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Abstract

This note describes a method to reconstruct signals in the two silicon pixel detector layers

compatible with tracks coming from the main interaction vertex, namely tracklets. The

basic algorithm strategy and its performance are illustrated.
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1 Introduction

The aim of this note is to describe a procedure that uses the clusters (that mainly cor-

respond to reconstructed particle hits) in the two innermost layers of the Inner Tracking

System (ITS) [1] to extract signals corresponding to charged tracks coming from the main

interaction vertex. Those layers are equipped with silicon pixels and constitute the Silicon

Pixel Detector (SPD): their average distances from the beam line are 3.9 and 7.6 cm with

a pseudorapidity coverage of |η| < 2 and |η| < 1.4 respectively, as defined for particles

originating in the centre of the detector.Further details on the detector design and the

expected performance can be found in Ref. [2].

The reconstructed signals (tracklets) will be used to estimate the number of primary

charged particles produced both in proton-proton and heavy-ion collisions at ALICE [3].

Compared to the corresponding measurement based on the fully reconstructed tracks

(using combined measurements from the ITS and the Time Projection Chamber) the

charged-particle multiplicity reconstructed only with pixels has some basic advantages: a

larger acceptance coverage both in pseudorapidity and pT (down to 30 MeV/c) and a much

smaller reliance on alignment and calibration procedures. This makes the measurement

with SPD tracklets suitable to extract results from the very first available data from

the LHC. The note is organized as follows. Section 2 deals with the description of the

tracklet algorithm used for the ALICE Physics Performance Report [3]: studies on the

optimization of the cuts for the tracklet definition and the performance of the method

both for p-p and Pb-Pb simulated collisions are presented. In Section 3 a recent update

of the algorithm strategy and of the cut variables is discussed, including a comparison

with the original method. The fine tuning of the algorithm is discussed in Section 4.

Finally, Section 5 illustrates a procedure to eliminate tracklet duplication (same physical

track) due to overlapping regions between sensitive areas of the detector and Section 6

summarizes the note.

2 The tracklet reconstruction algorithm

In this section the algorithm to estimate the charged particle multiplicity using data from

the SPD only, namely the tracklet algorithm, is described. The reconstructed points

of the SPD (clusters1) and the reconstructed main vertex position are needed to build

tracklets. The primary vertex is reconstructed using SPD clusters as well, exploiting their

correlation as described in Refs. [4, 5].

1A cluster is made up of one or more hit adjacent pixels.
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A straight line from the vertex to each cluster in the inner layer is considered. For

each cluster in the inner layer two differences are computed using the reconstructed vertex

as the origin: the difference in the azimuthal angles (∆ϕ) between this cluster and each

cluster in the outer layer and the difference between the longitudinal coordinate of the

prediction from the straight line in the outer layer and the longitudinal coordinate of each

cluster in the outer layer (∆zprojected). The differences are schematically shown below in

Fig. 1.

Figure 1: Sketch of the two differences calculated for each combination of clusters in the two SPD layers

used to define tracklets: the transverse plane view of the detector (left panel) illustrates how the ∆ϕ is

calculated and the z-y plane view (right panel) illustrates how the ∆zprojected is calculated (approximation

of the prediction of the straight line in the outer layer).

Regarding the ∆zprojected, it should be noticed that the prediction on the outer layer

cannot be precisely determined since the position of the module in that point cannot

be retrieved, therefore an approximation is used, as it can be seen in Fig. 1. It turns

out that this variable is not constant as θ varies, keeping ∆θ constant: it is bigger if the

pseudorapidity |η| of the cluster in the outer layer increases. For each pair an elliptical cut

is applied and if the pair satisfies the window requirement, it is labeled as “tracklet” [3, 6].

If more than one cluster in the outer layer matches the window requirement with the same

cluster in the inner layer, the one with the minimum distance is associated to the cluster

in the inner layer. The procedure is repeated for each cluster in the inner layer so that

each cluster can be associated only once. Clusters in the outer layer can either be used in

one traklet only or in more than one. In the first case it turns out that the reconstructed

tracklets are biased by the cluster ordering2. The default widths of the cut windows for

p-p events are ∆ϕcut = 0.08 rad and ∆zcut = 1 cm respectively. The cut imposed in the

azimuthal angle corresponds to a transverse-momentum cut-off of about 35 MeV/c (for

2The ITS clusters are ordered according to the increasing number of the module they belong and in the module according

to the increasing z and ϕ.
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pions). The possibility to interpolate starting from the clusters on the outer layer has

been also considered [6]: due to the larger background fraction on that layer, the number

of fake tracklets is larger in this case, especially for Pb-Pb events.

The pseudorapidity η is evaluated by considering a straight line from the main vertex

to the position of the cluster in the inner layer. The multiplicity of charged particles is

estimated counting the number of tracklets. This number has to be corrected for several

effects, as described in Refs. [7, 8].

The tracklet-based method for multiplicity studies is a proven technique used in the

PHOBOS experiment at RHIC [9]. The tracklet method allows a good rejection of the

background (detector noise, secondary particles, residual beam-gas contamination): in

particular for p-p collisions, due to the relatively low multiplicity, the background induced

statistical fluctuations have to be considered not negligible compared to the signal.

2.1 Optimization of the cuts

Studies on the performance of the tracklet algorithm as a function of the selected fiducial

windows and the adopted combination strategy will be presented in this and in the next

section. All these studies have been carried out using three different Monte Carlo collision

samples listed below:

• 10000 Pythia minimum bias p-p events at
√

s = 14 TeV;

• 5000 Hijing minimum bias Pb-Pb events at
√

sNN = 5.5 TeV;

• 1000 Hijing 5% most central Pb-Pb events at
√

sNN = 5.5 TeV.

The magnetic field has been assumed at the nominal ALICE value of 0.5 Tesla.

The widths of the cuts applied have to be optimized with respect to the efficiency in

reconstructing primary particles and the background contamination. A performance study

has been carried out varying the cuts applied both for p-p and Pb-Pb events (minimum

bias and central). The Monte Carlo particle labels stored in the reconstruction process

for the two clusters that made up each tracklet are used for this purpose. In order to

choose a reasonable set of cuts, the signal, i.e. pairs of clusters produced each by the

same primary particle, has been plotted in the ∆ϕ-∆zprojected plane both for p-p and for

Pb-Pb events. In Fig. 2 the result for central Pb-Pb events is shown.

The efficiency has been evaluated as the ratio between all the reconstructed primaries,

i.e. primaries that have a tracklet associated, and all the primaries that produced at

least one cluster in each layer. In order not to include in this efficiency the effect of

the vertex reconstruction quality,events with a reconstructed vertex in |zvtx| < 10 cm are
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Figure 2: ∆ϕ and ∆zprojected for pairs of clusters by the same primary particle in central Pb-Pb events.

considered. Indeed events with a bad reconstructed vertex would lower the efficiency since

the two cluster produced cannot be aligned with the vertex within the fiducial windows. In

addition, the reconstructed tracklets have been classified as primary, secondary tracklets

or combinatorics. The efficiencies and the percentages in the tracklet composition are

shown in Tab. 1 for p-p events. The results allowing multiple association of clusters in

the outer layer are quoted in brackets. Preventing multiple associations, the efficiency

∆ϕcut ∆zcut Efficiency PP SS Combinatorics

(rad) (cm) (%) (%) (%) (%)

0.0800 1.00 97.4 (98.8) 89.9 (88.5) 5.9 (5.8) 4.2 (5.7)

0.0800 0.50 98.2 (98.6) 92.4 (91.8) 5.4 (5.4) 2.2 (2.8)

0.0800 0.30 98.2 (98.5) 93.5 (93.1) 4.8 (4.9) 1.6 (2.0)

0.0800 0.20 98.0 (98.2) 94.3 (94.0) 4.4 (4.4) 1.3 (1.6)

0.0600 0.20 97.7 (97.9) 94.7 (94.5) 4.1 (4.1) 1.2 (1.4)

0.0400 0.10 95.6 (95.6) 96.2 (96.1) 3.1 (3.1) 0.7 (0.8)

0.0200 0.05 84.8 (84.8) 97.5 (97.4) 2.1 (2.1) 0.4 (0.5)

0.0150 0.03 69.8 (69.8) 97.9 (97.8) 1.7 (1.8) 0.4 (0.4)

0.0100 0.02 51.1 (51.1) 98.1 (98.1) 1.6 (1.6) 0.3 (0.3)

0.0075 0.01 27.8 (27.8) 98.2 (98.3) 1.4 (1.4) 0.4 (0.3)

Table 1: Efficiency of the tracklet algorithm and tracklet composition varying the cuts to reconstruct

tracklets for the Monte Carlo p-p sample. In brackets the results allowing multiple association of clusters

in the outer layer are quoted.

increases and then decreases as the cuts become tighter. Allowing multiple association

the efficiency has the expected trend. Furthermore, in the latter case the efficiencies are

higher and the combinatorics is lower, due to the fact that the order does not prevent the

algorithm from sorting the best association. However the results obtained with the two

options do not differ as the cuts become tighter. The order dependence can be clearly
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seen in Fig. 3, where the comparison between the ∆ϕ distribution of tracklets obtained

preventing and allowing multiple association of clusters in the outer layer is shown.
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Figure 3: ∆ϕ distributions of tracklets reconstructed preventing (left panel) and allowing (right panel)

multiple association of clusters in the outer layer for the Monte Carlo sample of central Pb-Pb events.

In Tab. 2 and Tab. 3, the efficiencies and tracklet compositions are quoted for minimum

bias and central Pb-Pb events respectively. For Pb-Pb events the maximum achievable

∆ϕcut ∆zcut Efficiency PP SS Combinatorics

(rad) (cm) (%) (%) (%) (%)

0.0800 1.000 51.5 (74.3) 39.0 (48.6) 1.7 (1.7) 59.3 (49.7)

0.0800 0.200 63.3 (74.6) 54.0 (61.6) 2.1 (2.1) 43.9 (36.3)

0.0150 0.030 60.2 (61.1) 86.4 (85.1) 1.7 (1.7) 11.9 (13.2)

0.0125 0.025 52.5 (53.2) 87.7 (86.5) 1.6 (1.6) 10.7 (11.9)

0.0100 0.020 42.1 (42.5) 88.6 (87.8) 1.5 (1.5) 9.9 (10.7)

0.0075 0.015 28.6 (28.7) 89.1 (88.6) 1.4 (1.4) 9.5 (10.0)

0.0060 0.005 9.9 (9.9) 89.8 (89.6) 1.3 (1.3) 8.9 (9.1)

Table 2: Efficiency of the tracklet algorithm and tracklet composition varying the cuts for tracklet recon-

struction of the minimum bias PbPb sample. The results allowing multiple association of clusters in the

outer layer are quoted in brackets.

efficiency is quite low and the background fraction is high, in particular for central events

where the maximum efficiency is about 60% and half of the reconstructed tracklets are

combinatorics. These emerged features suggested that there was room for improving the

algorithm performance.

3 Optimization of the tracklet algorithm

In principle, the best algorithm should associate the pair with the minimum distance

over all the possible combinations of clusters in the inner layer with clusters in the outer

layer. Such an algorithm would be time-consuming. Alternatively, an iterative procedure,
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∆ϕcut ∆zcut Efficiency PP SS Combinatorics

(rad) (cm) (%) (%) (%) (%)

0.0800 1.000 42.0 (63.4) 31.9 (42.3) 1.1 (1.2) 67.0 (56.5)

0.0800 0.200 50.3 (63.5) 42.2 (53.0) 1.4 (1.4) 56.4 (45.5)

0.0150 0.030 55.8 (57.1) 79.2 (77.4) 1.5 (1.5) 19.3 (21.1)

0.0125 0.025 49.1 (50.1) 81.0 (79.5) 1.5 (1.4) 17.5 (19.1)

0.0100 0.020 39.6 (40.3) 82.5 (81.3) 1.4 (1.4) 16.1 (17.3)

0.0075 0.015 27.0 (27.3) 83.1 (82.4) 1.3 (1.3) 15.6 (16.3)

0.0060 0.005 9.2 (9.3) 84.2 (83.8) 1.3 (1.3) 14.5 (14.9)

Table 3: Efficiency of the tracklet algorithm and tracklet composition varying the cuts for the sample of

central Pb-Pb events. The results allowing multiple association of clusters in the outer layer are quoted

in brackets.

starting from the basic algorithm, can be implemented. The first step is basically the old

algorithm allowing multiple use of clusters in the outer layer. At the end of the loop on

clusters in the inner layer, outer layer clusters, associated to more than one cluster in the

inner layer, have to be associated to the only cluster in the inner layer with which each

has the minimum distance. This basic block should be repeated using all the clusters not

associated in the previous step. The iterations stop when no more tracklets are found.

Concerning the cut variables, the cut in ∆zprojected can be replaced with a cut in ∆θ,

that is constant varying θ (Fig. 4). As for the cut in ∆ϕ, when the magnetic field is

Figure 4: Sketch of the two differences calculated for each combination of clusters in the two SPD layers

used in the optimized tracklet algorithm: the transverse plane view of the detector (left panel) illustrates

how the ∆ϕ is calculated and the z-y plane view (right panel) illustrates how the ∆θ is calculated.

on in the simulation, the ∆ϕ distribution of the reconstructed tracklets has two peaks

due to the charge of the reconstructed particles (primaries and secondaries). In Fig. 5
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an example of ∆ϕ distributions of tracklets reconstructed with the magnetic field on and

without magnetic field are shown. Thus, according to the value of the magnetic field, a

shift can be added in the calculation of the ∆ϕ. A linear ∆ϕ dependence on the magnetic

field has been assumed.
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Figure 5: ∆ϕ distributions for tracklets reconstructed in a sample of p-p Monte Carlo events generated

with magnetic field B = 0.5 T (left panel) and with magnetic field B = 0 T (right panel).

This procedure shows better performance than the basic algorithm, in particular in

reconstructing Pb-Pb events: the efficiency is higher and the background contamination

markedly decreases. In Tab. 4 the efficiency and tracklet composition for one set of cuts

are shown both for the basic and the iterative algorithm for central Pb-Pb events.

∆ϕcut ∆θcut Efficiency PP SS Combinatorics

(rad) (rad) (%) (%) (%) (%)

Old 0.08 0.025 63.5 53.0 1.4 45.5

New 0.08 0.025 74.7 64.5 1.9 33.6

Table 4: Comparison of the efficiency and tracklet composition between the optimized tracklet algorithm

and the basic algorithm for the sample of central Pb-Pb events. For the old algorithm the ∆θcut roughly

corresponds to ∆zcut = 0.2 cm.

4 Tuning of the tracklet reconstruction

4.1 Tuning of the tracklet reconstruction in p-p events

In Fig. 6 the signal in the ∆ϕ-∆θ plane for p-p events is shown, while in Tab. 5 the

optimized algorithm efficiencies are quoted for five sets of cuts.

As explained in Section 2.1, the efficiencies and the background contaminations have

been calculated using events with a vertex reconstructed in |zvtx| < 10 cm. The ∆θcut

= 0.15 rad corresponds roughly to the ∆zcut = 1 cm at θ = π/2 rad. The efficiency is

not much higher than with the old algorithm because of the low SPD occupancy in p-p
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Figure 6: ∆ϕ and ∆θ for pairs of clusters produced by the same primary particle in p-p events.

∆ϕcut ∆θcut Efficiency PP SS Combinatorics

(rad) (rad) (%) (%) (%) (%)

0.08 0.150 98.7 91.3 6.0 2.7

0.08 0.050 98.7 93.6 5.1 1.3

0.08 0.025 98.2 94.8 4.3 0.9

0.04 0.005 85.0 97.2 2.4 0.4

0.02 0.005 79.3 97.7 1.9 0.4

Table 5: Efficiency of the optimized tracklet algorithm and tracklet composition varying the cuts to re-

construct the p-p event sample.

events, whereas the background fraction is a few percents lower. Tightening the applied

cuts to ∆θcut = 0.025 rad and ∆ϕcut = 0.08 rad, the efficiency decreases of .5 % only

and the background fraction (secondary tracklets and combinatorics) is 3.5 % lower. A

lower background fraction is preferable to a higher efficiency: indeed the background

amount can depend on multiplicity hence on the Monte Carlo generator, efficiency, on the

other hand, only depends on the cuts applied and can be easily taken into account in the

correction to the multiplicity and pseudorapidity density distributions.

4.2 Tuning of the tracklet reconstruction in Pb-Pb events

As previously seen, the reconstruction of Pb-Pb events is very critical since the cluster

occupancy in the SPD and the background are quite high. In particular in the 5% most

central collisions, the mean number of clusters is about 21000 and 24000 in the SPD inner

and outer layer respectively. The mean number of clusters from secondary particles 2600.

In Fig. 7 the signal in the ∆ϕ-∆θ plane is shown for central events. A similar plot has

been obtained for minimum bias events.

In Tab. 6 and Tab. 7 the efficiencies and the tracklet composition are shown for all
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Figure 7: ∆ϕ and ∆θ calculated for pairs of clusters produced by the same primary particle in central

Pb-Pb events.

the cuts used to reconstruct tracklets in the minimum bias and central Pb-Pb events

respectively.

∆ϕcut ∆θcut Efficiency PP SS Combinatorics

(rad) (rad) (%) (%) (%) (%)

0.08 0.150 71.2 56.1 2.1 41.8

0.08 0.050 81.2 68.2 2.6 29.2

0.08 0.025 83.2 72.8 2.6 24.6

0.04 0.005 73.6 82.3 2.1 15.6

0.02 0.005 70.0 86.5 1.9 11.6

Table 6: Efficiency of the optimized tracklet algorithm and tracklet composition varying the cuts to recos-

ntruct the minimum bias PbPb event sample.

The efficiency increases and then decreases as the fiducial cuts become tighter because

the larger windows used do not follow the elliptical correlation in the plane where the

distance is computed. Having a high SPD cluster occupancy, wrong associations of clusters

can have a smaller distance than the correct combination. In addition, the predominance

of wrong combinations explains the background decrease as well. This does not happen

for p-p events because the SPD cluster occupancy is low and, even using a large cut

window, the probability to make wrong associations is low.

5 Study on the reconstruction in the SPD overlap regions

Due to the SPD geometry design, particles crossing the overlap regions between modules

in ϕ can produce two clusters in each layer so that the track could be reconstructed

twice. That happens more likely when the overlap region crossed are in the same sector,
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∆ϕcut ∆θcut Efficiency PP SS Combinatorics

(rad) (rad) (%) (%) (%) (%)

0.08 0.150 59.3 47.4 1.4 51.2

0.08 0.050 71.9 60.3 1.8 37.9

0.08 0.025 74.7 64.5 1.9 33.6

0.04 0.005 67.2 73.7 1.8 24.5

0.02 0.005 64.8 79.4 1.7 18.9

Table 7: Efficiency of the optimized tracklet algorithm and tracklet composition varying the cuts to recos-

ntruct the central Pb-Pb event sample.

while when the overlapping modules belong to adjacent sectors, the probability is smaller

because the overlapping areas are smaller. The effect of the overlaps between the SPD

modules in ϕ can be clearly seen in Fig. 8 for clusters, where the higher spikes are due to

the overlap between modules in the same sector and the lower ones to the overlap between

modules in adjacent sectors. In Fig. 9 the ϕ distribution for tracklets is shown as well.
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Figure 8: ϕ distributions for clusters in the inner layer (left panel) and in the outer layer (right panel):

the spikes are due to overlaps between two SPD modules adjacent in ϕ.

This feature can be uselful to check alignments with first data since the ovelaps are

2% of the whole SPD. However, the multiple reconstruction of tracks can be limited: a

procedure can be implemented to eliminate multiple reconstructed tracklets.

For each cluster, the basic idea is to look for clusters close enough to it in a module

adjacent to the one it belongs, then flag them to avoid their use in tracklet building.

The structure of the algorithm allows to make this selection on clusters once the tracklets

have been reconstructed. After the tracklet reconstruction, a loop over the tracklets is

performed. For each of the two clusters in the tracklet the check on the distance previously

described is carried out: if the distance is within a fiducial elliptical window, those clusters

are flagged. These flags will then be checked for the clusters in the following reconstructed

tracklets: if at least one of the two clusters has been previously flagged, the tracklet is

eliminated from the list of the reconstructed tracklets and is not stored. The distance
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modules both in the inner layer and in the outer layer in ϕ.

between clusters on adjacent modules is calculated in the ∆ϕ-∆z plane. The z coordinate

of the clusters is calculated at the mean radius between the maximum and the minimum

radii in the x-y plane for two modules in the overlap region. In order to fix the width of

the windows in ∆z and ∆ϕ, the distributions in ∆ϕ and in ∆z of clusters produced by

the same primary that crosses two adjacent modules in each layer have been produced

(Fig. 10). These have been compared to the same distributions for all pairs of clusters
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Figure 10: Distance in the ∆ϕ-∆z plane between two clusters produced by the same primary particles in

two adjacet modules in the same SPD layer (inner layer).

on adjacent modules: the region around zero has the same entries of the previous plot.

Therefore, cutting on the distance between clusters in adjacent modules is effective to

select clusters produced by the same particle.

Two sets of cuts to flag the clusters in the SPD overlaps have been used to reconstruct
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tracklets varying the cuts for the reconstruction itself as well.

In Tab. 8 the efficiencies and the tracklet composition are quoted for p-p events. In

∆ϕcut ∆θcut ∆ϕSPDoverlaps ∆zSPDoverlaps Efficiency PP SS Combinatorics

(rad) (rad) (rad) (cm) (%) (%) (%) (%)

0.08 0.050 0.005 0.05 98.6 93.7 5.1 1.2

0.08 0.050 0.010 0.15 98.6 93.7 5.1 1.2

0.08 0.025 0.005 0.05 98.2 94.8 4.3 0.9

0.08 0.025 0.010 0.15 98.2 94.8 4.3 0.9

0.04 0.005 0.005 0.05 85.0 97.2 2.4 0.4

0.04 0.005 0.010 0.15 85.0 97.2 2.4 0.4

Table 8: Efficiency of the optimized tracklet algorithm and tracklet composition for the p-p event sample

cutting the clusters in the overlap regions of the SPD. Two different windows have been used to flag

clusters, each of them for two different sets of the cuts for the tracklet reconstruction.

p-p events the result does not change widening the cuts to eliminate tracklets in the SPD

overlaps and both the efficiency and the tracklet composition remain constant compared

to the efficiency of the algorithm without this option (Tab. 5). In Tab. 9 and Tab. 10 the

efficiencies and the tracklet composition are quoted for Pb-Pb events. Comparing the

∆ϕcut ∆θcut ∆ϕSPDoverlaps ∆zSPDoverlaps Efficiency PP SS Combinatorics

(rad) (rad) (rad) (cm) (%) (%) (%) (%)

0.08 0.050 0.005 0.05 80.4 68.8 2.8 28.4

0.08 0.050 0.015 0.15 79.6 68.4 2.7 28.9

0.08 0.025 0.005 0.05 82.7 73.3 2.8 23.9

0.08 0.025 0.015 0.20 82.2 73.1 2.7 24.2

0.04 0.005 0.005 0.05 73.8 82.8 2.1 15.1

0.04 0.005 0.015 0.20 73.4 82.6 2.1 15.3

Table 9: Efficiency of the optimized tracklet algorithm and tracklet composition for the minimum bias

Pb-Pb event sample cutting the clusters in the overlap regions of the SPD.

reconstruction efficiency between the two sets of cuts, it can be concluded that the loss

of efficiency is less than 1%. In the Pb-Pb case, the efficiency is also less than 1% lower

than the efficiencies quoted in Tab. 6 and Tab. 7.

A reasonable choice for the cut widths is ∆ϕSPDoverlap = 0.01 rad and ∆zSPDoverlaps =

0.5 cm: in Fig. 11 the comparison of the ϕ distributions obtained keeping and eliminating

tracklets in the SPD overlaps, respectively, is shown for central Pb-Pb events.

The flagging of clusters in the overlap regions of the SPD can be optionally switched

on in the reconstruction.
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∆ϕcut ∆θcut ∆ϕSPDoverlaps ∆zSPDoverlaps Efficiency PP SS Combinatorics

(rad) (rad) (rad) (cm) (%) (%) (%) (%)

0.08 0.050 0.005 0.05 71.2 61.0 1.9 37.1

0.08 0.050 0.015 0.15 70.7 61.1 1.9 36.9

0.08 0.025 0.005 0.05 74.2 65.2 2.0 32.8

0.08 0.025 0.015 0.20 73.6 65.3 2.0 32.6

0.04 0.005 0.005 0.05 67.5 74.7 1.8 23.5

0.04 0.005 0.015 0.20 67.0 74.7 1.8 23.5

Table 10: Efficiency of the optimized tracklet algorithm and tracklet composition for the central Pb-Pb

event sample cutting the clusters in the overlap regions of the SPD.
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Figure 11: Comparison between the ϕ distribution for tracklets (left panel) and the same distribution

obtained implementing the search for clusters in overlapping modules, compatible with clusters produced

by the same track (right panel).

6 Conclusions

A method to reconstruct tracklets using particle hits in the two pixel layers of the inner

tracking system has been developed. The performance, in terms of efficiency in finding

tracklets associated to primary particles and contamination from combinatorial back-

ground, have been studied as a function of the angular selection cuts used to define the

tracklets themselves. The main results are illustrated in this note.
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