality condition (5) at the temper-
ature

T∗ = M∗ =
M4√
Nzero

. (22)

Since by consistency T∗ cannot be below Ms (below string scale there are no new
modes available for changing the semi-classical regime), taking into the account
(18), we prove (20).

2.2.2 Large Volume Compactifications: Low String Scale

Choices of Ms with values lower than (18), imply at least some compactification
radii larger than the string length ls. In this case the evaporating semi-classical
BHs cross over to a high-dimensional regime before reaching the string size, and
evaporate not only into the zero modes but also in their KK excitations. The
evaporation of such BHs will be considered in details in the next section. Here
we just list the few interesting choices of Ms values.
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Motivated by gauge coupling unification, one often assumes the existence of
a GUT gauge group and makes the identification:

Ms ≡ MGUT ≃ 1016 GeV . (23)

In this scenario, V (6) is of order

(V (6))1/6 ≃ 10−15 GeV−1 . (24)

Another choice of lower string scale compactifications is to identify Ms with
the scale of spontaneous supersymmetry breaking:

Ms ≡ MSUSY ≃ 1011 GeV . (25)

The rational for this choice is that one does not have to worry about lowering
the scale of supersymmetry breaking below the cutoff, since the gravity-mediated
contribution to the Standard Model masses are automatically of the right order
of magnitude. However, one has to be careful in avoiding 1/Ms-suppressed in-
teraction between the Standard Model and the supersymmetry-breaking sectors,
which would destabilize the hierarchy.

This scenario implies that V (6) is of order

(V (6))1/6 ≃ 10−(6−7) GeV−1 . (26)

The most radical choice (motivated by the hierarchy problem) is to identify
Ms right away with the scale of the SM, i.e. with the TeV scale:

Ms ≡MSM ≃ 103 GeV . (27)

Therefore, in this scenario, V (6) is very large, and is of order

(V (6))1/6 ≃ 1014/6 GeV−1 , (28)

and hence this scenario can also be called very large extra dimension scenario.

Let us summarize these four possibilities, and the corresponding energy and
length scales in the table 1 (we use that 1 GeV ∼ (10−16 m)−1, we have set
gs ≃ 1, p = 4, and we neglect factors of 2π). V ′

6 takes the following values:

V ′
6 ∼ 1, 106, 1016, 1032 . (29)

2.3 Dynamical realization of low string scale compactifi-

cations

In our analysis, we shall make no specific assumption on how the moduli are
stabilized. Our results will apply to any consistent static or a nearly static com-
pactification. What is important is, that the possible time-dependence of the

11



Table 1: The different mass scales in D-brane models

Ms (GeV) Ls (m) m6 = (V (6))−1/6 (GeV) (V (6))1/6 (m) m⊥

2 = (V ⊥

2 )−1/2 (GeV) (V ⊥

2 )1/2 (m)

(o) 1018 10−35 1018 10−35 1018 10−35

(i) 1016 10−32 1015 10−31 1013 10−29

(ii) 1011 10−27 106−7 10−(22−23) 103 10−19

(iii) 103 10−19 10−14/6 10−14 10−13 10−3

background is slower than the evaporation process of the smallest semi-classical
BHs existing on the background of interest [7].

For example, for the bounds obtained via the four-dimensional semi-classical
BHs this will imply, that there must exist such BHs for which the evaporation
time is shorter than the effective four-dimensional Hubble time. Needless to say,
for any realistic compactification this condition must be automatically satisfied.

As long as the above condition is satisfied, the precise mechanism of com-
pactification and moduli stabilization is unimportant for our analysis. On the
backgrounds of our interest, the moduli fields may be: Stable (positive masses-
squares), neutrally-static (massless) or even slowly evolving in time (either tachy-
onic or runaway) . As long as the background supports the existence of semi-
classical BHs, which evaporate faster than the characteristic time of the background-
evolution, our bounds are applicable.

As for the high-dimensional or sub-ls BHs, the issue of compactification plays
no role, since their evaporation can be considered directly in ten-dimensional
theory. As long as throughout their half-life they stay smaller than the size (or
the curvature radius) of the extra space, the time-dependence of the background
is unimportant.

We thus see, that derivation of our bounds is rather insensitive to the sta-
bilization of the radii of the compactified space. The converse, however, is not
true. The BH bound on number of species puts severe constraints on the possible
static (or slowly-changing) backgrounds in string compactifications. For example,
any background that violates (20), must be clasically-unstable with the instabil-
ity time less than the lifetime of any Schwarszchild BH of size larger than the
compactification radius.

Of course, as the necessary model-building aspect, one has to address the issue
of how moduli stabilization might lead to such big internal volumes, as required
in scenarios (ii) and (iii). This issue will not concern our work. However, our
results can be used as an useful consistency checks of such compactifications, in
terms of number of species.

Some plausible mechanisms in the direction of moduli stabilization in large
volume compactification were developed in [16], where in was argued that for
the case of the SUSY breaking scenario (ii), loop effect and non perturbative
effects in the effective moduli potential can easily and naturally lead to such big,
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exponential hierarchies. The relevant geometries are called Swiss cheese Calabi-
Yau space, where the D-branes of SM model are wrapped around small cycles
(holes) inside a huge internal space.

In order to be a little bit more specific, let us recall the main points in the
construction of large volume D-brane comapctifications. The effective field theory
potential V for the moduli fields is based on the following Kähler potential and
superpotential [16, 17]

K
M2

4

= −2 log
(

V ′
6 +

ξ

2

)

− log
(

−i(τ − τ̄)
)

+ Kcs ,

W =
g

3
2
s M3

4√
4π

∑

i

Aie
− 2πTi

gs +Wcs , (30)

where τ denotes the axion-dilaton field, the Ti correspond to the volumes of
the 4-cycles, being wrapped by D7-branes, the ξ-terms is a higher order loop
correction to the Kähler potential, and Kcs, Wcs are functions, which depend on
the complex structure moduli fields. Using K and W it is straightforward to
compute the standard supergravity scalar potential given as

V = eK
(

|DW |2 − 3|W |2
)

. (31)

As it was shown in [16, 17] it is possible to obtain minima of V with hierarchically
large values for V ′

6 ∼ 1016 and correspondingly low values of the string scale Ms.
This depends crucially on the loop correction ξ to the Kähler potential as well as
on the exponential dependence of W on the moduli Ti, as it was demonstrated in
[16, 17] for the SUSY breaking scenario (ii). However it is equally possible by a
small variation of the parameters in K and W to obtain minima of V, where V ′

6

takes even much larger values of the order 1032.5 However, the masses of some
moduli fields obtained from this scalar potentiual can be unacceptably small in
case the volume V ′

6 is very large (see [17] for a table with masses computed from
this potential). We will discuss this potential problem in the next section for the
overall modulus field T , and we will argue that generic radiative mass corrections
to the overall T -field modulus will lift its mass to a phenomenologically acceptable
value.

3 Several generic particles in brane compactifi-

cations and their associated length scales

Now let us recall several generic particles that are related to the different mass
scales in D-brane compactifications, as well as their masses, measured in the
Einstein frame, and expressed in terms of Planck units.

5We like to thank F. Quevedo for discussion on this point.
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(i) String Regge excitations:

The most generic and model independent stringy excitations are the so-called
Regge modes. Their masses are proportional to the string scale Ms, and in terms
of Planck units given by:

MRegge =
√
nMs =

√
nM4

g
1/4
s

√

V ′
6

. (32)

Here n denotes the oscillator number of these states. In case they are open
strings, the stringy Regge excitations can carry the SM quantum numbers, i.e.
they can be produced by pp-collisions via gauge interaction. Their discovery in
LHC experiments is then possible in the TeV scale string scenario [2, 3].

(ii) Transversal direction KK particles:

For the masses of the KK particles related to the large volume cycles one obtains:

M⊥
KK =

m

(V ⊥
6−p)

1/(6−p)
= m M4(V

′
6)

8−p
2p−12 , (33)

where m counts the internal closed string KK momentum of each state. In the
four scenarios discussed above M⊥

KK takes the following values (here for m = 1,
p = 4):

M⊥
KK ∼ 1018, 1013, 103, 10−13 GeV . (34)

These KK particles are closed strings, and they are neutral under the SM gauge
group, and hence interact only gravitationally with SM particles.

(iii) Small (longitudinal) cycle KK particles:

For the masses of the KK particles related to the small volume cycles one
obtains:

M
‖
KK =

m′

(V
‖
p )1/p

(35)

Here m′ is the open string KK momentum along the wrapped (3 + p)-branes.
For the compactification on the parallel directions being ls, in the four scenarios
discussed above M

‖
KK takes the following values (m′ = 1):

M
‖
KK = 1019, 1016, 1011, 103 GeV . (36)

These KK particles are open strings, and hence they carry SM quantum numbers,
i.e. they are the KK excitations of the SM fields. Hence they can be directly
produced at the LHC.

(iv) Overall volume modulus:

Related to the overall six-dimensional volume V6, there is a generic closed string
modulus field T in any compactification. In the low string scale compactifications,
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the tree-level mass of this modulus may be unacceptably small, (e.g., its typical
tree level mass was calculated using the moduli potential calculated in [17]: MT =
MPlanck

(V ′

6)3/2 ).

However, the point we would like to stress is, that there is a model-independent
lower bound on the typical mass that the volume modulus should get from the
quantum correction, which is given by

∆M2
T ∼

〈T µ
µ T

µ
µ 〉

M2
4

&
Λ4

SM

M2
4

, (37)

where ΛSM is the scale that cuts-off the contribution to the 〈T µ
µ T

µ
µ 〉 correlator

from the loops of the standard model particles. The source of this contribution is
in the fact that the volume modulus is coupled to trace of the energy-momentum
tensor, T µ

µ , gravitationally by (at most) 1/M4-suppressed interactions. Thus,
the Standard Model loops inevitably contribute to the generation of its mass.
The relevant diagrams are loops with the external T -legs, and with the Standard
Model particles circulating in the loop. Notice, that ΛSM is entirely determined
by the scale at which the momenta of the Standard Model particles flowing in the
loop get regulated, and is independent of the momenta flowing in the external
T -legs. Due to this, the result is insensitive to the UV properties of the effective
coupling between the standard Model species and the volume modulus, which
makes (37) very robust. An obvious lower experimental bound on ΛSM is around
TeV, which taking into the account the multiplicity of the contributing species
(and ignoring the accidental cancellations) translates as the expected lowest value
of the volume modulus mass around

∆MT ∼ 10−3 eV , (38)

which corresponds to a length scale in sub-millimeter range. This is the range
where the existing table-top fifth force experiments [18] start to penetrate. The
resulting gravity-competing force should share similarity with the ones considered
previously from light moduli in gauge-mediated supersymmetric theories [19] and
from volume-modulus in orbifolds string compactifications with Scherk-Schwarz
supersymmetry breaking [20].

Notice, however, that in many cases, the expected mass in reality must be
somewhat higher, either due to multiple sectors contributing in the 〈T µ

µ T
µ
µ 〉-

correlator, or due to higher cutoff (or both).

(v) Small (longitudinal) cycle volume moduli:

Related to the small cycles of longitudinal volume V
‖
p , there are a moduli fields

t with tree level masses (here for p = 4)

Mt =
M4

V ′
6

. (39)
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In the four scenarios discussed above Mt takes the following values:

Mt = 1019, 1013, 103, 10−13 GeV . (40)

Again, these t-moduli are neutral and interact only gravitationally with SM fields.

4 Black Hole evaporation in String D-brane com-

pactifications and the bound on species-number

We now wish to discuss the question, in what sense string D-brane comapcti-
fiactions are a concrete realization of the large species-number scenario of [6].
Namely we want to analyze how the different particles species in D-brane models
respect the BH bound eq.(3).

Since the number entering in (3) is the effective number of species to which
semi-classical BHs can evaporate, we thus focus our analysis on the study of
micro-BH evaporation process in string compactifications. We shall consider the
regimes rg ≫ ls and rg < ls separately. In the first case the string Regge states
are unaccessible and the only relevant degrees of freedom are zero modes and
their KK excitations. We start with this case first.

4.1 Evaporation into KK particles

In this section we shall work under the choice gs = 1. This choice allows us
to avoid possible production of the higher string Regge excitations in any semi-
classical BH evaporation, since the latter by default must have a temperature
below M10. The particles contributing in the evaporation of such BHs are only
the string zero modes and their KK resonances. Hence, these will be the states
contributing into the BH bounds (3) and (4), and our goal in this section will be
to observe how the consistency of these bounds is maintained.

We shall consider sub-ls BH regime in the next section, where we shall allow
for the hierarchy between the Ms and M10 scales.

In any 4+d-dimensional scenario, with the coordinates in extra d-dimensional
space denoted by y1, ...yd, the BH evaporation rate is given by

dMBH

dt
= −T 2Neff , (41)

where, it is assumed that the BH is a perfect quantum emitter, with the temper-
ature given by T = r−1

g . The effective number of particle species Neff is given
by

Neff ≃
∑

m

e−
m
T

∫

|y|< rg

|ψ(m)(y)|2 (42)
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where the exponent stands for the Boltzmann suppression, and the d-dimensional
integral evaluates the overlap of each particle wave-function profile with the BH
horizon.

To be most precise, the integral has to be taken over a background metric in
the presence of a classically-static BH. However, for the micro BHs with short
evaporation time, this subtlety can be ignored, and in the leading approximation
the deformations of the particle wave-function profiles due to the BH metric can
be disregarded.

Of course, for the BHs with the size rg smaller than the size of an extra
dimension, the corresponding high-dimensional relation between the mass and
the Hawking temperature must be assumed.

The key point then is, that the bound (4) between the gravitational cutoff of
the theoryM∗ andM4+d is reproduced byNd+4 = Neff . Moreover, since the scale
M∗ is the universal cutoff, the saturation of the bound in one particular dimen-
sionality, automatically saturates it in all. E.g., the four-dimensional bound (3)
is simultaneously reproduced by N4 being the total number of four-dimensional
species, participating in the sum in (42).

We shall now illustrate this point on some examples.

(i) Isotropic compact space

We first discuss the simplest case of an isotropic, d-dimensional compact space
of volume Vd = Rd. (This includes the case of no (wrapped) branes) Then the
masses M i

KK of the bulk KK-particles are given as

M i
KK =

√

∑d
i m

2
i

R
, (i = 1, . . . , d) , (43)

where the mi are the KK quantum numbers in the ith. direction of the internal
space. From above it follows that the total number of KK particle with the
masses up to the scale M4+d, for each 4 + d-dimensional species is given by

NKK = (M4+dR)d . (44)

Applying this counting to a theory with a single 4 + d-dimensional graviton,
and using (3) with identification M∗ = M4+d, we obtain the expression for the
effective Planck scale in four dimensions in terms of number of KK-species,

M2
4 = M2

4+dNKK = M2
4+d (M4+dR)d , (45)

which indeed agrees with the geometric expression for the Planck mass in four
dimensions after compactification [5].

On the other hand the BH bound (3) counts the total number N of four-
dimensional species, which in case of N4+d high-dimensional species increases as
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N = N4+d NKK. Substituting this in (3) and taking into the account (45), we
automatically get (4).

For N4+d ∼ 1, which is the case for example for pure gravity in 4 + d-
dimensions, the both BH bounds, (3) and (4), are automatically satisfied by
M∗ = M4+d, as long as MKK < M4+d or equivalently as long as

R > 1/M4+d . (46)

However, for N4+d ≫ 1, the bound indicates that the true gravitational
cutoff, must be below M4+d! This result is absolutely compatible with our under-
standing of the structure of string theory in ten-dimensions. Indeed, for gs ∼ 1,
the number of ten-dimensional species with mass below M10 is limited by the
fixed number of closed string zero modes, and cannot be arbitrarily large. That
is, for gs ∼ 1, N10 = Nzero. Only possibility for increasing N10 arbitrarily is to
take a weak string coupling gs → 0, but then the string scale Ms, which is the
gravitational cutoff of the theory, inevitably comes below M10.

Let us now check how the above mode-counting reproduces the correct relation
between theM4+d and theM∗ through the relation (41). For a BH of size rg ≪ R,
the relation between the mass and the temperature is,

MBH = M4+d(M4+dT
−1)1+d . (47)

Noticing, that the overlap between the KK wave-functions and the BH horizon
is (rg/R)d, and the thermally available number of KK states per each 4 + d-
dimensional particle isNKK(m < T ) = (TR)d, the value ofNeff in (42) becomes,

Neff = (rg/R)d(TR)dN4+d = N4+d . (48)

Using (47) and (48), the eq(41) can be written as,

1

T 2

dT

dt
=

1

(1 + d)

(

T

M4+d

)2+d

N4+d . (49)

It is obvious that the semi-classicality condition (5) breaks down exactly at T =
M∗, where M∗ is given by (4). There is a complete consistency between the BH
bounds obtained in four and high-dimensional theories.

(ii) Non-isotropic compact space – wrapped D-branes

Now we are ready to discuss the case of non-isotropic extra space, in which we
have (3 + p)-branes wrapped around internal p-cycles. The longitudinal volume
of the wrapped branes is V‖ = Rp

‖, whereas the transversal volume is V⊥ = Rd−p
⊥ .

Hence the total volume is Vd = V‖V⊥ = Rp
‖R

d−p
⊥ . As before, the total number of

KK particles produced by each d+ 4-dimensional degree of freedom is given by

NKK,total = (M4+d)
dRp

‖R
d−p
⊥ , (50)
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and hence if we had a single 4+d-dimensional particle, we would again reproduce
the geometric relation for M4 in terms of number of species [6],

M2
4 = M2

4+dNKK,total = (M4+d)
d+2Vd . (51)

Again M4 coincides with the Planck mass eq.(15) in string compactifications with
d = 6.

However, we now have two different kinds of KK species. The first kind are
the KK excitations along the wrapped p-branes. Their masses and numbers are
given as:

M
‖
KK =

√

∑p
i=1(m

′
i)

2

R‖
, NKK,‖ = (M4+dR‖)

p . (52)

The second type are the KK excitations in the bulk directions, transversal to
the wrapped p-branes. Their masses and numbers are given as:

M⊥
KK =

√

∑d
i=p+1m

2
i

R⊥
, NKK,⊥ = (M4+dR⊥)d−p . (53)

Note that NKK,total = NKK,‖NKK,⊥.
Thus, we have to distinguish two types of high-dimensional particles as seen by

a 4+d-dimensional observer. The first category are 4+d dimensional bulk species
of number N4+d, which poses KK excitations both in transverse as well as in
longitudinal direction. The total number of the KK-excitations in both directions
is given by (50). The second category are the 4+p-dimensional particles localized
on the p-brane world volume. These particles have no transverse momentum and
thus only poses KK excitations in longitudinal directions. Each of these localized
states deposits NKK,‖ four-dimensional KK species.

We are now ready to generalize the BH evaporation analysis to the unisotropic
situation. One small complication is, that the BH evaporation rate now depends
on its relative location with respect to the p-brane. For instance, a small BH that
is positioned away from the brane cannot evaporate into the 4 + p-dimensional
modes that are localized on the brane. It was suggested in [13], that such BHs
that are decoupled from the brane species cannot be classically-static, and must
evolve in time until they enclose the brane. However, if the BH is small enough
and the initial distance to the brane it sufficiently large, the time scale of classical
evolution can be much longer than the evaporation time. In this case the BH
shall evaporate practically only into the bulk species. In order to avoid irrelevant
details of the above complications, we shall assume that the BH is pierced by the
brane to start with, and thus all the brane-localized species are readily accessible.

The BH in question will undergo the different evaporation regimes depending
on its size (and thus temperature). The BHs that are larger than the size of lon-
gitudinal dimensions, but still smaller than the transverse ones R‖ ≪ rg ≪ R⊥,
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will evaporate as effectively (4+d−p)-dimensional. The analysis of the previous
section can be directly applied to such a BH via a simple replacement d→ d− p.
The only caveat is, that Neff will also include N4+p zero modes localized on the
p-brane to which the BH will evaporate without any extra suppression. In this
respect, each zero mode localized on the p-brane counts as a whole transverse
KK tower of a single 4 + d-dimensional bulk state.

Let us now turn to the evaporation of a small BH, rg ≪ R‖. The mass-
to-temperature relation of such a BH is the same as (47). The only novelty in
comparison with the previous section is the anisotropy of the evaporation into the
transverse and the longitudinal KK modes. The production rate of the individual
longitudinal and transverse KK modes are suppressed by the wave-function over-
lap suppression factors, equal to (rg/R‖)

p and (rg/R⊥)d−p respectively. However,
these suppression factors are exactly compensated by the corresponding numbers
of the thermally available states, which are given byNKK‖(m < T ) = (TR‖)

p and
NKK⊥(m < T ) = (TR⊥)d−p respectively. As a result, every 4 + d-dimensional
bulk degree of freedom as well as every 4 + p-dimensional brane mode, each
contribute as one mode into Neff . That is,

Neff = N4+dN4+p , (54)

and
1

T 2

dT

dt
=

1

(1 + d)

(

T

M4+d

)2+d

N4+d N4+p . (55)

The breakdown of the semi-classicality condition (5) again happens at the scale
M∗ given by (4) where N4+d has to be replaces by N4+d N4+p. Thus, in creating
the hierarchy between the Planck mass and the gravitational cutoff, bulk and
brane modes contribute equally. Again, we see a complete consistency between
the four- and the high-dimensional BH bounds.

Notice, that the relation (54) tells us that every brane mode has the same
effect on decreasing gravitational cutoff of the theory as the bulk mode. So one
could reduce M∗ relative to M4+d at the expense of increasing N4+p rather than
N4+d. However, as was shown in [21], the limit N4+p ≫ N4+d is very subtle, since
in this limit the gravitational effects of the p-branes can no loner be ignored. For
instance, in case of many coincident branes, they develop a horizon, and the BH
evaporation into the brane modes changes at shorter scales.

4.2 Black hole evaporation into the string Regge excita-

tions – the effect of the string tower

It is known that in string theory the density of states grows exponentially for
M > Ms:

ρ(M) ∼ e
√

bd M
Ms , (56)
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where Ms is the string mass scale, b is a numerical constant and the factor d
accounts for the fact that in D space dimensions each string oscillator can come
in d = D − 2 varieties.

The obvious question is what is the implication of this exponentially-growing
number for the BH bound (4).

A simple quick answer to the above question would be, that, since Ms is
an obvious cutoff, whereas all the higher Regge states are heavier, they simply
should not be counted in eq.(4). Hence the only relevant species would be the
string zero modes and their KK excitations, which we have already taken into
the account in the previous section.

This answer, however, is far from being satisfactory. The reason is, that
the number N4+d is the number of species to which the semi-classical BH can
evaporate. Can semi-classical BHs smaller than ls exist? Naively, the answer
to this question is negative, as the exponentially growing numbers seems to be
in conflict with the black hole semi-classicality for temperatures above T > Ms,
similarly to the usual Hagedorn phenomenon. Indeed, for the exponentially-
growing N , the condition (5) would be violated almost immediately. We shall
argue however, that this naive view is not supported by more detailed analysis.
In fact, we shall discover quite the opposite, that the decay rate of small BHs
into the stringy Regge states is suppressed. In other words, the effective number
of string species, into which the the black hole can decay, is smaller that the
exponentially growing number (56). Thus, the thermal arguments do not forbid
existence of the substringy size BHs, and the BH bound is not violated by the
string Regge exciaitions.

Before we start the discussion about the black hole decays, let us note that the
above-mentioned suppression of the string Regge modes in the BH evaporation
is qualitatively similar to the rate of scattering of light SM particles into string
Regge excitations, which exhibits Veneziano-type softening. In other words, in
the perturbative string regime the excitation of the Regge states is effectively
suppressed in scattering proceses among the light fields. The relevant scattering
amplitudes were recently computed in [2]. As an example consider the 2 → 2
scattering amplitudes of 4 open string gluons on the D-brane, or 2 gluons and
2 quarks with an intermediate Regge particles exchanged. This amplitude is
only dominated by the exchange of string Regge excitations, no KK particles can
be exchanged in this process (KK particles are exchanged in 4-point scattering
of 4 quark fields). Generically, this 4-point, tree–level string amplitudes are
described by the Euler Beta function depending on the kinematic invariants s =
−(k1 + k2)

2, t = −(k1 + k3)
2, u = −(k1 + k4)

2, with s + t + u = 0 and ki

the four external momenta. The whole amplitudes A(k1, k2, k3, k4;α
′) may be

understood as an infinite sum over s–channel poles with intermediate string Regge
states |k;n〉 exchanged. After neglecting kinematical factors the string amplitude
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A(k1, k2, k3, k4;α
′) takes the form

A(k1, k2, k3, k4;α
′) ∼ −Γ(−α′s) Γ(1 − α′u)

Γ(−α′s− α′u)
=

∞
∑

n=0

γ(n)

s−M2
n

(57)

as an infinite sum over s–channel poles at the masses

M2
n = M2

s n (58)

of the string Regge excitations. In (57) the factor γ(n) is the three–point coupling
of the intermediate states |k;n〉 to the external particles and is given by

γ(n) = t
(u α′, n)

n!
=

t

n!

n
∏

j=1

[a(u) + j] ∼ (α′u)n

n!
, (59)

with a(u) = uα′ − 1 the Regge trajectory and n + 1 the highest possible spin of
the state |k;n〉. As one can see, the growth of this coupling is not exponential.
On the contrary, although the degeneracy dn of the Regge states at the level
exponentially grows,

dn ∼ const. n−27/4 exp(4π
√
n) ∼ exp(Mn/Ms) , (60)

the coupling function γ(n) tends to zero for large n due to the n! in the denom-
inator. Therefore the effective number of Regge states that can be excited in
scattering processes among the light fields is much smaller compared to dn.

We now wish to study how the existence of the string tower affects the evap-
oration of the semiclassical BHs in string theory. Of course, for the BHs with the
Schwarzschild radius rg > ls, the existence of the string tower has no effect, since
their production is Boltzmann suppressed. As already discussed above, such BHs
evaporate into the lowest excitations and their KK tower.

The non-trivial question is, what happens when BH horizon shrinks to the
string size. Can quasi-classical BHs continue to exist even at sub-stringy dis-
tances? The exact answer to this question is unknown to us. However, as we
shall explain, at least from the point of view of an effective theory, there is no
obvious inconsistency in continuing semi-classical BH regime beyond the string
scale.

In order to provide an evidence for the above statement, let us start with a
semi-classical BH of size rg ≫ ls, and follow its evolution. We shall assume,
that (by design) the only non-zero characteristic quantum number of our BH is
its mass (MBH). In the other words, by construction, BH is neutral under all
possible massless gauge fields, with corresponding charges that could have been
measured in form of the Gaussian fluxes at infinity. It also carries no topological
or quantum charge measurable by an Aharonov-Bohm type effect [22]. Such a
BH can always be prepared, for example, by collapsing a neutral dust cloud with
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zero angular momentum composed of equal number of particles and anti-particles.
Because the resulting BH is sufficiently large and classical, by no-hair theorem
[23], all the possible short distance excitations must vanish outside the horizon.

Until the BH shrinks to the string length, the evaporation is semi-classical and
emission takes place into the few lowest massless string states. At some point,
the BH reaches the size rg ∼ ls. Notice, that in weakly-coupled string theory (to
which we limit our consideration here) the mass of such BH is still much larger
than the Planck mass. This is obvious from the fact that for rg > ls the BH
is semi-classical and its mass is given by the usual Schwarzschild relation. For
example, in ten dimensions

MBH ∼ M10(M10 rg)
7 . (61)

So, for rg ∼ ls we get

MBH ∼ Ms

g2
s

∼ M10

g
7
4
s

. (62)

Thus, for all the accounts, from the point of view of ten-dimensional Einstein
gravity, such a BH is semi-classical.6 Once the BH crosses over to rg ≪ ls, the
semi-classicality can potentially be compromised because of the following two
reasons.

First, the new heavy fields can emerge outside the horizon and modify the
BH metric. Since, by construction, the BH of interest only poses a non-zero
Tµν current, only the spin-2 and spin-0 fields may be directly sourced by it. For
example, graviton and dilaton are the simplest examples. In a ghost-free theory,
gravity mediated by the exchange of spin-2 and spin-0 fields is always attractive.
Thus, it is unlikely that such exchanges could lead to either a shrinkage or a
removal of the BH horizon. Of course, the role of the other spins can be enhanced
by non-linearities. However, again, since string theory is weakly coupled, at least
in the closed string theory, the couplings of individual degrees of freedom are
suppressed by powers of MD, so it is unclear how the non-linearities could undo
the strength of gravity, at least up to the scale,

M∗ =
MD

N
1

D−2

eff

, (63)

where MD refers to the D dimensional Planck mass, and Neff is an effective
number of D-dimensional degrees of freedom participating in the gravitational
exchanges at scale M∗. The whole question, thus, boils down to what is Neff?

In ten dimensions the semi-classical BH parametrically smaller than ls can
exist, if Neff is not exponentially large. This means that the number of effec-
tive degrees of freedom affecting the BH metric at a given distance, must grow

6For weak string coupling, gs < 1, the black hole mass MBH is higher than the string scale
Ms and therefore also higher that the mass of string Regge excitations. E.g. for gs = 10−2

there exist n∗ = g−2
s = 104 Regge states before one reaches the BH mass.
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slower than the number of the available string states with the (naive) Compton
wavelength less than that distance.

The second consideration also indicates that the number of effective degrees
of freedom must be less than the actual number of stringy states of a given mass.
The shift of the focus, however, is from the modes affecting the gravitational
exchange to the modes participating in the BH evaporation.

Indeed, when rg ≪ ls i.e. when the temperature T ∼ r−1
g ≫ Ms, one

arrives to an apparent conflict with BH semi-classicality: The number of the
energetically-available species in string theory seems to be exponentially large.

We shall now show, that the key to resolving this puzzle is, that although the
number of species is large, only very few participate in the evaporation of the
BHs. In the other words Neff ≪ N .

Let us quantify the argument. As already explained above, it is a well
known fact in string theory that the density of states grows exponentially fast
for M > Ms. This growth takes place according to (56). The thermodynamics
consequences of this exponential growth are well known, and in particular give
rise to Hagedorn type transition above the temperatures T > Ms.

Let us now consider an elementary process leading to the BH evaporation in
which a semiclassical nonrotating BH state of temperature T emits, for example,
a closed string state and decays to another nonrotating BH state. If we ignore
the backreaction, the BH remains at temperature T ,

BH(T ) → BH(T ) + String State . (64)

This is a good approximation for semiclassical BHs, since, by default, in semi-
classical regime the BH is much heavier than its temperature, and the change
of temperature due to a single particle emission is a sub-leading effect. In the
leading order, therefore, the temperature can be kept unchanged for an elemen-
tary emission act. One might have thought that the exponential growth of the
density of states would indicate that the number of available string states for the
process (64) is exponentially large, however, this is not the case.

Let us first show that in string theory there is an absolute upper pound, set by
1/g2

s , on the effective number of Regge states participating in the evaporation of a
semiclassical BH. For this, let us first define Neff . Let the one-particle production
rate (integrated over all the species) in the evaporation of a semi-classical BH be
Γtotal(T ). This quantity is related to the change of temperature as,

1

T

dT

dt
∼ Γtotal(T ) . (65)

The violation of semi-classicality simply means that Γtotal > T . For example, for
a ten-dimensional BH evaporating into a single graviton, we have

ΓBH → graviton ∼ T

(

T

M10

)8

, (66)
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and the BH half-lifetime can be obtained by integrating (65). We can now define
the Neff as the measure of the relative increase of the evaporation rate with
respect to graviton,

Γtotal(T ) = ΓBH → graviton Neff (T ) . (67)

Obviously, the effective number of species at the critical temperature, Γtotal(Tc) =
Tc, is

Neff(Tc) =
M8

10

T 8
c

. (68)

Since Regge states only participate in the BH evaporation above the temperature
Ms, we have Tc & Ms. This fact, after taking into the account the relation
between M10 and Ms, automatically implies the upper bound on the number
Regge states that can be emitted from a semi-classical BHs,

Neff .
1

g2
s

. (69)

We shall now study the physics behind this bound. We shall rely on the effec-
tive field theory treatment that explains why the number of states produced in the
process (64) is not exponentially large. This result also matches the general intu-
ition, that in the decay of a small size object the contribution of the long strings
should be suppressed. It is also in agreement with the general Veneziano-type
softening of the stringy amplitudes in high-energy scattering processes, discussed
earlier.

For quantifying this result, we shall use the effective field theory approach
of [24], for describing the closed string emission by external sources, adopting it
to the BH evaporation process. Some results of the analogous study were also
briefly reported in [9].

The key point in our approach is, that from the point of view of an effective
theory the process (64) can be described by an effective vertex. The emission
of a closed string state |aµ1...µlµl+1...µl+r p〉 of momentum p by a black hole of
temperature T (and size rg = T−1) has the following form

〈0|aBH(T ′)a†BH(T )αµ1†
m1

...αµl†
ml
α̃

µl+1†
em1

...α̃
µl+r†
emr

|0〉, (70)

where aBH(T )† (aBH(T )) is the creation (annihilation) operator for a BH of tem-
perature T , αµl†

ml
(αµl

ml
) and α̃µr†

m̃r
and (α̃µr†

m̃r
) are the usual string creation (annihi-

lation) operators for the left and right oscillators, respectively. The µ-s are the
Lorentz indexes, and ml, mr label the oscillator levels. Because of the obvious
Lorentz structure, the effective vertex is suppressed by l + r + 2 powers of M10,

1

M l + r + 2
10

pµ1 ...pµlpµl+1 ...pµl + r . (71)
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The suppression scale is M10 and not Ms. This is also obvious from the fact that
the closed string states are partners of graviton and couple with gravitational
strength. As a consistency check, this correctly reproduces the graviton vertex,
for l = r = 1, as it should.

Since in BH evaporation, the typical momenta involved are ∼ T , the emission
rate of a given string state is suppressed by the factor

Γsingle ∼ T

(

T

M10

)2(l+r) + 4

. (72)

Before proceeding we shall perform a consistency check, noticing that the above
effective vertex correctly accounts for the decay width of an usual semiclassical
BH due to graviton emission. Indeed, the graviton emission rate is (66). This is
exactly the rate of the temperature-charge of a semi-classical BH due to evapo-
ration into a single graviton,

1

T

dT

dt
∼ T 9

M8
10

. (73)

The half life-time of such a BH can be estimated by integrating the above equa-
tion, which gives

τBH ∼ M8
10

T 9
. (74)

This matches the lifetime obtained by the usual consideration of a BH as of a
perfect quantum emitter. In the absence of any species other than graviton, the
change of BH mass would be given by,

dMBH

dt
∼ − r8

gT
10 ∼ −T 2 . (75)

Integrating this equation, we get exactly (74).
In order to obtain the total one particle emission rate we have to sum (72) over

all the states with masses up to T , or equivalently up to the level n = T 2/M2
s .

Although the number of states is exponentially large, what matters is the number
of states with fixed oscillator number l + r. Finding this number reduces to a
combinatorics problem of partitions pl+r(n) of an integer n, which for l+ r ≪ n
scales as

pl+r(N) ∼ (n − (l + r))l+r−1

(l + r)!(l + r − 1)!
. (76)

Thus, the total number of Regge states up to the level n that are created by l
left and r right oscillators grows with n as

p
(d)
l+r(N) ∼ nl+r−2 dl+r . (77)
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Thus, the total one particle emission rate into closed string states from a BH of
temperature T is,

Γtotal ∼
∑

r+l

nmax=T 2/M2
s

∑

n

T

(

T

M10

)2(l+r) + 4

nl+r−2 dl+r . (78)

Performing summation over n we get

Γtotal ∼ T

(

T

M10

)6
∑

r+l

(√
d

T 2

M10Ms

)2(l+r)−2

(79)

This expression clearly indicates the physical reason behind the suppression of the
effective number of species. For example, till the temperature T(2) ≡

√
M10Ms =

Ms/g
1/8
s . the rate is dominated by l + r = 2. Therefore, we have

Γtotal(T < T(2)) ∼ Γ(2) ≡ T

(

T

M10

)8 (

T

Ms

)2

. (80)

Thus, up to the temperature T ∼ Ms/g
1/8
s , the only states that participate in

the process (64) are the two-oscillator states. These include the spin-0 and spin-2
states only. Thus, the effective number of species contributing to the evaporation
of a neutral nonrotating BHs at temperatures T ≪ T(2) is

Neff ∼
(

T(2)

Ms

)2

∼ g−1/4
s , (81)

despite the fact that the total number of thermally-available species is exponen-
tially large.

Although, the (80) breaks down above T(2), above which series have to be
resumed, it serves the purpose illustrating that the number of string species
participating in the BH evaporation at temperatures ≫ Ms is not exponentially
large, in accordance with (69). In the next section we shall provide another
example of BH evaporating in the string states, in which relation (69) is explicit.

When extending the above analysis to the open string states, the following
subtlety appears.

First, the perturbative open string states live on a lower dimensional sub-
manifolds, so for them we have to take into the account the non-democracy
factor in BH evaporation.

Secondly, the open string states may inter-couple without any M10-suppressed
interactions. Such unsuppressed couplings to the semi-classical BHs are impossi-
ble, because the evaporation strength has to be controlled by gravity. Consider,
for example, a single photon emission from a neutral BH. The fact that emission
must be controlled by the gravitational strength implies, that the effective vertex
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through which the emission of photon from a neutral BH takes place must be of
a dipole type,

Fµν J
µν
BH , (82)

where Jµν
BH is the BH thermal current, which classically should vanish for any

neutral non-rotating BH, by no-hair theorem [23]. This form of the vertex is also
dictated by the gauge invariance, since the BH is electrically neutral.

TheM10 dependence of Jµν
BH must be such that to reproduce the correct species

number dependence of the lifetime of a semi-classical BH that evaporates into
photons and gravitons,

ΓBH → γ ∼ T

(

T

M10

)8

. (83)

The above is of course very different from the photon emission rate from an
ordinary relativistic hot plasma composed of, say, open string zero modes (e.g.,
electron positron), the photon emission rate out of which can be estimated as
∼ αEMT .

5 Physical Analogy: Black Hole Evaporation in

QCD Strings

It is a well known idea [25] that at large distances SU(n) QCD without light
quarks can be described as a theory of closed strings. The strings in question
are cromo-electric flux tubes, with the tension ∼ ΛQCD. In the presence of
quarks, the QCD closed strings can break into the open ones, that connect quarks-
antiquark pairs.

The suggested connection between the QCD and string theory becomes more
apparent in large n limit. In this limit QCD flux tubes interact as fundamental
strings with the effective string coupling gs ≡ 1

n
and the corresponding string

scale Ms ≡ ΛQCD. At distances ≪ Λ−1
QCD ≡ lQCD such a string theory becomes

a gauge theory of N ≃ n2 gluon species.
We shall now consider the SU(n)-QCD coupled to Einsteinian gravity, and

investigate evaporation of semi-classical black holes in such a theory. Due to
obvious reasons, we shall limit our analysis to four dimensions. Since we are
primarily interested in the evaporation of the small quasi-classical black holes
with the size R < lQCD, we shall assume the hierarchy M4

n
≫ ΛQCD.

Although in no way we can claim a full physical equivalence between the above
system and the semiclassical BH evaporation in a “real” string theory, neverthe-
less, it enables to grasp in more controllable way the important general properties
of the system in which BHs can evaporate into the stringy objects. The advan-
tage of the QCD string example is, that it admits the short-distance description
in terms of n2 gluon degrees of freedom, and thus, allows for the cross-check of
the results obtained within the effective string-black hole interaction picture. As
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we shall see, the above complementary (gluon) description qualitatively confirms
our results obtained in the previous section. Although naively the number of
thermally-available string resonances (in QCD-string case, glueballs) is exponen-
tially large, the effective number of species to which the black hole evaporation
is taking place is much less, and is given by the number of gluons, rather than
glueballs.

Let us consider the evaporation of a BH in such a theory. The large BHs,
with size ≫ lQCD, cannot evaporate into the QCD degrees of freedom and are
uninteresting for our purposes. We shall thus focus on the black holes with size
l∗ ≪ R ≪ lQCD. Such black holes are semi-classical and undergo the usual
Hawking evaporation. They are much hotter than the QCD scale, and thus,
must be able to evaporate into the QCD strings states (glueballs). The existence
of the two descriptions gives us an useful tool for understanding the evaporation
rate.

For this, consider the evaporation process described by the two observers.
One is a microscopic observer operating at distances ≪ lQCD and describing the
black hole evaporation in terms of the gluon emission. Another is a long-distance
observer that is using the effective description at distances ≫ lQCD. The latter
observer cannot resolve the structure of the QCD strings, and can only describe
the black hole evaporation process in terms of closed string (glueball) emission.

The black hole evaporation rates obtained by the two observers must agree,
since the two descriptions are complementary. Of course, the gluons observed
by the short-distance observer will undergo the process of glueballization after
the QCD time tQCD ∼ lQCD, but the details of this process are unimportant for
the large-distance description. The macroscopic observer interested in detecting
evaporation process at large distances, must be able to integrate out the micro-
scopic physics and understand the glueballization process in terms of the effective
interaction vertex between the black hole and the closed string states. This is
the key point of the effective long-distance description.

Thus, if large-n QCD can indeed be approximated as a closed string theory,
the general structure of the black hole - glueball interaction must be understand-
able in form of the effective black hole -string interactions similar to the one
considered in the previous section.

The complementarity of the two descriptions then allows for the effective
number of closed strings (glueballs) participating in the emission process to be
understandable in terms of the number of gluons. The microscopic theory of
black hole - gluon evaporation, then immediately puts the limit on the number of
macroscopic closed string states produced. In microscopic description the black
hole evaporates in N2 elementary gluon states, and hence its evaporation rate
satisfies the quasi-classicality condition till the temperature ∼ M∗, despite the
fact that the naive number of thermally-accessible glueball states may be much
larger.

Translating in terms of the string coupling, we obtain that the effective num-
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ber of species participating in black hole evaporation in QCD string theory is
Neff ∼ 1/g2

s , as opposed to being set by the number of glueballs! It is rather
tempting to generalize this number to the ordinary strings. Of course, in the usual
string theory no QCD type complementary description is known that would en-
able us to think of fundamental strings as of flux-tubes of an underlying theory
with finite number of elementary degrees of freedom. However, for our analogy,
the absence of such description is unimportant, since the effective black hole
-string interactions must be qualitatively insensitive to such descriptions, and
should only rely on the stringy nature of the macroscopic description.

For QCD strings, existence of the complementary short-distance description
gives simple microscopic explanation to the fact that the long closed strings are
produced very selectively. The long strings that are produced more efficiently
are the ones that are the results of the glueballization process of a single gluon
emission from the black hole. At temperature T the maximal length of such flux
tubes is lmax ∼ T l2QCD, but not all the possible tube configurations of this length
are produced. Thinking in terms of the different harmonics of the macroscopic
oscillating flux-tubes, the strings that can be produced efficiently are the ones
that during their oscillation undergo contraction to the BH size of T−1.

6 Conclusions

In this paper we have studied the question of how the string theory compactifi-
cations accommodate the BH bound (3). The bound imposes a strict condition
on the gravitational cutoff of the theory in terms of number of species to which
the semi-classical BHs can evaporate in any consistent theory of gravity. The
issue is therefore dramatically linked to the questions, down to what critical size
the semi-classical BHs can exist in string theory, and to what number of particle
species they can efficiently evaporate?

We have divided our studies into the cases of BHs larger or smaller than ls.
The first category of the BHs can only evaporate into the open and closed string
zero modes and their KK resonances. We have shown that the number of species
to which such BHs can evaporate automatically saturates the bound (3). In fact,
saturation of this bound becomes equivalent to the geometric relations obtained
between the four-dimensional Planck mass and the string scale in terms of the
geometry of the internal manifold.

We thus discover, that the bound allows for understanding of seemingly-
complicated fundamental geometric relations in terms of simple counting of the
number of species.

We next considered the question of sub-stringy BHs. The naive intuition tells
us, that such BHs should not exist based on thermal arguments a la Hagedorn.
Since the number of string Regge states increases exponentially above Ms, the
semi-classicality condition (5) should be violated almost instantly as soon as
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the BH size crosses ls. We showed that this intuition is false, and the thermal
arguments do not prevent the semi-classical BHs from shrinking down to sub-
stringy size. The key reason is, that despite the exponentially growing number
of string oscillator states, only few are produced in the evaporation of the small
BHs.

Our study suggest that the effective number of string species is given by
Neff = 1/g2

s . Interestingly, the BH bound (4) applied to this number exactly
reproduces the relation between the string and Planck masses. This remarkable
fact suggest an yet to be understood fundamental connection between the particle
species and gravity.

Our findings have obvious phenomenological implications for TeV scale string
scenario, motivated by the solution of the hierarchy problem. We predict that
the maximal effective number of species to which the micro BHs can decay must
be given by 1/g2

s .
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