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Abstract

We present a high-fidelity numerical study of a two-dimensional flapping airfoil, ad-
dressing the hypothesis that boundary layer feedback control can enable improved
performance in flapping flight. To this end, we model a novel biologically-inspired
feedback controller which adjusts wing motion in response to the flow-induced bend-
ing load experienced by sensory hairs mounted on the wing. Such hairs have been
observed on bats, and biological studies suggest that an associated feedback controller
may play an important role in enabling bats’ well-known mastery of flight.

The coupled fluid and structural equations of our model are solved numerically
by a Discontinuous Galerkin finite element method, combined with an Arbitrary
Lagrangian-Eulerian (ALE) formulation to account for airfoil motion. Feedback con-
trol is defined by a simple proportional-derivative (PD) control law relating hair sensor
feedback to an applied torque at the pivot point of the wing. We also include a tor-
sional spring at the pivot point to model passive aeroelasticity, following prior work
by Israeli [5].

Our results show that hair sensors are well-suited for detecting flow separation, and
sensors placed near the leading edge enable better flight performance than sensors
placed near the trailing edge. We compute a “performance envelope” for a purely
passive flapping airfoil, and demonstrate that our active feedback controller enables
improvements of up to 5% in propulsive efficiency. We also present gust alleviation
experiments, where we find that an optimal PD controller reduces lift deviation by 33%
compared to a spring-only airfoil. Mechanisms for these performance improvements
are discussed. Our findings suggest that boundary layer feedback control may plausibly
contribute to the outstanding flight abilities of bats, and may also provide valuable
clues for designing robust and maneuverable Micro Air Vehicles (MAVs).

Thesis Supervisor: Jaime Peraire
Title: Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Motivation: Flapping Flight

A growing interest in Micro Air Vehicles (MAVs) has motivated a renewed focus

on understanding natural flapping flight. Natural flyers are capable of outstanding

maneuverability and robustness in flight, characteristics which presently elude our

best examples of artificial bird-sized flying devices. Flapping flyers such as birds

and bats exploit a complex combination of unsteady aerodynamics, fluid-structure

interaction and active control to achieve their outstanding mastery of flight. A deeper

understanding of the physics behind Nature’s solution to small-scale flight is of great

interest: intrinsically, biologically, and for the potential to yield insights that aid in

the design of more capable MAVs.

In looking to understand natural flapping flight, a reasonable course of action would

be to study the species with the most advanced mastery of flight. Bats are known to

be particularly adept flyers – for example, the fruit bat species Cynopterus brachyotis

is known to be capable of extreme maneuvers such as 180◦ turns at 200◦ s−1 in a space

of less than half its wingspan [14]. Bat species such as Eptesicus fuscus are aerial

predators, capturing winged prey in mid-flight [18]. Metabolic studies also suggest

that bats fly 20-25% more efficiently than birds [16]. Bats are the only mammals to

have evolved the ability of powered flight, and they have highly articulated wings with
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a far more intricate 3D wing motion than birds or insects. Bats achieve their mastery

of flight despite the complicated low Reynolds number, transitional flow regime in

which they operate.

We seek to understand the special features of bat flight that may enable their

unique agility in the air. One hypothesis put forward by biologists concerns small

hairs seen distributed over the surface of bat wings [2]. These hairs are distinct in

size and length from regular pelage hair; they grow out of dome-shaped complexes

identified as touch-sensitive cells; and they are well-represented in the somatosensory

cortex of the bat [12]. Further, recent work by Dickinson [3] finds that the observed

lengths of these bat hairs are similar to the theoretical optimum for sensitivity to

changes in the boundary layer. This collection of anatomical evidence suggests that

bats may use these hairs as airflow sensors, providing real-time information about

the boundary layer flow over their wings. It is hypothesized that these hair sensors

are part of an active feedback control system by which the bat fine-tunes its wing

motion in response to flow changes in the boundary layer, thereby improving flight

performance and robustness.

Direct testing of this active feedback control hypothesis has so far been difficult

to obtain. To the best of the author’s knowledge, there is only one relevant biological

experiment reported in the literature: a very briefly described study by J. M. Zook

[18]. In this experiment, two individual bats of the species Eptesicus fuscus were

trained to fly a course involving a 90◦ turn, and the vertical elevation of each bat was

recorded over the length of the course. After 10 trials, sensory hairs were removed

from the wings of both bats by means of a hair removal cream. The bats were then

made to fly 10 more trials on the test course, again measuring flight elevation over the

length of the course. In this manner, the experiment intended to directly measure the

effect of sensory hairs on flight performance.

Analysis of the flight elevation data showed that an absence of sensory hairs was

associated with a substantial drop in the bats’ flight elevation during the 90◦ turn. If

correct, this result reveals a clear link between wing sensory hairs and flight perfor-
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mance in bats. One plausible explanation is that the bats use their wing sensory hairs

to help estimate lift during maneuvers, and they make adjustments to wing motion

based on that estimation. This idea explains why an absence of sensory hairs might

result in a loss of elevation through the 90◦ turn. It also supports the general hypoth-

esis that wing sensory hairs are used as part of an active feedback control system for

wing motion.

The results of these biological experiments are tantalizing at best, leaving open

an opportunity for a more rigorous examination of the hair sensor feedback control

hypothesis for bat flight. If we can show that boundary layer feedback control enables

substantial improvements in flight performance, this will lend further support to the

hypothesis and provide new insights into Nature’s solution to small-scale flight. With

artificial hair sensors currently under development [7], these insights may also prove

relevant to the design of high-performance flapping MAVs in the near future.

1.2 Objective and Approach

The objective of this thesis is to characterize the performance of a biologically-inspired

active feedback controller for flapping flight. The particular form of this controller is

chosen to mimic the hypothesized boundary layer sensing function of hairs found on

bat wings (see Section 1.1).

Our analysis seeks to address 3 key research questions:

1. What kinds of inputs work well for this type of active feedback controller?

2. How much can flight performance be improved by this type of active feedback

controller?

3. What are the mechanisms for these improvements?

The present work addresses these questions through a high-fidelity numerical study

of a pitching and heaving 2D airfoil, serving as a simplified model of flapping flight.
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We solve the full Navier-Stokes equations using a Discontinuous Galerkin finite ele-

ment method and account for time-varying geometry using an Arbitrary Lagrangian-

Eulerian (ALE) formulation. The heaving motion of the airfoil is a prescribed sinu-

soidal function of time, and its pitching motion is governed by a combination of passive

aeroelasticity and active feedback control. The active feedback controller mimics the

hypothesized boundary layer sensing function of hair sensors on bat wings.

This extends previous work by Israeli [5] on a similar physical model that featured

passive aeroelasticity but lacked any element of boundary sensing or feedback control.

In the present thesis we augment this purely passive model to include hair sensors and

an associated feedback controller. With this new model we are able to characterize the

flight performance of an actively feedback-controlled flapping airfoil and compare it

against a purely passive one, highlighting the unique performance capabilities brought

about by feedback control.

1.3 Outline of Thesis

The remainder of this thesis is organized as follows.

Chapter 2 presents a detailed introduction to our physical model of a flapping airfoil

with biologically-inspired feedback control. Here we specify our hair sensor model,

feedback controller, and several important properties of our 2D physical model. Key

nondimensional parameters and figures of merit are also defined, namely the Strouhal

number, reduced frequency, thrust coefficient and propulsive efficiency. This leads to

a definition of the governing equations of motion for the overall physical model.

Chapter 3 presents an outline of the computational approach used to numerically

solve the governing equations, including the Discontinuous Galerkin finite element

method and the Arbitrary Lagrangian-Eulerian formulation employed to account for

time-varying geometry. Discretization of the governing equations in both space and

time is addressed. The numerical implementation of our hair sensor feedback and

active controller is specified in some detail, including mention of the 3DG code which
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our computational tool is built upon.

Chapters 4 and 5 present the results of our physical investigations, conducted using

the computational tools described above. In Chapter 4 we present results pertaining

to cruising flapping flight, including a characterization of the hair sensor signal and

the effect of hair sensor location on flight performance. Grid and time resolution

studies are presented that justify our choice of computational mesh, timestep size and

time domain length. We then present a performance envelope of a purely passive

flapping airfoil in terms of thrust and propulsive efficiency, and compare this envelope

to that attainable with the addition of our hair sensor feedback controller. The mech-

anisms behind the observed improvements are discussed. Chapter 5 presents results

pertaining to gust alleviation, analyzing the ability of our active feedback controller

to suppress the lift transient associated with an Euler vortex passing over an airfoil

that was previously in a steady flow at fixed angle of attack. We find that the active

feedback controller is able to suppress this lift transient more effectively than pas-

sive aeroelasticity alone, and we offer insights into what mechanisms may drive this

improvement.

Finally, Chapter 6 provides a summary of our findings and suggests directions for

future work. For quick reference, Appendix A contains a summary of all notation and

sign conventions used in this thesis.
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Chapter 2

Physical Model of Flapping Flight

with Active Feedback Control

This chapter presents a detailed introduction to our physical model of a flapping airfoil

with biologically-inspired feedback control. Here we specify our hair sensor model,

feedback controller, and several important properties of our 2D physical model. Key

nondimensional parameters and figures of merit are also defined, leading to a definition

of the governing equations of motion for the overall physical system.

2.1 System and Assumptions

Figure 2-1 illustrates the physical model studied in the present work. We consider a

two-dimensional symmetric airfoil hinged at the leading edge, undergoing a prescribed

vertical heaving oscillation combined with a pitching motion about its leading edge.

The airfoil is in a uniform horizontal freestream of velocity U∞, or equivalently, the

airfoil is traveling through still air with a forward speed U∞. The airfoil’s pitching

motion is governed by a combination of moment imparted by the fluid, inertia of

the airfoil, passive aeroelasticity and active feedback control. Passive aeroelasticity

is modeled through a single torsional spring located at the leading edge. The airfoil

itself is rigid but exhibits aeroelastic pitching behavior via the leading edge torsional
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Figure 2-1: Physical model of oscillating foil with active feedback control.

spring. This spring applies a pitch-dependent restoring torque Ms = Cs θ, where Cs

is the spring stiffness and θ is the airfoil pitch angle. The active feedback controller

applies an additional control torque Mc at the leading edge, where Mc is a function of

the feedback signal returned by hair sensors on the wing.

Our simulations are conducted at a chord Reynolds number of Re = 5, 000 and

are fully laminar. While this Reynolds number is somewhat lower than the Re ∼
40, 000 of natural bat flight, it allows us to avoid the difficult complications associated

with modeling unsteady turbulent transition, whilst still capturing a large part of

the physics. It should also be noted that the Re = 5, 000 regime has unambiguous

relevance to biological (and artificial) flapping flyers the size of large insects.

Other flow properties in our model include the Mach number (where we choose

Ma = 0.2), the Prandtl number (where we choose Pr = 0.72), and the ratio of specific

heats (where we choose γ = 1.4). The latter two values are standard choices for

atmospheric air at sea level, and the Mach number is simply chosen low enough to

make any compressibility effects negligible. A more physically precise value of the

Mach number for bat flight would be on the order of Ma ∼ 0.02, however we do not

expect any substantial differences if we were to repeat our simulations with Mach

number 0.02 instead of 0.2. Choosing Mach number 0.2 also allows direct comparisons

between the present work and that by Israeli [5], which used Mach number 0.2.

The airfoil we employ has a symmetric HT13 profile with thickness to chord ratio
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6.5%. This is similar to the thickness ratios observed on natural airfoils across a

range of bird species including the swift, petrel and woodcock [17]. The moment of

inertia of the airfoil about its pivot point is chosen to be I = 0.033, a choice which

allows the airfoil’s rotational inertia to be neither negligible nor dominant. A more

comprehensive study of the effect of different I values on flapping flight performance

is left for future work.

In our study, the vertical heaving motion is an input parameter h(t). We choose

a sinusoidal motion h(t) = h0 cos(ωt), where h0 is the heaving amplitude and ω is

the heaving frequency. The pitching motion of the airfoil is effectively a complicated

response to this input. By varying h0 and ω we may obtain different levels of thrust and

propulsive efficiency. Several other system parameters also affect thrust and propulsive

efficiency, such as the spring stiffness Cs and the precise definition of the feedback

control law.

2.2 Key Nondimensional Parameters of Flapping

Flight

We now define key nondimensional parameters of flapping flight, as are relevant to

the present study. The heaving motion of the wing is described by a nondimensional

amplitude and frequency, which are the Strouhal number St and the reduced frequency

k respectively. These are defined:

St = ωh0/πU∞ (2.1)

k = ωc/2U∞ (2.2)

Here, U∞ is the uniform steady freestream velocity and c is the chord length of the

airfoil. h0 and ω are the dimensional heaving amplitude and frequency. In Nature, all

species of flapping flyers are known to flap in cruising flight with Strouhal numbers
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in the range 0.2 to 0.4 [13]. Accordingly, the present study focuses on a narrow

range of Strouhal numbers centered on St = 0.2 to 0.4. Also drawing inspiration

from Nature, we choose a reduced frequency of k = 0.4. This is close to the reduced

frequency observed in the medium sized bat species Cynopterus brachyotis flying at

low to medium speeds [4]. A study of other values of k is left for future work, in order

to avoid an impracticably large parameter space in the present thesis.

Aside from these key input parameters, we define two key figures of merit to

measure performance of a particular flapping motion. These figures of merit are the

nondimensional thrust coefficient CT and the propulsive efficiency ηprop, defined below.

CT =
− 1

T

∫ T

0
D(t) dt

1
2
ρU2∞c

(2.3)

ηprop =
Pout

Pin

(2.4)

Here T is the heaving oscillation period and ρ is the fluid density. D(t) is the

x-component of the total aerodynamic force on the airfoil, where a negative D(t)

represents positive thrust. Pin is the average power input to drive the airfoil motion,

and Pout is the average power output in terms of thrust. These are defined as below:

Pin =
1

T

∫ T

0

(
−L(t)ḣ(t)−Mc(t)θ̇(t)

)
dt (2.5)

Pout =
1

T

∫ T

0

−D(t)U∞ dt (2.6)

Here L(t) is the y-component of the total aerodynamic force on the airfoil, and

thus −L(t)ḣ(t) is the rate of work that must be done to heave the airfoil vertically

according to the heaving function h(t). Mc(t) is the torque applied at the leading edge

of the airfoil by the feedback controller, and thus Mc(t)θ̇(t) is the rate of work done

by the feedback controller to actuate the pitching motion of the airfoil. Note that

the passive aeroelastic torque Csθ(t) also drives the pitching motion of the airfoil, but
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since it is driven by a perfectly elastic spring, the net amount of work done by the

spring is zero and it does not appear in the expression for Pin.

2.3 Boundary Layer Hair Sensor Model

We now describe our model boundary layer feedback sensor, intended to mimic the

hypothesized function of sensory hairs on bat wings. Sensory hairs on bat wings

grow out of dome-shaped complexes containing high concentrations of touch-sensitive

Merkel cells. These cells respond when they are stretched or strained, and our hair

sensor hypothesis contends that this response is primarily triggered by mechanical

load induced by deflection of the hair in airflow.

We adopt a simplified model of this process, consisting of a straight cylindrical hair

of contant cross-section mounted perpendicular to the surface of the wing. This model

was first employed by Dickinson [3], who successfully argued that the flow over such

sensory hairs is inertia-free and quasi-steady – that is, the hair is effectively motionless

on the timescales of the fluid flow. It was also noted that the tip deflection of such a

hair in an extreme case would be no more than 10% of the hair length. In our model

we make a further simplification and simply neglect any deflection of the hair. As the

actual deflection would be quite small, the no-deflection approximation should not

have any appreciable quantitative effect on our numerical experiment.

In our hair sensor model, touch-sensitive cells are activated by the bending moment

felt at the base of the hair due to aerodynamic load over the length of the hair. This

is illustrated in Figure 2-2. The aerodynamic load on the hair at each lengthwise

location is taken to be the drag force that would be experienced by an infinite circular

cylinder of the same diameter in a uniform incident flowfield, where the velocity of the

hypothetical uniform flowfield matches the flow velocity measured at that particular

point along the hair. Note that in our model, we neglect any effect on the flowfield

due to the presence of the hair. We may write down the bending moment at the base

of the hair, Mh, as:
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Figure 2-2: Diagram of hair sensor model, showing equilibrium of torques about the
base of the hair.

Mh(t) =

∫ l

0

1

2
CD(Rey)ρu2d0y dy (2.7)

Here we use the empirical drag coefficient CD(Rey) for a circular cylinder in a

crossflow, where Rey = ρd0u(y)/µ is the local Reynolds number at a position y along

the length l of the hair. The hair has a diameter d0. The density and velocity of

the bulk fluid at the position y are ρ and u respectively, and the velocity u includes

only the component perpendicular to the hair. This approximation for the drag on

the hair relies upon a quasi-steady assumption, as justified by Dickinson [3]. Note

also that, in keeping with data presented by Dickinson [3], we choose the hair length

l such that it is taller than the boundary layer thickness by a reasonable margin

(mimicking the observed lengths of bat hairs). For the cases we have studied, we found

l = 0.2 to be a sufficient length to guarantee this (by visual inspection of boundary

layer velocity profiles for a range of extreme cases). Also note that we define the

sensory hair diameter as d0/c = 10−4, which is the same order of magnitude as typical

measurements of bat hairs [3]. This diameter also ensures the local Reynolds number

is well within the Stokes flow regime.

Spatial distribution of hair sensors is another important parameter of our sensor

model. In bats, hair sensors are observed to be distributed over the entire surface of
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Figure 2-3: Diagram illustrating the definition of our feedback sensor signal: the
difference between the bending moments at the base of two hairs above and below the
wing at the same chordwise location.

the wing [12, 18]. It seems likely that a bat’s flow sensing process combines information

from all of these hairs in a complicated manner. Rather than attempting to replicate

this system in all its detail, in our model we employ only two hair sensors located

above and below the wing at the same chordwise position (Figure 2-3). This serves

as the simplest possible example of a distributed hair sensor network. Denoting the

feedback sensor signal as X(t), we choose to take the difference between the hair

bending moment Mh at these two hairs above and below the wing:

X(t) = Mh(A, t)−Mh(B, t) (2.8)

As we will describe in the next section, our feedback control law is defined such

that the active control torque applied at the leading edge of the airfoil is a function

of X(t). The particular form of X(t) described in Equation 2.8 guarantees that for

a symmetric wing motion, freestream and airfoil, the signal X(t) will be symmetric

and have zero mean, and thus so too will the torque applied by the controller. In

the present study we choose to only explore flapping wing motions which preserve

symmetry in this manner; hence our definition in Equation 2.8. However, we note

that there is another class of signal definitions X and feedback control laws that

generally lack this symmetry and lead to asymmetric forces and wing motions. For
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example, an asymmetric airfoil would very likely lead to this kind of behavior. An

investigation of such sensing and control configurations is beyond the scope of the

present thesis, but is mentioned here as an interesting topic for future work.

2.4 Governing Equations of Motion

Here we present the key governing equations of our physical model. First we define

the form of our active feedback control law. In keeping with the theme of simplicity in

the present work, we choose to study a proportional-derivative (PD) control law with

feedback signal X (Equation 2.8) and control actuation torque Mc:

Mc(t) = KpX(t) + KdẊ(t) (2.9)

Here, Kp and Kd are constant proportional and derivative gains respectively. This

PD control law constitutes a very simple approximation of the internal processes that a

bat may employ to process feedback from its hair sensors and decide upon a corrective

action. The form of this control law is not in any way biologically inspired – rather,

it is chosen as the simplest possible functional relationship between a feedback sensor

signal X(t) and a corrective action Mc(t). Our goal is to assess whether even in this

simplest of cases, an active feedback control law can lead to an improvement in flight

performance.

With this active control torque defined, we can now define a 2nd-order structural

equation of motion for the airfoil, which can be expressed as two 1st-order equations

as follows:

θ̇ − w = 0 (2.10)

Iẇ(t) + Csθ(t) + Mc(t) + Mfluid(t)− Sḧ(t) = 0 (2.11)

Here, I is the moment of inertia of the airfoil, θ(t) and w(t) are the pitch angle and
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pitching rate of the airfoil, Cs is the torsional spring stiffness, Mfluid is the moment

imparted by the fluid about the pivot point of the airfoil, S is the static mass imbalance

of the airfoil and ḧ(t) is the acceleration of the pivot point in the vertical direction.

Each of the five terms in Equation 2.11 in turn represent: the rotational inertia of the

airfoil, passive aeroelasticity, active feedback control, fluid-structure interaction, and

the torque derived from the airfoil’s static mass imbalance.

Note that in Equation 2.11, the Mc term is a function of X which is in turn a

function of the flowfield. Mfluid is also a function of the flowfield. Thus, these two

terms encode the fluid-structure interaction behavior of the flapping airfoil.

To describe the fluid flowfield itself we employ the full Navier-Stokes equations,

which can be written in the conservative form:

∂u

∂t
+∇ · Fi(u)−∇ · Fv(u,∇u) = 0 (2.12)

with inviscid fluxes Fi, viscous fluxes Fv and fluid state vector u. (The particular

form of these fluxes and state vector may be found in many sources, for example in

[5].)

Note that in our simulations we will be directly measuring boundary layer quan-

tities and driving the motion of the airfoil according to these measurements, via the

feedback control law (Equation 2.9). Thus, the accuracy of our simulations will de-

pend strongly upon how well they represent the unsteady boundary layer over the

wing, and this is why we must solve no less than the full Navier-Stokes equations.
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Chapter 3

Computational Approach

This chapter presents an outline of the computational approach used to numerically

solve the governing equations of our physical model, including the Discontinuous

Galerkin finite element method and the Arbitrary Lagrangian-Eulerian formulation

employed to account for time-varying geometry. Discretization of the governing equa-

tions in both space and time is addressed. The numerical implementation of our hair

sensor feedback and active controller is specified in some detail, including mention of

the 3DG code which our computational tool is built upon.

3.1 Numerical Evaluation of Hair Sensor Signal

A key element of our numerical solver is an algorithm for computing hair bending

moments Mh and hence the feedback sensor signal X (Equations 2.7 & 2.8), given a

flowfield u and structural state (θ, w). As described in Section 2.3, our model hair

sensors respond to the flowfield but not vice-versa. It is assumed that the presence

of a hair sensor does not alter the flowfield in any way. Thus, the task of calculating

the bending moment Mh at the base of a given hair simply amounts to evaluating an

integral of flow quantities over a predetermined line. In particular, the line represents

the location, size and orientation of the hair sensor. Since our model hair sensors are

assumed straight and unable to deflect or deform, this predetermined line will be fixed
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and unchanged in relation to the airfoil for each individual hair sensor.

In our model, hair sensors are located with their base on the surface of the airfoil

and they extend perpendicularly outward from the airfoil. Using the known airfoil

profile coordinates, it is simple to determine the equation of a line corresponding to

a given hair. To evaluate the Mh line integral defined by Equation 2.7, we apply the

trapezoidal method to a set of integrand values evaluated at discrete points along the

line. The length of each hair is l = 0.2, and we choose to take 120 sample points

along each hair for the numerical quadrature. This number of sample points is chosen

because it is high enough to render any quadrature error insignificant.

This gives us a set of points (xi, yi) at which to evaluate the integrand of Equa-

tion 2.7, and in order to proceed we must interpolate the flow solution at each of

these points. To perform the interpolation, we first note the structure of the spatial

discretization employed by the Discontinuous Galerkin finite element method. The

spatial domain is discretized into a computational mesh of many triangular elements,

and on each element there are ns nodal points. The overall numerical solution is repre-

sented as an elementwise polynomial function, and within each element the numerical

solution is expressed in terms of a nodal basis of polynomial shape functions φ. Each

of the ns nodal points has an associated shape function φj. Using these shape func-

tions, a solution quantity such as vertical flow velocity v may be interpolated at any

point within an element as follows:

v(ξi, ηi) =
ns∑

j=1

vjφj(ξi, ηi) (3.1)

where φj(ξi, ηi) is the polynomial shape function associated with the jth nodal

point, vj are the values of v known at each of the nodal points, and (ξi, ηi) are the

reference coordinates of the point at which we wish to interpolate v. These reference

coordinates (ξi, ηi) are distinct from the global coordinates (xi, yi) in that they take

values between 0 and 1 and are only defined on a single element, whereas the global

coordinates (xi, yi) are defined throughout the computational domain.
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Thus, given a set of points (xi, yi) at which we wish to evaluate interpolated flow

quantities, our task becomes one of converting global coordinates into element numbers

and reference coordinates. That is, for each sample point (xi, yi), we must identify

the particular element containing that point and the associated reference coordinates

(ξi, ηi). We can then apply the method shown in Equation 3.1 to correctly interpolate

any desired flow quantity at the chosen sample point.

To convert these global coordinates (xi, yi) into an element number and reference

coordinates (ξi, ηi), we take a two-step approach. First, we identify the nearest mesh

vertex to the sample point and list all the elements that share that vertex. The nearest

neighbors of those elements are also listed. This forms a set of candidate elements that

the point (xi, yi) may reside in. On each of the candidate elements, we then attempt

to find the reference coordinates (ξ, η) which drive the following two residuals to zero:

Rx(ξ, η) = xi −
ns∑

j=1

xjφj(ξ, η) (3.2)

Ry(ξ, η) = yi −
ns∑

j=1

yjφj(ξ, η) (3.3)

Note that the right-hand side of these residual equations simply expresses the

difference between the sample point (xi, yi) and the interpolated global coordinates at

(ξ, η). In our code implementation, we drive the residuals Rx and Ry to zero using

a Newton-Raphson method with an under-relaxation factor of 0.6, necessary to avoid

bad behavior when the initial guess for (ξ, η) is far from the correct value. If a pair

(ξ, η) is found that sets both residuals to zero, and the (ξ, η) values also satisfy the

requirement that they are between 0 and 1, then we have found the correct element and

reference coordinates corresponding to the given sample point (xi, yi). If the reference

coordinates that set Rx and Ry to zero are not within the range 0 to 1, then we can

infer that the sample point does not reside in that particular element, and we move

on to try another candidate element in the list until the correct element and reference

coordinates are found.
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In this manner, all the sample points (xi, yi) along a given hair may be converted

into element numbers and associated reference coordinates (ξi, ηi). Since the hairs do

not move relative to the airfoil and we choose a non-deforming computational mesh,

these element numbers and reference coordinates need only be solved once rather

than at every timestep. With these values in hand, flow quantities may be easily

interpolated as shown in Equation 3.1; numerical quadrature may be performed to

yield Mh (Equation 2.7); and the Mh values may be combined to give the feedback

signal X(t) (Equation 2.8). This is how the hair sensor feedback signal X is evaluated

within our numerical model at each timestep.

3.2 Discretization of Governing Equations

To solve the governing equations of our physical model (Section 2.4) we employ a high

order Discontinuous Galerkin finite element spatial discretization, using Roe’s scheme

for inviscid fluxes [11] and the Compact Discontinuous Galerkin (CDG) formulation for

the viscous fluxes [9]. To account for the time-dependent geometry associated with the

motion of the airfoil, we employ an Arbitrary Lagrangian-Eulerian (ALE) formulation

of the kind presented by Persson, Bonet & Peraire [10]. In our implementation, the

entire mesh is rigidly translated and rotated according to the time-dependent motion

of the airfoil (see Figure 3-1). A time-dependent mapping G(X, t) relates a stationary

reference domain to the time-dependent physical domain. This mapping is used to

define a form of the fluid equations (Equation 2.12) that may be solved on the fixed

reference domain. The reference domain solution can then be mapped to the time-

varying domain to provide the true physical flowfield. A detailed derivation of this

mapping is presented by Israeli [5] and Persson, Bonet & Peraire [10].

To couple the fluid equations (Equation 2.12) and the structural equations (Equa-

tions 2.10 & 2.11), we first recast them as systems of 1st-order equations. We then

append the structural discretized equations to the fluid discretized equations and ap-

pend the structural degrees of freedom to the fluid degrees of freedom, thus obtaining
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Figure 3-1: Diagram illustrating the time-dependent mesh mapping used to implement
airfoil motion in our simulations.

a system in terms of an overall state vector U . This results in a system of ordinary

differential equations with a mass matrix M and nonlinear residual vector R(U):

M
dU

dt
= −R(U) (3.4)

These equations are integrated forward in time using a 2nd-order accurate backward

Euler implicit scheme, also known as a backward difference formula (BDF; or BDF2 for

2nd order). This time-stepping scheme approximates the time derivative as a weighted

sum of the state vector U at the new time-level n and the two preceding time-levels:

∂U

∂t
' 1

∆t

2∑
i=0

ciUn−i (3.5)

where ci = (3/2, −2, 1/2) are the weighting constants for BDF2.

This expression yields an implicit system of equations for the new state vector

Un, which can be solved using a Newton-Raphson method with a Jacobian matrix

J = ∂R/∂U . At each iteration j of the Newton-Raphson method, we solve for a state

vector update ∆U
(j)
n :

J(U (j)
n ) ∆U (j)

n = RBDF(U (j)
n ) (3.6)
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where the BDF residual and Jacobian matrix are defined with constants αi and

βk:

RBDF(U (j)
n ) = M

2∑
i=0

αiUn−i − βk∆tR(Un) (3.7)

J(U (j)
n ) =

dRBDF

dUn

= α0M − βk∆t
dR(Un)

dUn

≡ M − βk∆tK (3.8)

For BDF2, the constants αi and βk are defined as αi = (1, −4/3, 1/3) and βk = 2/3

(they take different values for BDF orders different to 2).

For completeness, we also present here the form of the last two entries of the vector

R(U
(j)
n ), which are residuals corresponding to the structural degrees of freedom θ and

w. These terms are derived from the structural equations of motion (Equations 2.10 &

2.11), and they encode all the fluid-structure interaction and active feedback control

behavior of our physical model. The two residuals are:

Rθ(U
(j)
n ) = wn (3.9)

Rw(U (j)
n ) = −Cs

I
θ(j)

n − K0

I
X(j)

n − M
(j)
fluid,n

I
− Kd

I∆t

k∑
i=1

αkiXn−i +
Sḧn

I
(3.10)

Here the subscript n denotes that the quantity is evaluated at the nth timestep,

and we also define:

K0 = Kp +
Kdα0

∆t
(3.11)

The terms on the right-hand side of Equation 3.10 represent all the same effects

that are contained in the original equation of motion (Equation 2.11) – that is, passive

aeroelastic torque, active feedback control torque (expressed as a function of the sensor

signal X), fluid-structure interaction and static mass imbalance. Note that the deriva-
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tive portion of the feedback control torque in Equation 2.9 contains a time derivative

of the feedback signal, Ẋ. This time derivative is discretized in the residual equation

above using the same BDF2 formula (Equation 3.5) that was used to discretize the

overall system of equations, simply for the sake of consistency.

With these residual equations in hand for both the structural degrees of freedom

and the fluid degrees of freedom, we can take partial derivatives to define all entries of

the Jacobian matrix J and set up a Newton-Raphson solver for our system of equations

(Equation 3.4). With this solver in place, we can time-march from any initial condition

and compute the behavior of a feedback-controlled flapping airfoil.

Note that in the formulation described above, a modest improvement in compu-

tational efficiency could likely be gained by choosing a 2-stage Diagonally Implicit

Runge-Kutta (DIRK) time-stepping scheme instead of BDF2. The use of a DIRK

scheme also removes any start-up problems associated with initializing or restarting

a time integration. Future work beyond this thesis will implement DIRK instead of

BDF2, however for the results in the present thesis our numerical solutions are all

based upon BDF2.

3.3 Implementation and Execution

Our implementation of this solver is built upon an in-house code called 3DG, which

implements the Discontinuous Galerkin spatial discretization for a fluid-only system.

This code is written in a combination of Matlab and C, and has been employed in

prior published research including work by Nguyen et al [8] and Willis et al [15]. Work

by Persson, Bonet & Peraire [10] and Israeli [5] extended this code to incorporate

an ALE formulation and aeroelastic fluid-structure interaction respectively. For the

present work, this code was further extended to incorporate our hair sensor feedback

model and proportional-derivative feedback controller.

Simulations are run on a multi-processor desktop machine with 16 nodes, allowing

up to 16 different cases to be run in parallel. An average flapping flight simulation
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integrated over 7 heaving periods takes approximately 16 hours to complete, and this

is representative of all cases that were run to generate the results presented in this

thesis.
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Chapter 4

Flapping Flight Results

Using the physical model and numerical simulation methodology described in the

preceding chapters, studies were performed to investigate several physical aspects of

feedback-controlled flapping flight. These included a characterization of the hair sen-

sor signal, the performance envelope of a “purely passive” (spring-only) flapper, and

the performance envelope of our actively feedback-controlled flapper. This chapter

presents key results from these studies, including a numerical convergence study quan-

tifying the convergence errors associated with our choice of spatial and time domain

discretization.

4.1 Numerical Convergence Study

Beyond the computational methodology described in Chapter 3, it is necessary to

choose a specific computational mesh, timestep size and time domain length for our

simulations. These must be chosen carefully to ensure that our simulation results are

not corrupted by numerical convergence errors of any appreciable size.

To guide our choices, a numerical convergence study was conducted on a single, par-

ticularly demanding test case with high Strouhal number and large controller gains Kp

and Kd. Specifically, the test case had parameters St = 0.3, Kp = 2, 500, Kd = 3, 000

and Cs = 0.2, along with all the other pre-constrained parameters described in Section
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2.1. This single test case was run with a large range of different meshes, timestep sizes

and time domain lengths, and the thrust coefficient CT and propulsive efficiency ηprop

were measured from each solution (CT and ηprop being our most important figures of

merit). Taking the finest discretization and longest time domain length as the “truth”

value, we were thus able to calculate the numerical convergence error in CT and ηprop

due to each particular choice of discretization. Using this error as a metric, we could

justify a particular choice of mesh, timestep and time domain length with which to

perform all subsequent simulations, ensuring that numerical convergence errors remain

within acceptable limits.

First was the grid resolution study. We chose to rely upon C-meshes rather than the

unstructured meshes employed in [5]. From our study we found that solution quantities

are quite sensitive to how well the airfoil’s wake is resolved, and C-meshes proved to

be particularly efficient at providing grid resolution in the wake. We generated a series

of C-meshes each with different numbers of elements and different polynomial degrees.

One way to distinguish these meshes is by their total number of nodal points. After

running the test case described above on all these meshes, including an extremely

fine one to serve as the “truth” value, we obtained grid convergence results that are

presented in Figure 4-1.

These results clearly show both CT and ηprop converging as mesh resolution is

increased, and importantly, the total numerical convergence error is never more than

∼1% even for the coarsest mesh studied. This is certainly within acceptable limits

for the purposes of our physical investigation. Ideally we would like to solve on the

coarsest mesh possible, as it allows us to run more simulations in less time. Thus, we

use Figure 4-1 to justify choosing the left-most mesh on that plot, a C-mesh with 640

elements and 3rd-order polynomials (totalling 6,400 nodal points). It has a domain

size of approximately 4 chord lengths in every direction from the airfoil, plus an extra

chord length in the downstream direction. This mesh is plotted in Figure 4-2. It will

be our standard mesh choice for all subsequent simulations in this thesis, as our grid

resolution study indicates numerical convergence errors should mostly be within 1%.
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Figure 4-1: Grid resolution study measuring error in averaged solution properties CT

and ηprop as a function of different choices of mesh (denoted by their total number
of nodal points). Error is measured as a percentage deviation from the CT and ηprop

values obtained on the finest mesh (right-most point on the plot).

The next aspect of the discretization to specify was the timestep size. A time res-

olution study was performed in much the same manner as the grid resolution study,

repeating the same test case described above with many different timestep sizes over

long-duration simulations (8 heaving periods each, with the CT and ηprop values com-

puted over the 8th period). The results of this study are presented in Figure 4-4

below, and they indicate that any of the timestep sizes presented here will satisfy a

1% tolerance on convergence error. Being more conservative with timestepping (since

the feedback controller may introduce odd high-frequency behavior that we wish to

capture), we select ∆t/T = 1/250 as our timestep size, bringing the convergence error

estimate within ∼0.1%.

Finally, we must select an appropriate time domain length for our simulations. The

beginning of a flapping flight simulation always includes some transient behavior that

dies away over time as the solution approaches a truly periodic state. To quantify how

long we must integrate in time to neglect transient effects, we conducted a transient

analysis on our test case using the standard mesh choice and twice the time resolution.
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Figure 4-2: Plot of the computational mesh chosen as a result of our grid resolution
study. The total convergence error associated with this mesh was within 1%. It has
640 elements and 3rd-order polynomials, for a total of 6,400 nodal points.
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Figure 4-3: Close-up of computational mesh near airfoil surface.
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Figure 4-4: Time resolution study measuring error in averaged solution properties CT

and ηprop as a function of timestep size. Error is measured as a percentage deviation
from the CT and ηprop values obtained by the smallest timestep size, ∆t/T = 5×10−4,
which is 4 times smaller than the left-most datapoint on this plot.

We integrated forward in time over 8 heaving periods, and then computed the period-

averaged quantities CT and ηprop over 1-period windows ending at a range of different

times tfinal. The results of this analysis are presented in Figure 4-5 below, and they

indicate that any time domain longer than approximately 4 heaving periods will be

long enough to give at least 1 complete period of data where transient effects are

essentially zero. Adding a conservative margin to this figure, we choose to select

a standard time domain length of 7 heaving periods, computing CT and ηprop over

the final 2 periods of the time record. This effectively guarantees that numerical

convergence error due to transient effects will be negligible (below 0.01%).

Thus we have justified a choice of mesh, timestep size and time domain length with

expected convergence errors of approximately 1%, 0.1% and < 0.01% respectively. All

subsequent simulations in this chapter have been run with this discretization, and

from the figures above, we do not expect numerical convergence errors any larger than

approximately 1% in total.
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Figure 4-5: Transient analysis showing how the period-averaged quantities CT and
ηprop converge as a function of which period they are averaged over. tfinal refers to
the endpoint of the averaging period. Error is measured as a percentage deviation
from the CT and ηprop values obtained from the 8th period. These results indicate that
transient effects become negligible approximately 3 heaving periods after initialization.

4.2 Hair Sensor Signal Characterization

The first task in seeking physical understanding of our feedback-controlled flapping

wing system was to characterize the hair sensor signal for a typical flapping cycle. To

address this, we conducted simulations of a “purely passive” flapper where only the

spring was allowed to apply torque to the leading edge of the airfoil. (That is, an

instance of our physical model where Kp = Kd = 0.) During these simulations we

measured the feedback signal X(t) and analyzed its behavior. Note that here we only

measure the feedback signal – the control law gains are kept at Kp = Kd = 0 and we

do not use the feedback signal to drive any control torque actuation. For purposes

of illustration, Figure 4-6 presents a visualization of the flow solution for a typical

example of a purely passive flapping case as described above.

Considering these purely passive cases with Kp = Kd = 0, Figure 4-7 presents a

typical example of the measured feedback signal X(t) and its correlation with the wing

pitch angle θ(t) and the leading edge vertical translation h(t). Observe that taking
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Figure 4-6: Visualization of flow solution for a typical spring-only flapping case, with
Cs = 0.2, St = 0.2, k = 0.4, Kp = Kd = 0. The color contours measure Mach number,
which is closely indicative of flow velocity in this low Mach number regime.
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the difference between hair sensors above and below the wing results in a signal that is

symmetric and has zero mean (as intended). But this alone doesn’t tell us very much

about how an actively controlled system would behave with this feedback signal and

nonzero controller gains.

What we would like to understand is the relationship between the hair sensor

feedback signal and important physical properties of the flow over the wing. Flow

separation over the wing has substantial consequences for the thrust and efficiency

generated by the wing, and the boundary layer shape factor H is a good quantifier

for the onset of flow separation. Figure 4-8 presents the measured correlation between

the bending moment Mh at the base of a single hair sensor (note: Mh, not X) and the

boundary layer shape factor H computed at the location of that same hair. This yields

an important observation: the output quantity of our hair sensors is well suited to

sensing flow separation (H > 4). When the flow separates (H ≈ 4), the hair bending

moment becomes high, and when the flow is far from separation, the hair bending

moment is low. This correlation is evidence that our model hair sensors provide useful

information about the flow. In particular, it suggests that it should be possible to

design a feedback controller that selectively responds to conditions where the flow

is getting close to separation. By encoding selective responses to the onset of flow

separation, the feedback controller may help to avoid energetically lossy wing motions

and thereby improve propulsive efficiency.

Another important aspect of our hair sensor feedback system is the spatial distri-

bution of hair sensors. For simplicity, we have limited ourselves to a single pair of

hair sensors located above and below the wing at a given chordwise location along the

wing. This leaves us to choose a desired chordwise location, and we wish to choose

the location that gives our feedback controller the best possible chance of improving

propulsive efficiency.

To inform this decision, we performed a series of active control experiments with the

same flapping and control parameters (i.e. St, Cs, k, Kp, Kd) but different hair sensor

locations. These experiments featured only proportional control, with Kp > 0 but
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Figure 4-7: Timeseries of wing leading edge vertical translation h(t), wing pitch angle
θ(t) radians, and the feedback signal X(t) acquired by differencing the hair bending
moment above and below the wing at a chordwise position x/c = 0.3. This data
corresponds to a purely passive test case with spring stiffness Cs = 0.2, Strouhal
number St = 0.2, and reduced frequency k = 0.4.
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Figure 4-8: Correlation between hair bending moment Mh (for a single hair) and
boundary layer shape factor H at the same location. The hair in this case is located
on the upper surface of the wing at x/c = 0.3 and has length L/c = 0.2. This data
pertains to a flapping test case with spring stiffness Cs = 0.2, Strouhal number St =
0.2, reduced frequency k = 0.4 and no controller (Kp = Kd = 0).
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Kd = 0. Hair sensors located near the front of the wing (x/c = 0.21) were compared

with hair sensors located further back (x/c = 0.3 and x/c = 0.7). The results of these

experiments showed that the hair sensors nearest the leading edge produced wing

motions with the highest propulsive efficiency, very similar to the x/c = 0.3 sensors

but substantially higher than the x/c = 0.7 sensors (see Table 4.1 for one example).

Not only was the propulsive efficiency higher, but the pitching motion of the airfoil was

also inherently smoother than the violently chaotic motions observed with sensors at

x/c = 0.7. From these results we conclude that, for our model of hair sensor feedback

control, sensors placed nearer to the leading edge result in better flight performance

than sensors placed nearer to the trailing edge. Specifically, leading edge hair sensors

appear to enable higher propulsive efficiency. Accordingly, we choose to place our

sensors near to the leading edge (x/c = 0.21) for all subsequent simulations in this

thesis.

Table 4.1: Propulsive efficiency as a function of sensor location, for active control test
cases with Kp = 104, Kd = 0, Cs = 0.2, St = 0.3 and k = 0.4

Sensor Location Propulsive Efficiency

x/c = 0.21 67.83%
x/c = 0.30 67.62%
x/c = 0.70 61.33%

While it is difficult to provide a rigorous and general theoretical explanation for

this result, we can offer some insights that may partially explain what we have seen

here. Our insights are based on measurements from a purely passive flapping test case

identical to what was used in Figures 4-7 & 4-8. (Recall that by “purely passive”

we mean that the feedback sensor signal is measured but not allowed to drive any

control torque – that is, Kp = Kd = 0.) In one of these purely passive test cases,

the feedback sensor signal was measured at several different sensor locations, and the

resulting timeseries are plotted in Figure 4-9.

Figure 4-9 illustrates that hair sensors located further back along the wing give

46



3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5
−8

−6

−4

−2

0

2

4

6

8
x 10

−6

t/T

X
(t

)

 

 

x/c = 0.21

x/c = 0.3

x/c = 0.5

x/c = 0.7

Figure 4-9: Time-series of feedback signal X(t) at different sensor locations x/c, for a
spring-only case with St = 0.2, Cs = 0.2, k = 0.4.

a feedback signal that is weaker, more lagged and less harmonic. This point is fur-

ther clarified by Figure 4-10, which presents a single-sided amplitude spectrum of the

timeseries data presented in Figure 4-9. These spectra indicate that higher harmonics

are almost wholly absent in the feedback signal from the hair sensors at x/c = 0.21,

but those higher harmonics are much more prevalent in the signals from sensors closer

to the trailing edge. This may be due to shedding of vortical structures from the

boundary layer, which disrupt the hair sensor feedback signal when they pass through

the hair, and have a greater effect when the sensors are further downstream of the

shedding point.

From our observations, we can surmise that these higher harmonics are an unde-

sirable trait of a feedback signal in our proportional-only feedback controller (Kp > 0,

Kd = 0). Consider the fact that in our proportional feedback controller, the feedback

signal is scaled linearly to determine what control torque is applied at the leading edge.

Higher harmonics in the feedback signal thus imply higher harmonics in the forcing

applied at the wing leading edge. If these higher harmonics are large enough in am-
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Figure 4-10: Single-sided amplitude spectrum of feedback signal X(t) at different sen-
sor locations x/c, for a spring-only case with St = 0.2, Cs = 0.2, k = 0.4. Frequency
component amplitudes are normalized by the 1st harmonic. Note the increasing preva-
lence of higher harmonics in the feedback signal as we consider hair sensors located
closer to the trailing edge of the wing.

plitude and frequency, they will have the effect of “jerking” the wing back and forth

on a timescale much shorter than the heaving period, possibly promoting a greater

degree of flow separation and vortex shedding that could further enhance high fre-

quency wing motions. This could explain the relatively chaotic wing motion observed

in test cases with sensors placed at x/c = 0.7. Also, an increase in flow separation

and vortex shedding could explain the decrease in propulsive efficiency, since these are

energetically lossy phenomena.

For now, a more complete explanation must remain a topic of further study. How-

ever, on the empirical level we have fairly unambiguous evidence to support a signifi-

cant conclusion: that our feedback-controlled flapping flight model performs at higher

propulsive efficiency when the hair sensors are placed nearer to the leading edge.
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4.3 Performance of Purely Passive System

We shift now towards seeking to understand the performance of a feedback-controlled

flapping airfoil on a more global level. In order to assess the performance increment

achieved by adding a feedback controller to our otherwise “purely passive” spring-only

system, we first require a quantification of the overall performance capabilities of a

purely passive flapping wing. Our two key figures of merit are thrust coefficient CT

and propulsive efficiency ηprop. To keep our comparison relatively simple, we limit

ourselves to a fixed reduced frequency of k = 0.4 and vary only Strouhal number St

and the spring stiffness Cs.

If we perform a design sweep over a large range of (St, Cs) values, we may compute

thrust CT and efficiency ηprop as functions of the (St, Cs) parameter space. This study

has been performed by Israeli [5], and we use data presented there to define our own

Pareto front in (CT , ηprop)-space for a purely passive system. That is, we take the

data from a large number of test cases with different (St, Cs) values, compute the

corresponding (CT , ηprop), and generate a scatterplot of the (CT , ηprop) values of all

our test cases. The convex hull of these points in (CT , ηprop)-space defines a Pareto

front that can be interpreted as a “performance envelope” for a purely passive system

– that is, the maximum attainable propulsive efficiency as a function of total thrust.

It turns out that this Pareto front is very well approximated by the set of test

cases which have spring stiffness Cs = 0.2. This echoes the findings of Israeli [5]

which indicated that Cs = 0.2 is an optimal spring stiffness with respect to propulsive

efficiency, over a broad range of thrust levels. Therefore, to simplify our treatment of

the parameter space, we define the performance envelope of a purely passive system

to be the maximum attainable propulsive efficiency with a spring stiffness of Cs = 0.2

and unconstrained Strouhal number. The resulting performance envelope is presented

in Figure 4-11 as the thick green line. The test cases along this line differ only in

Strouhal number, increasing monotonically from left to right on the plot (all other

parameters are constant, including k = 0.4 and Cs = 0.2). This is the performance
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baseline against which we will compare an actively feedback-controlled flapping airfoil.

4.4 Performance of System with Proportional Feed-

back Controller

The thick green line in Figure 4-11 defines the performance envelope of a purely passive

flapper, and this shall be the baseline for our assessment of the performance incre-

ment attainable by augmenting such a flapper with our biologically-inspired feedback

controller. For the sake of simplicity, we will constrain ourselves to a proportional

feedback controller and set Kd = 0 always. This adds one degree of freedom beyond

that which a purely passive system possesses, and our task is to quantify how far this

will allow the performance envelope to extend in the direction of higher propulsive

efficiency.

The method we employ is to take a set of test cases located along the passive

performance envelope in (CT , ηprop)-space, replace the zero values of Kp with nonzero

values, and repeat the simulations. The constraints Cs = 0.2 and k = 0.4 are retained,

and the hair sensors remain always in the location x/c = 0.21. By systematically

increasing Kp in the positive or negative directions from a given passive “base case”,

we generate a set of trajectories through (CT , ηprop)-space. Over a large number of such

trajectories, we gather enough feedback-controlled test cases to define a convex hull

and hence a Pareto front, in much the same manner as the passive Pareto front was

defined earlier. A portion of the Pareto front thus derived is presented as the upper

thin blue line in Figure 4-11, and we can interpret this as the performance envelope for

a flapping wing that possesses both passive aeroelasticity and our biologically-inspired

feedback controller.

We immediately note an important observation: the performance envelope for

the actively feedback-controlled system exceeds that of the purely passive system.

The difference between these two curves is a literal expression of the performance

improvement attainable by taking a spring-only flapper and augmenting it with a hair-

50



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

10

20

30

40

50

60

70

80

90

100

CT

η
p
r
o
p

(%
)

 

 

Spring-Only Performance Envelope

Spring and Proportional Controller Performance Envelope

Spring and Proportional Controller Test Cases

Figure 4-11: Pareto fronts in the (thrust, efficiency) parameter space, for a spring-only
system (thick green) and the same system augmented by our biologically-inspired pro-
portional feedback controller (thin blue). These Pareto fronts can be interpreted as
“performance envelopes” for the two systems, delineating the maximum propulsive ef-
ficiency attainable at each given thrust level. Note that the feedback controlled system
achieves propulsive efficiencies up to 5% higher than the spring-only performance enve-
lope. The spring-only performance envelope is defined for reduced frequency k = 0.4,
hair sensor location x/c = 0.21 and Strouhal number range St ∈ [0.1, 0.5]. It is also
constrained to spring stiffness Cs = 0.2, a value demonstrated by Israeli [5] to yield
optimal propulsive efficiency over a broad range of thrust levels (including those shown
above). The spring+controller performance envelope is defined with the same restric-
tions on k, x/c, St and Cs and additionally allows the feedback controller proportional
gain Kp to vary between 0 and 25, 000. The resulting set of Test Cases (marked with
stars) are used to define a portion of the global performance envelope for the feedback
controlled system, as shown above. Note that test cases with negative Kp are not
shown, as they do not improve upon the spring-only performance envelope.
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sensor-driven proportional feedback controller. The performance increment observed

here is up to 5% in propulsive efficiency. This is a significant increase, and we would

like to understand the underlying mechanisms that enable it.

4.5 Discussion of Underlying Mechanisms

Here we discuss ideas concerning the underlying mechanisms that enable our biologically-

inspired feedback controller to outperform a purely passive flapping airfoil. We begin

by considering a purely passive test case located on the passive performance envelope,

with parameters St = 0.3, Cs = 0.2 and k = 0.4 by our own constraint. Let us call

this Case A, as marked in Figure 4-12(a). Let us then take Case A, augment it with a

proportional feedback controller, and compute the resulting thrust and efficiency. As

the proportional gain Kp is increased, our test case follows the trajectory marked by

the dashed red line in Figure 4-12(a) through the (CT , ηprop) parameter space. The

trajectory ends at a test case with Kp = 7, 500, marked as Case B in Figure 4-12(a).

Understanding the differences between Case A and Case B will yield useful insight into

the mechanisms that have allowed the proportional controller’s performance envelope

to extend beyond the purely passive one.

Figure 4-12(b) presents timeseries of the total torque applied at the leading edge

of the wing, for both Case A and Case B. This sum includes the torque −Csθ(t) im-

parted by the spring and the torque −KpX(t) imparted by the proportional feedback

controller. Inspecting these timeseries, we can see that the proportional feedback con-

troller has the effect of diminishing the total torque applied to the leading edge during

the mid-heave portions of the flapping cycle (the time intervals centered on t = T/4

and t = 3T/4). While the proportional controller appears to reduce the total torque

during these mid-heave times, the total torque during other times seems relatively un-

changed. This is due to the nature of the hair sensor feedback signal which, according

to our reasoning in Section 4.2, will be particularly sensitive to differences in the degree

of flow separation above and below the wing. These differences are most pronounced
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Figure 4-12: (a) Thrust-efficiency parameter space trajectory followed when we take
a case on the spring-only Pareto front at St = 0.3 (Case A) and add a progressively
larger proportional gain Kp (dashed red line). This results in a case with Kp > 0
(Case B) which has a decreased thrust but higher efficiency than the best possible
spring-only case at the same thrust level (Case C).
(b) Time-series plot of the total torque applied at the leading edge of the wing, com-
paring Case A and Case B. It is clear that the effect of the proportional feedback
controller is to selectively decrease the total torque applied at the leading edge during
the mid-heave portion of the cycle (when flow separation is greatest). This observation
is key to explaining why Case B exhibits a decrease in thrust relative to Case A and
an increase in propulsive efficiency relative to Case C.
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during the mid-heave portion of the flapping cycle, where the wing is translating most

rapidly, has the largest pitch angle and is generating the most thrust. (Indeed, this

sensitivity is clearly observed in our feedback signal measurements presented in Figure

4-9.)

We propose that this mid-heave torque reduction is key to understanding why the

proportional feedback controller acts to decrease thrust during the transition from

Case A to Case B. The mid-heave portion of the flapping cycle is where the majority

of thrust is generated. This thrust is derived from the fact that the airfoil is pitched

over at an angle to the horizontal, and yet is not aligned exactly with the apparent

direction of the freestream as seen in the frame that rotates and translates with the

airfoil (the “airfoil frame”). In this “airfoil frame”, the airfoil’s angle of attack is

largest during mid-heave and the airfoil generates the greatest lift at that time. If we

examine this aerodynamic lift force and translate it into the lab frame, we find that

the lift force has a forward horizontal component – this is exactly the thrust force

generated by the airfoil.

Now consider the effect that leading edge torque has on this thrust-generation

process. The leading edge torsional spring acts to increase the effective angle of attack

of the airfoil during mid-heave, by imparting a torque that seeks to bring the airfoil

back to a level orientation. However, what we observe in Figure 4-12(b) is that a

proportional controller with positive Kp acts to decrease the total torque applied at

the leading edge of the wing during mid-heave, thereby allowing the airfoil to align

more closely with the flow. This implies a lower effective angle of attack during the

mid-heave portion of the flapping cycle. A lower effective angle of attack means a lower

amount of lift generated in the airfoil’s frame, which in turn means a lower amount of

forward thrust generated in the lab frame. Thus we have an explanation for why, as

we observe in Figure 4-12(a), the proportional controller acts to decrease thrust.

Let us now move on to addressing the more intriguing effect of the active feedback

controller: that it somehow enables a greater propulsive efficiency than a purely passive

system can attain alone, when compared at the same thrust level. To understand

54



this effect, we must first examine this “constant thrust” comparison more closely.

Consider Case B: to find a purely passive test case that produces the same amount

of thrust, we move vertically downwards on Figure 4-12(a) until we reach the spring-

only performance envelope (thick green curve). Let us call this Case C, as marked on

Figure 4-11. Since the spring-only performance envelope here is defined by Cs = 0.2,

the only parameter differing between Case C and Case A is the Strouhal number.

In fact, Case C has a smaller Strouhal number than Case A and also Case B (since

Case A and Case B have the same Strouhal number). Since the heaving frequency

ω and freestream velocity U are fixed, this means that Case C has a smaller heaving

amplitude than Case B, though they both generate the same amount of thrust. We

propose that this simple observation is the key to a plausible explanation of how the

proportional feedback controller improves propulsive efficiency.

First consider an alternative description of the flapping airfoil’s thrust generation

mechanism. We can quite reasonably claim that the flapping airfoil generates thrust

by accelerating fluid into a jet behind it. If we were to plot a time-averaged velocity

field, we would literally see this jet as a flow velocity excess in the wake with some

particular profile shape.

This concept of a fluid jet gives us a useful way of connecting propulsive efficiency

with airfoil motion. When the propulsive efficiency is less than 100%, energy is being

dissipated somewhere. In our physical model, viscous forces in the fluid are responsible

for this energy dissipation, and the rate of viscous dissipation is proportional to the

square of velocity gradients in the flow. The fluid jet formed by the airfoil’s motion

is directly responsible for velocity gradients in the flow – thus, airfoil motion can be

linked to viscous dissipation rate and in turn to propulsive efficiency.

Now consider how this viscous dissipation rate changes for different airfoil motion

amplitudes at constant thrust. Case B and Case C produce the same amount of

thrust but Case B does it with a larger heaving amplitude. The equivalence of thrust

guarantees that the total fluid momentum flux in the wake is the same for both cases.

However, the larger heaving amplitude of Case B implies that the flow velocity excess
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in the wake is smaller than in Case C – equivalently, the momentum flux in Case

B is spread over a broader area. This has the important consequence that velocity

gradients in the wake of Case B will be smaller than in the wake of Case C. Since

viscous dissipation rate scales as the square of these velocity gradients, we expect Case

B to dissipate less energy than Case C and hence have a higher propulsive efficiency.

Thus we have arrived at a simple and plausible mechanism by which our biologically-

inspired proportional feedback controller improves propulsive efficiency. To summarize

our proposed explanations of the proportional controller’s performance:

• The proportional controller acts to decrease thrust by selectively decreasing the

total torque applied at the leading edge during mid-heave.

• This response arises because the difference in flow conditions above and below

the airfoil is most pronounced during this mid-heave motion, and our feedback

signal X is sensitive to these differences (by design).

• Generating a smaller amount of thrust with an unchanged heaving amplitude

leads to smaller velocity gradients in the wake, implying a lower viscous dissipa-

tion rate and hence higher propulsive efficiency than a purely passive flapper at

the same thrust level.

We do not claim that this is a complete and general explanation of the proportional

controller’s performance characteristics – for example, it remains unclear why the

controller’s efficiency increment is large at intermediate Strouhal numbers (middle

range of Figure 4-11) but not so prominent at lower and higher Strouhal numbers.

However, we can say that our proposal does raise useful ideas that provide at least a

preliminary understanding of the controller’s effects on flight performance.

As a final note, it is interesting to see that the range of Strouhal numbers presented

in Figure 4-11 is St ∈ [0.1, 0.5], and the range over which the proportional feedback

controller performs best is neatly centered on approximately St ∈ [0.2, 0.4] – the same

range of Strouhal numbers that virtually all natural flapping flyers have converged to
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in the evolution of cruising flight [13]. This tantalizing coincidence could be a sign of

a deeper physical insight that we have yet to understand in the present thesis – we

leave this as an intriguing question for future work.
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Chapter 5

Gust Alleviation Results

This chapter presents a set of experiments investigating the ability of our biologically-

inspired feedback controller to perform a gust alleviation function – for example, to

suppress the transient deviation in lift that occurs when a vortical flow structure passes

over an otherwise steady airfoil in steady flow. Particularly for small-scale flyers, gust

alleviation capabilities are essential for robust and stable flight, and they have an

important role to play in Micro Air Vehicle (MAV) design.

The results presented in this chapter are in some ways quite preliminary. However,

they illustrate the capability of our numerical tools to study gust alleviation problems,

and they set the scene for future work.

5.1 Experimental Procedure

Here we define a simple gust alleviation experiment for our symmetric HT13 airfoil

and biologically-inspired feedback controller. We begin with the airfoil at a constant 4◦

angle of attack, and solve for the steady-state flowfield around the airfoil. Throughout

this chapter, none of the experiments will involve any heaving of the airfoil (that is,

St = 0). However, we do allow the airfoil to rotate about its pivot, governed by the

same factors that were important in the previous chapter’s flapping flight experiments:

passive aeroelastic torque, feedback control torque, fluid-structure interaction and
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static mass imbalance.

In order to allow the airfoil to remain at a constant 4◦ angle of attack in a steady

flowfield, we shift the airfoil’s pivot point to a position x = c/4 (the quarter chord

position). This is the special pivot location that makes the steady-state aerodynamic

moment negligible, so that it does not affect the steady-state orientation of the air-

foil. We also modify the torsional spring and the feedback control law, such that the

associated torques are normally zero in the steady flow. For the torsional spring, this

means changing the neutral position of the spring from θ0 = 0 to θ0 = 4◦, so that the

modified spring torque is defined:

M∗
s = Cs(θ − θ0) (5.1)

The derivative part of the control torque need not be altered, as the feedback signal

derivative Ẋ is normally zero in a steady flow. However, the proportional part of the

control torque must be adjusted in an affine manner similar to the modifications made

to the spring torque:

M∗
c = Kp(X −X0) + KdẊ (5.2)

Here, X0 is the value of the feedback signal in the steady flow solution.

These modifications allow the solution of a steady flow with the airfoil at a 4◦

angle of attack. Note that apart from the parameters and control equations specif-

ically modified above, all parameters of our physical model remain identical to the

description provided in Chapter 2.

Once we have a steady flow solution, our gust alleviation experiment proceeds by

superposing an Euler vortex on the inflow region in front of the airfoil. The particular

form of this vortex is presented by Persson, Bonet & Peraire [10] and reprinted here

in a form relevant to our experiments:

u = u∞

(
1− ε(y − y0)

2πrc

exp

(
f(x, y)

2

))
(5.3)
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Figure 5-1: Contour plot of x-velocity, showing the initial condition of our gust al-
leviation experiments. The Euler vortex is visible on the left in its starting position
immediately after insertion.

v = u∞

(
ε(x− x0)

2πrc

exp

(
f(x, y)

2

))
(5.4)

ρ = ρ∞

(
1− ε2(γ − 1)Ma2

∞
8π2

exp(f(x, y))

) 1
γ−1

(5.5)

p = p∞

(
1− ε2(γ − 1)Ma2

∞
8π2

exp(f(x, y))

) γ
γ−1

(5.6)

Here p is pressure, u and v are x- and y-velocity, (x0, y0) are the coordinates of the

center of the vortex, rc is a size parameter for the vortex and ε is a strength parameter

for the vortex. The function f(x, y) is defined:

f(x, y) = (1− (x− x0))
2 − (y − y0)

2/r2
c (5.7)

We choose to insert a vortex at coordinates (x0, y0) = (−2.5, 0) with size rc = 0.5

and strength ε = 0.3. The initial condition for the experiment is plotted in Figure
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5-1. After the vortex has been inserted, it is allowed to propagate with the freestream

towards and over the airfoil. The passage of the vortex causes the airfoil to pitch up

and down and also experience a transient deviation in lift force. Figure 5-2 illustrates

a typical example of this sequence of events.

The transient response of the airfoil varies depending on the values of the torsional

spring constant Cs and the active feedback controller gains Kp and Kd. The goal of

our gust alleviation experiments is to find controller gains Kp and Kd that optimally

suppress the transient lift deviation associated with the vortex’s passage. The mag-

nitude of the transient lift deviation is quantified by the standard deviation of the

lift coefficient CL(t) over the duration of the simulation (beginning at vortex insertion

and ending at a prescribed time after the vortex has passed the airfoil).

In each set of experiments we will choose a particular value of Cs and perform

simulations that explore the (Kp, Kd) parameter space, allowing us to identify the

controller gains that minimise transient lift deviation. Our experimental results are

presented in the following section.

5.2 Optimal Control of Lift Deviation

For our first study, we choose a spring stiffness Cs = 1 and conduct gust alleviation

experiments for a range of different Kp and Kd values. These values are presented in

Table 5.1.

Table 5.1: Control gain parameters studied for gust alleviation experiment

Parameter Values

Kp (−5, 0, 5, 10, 15, 20)× 103

Kd (−1, 0, 1, 2, 3, 4)× 103

For each choice of Kp and Kd, we compute the transient lift response and measure

the standard deviation of CL. These results are presented in Figure 5-3. We see the CL

standard deviation has a form very much like a quadratic bowl, highlighting an optimal
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Figure 5-2: x-velocity plots showing the progression of a typical gust alleviation ex-
periment, as the Euler vortex propagates towards, over and behind the airfoil. The
airfoil responds by pitching up and down, and it experiences a transient lift deviation.
This particular case has a spring of stiffness Cs = 1 and a PD controller with gains
Kp = −5, 000 and Kd = 1, 000. Hair sensors were placed at x/c = 0.21. Timestep size
was ∆t = 0.0314.
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Figure 5-3: Contour plot showing the standard deviation of CL as a function of control
gain parameters Kp and Kd, for the case where spring stiffness Cs = 1. The optimal
control gains are approximately Kp = 104 and Kd = 103. Data for this plot is defined
at all 36 combinations of (Kp, Kd) values found in Table 5.1.

value attained by the control gains Kp = 104 and Kd = 103. These control gains yield

a CL standard deviation that is 33% smaller than the value measured without any

controller. The lift coefficient timeseries of these two cases (optimal control and no

control) are compared in Figure 5-4 – note how the feedback controller is able to

substantially decrease the loss of lift experienced shortly after the initial spike.

To investigate how these results change with spring stiffness, the same set of ex-

periments was repeated with Cs = 0 instead of Cs = 1. The transient lift deviation

results for this new set of experiments are summarized in Figure 5-5. We notice that

the same bowl-like structure is preserved in the region of positive Kp, however negative

values of Kp are absolutely unstable. This is due to the lack of a torsional spring –

negative Kp tends to drive the airfoil away from θ0 rather than toward it, and without
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Figure 5-4: Comparison of the transient CL response of two different gust alleviation
test cases. The dotted curve corresponds to a case without any feedback controller,
and the solid curve corresponds to the case with optimal PD control gains. Both cases
feature a torsional spring with stiffness Cs = 1, and the optimal control gains used in
the second case are Kp = 104 and Kd = 103.

any spring to provide a restoring torque, the airfoil rotates freely to extreme angles

of attack. Figure 5-5 does nonetheless indicate an optimal set of controller gains for

Cs = 0: they are Kp = 104 and Kd = 3 × 103, and they achieve a 41% improvement

over the CL standard deviation achieved without a controller.

With or without a spring, we have observed sizeable improvements in the transient

lift deviation when our biologically-inspired boundary layer feedback controller is ap-

plied. These results suggest that our controller may be well-suited to gust alleviation

applications, and thus something similar to it may prove useful for both biological and

artificial flapping flyers.

Let us briefly address the question of how our controller suppresses transient lift

variation. As has been mentioned in previous chapters, our feedback signal is purposely

designed to sense differences in the flow conditions above and below the wing. Given

that our hair sensors respond to the integrated aerodynamic load over their lengths,

a general increase in the flow velocity above the wing will increase the feedback signal

X; and an increase in the flow velocity below the wing will increase the feedback signal
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during a gust alleviation experiment with zero control gains (Kp = Kd = 0) and spring
stiffness Cs = 1. The dotted line marks the steady-state value of CL.
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X in the negative direction. This kind of behavior suggests that the feedback signal

X may be well correlated with changes in the lift coefficient CL.

To address this possibility directly, Figure 5-6 plots the correlation between the

feedback signal X(t) and the lift coefficient CL(t) during a gust alleviation experiment

with zero control gains (Kp = Kd = 0) and spring stiffness Cs = 1. This shows that

when the lift drops below its steady-state value, the feedback signal X is generally

negative, and the proportional gain term KpX (dominant over the derivative gain

term) will apply a control torque that causes the airfoil to pitch up to higher θ (refer

to Appendix A for sign conventions). This upward pitching counteracts the loss of

lift. Conversely, Figure 5-6 also shows that when the lift rises above the steady-state

value, the feedback signal X is generally positive, and this will result in a torque that

causes the airfoil to pitch down to lower θ, counteracting excess lift. These simple

observations provide a plausible explanation of how our feedback controller achieves

the gust alleviation results presented in this chapter.
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Chapter 6

Conclusions

6.1 Summary of Findings

We have presented a high-fidelity numerical study of a thrust-producing oscillating

foil, modeling flapping wings observed in Nature that may exploit active feedback

control to achieve robust and maneuverable flight. Biological studies of bat wings

have identified distributed arrays of hair receptors, hypothesized to function as sensors

for active feedback control of wing motion. Together with passive aeroelasticity, this

feedback control may be an essential feature of high-performance bat flight and future

MAV design. In the present study we addressed this hypothesis by high-fidelity flow

simulations of a two-dimensional pitching and heaving wing. Heaving motion was

prescribed and pitching motion was governed by a combination of passive aeroelasticity

and active feedback control. The feedback controller was defined by a proportional-

derivative (PD) control law that adjusted wing pitch in response to the signal received

from a combination of hair sensors measuring boundary layer quantities. Coupled

fluid and structural behavior was computed using a high-order Discontinuous Galerkin

finite element solver, implemented with an Arbitrary Lagrangian-Eulerian formulation

to accommodate time-varying geometry.

After a range of physical investigations conducted with our computational model,

we came to a number of interesting conclusions. We found that the bending moment
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at the base of a hair sensor is well correlated with the boundary layer shape factor

H, and a combination of two such hair sensors above and below the wing defines a

feedback signal that returns information about important flow quantities. Comparing

hair sensors placed at different locations along the wing, we found a clear preference

for placing sensors nearer to the leading edge. In active feedback control experiments,

sensors placed nearer the leading edge were seen to result in higher propulsive efficiency

and smoother motion than sensors placed closer to the trailing edge.

We were also able to compute performance envelopes in terms of thrust and propul-

sive efficiency, for a flapping wing with a spring only (purely passive) and the same sys-

tem augmented with a hair-sensor-based proportional feedback controller. We found

that the feedback controlled system was able to exceed the performance envelope of the

purely passive system by a margin of up to 5% in propulsive efficiency. In identifying

the mechanism for this improvement, we found that the proportional controller tends

to decrease the total thrust generated by the airfoil. By decreasing thrust whilst main-

taining a large heaving amplitude, the feedback-controlled airfoil was able to decrease

the fluid jet velocity and hence the viscous dissipation rate in the wake, resulting in

an improvement in propulsive efficiency.

Finally, we applied our numerical tools to study a simple gust alleviation problem,

analyzing the ability of our active feedback controller to suppress the lift transient

associated with an Euler vortex passing over an airfoil that was previously in a steady

flow at fixed angle of attack. We found that the active feedback controller was able to

suppress this lift transient more effectively than passive aeroelasticity alone, providing

up to a 33% improvement in the standard deviation of lift. It was noted that our

feedback signal definition is well-suited to sensing positive and negative changes in

lift and responding with actions of the appropriate sign. This suggests that the hair-

sensor-based feedback controller of the present thesis may have significant potential

in gust alleviation applications.

In all, our findings suggest that boundary layer feedback control may plausibly

contribute to the outstanding flight abilities of bats, and may also provide valuable
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clues for designing robust and maneuverable Micro Air Vehicles (MAVs).

6.2 Future Work

There are some interesting directions that we can suggest for future work. On the

methodological side, it will be interesting to implement a Diagonally-Implicit Runge-

Kutta (DIRK) timestepper and compare its performance to the BDF2 timestepper

that we have employed in the present thesis. There are regimes under which a DIRK

method may be more computationally efficient than a BDF2 method for the same

level of time-accuracy, so it is possible that a DIRK implementation will improve the

efficiency of our code. Moreover, in our preliminary experiments with flapping flight

test cases where the derivative gain Kd is nonzero, we have observed an instability that

appears over a certain range of timestep sizes ∆t when Kd is large. This instability

appears as a growing oscillation in solution quantities such as the feedback signal X(t),

with an oscillation period of 2∆t. It is not yet clear how exactly this instability relates

to the BDF2 timestepping method we have employed. Re-running the unstable cases

with a DIRK implementation will determine whether or not the instability is uniquely

associated with BDF2 timestepping. If no such association is found, it may suggest

that the numerical instability manifests a real physical instability at high Kd in our

feedback controller. Understanding this instability could be an interesting topic for

further study.

A more significant direction for future work is to extend the present study to higher

Reynolds numbers and accurately model turbulent transition. In the present thesis,

the Reynolds number has been restricted to a fully laminar Re = 5,000, avoiding the

need to model turbulent transition. While this Reynolds number has relevance to the

flapping flight of large insects, it is too low to make precise quantitative predictions

relevant to birds, bats and present-day flapping Micro Air Vehicles (MAVs), which op-

erate nearer to Re = 40,000 in a clearly transitional flow regime. Extending our study

to these higher Reynolds numbers will necessarily involve implementing a turbulence
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model, which we may incorporate by solving the Reynolds-Averaged Navier-Stokes

(RANS) equations. To account for time-varying geometry, these equations must be

modified using the same Arbitrary Lagrangian-Eulerian (ALE) formulation introduced

in Chapter 3 of this thesis.

With the resulting code, it will be possible to simulate flapping flight scenarios

relevant to birds, bats and MAVs at realistic Reynolds numbers with turbulent tran-

sition accounted for. This will yield more accurate predictions of flight performance

with and without a feedback controller, and will also allow us to study a completely

different version of the hair sensor hypothesis for bat flight. In Section 2.3, it was as-

sumed that sensory hairs observed on bat wings respond to the quasi-steady bending

load placed on each hair by airflow over the wing. However, an alternative hypoth-

esis is that the sensory hairs respond specifically to oscillations in the flow over the

wing, perhaps sensing turbulent eddies in the transitional boundary layer. There are

other biological contexts in which sensory hairs are used in similar ways to detect flow

oscillation, most notably as the basis for hearing in the auditory organs of mammals

(including humans) [6], and also in hairs used by spiders to detect prey movements [1].

With a model that incorporates turbulent transition in the boundary layer, it will be

possible to study a class of feedback controllers that respond to turbulent transition

rather than laminar flow separation. Will such a controller result in a substantial

improvement in flapping flight performance? If so, what kind of controller achieves an

optimal improvement? The answers to these questions will certainly have relevance

to understanding bat flight, and may also provide useful insights for flapping MAV

design.
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Appendix A

Notation and Sign Conventions

For quick reference, the two tables below summarize notation and sign conventions

used throughout this thesis (in alphabetical order).

Table A.1: Summary of Notation and Sign Conventions (Part I)

Symbol Meaning

c Airfoil chord length (§2.2)
CD Local drag coefficient at a given position along a hair sensor (§2.3)
Cs Torsional spring stiffness (§2.1)
CT Thrust coefficient (§2.2)
D Drag force acting on the airfoil in the +x direction;

negative is thrust (§2.2)
d0 Diameter of sensory hair (§2.3)
G Time-dependent mapping between fixed reference domain

and physical domain (§3.2)
h Vertical position of airfoil pivot point, h(t) = h0 cos ωt;

positive upward (§2.1)
H Boundary layer shape factor (§4.2)
h0 Heaving half-amplitude (see h)
I Airfoil moment of inertia (§2.1)
J Jacobian matrix (§3.2)
k Reduced frequency, ωc/2U (§2.2)

Kd Derivative gain for feedback controller (PD control) (§2.4)
Kp Proportional gain for feedback controller (PD control) (§2.4)
l Length of hair sensor (§2.3)
L Lift force acting on the airfoil in the +y direction (§2.2)

73



Table A.2: Summary of Notation and Sign Conventions (Part II)

Symbol Meaning

M Mass matrix (§3.2)
Mc Torque imparted by feedback controller;

+Mc acts in −θ direction (§2.4)
Mfluid Torque imparted on the airfoil by fluid;

+Mfluid acts in −θ direction (§2.4)
Mh Bending moment at the base of a hair sensor;

positive clockwise on upper wing, opposite on the lower (§2.3)
Ms Torque imparted by torsional spring, Ms = Cs θ;

+Ms acts in −θ dir. (§2.1)
Ma Mach number of freestream flow (§2.1)
ns Number of nodal points per element (§3.1)
Pr Prandtl number (§2.1)

R(U) Residual vector, nonlinear function of state vector (§3.2)
RBDF BDF residual vector (§3.2)
Re Chord-based Reynolds number, Re = ρUc/µ (§2.1)
Rey Local Reynolds number ρu(y)d0/ν at location y along a hair (§2.3)
S Airfoil static imbalance (§2.4)
St Strouhal number, ωh0/πU (§2.2)
t Time
T Heaving period (§2.2)
u Flow velocity perpendicular to a hair (§2.3)

U∞ Freestream flow velocity (§2.1)
v Vertical component of flow velocity (§3.1)

w Airfoil pitching rate, θ̇ (§2.4)
X Feedback sensor signal, a function of Mh (§2.3)
y Length coordinate along hair; zero at base, positive outwards (§2.3)
αi Constant coefficients for BDF time derivative formula (§3.2)
βk Constant coefficients for BDF time derivative formula (§3.2)
γ Ratio of specific heats (§2.1)
∆t Timestep size (§3.2)
η Second reference coordinate in a given mesh element (§3.1)

ηprop Propulsive efficiency, 0 < ηprop < 1 (§2.2)
θ Pitch angle of airfoil, positive clockwise from horizontal;

+θ implies that the trailing edge points downwards (§2.4)
ξ First reference coordinate in a given mesh element (§3.1)
ρ Fluid density (§2.3)
φ Polynomial shape function (§3.1)
ω Heaving frequency (in angular measure) (§2.2)
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