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Abstract

Due to the possibility to produce B0, B0
s and Λb hadrons in the proton-proton

collisions at the LHC, the mass peaks of many two-body B decays overlap. For
this reason, the particle identification capabilities of the LHCb detector will play a
crucial role in the measurements related to these decay modes. In this document we
propose a method for combining different observables provided by the LHCb particle
identification system into a single generalized discriminating variable, useful when
performing the statistical separation of the various channels in event-by-event fits.
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1 Introduction

The large beauty production cross section σbb̄ ' 500 µb expected at the LHC [1] will allow
the LHCb detector [2] to reconstruct some 105 Hb → h+h′− events per year, where h and
h′ stand for a pion, kaon or proton. Due to the production of B0, B0

s and Λb hadrons in
the 14 TeV proton-proton collisions, the mass peaks of many two-body B decays overlap
(see Fig. 1) and an excellent control of the particle identification (PID) observables is
required in order to isolate the various decay modes.

PID at LHCb is based on the information provided by the RICH system [3], the
electromagnetic and hadronic calorimeters [4], including pre-shower and scintillator pad
detectors, and the muon chambers [5]. The variable used to discriminate between different
particle hypotheses is ∆ logLAB, that for each track is defined as:

∆ logLAB = logLA − logLB, (1)

where LA and LB are the likelihoods for particle hypotheses A and B, respectively.
For each track, the PID system gives an answer in terms of the four observables

∆ logLeπ, ∆ logLµπ, ∆ logLKπ and ∆ logLpπ. In the studies presented in this document,
we only consider the two observables ∆ logLKπ and ∆ logLpπ. These observables are
sufficient to discriminate particles coming from all the Hb → h+h′− decays, since signal
decays contain neither electrons nor muons.

The ∆ logLKπ and ∆ logLpπ distributions for true pions, kaons and protons from a
sample of offline selected Hb → h+h′− events, including all the different decay modes, are
shown in Fig. 2. The offline event selection is described in Ref. [6].

2 Combining ∆ logLKπ and ∆ logLpπ

As is apparent from Fig. 3, the ∆ logLKπ and ∆ logLpπ variables are strongly corre-
lated. Hence the employment of such observables in order to discriminate between the
various mass hypotheses in event-by-event fits would require the use of 2-dimensional
joint probability density functions (p.d.f.’s) of ∆ logLKπ and ∆ logLpπ, properly taking
into account the correlation between the two. Although this is formally simple to state,
it would considerably complicate the calibration of such distributions from data, since it
would require a two-dimensional analysis. We propose instead to merge the information
of the ∆ logLKπ and ∆ logLpπ observables into a single observable ∆, defined below.

The exponentiation of the ∆ logLhπ gives by definition the ratio of the likelihoods Lh

and Lπ, i.e.:
LK

Lπ

= e∆logLKπ (2)

and
Lp

Lπ

= e∆ logLpπ . (3)
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Figure 1: Invariant mass distribution, under the π+π− hypothesis, for all the decay modes
after the offline event selection: linear scale (top) and logarithmic scale (bottom). The
histograms of the various channels are cumulatively added up to form the overall mass
line shape. Background events are not included. See Ref. [6] for details on the event
selection procedure.
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Figure 2: Distributions of ∆ logLKπ (left) and ∆ logLpπ (right) for pions (top), kaons
(middle) and protons (bottom) from a sample of offline selected Hb → h+h′− events
including all the different decay modes.

One can then define the confidence level for a given particle to be a pion, kaon or proton,
respectively, as:

Pπ =
Lπ

Lπ + LK + Lp

=
1

1 + e∆ logLKπ + e∆ logLpπ
, (4)

PK =
LK

Lπ + LK + Lp

=
e∆logLKπ

1 + e∆logLKπ + e∆logLpπ
(5)
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Figure 3: Distributions of ∆ logLKπ versus ∆ logLpπ for pions (top left), kaons (top right)
and protons (bottom) from a sample of offline selected Hb → h+h′− events including all
the different decay modes.

and

Pp =
Lp

Lπ + LK + Lp

=
e∆ logLpπ

1 + e∆ logLKπ + e∆ logLpπ
. (6)

The three confidence levels are not independent, since by construction their sum is iden-
tically equal to 1. The distributions of Pπ, PK and Pp for pions, kaons and protons from
offline selected Hb → h+h′− decays are shown in Fig. 4. As expected, the distributions
are peaked at 1 when the corresponding mass hypothesis is correct, while they are peaked
at 0 otherwise.
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Figure 4: Distributions of Pπ, PK and Pp for pions (top), kaons (middle) and protons
(bottom) from a sample of offline selected Hb → h+h′− events including all the different
decay modes.

We can now define a generalized PID discriminating variable ∆ as follows:

∆ = 2− Pπ + Pp, (7)

which by construction lies between 1 and 3. As it is apparent in Fig. 5, the distribution
of ∆ is peaked at 1 for true pions, at 2 for true kaons, and at 3 for true protons.

In order to characterize the ∆ observable, Fig. 6 shows the efficiencies and misidenti-
fication probabilities achievable by cutting on ∆, as a function of the cut value C∆. The
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Figure 5: Distributions of ∆ for pions (top left), kaons (top right) and protons (bottom)
from a sample of offline selected Hb → h+h′− events including all the different decay
modes.

cut for true pions, kaons or protons has been defined differently in order to have the same
range in each of the three cases:

• when calculating the efficiency for the identification of pions, the event is accepted
if (∆− 1) ≤ 2 · C∆ AND |∆− 2| > 0.05 AND (3−∆) > 0.05;

• when calculating the efficiency for the identification of kaons, the event is accepted
if (∆− 1) > 0.05 AND |∆− 2| ≤ C∆ AND (3−∆) > 0.05;
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Figure 6: Efficiency and misidentification probabilities as functions of the cut value C∆ for
pions (top left), kaons (top right) and protons (bottom) from a sample of offline selected
Hb → h+h′− events including all the different decay modes. As a reference, the dotted
lines indicate the points where the efficiency reaches 80% and 90%.

• when calculating the efficiency for the identification of protons, the event is accepted
if (∆− 1) > 0.05 AND |∆− 2| > 0.05 AND (3−∆) ≤ 2 · C∆.

With these definitions, C∆ always lies in the range between 0 and 1, with C∆ = 0 corre-
sponding to the minimum efficiency and C∆ = 1 to the maximum efficiency. We emphasize
that the efficiencies are calculated for samples which span a significant range in momentum
for the particles in question, from a few GeV/c up to more than 100 GeV/c.
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3 Conclusions

We have derived a method to combine different correlated ∆ logL variables coming from
the PID system of the LHCb detector into a single variable, so-called ∆. Such a reduction
of the dimensionality of the PID parameter space simplifies in a considerable way the
employment of the PID information in maximum likelihood fits including all the two-
body B decay modes, as discussed in Ref. [6].
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