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1. Introduction 
The energy loss of a charged ring passing a sequence of RF accelerating 

cavities has recently received much attention in connection with 
the collective acceleration of ions in electron rings[1]. Various models 
and techniques were employed to represent the RF structure: modal 
analysis for closed cylindrical cavities [2], [3], [4] and for corrugated 
cylindrical waveguides [5], Wiener-Hopf techniques for sets of infinite 
half-planes [6], [7], and diffraction theory for one infinite half-plane[8]. 
As in[5] we shall use a periodic corrugated waveguide as a model and 
obtain the energy loss by an analysis of the resonances of this system. 
However, we do not restrict the nature of the waveguide modes from 
the beginning, and continue the calculation to very much smaller wavelengths. 

2. The Modes in a Periodic Corrugated Cylindrical Waveguide 
If one only considers the axial velocity of the electrons in the 

rings, and if one considers them perfectly centered in the waveguide, 
they only interact with TM waveguide modes which are independent of 
the azimuthal co-ordinate φ. The energy loss in a closed cavity due to  
the azimuthal motion of the electrons was calculated by Neil[9]. We 
use the field expansions given by Walkinshaw and Bell [10]. We only 
write down Ez; Eρ and Hφ follow from Maxwell's equations. 

Expansion of Ez in the slots (I): 
Ez= ∞ Bs[F0(Γsρ)/Fo(Γsa)] cos(2πsz/g) Ez= Σ Bs[F0(Γsρ)/Fo(Γsa)] cos(2πsz/g) Ez= 

s=0 
Bs[F0(Γsρ)/Fo(Γsa)] cos(2πsz/g) 

+ ∞ Ds[Fo(Γ'zρ)/Fo(Γ'sa)] sin[(2s-1)πz/g] (1) + Σ Ds[Fo(Γ'zρ)/Fo(Γ'sa)] sin[(2s-1)πz/g] (1) + 
s=1 

Ds[Fo(Γ'zρ)/Fo(Γ'sa)] sin[(2s-1)πz/g] (1) 

where 
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Γs2=|k2-(2πs/g)2|, (2) 
Γ's2=|k2-[(2s-1)π/g]2|. (3) 

If k>2πs/g or if k>(2s-1)π/g we define: 
Fj(Γρ)=Yo(Γb)Jj(Γρ)-Jo(Γb)Yj(Γρ). (4) 

Otherwise: 
Fj(Γρ)=Ko(Γb)Ij(Γρ)-(-1)jIo(Γb)Kj(Γρ). (5) 

In all formulae the time dependence exp(iωt) should be understood. 
It may be seen that the slot fields satisfy the boundary conditions of a 
perfectly conducting waveguide at the boundaries drawn in heavy lines 
in Fig. 1, where also the geometrical parameters a, b, d, g are shown. 
k=ω/c=2π/free-space wavelength. 

Expansion of Ez in the axial region (II): 

EZ(II)= 
∞ Am[Go(xmρ)/Go(xma)] exp(—iβmz) (6) EZ(II)= Σ Am[Go(xmρ)/Go(xma)] exp(—iβmz) (6) EZ(II)= 

m = — ∞ 
Am[Go(xmρ)/Go(xma)] exp(—iβmz) (6) 

where 
x2m=|k2-βm2|, (7) 
βm=βo+2πm/d, (8) 
βo=k/β-2πl/d, (9) 

where l is chosen such that -π/d<βo≤π/d. βc= v is the phase 
velocity of the travelling wave 

Gj(xρ)=Jj(xρ) for k>βm, (10) 
Gj(xρ)=Ij(xρ) for k<βm. (11) 

Imposing the condition that Ez and Hφ be equal on both sides of 
the boundary ρ=a yields the following infinite homogeneous set of linear 
equatlons[10]: 

[CT H C M-ST L S M-U] A=0. (12) 
Here A is a vector with components Am; H, L and M are diagonal 

matrices with elements 
Hss=KsΓsFO(Γsa)/F1(Γsa), (13) 
Lss=2Γ'sFo(Γ'sa)/F1(Γ'sa), (14) 
Mmm=(g/dxm)G1(xma)/Go(xma). (15) 

Here Ko=1 and Ks=2 for s>0. 
C and S are matrices with elements 

Cst=(-1)sg βtg sin βtg /[( βtg )2-(πs)2], (16) Cst=(-1)sg 2 sin 2 /[( 2 )2-(πs)2], (16) 
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Sst=-(-1)sig βtg cos βtg /[( 
βtg 

)2-( 
(2s—1)π ) 2]· (17) Sst=-(-1)sig 2 cos 2 /[( 2 )2-( 2 ) 2]· (17) 

U is the unit matrix and XT is the transpose of X. 
The frequencies ωλ where (12) has non-trivial solutions are those 

where waves travelling with the phase velocity βc propagate in the 
waveguide. They were calculated by computer. Since the infinities of the 
determinant of (12) can be given analytically, the computer programme 
uses a function of frequency in which the infinities are eliminated but which 
has the same zeros as the determinant. This makes it fairly straightforward 
to find all zeros in a given frequency interval. A further check is the 
comparison of the average density of resonances with an analytical formula 
[11]. 

3. The Excitation of a Single Resonance 
by the Passage of a Charged Ring 

Following the procedure of Akhiezer, Lyubarskij and Fainberg 
we introduce the vector potential 

= - (18) = - t (18) 

which we normalize such that 
∫ |A|2dv=1/εo (19) 
V1 
|A|2dv=1/εo (19) 

where V1 is the volume of a single cell. This implies that the coefficients 
Am, Bs and Ds are multiplied by the factor 

N=[1/[εo(I+J+J')]]½ (20) 
where the integrals are defined as follows: 

I= πa
2d +∞ A2m 

[ 
G21(xma) ± 1 β2m 2 G1(xma) ]. (21) I= πa

2d 
Σ 

A2m 
[ 
G21(xma) ± 1 β2m 2 G1(xma) ]. (21) I= c2 Σ x2m [ G2o(xma) 

± 1 k2xma Go(xma) ]. (21) 
I= c2 m=-∞ x2m [ G

2
o(xma) 

± 1 k2xma Go(xma) ]. (21) 

Upper sign for Gj given by (10), lower sign for Gj given by (11). 

J= πg ∞ B2s Κs[ 
b2 F21(Γsb) — a

2 

( 
F12(Γsa) 

± 1) 
J= πg Σ B

2
s Κs[ 

b2 F21(Γsb) — a
2 

( 
F12(Γsa) 

± 1) 
J= c2 Σ Γ2

s 
Κs[ 2 F2o(Γsa) 

— 2 ( F20(Γsa) ± 1) 
J= c2 s=0 Γ2

s 
Κs[ 2 F2o(Γsa) 

— 2 ( F20(Γsa) ± 1) 
± a

2 

( 
gπs 

)2 
2 F1(Γsa) ), (22) ± 

2 ( gk )2 Γs aF0(Γsa) 
), (22) 

Ko=2 and Ks=1 for s>0. 

J'= πg ∞ D
2
S 
[ 
b2 F12(Γ'sb) a2 

( 
F12(a) 

± 1) 
J'= πg Σ 

D2S 
[ 
b2 F12(Γ'sb) a2 

( 
F12(a) 

± 1) 
J'= c2 Σ Γ'2s [ 2 F20(Γ'sa) 2 ( F2o(Γ'sa) ± 1) 
J'= c2 s=1 Γ'2s [ 2 F

2
0(Γ'sa) 2 ( F2o(Γ'sa) ± 1) 

± a
2 

( 
(2s-1)π 

)2 
2 F1(Γ'sa) ] (23) ± 2 ( gk )2 Γ'sa Fo(Γ'sa) 

] (23) 
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Upper sign for Fj given by (4), lawer sign for Fj given by (5). 
We expand the vector potential in the presence of the electron 

rings in terms of the resonances of the empty waveguide. 

()= Σ qλ(t)Aλ() (24) ()= 
λ 
qλ(t)Aλ() (24) 

and find that the field co-ordinate qλ(t) for the λ-th mode obeys the 
equation: 

+ω2
λqλ= 1 dv (25) +ω2
λqλ= Nc 

dv (25) +ω2
λqλ= Nc VN 

dv (25) 

where Nc is the number of cavities and VN is their volume. is the 
current density of the charged ring whose only non-vanishing component 
is taken to be: 

jz(ρ, φ, z, t) = H( 
h -|z-vt|) 

jz(ρ, φ, z, t) = Qv 2 H( 2 -|z-vt|) H(ρ-R1)H(R2-ρ) (26) jz(ρ, φ, z, t) = 2π R22-R21 h H(ρ-R1)H(R2-ρ) (26) 

H(x) is Heaviside function with H(x)=1 for x≥0, and H(x)=0 for 
x<0. Q is the ring charge, v its velocity, h its axial dimension, and R1 
and R2 its smaller and bigger radius, respectively. 

The solution of (25) with q λ = = 0 is: 

qλ= 
+∞ A'm [eiΩmt- 1 

( 
Ωm +1)eiωλt+ 1 

( 
Ωm —1)e-iωλt] (27) qλ= Σ 

A'm [eiΩmt- 1 
( 
Ωm +1)eiωλt+ 1 

( 
Ωm —1)e-iωλt] (27) qλ= Σ ω2λ-Ω2m 

[eiΩmt-
2 ( ωλ 

+1)eiωλt+ 2 ( ωλ 
—1)e-iωλt] (27) qλ= 

m=-∞ ω
2
λ-Ω2m 

[eiΩmt-
2 ( ωλ 

+1)eiωλt+ 2 ( ωλ 
—1)e-iωλt] (27) 

where 

A'm=- Qvi 

Am( 

sin βmh 

)[ 

2[R2G1(xmR2)-R1G1(xmR1)] ] (28) A'm=- Qvi 

Am( 

sin 
2 

)[ 

2[R2G1(xmR2)-R1G1(xmR1)] ] (28) A'm=- Νcωλ 
Am( 

βmh 
)[ 

xm(R22-R12)Go(xma) 
] (28) A'm=- Νcωλ 

Am( 2 )[ 
xm(R22-R12)Go(xma) 

] (28) 

and Ωm=βmv. 
The energy radiated per unit time into the λ-th mode becomes: 

Iλ= dQ
2V2 

{ 

| 

-|( 

sin βmh 

)2[ 

2[R2G1(xmR2)-R1G1(xmR1)] 
]2 

Iλ= dQ
2V2 

{ Σ 

| 
|Am|2 

-|( 

sin 2 

)2[ 

2[R2G1(xmR2)-R1G1(xmR1)] 
]2 

Iλ= 
4ω2λ { Σ 

| 

dωλ -v 
-|( 

βmh 
)2[ 

(xm(R22-R21)Go(xma) ]2 
Iλ= 

4ω2λ { m=m 

| 

dβo 
-v 
-|( 2 )2[ 

(xm(R22-R21)Go(xma) ]2 

+ 
( 

sin βmh 

)2[ 

2[R2G1(xmR2)-R1G1(xmR1)] ]2}· (29) + Σ 
|Am|2 2 

( 

sin 
2 

)2[ 

2[R2G1(xmR2)-R1G1(xmR1)] ]2}· (29) + Σ |dωλ + v 
| ( 

βmh 
)2[ 

xm(R22-R12)Go(xma) ]2}· (29) + 
m=m" dβo 

+ v 
| ( 2 )2[ 

xm(R22-R12)Go(xma) ]2}· (29) 

Here, the first sum is to be taken over all m' with ωλ — Ωm,=0, 
and the second sum over all m" with ωλ+=0. With our choice of 
travelling waves (9) the first resonance condition takes the form m'=l. 

In order to fulfil the other resonance icondition ω λ = = 0 we 
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have to replace βo by-βo and m by-m. It has been verified that changing 
the sign of βo leaves the resonant frequencies unchanged and reverses 
the order of the Am. Hence the second sum is just the same as 
the first one. 

If we further assume that dωλ/dβo«v we find for the energy radiated 
per unit time: 

Iλ= dQ
2v |A1|2( 

sin β1h 

)2[ 

2[R2G1(x1R2)-R1G1(x1R1)] ]. (30) Iλ= dQ
2v |A1|2( 

sin 2 

)2[ 

2[R2G1(x1R2)-R1G1(x1R1)] ]. (30) Iλ= 2ω2λ |A1|
2( 

β1h/2 )2[ 
x1(R23-R12|Go(x1a) 

]. (30) 

The energy radiated into the λ-th mode in a single cell is Uλ=Iλd/v. 

4. Results 
Fig. 2 shows a typical example of the frequency spectrum of the 

radiated energy when electron rings travel along a waveguide with rather 
shallow corrugations. Tabs. I and II summarise the influence of the 
waveguide dimensions, and of the ring dimension and velocity expressed 
in terms of γ=[1—(V/C)2]-½. 

A completely different set of waveguide shapes and the resulting 
energy loss spectrum are shown in Fig. 3. The waveguide is now loaded 
with closely spaced infinitely thin irises. In cylindrical geometry this is 
a close analogy to the infinite half-planes studied in two-dimensional 
models [6] [7]. The dimensions are chosen such that the approximate 
formula [5] 

U= Q2 g (31) U= 
4πεo 2a2 (31) 

should Just be valid. The effect of variations in the waveguide dimensions 
is shown in Tab. III. In the last column the scaling law (31) was applied 
to the radiated energy. It may be seen that this formula gives an excellent 
description of the dependence on the waveguide dimensions. However, 
the total enengy radiated is underestimated by about a factor of 
three. Again, the ring dimensions and γ have hardly any influence on 
the radiation loss. 

5. Conclusions 
Field expansion into Fourier series and matching of all field components 

at the common boundary surface are shown to be a suitable 
method for calculating the energy radiated by electrons travelling in a 
cylindrical corrugated waveguide. In practice, this method is limited to 
wavelengths longer than a few millimetres for reasons of computer time. 
The energy losses are calculated for several waveguide dimensions; they 
are compared with published results [5] for one particular set of wave-
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guide dimensions. In all cases, the electron ring dimensions and their 
velocity have no significant influence on the energy loss. 

Table I 
Radiated Energy U for Various Waveguide Dimensions 

N=1013 electrons γ=20 Wavelength ≥4 π mm 
Minor ring dimensions (R2—R1)h=1×1 mm2 
Average distance of ring from iris a—(R1+R2)/2=5 mm 

Hole 
radius 
a[mm] 

Tube 
radius 
b[mm] 

Cell 
length 
d[mm] 

Slot 
width 
g[mm] 

Radiated 
Energy U 

Hole 
radius 
a[mm] 

Tube 
radius 
b[mm] 

Cell 
length 
d[mm] 

Slot 
width 
g[mm] 

[ 
keV ] 

Hole 
radius 
a[mm] 

Tube 
radius 
b[mm] 

Cell 
length 
d[mm] 

Slot 
width 
g[mm] 

[ electron cell 
] 

53.14 83.14 153.14 73.14 820 
53.14 166.28 153.14 73.14 860 
53.14 166.28 153.14 36.57 650 
53.14 166.28 76.57 36.57 
26.57 166.28 153.14 73.14 2230 

Table II 
Radiatied Energy U in KeV/electron/cell, for Various Ring 
Dimensions and γ's 

N=1013 electrons Wavelength≥3π mm 
Hole radius a=53.14 mm Cell length d=153.14 mm 
Tube radius b=83.14 mm Slot width g=73.14 mm 
Minor ring dimensions (R2—R1)h=1×1 mm2 

γ Average distance of ring from iris a — R1+R2 γ Average distance of ring from iris a — 2 γ 
1 mm 2 mm 5 mm 10 mm 

5 1080 980 780 610 
20 960 940 910 870 
50 900 890 880 

Table III 
Radiated Energy U for Waveguide with Infinitely Thin Irises 

N=1013 electrons γ=50 Wavelength≥3π mm 
Minor ring dimensions (R2—R1)h=1×1 mm2 
Average distance of ring from iris a—(R1+R2)/2=5 mm 

Hole 
radius 
a[mm] 

Tube 
radius 
b[mm] 

Cell 
length 
d=g[mm] 

Radlited 
Energy U 

Radiated 
energy 
scaled with 
(31) 

Hole 
radius 
a[mm] 

Tube 
radius 
b[mm] 

Cell 
length 
d=g[mm] 

[ 

keV 

] 

Radiated 
energy 
scaled with 
(31) 

Hole 
radius 
a[mm] 

Tube 
radius 
b[mm] 

Cell 
length 
d=g[mm] 

[ electron cell ] 

Radiated 
energy 
scaled with 
(31) 

50 250 20 190 1.00 
40 250 20 290 0.98 
60 250 20 130 0.99 

200 20 180 0.95 
50 300 20 190 1.00 
50 250 10 100 0.95 
50 250 30 280 0.98 
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Fig. 1. Geometry of corrugated cylindrical waveguide and electron ring 
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Fig. 2. Energy loss spectrum at γ=20. Waveguide dimensions a=53.14 mm, 
b=83. 4 mm, d=.53.14 mm, g=73.14 mm; ring dimensions R1=47.64 mm, 

R2=48.64 mm, h=1 mm. 
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Fig. 3. Energy loss spectrum at γ=50. Waveguide dimensions a=50 mm, 
b=250 mm, d=g=20mm; ring dimensions R1- 5 mm, R2=45 5 mm, h=1 mm. 
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