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Abstract

The family of B meson decays into pairs of charmless charged pseudo-scalar mesons
comprises many different channels. In order to disentagle the overlapping mass
peaks of the various decay modes, an accurate description of the invariant mass
distribution of each mode is required. In particular, the invariant mass parameteri-
zation must take into account the effect of QED final state radiation, which leads to
the presence of a long tail on the lower side of the mass peak. In this document we
propose a new parameterization based on a complete QED calculation of the pho-
ton emission rate and we compare it to a simpler one based on phenomenological
arguments. Furthermore, we show how the shape of the invariant mass distributions
under the π+π− mass hypothesis, for every decay mode of interest, can be described
very precisely by means of analytical calculations.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/44237905?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

The LHCb detector [1] can reconstruct some 105 Hb → h+h′− events per year which can
be exploited for CP violation measurements [2]. These unprecedented sample sizes are a
consequence of the large beauty production cross section at the LHC, which is expected
to be around 500 µb [3], and of the design of the detector, specifically optimized for
performing B-physics measurements.

Due to the simultaneous production of B0, B0
s and Λb hadrons, the mass peaks of

many two-body decays overlap, giving rise to a single unresolved signal, if no particle
identification information is used. Excellent control of the particle identification observ-
ables and an event-by-event fit technique are then required to fully exploit the statistical
power of the sample. An accurate description of the invariant mass distribution of each
Hb → h+h′− decay mode is a key ingredient for such an event-by-event fit.

The parameterization of the invariant mass spectrum is complicated by the fact that
the decay products radiate final state photons, hence leading to a distortion of the shape
of the charged pair invariant mass. The net effect, as we shall see, is the presence of a
long tail on the lower side of the mass peak.

In Sec. 3 we will show how the knowledge of the theoretical decay rate including
QED radiation, briefly discussed in Sec. 2, can be succesfully employed for describing
the reconstructed invariant mass line shape of these decays. Another important aspect
for realizing a simultaneous fit with all the decay modes included [2] is the description of
the invariant mass line shape under a common mass hypothesis, that we conventionally
choose as the π+π− one. We will discuss in Sec. 4 how such a description can be achieved
by means of analytical calculations.

2 Theoretical aspects of QED final state radiation

The LHCb Monte Carlo (MC) simulation includes final state radiation by means of the
PHOTOS generator [4], that is run on top of the EvtGen decay generator [5] and adds
radiated photons to the decay tree.

PHOTOS is a MC algorithm that simulates QED photon emissions in decays, by calcu-
latingO(α) radiative corrections for charged particles using a leading log collinear approxi-
mation. Within this approximation, the program calculates the amount of bremsstrahlung
radiation in the decay and modifies the final state according to the decay topology. A
simplified algorithm like PHOTOS is commonly used since calculating more complete ra-
diative corrections in heavy meson decays pose difficult theoretical problems, due to the
lack of a universally valid effective theory. However, it is possible to calculate and param-
eterize infra-red effects using the approximation of point-like hadrons. An important step
in this direction can be found in Ref. [6], where the calculation has been performed for
the non-leptonic decays of B and D mesons to two pseudo-scalar mesons. Ref. [6] reports
a complete O(α) calculation, which takes into account infra-red effects due to virtual and
real photons. According to the results of this calculation, the differential decay rate to
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O(α) of a B → hh + nγ decay, where n stands for any number of emitted photons, can
be written as:

dΓincl
12

dE
=

2α

π

|b12|Γ0
12

E

(
2E

mB

) 2α
π
|b12|

(1)

where E is the sum of the energies of the emitted photons in the rest frame of the decaying
B meson, Γ0

12 represents the pure weak decay rate (that is de facto unobservable) and mB

is the mass of the decaying B meson. The term b12 is given by:

b12 = 1− 4−∆2
1 −∆2

2 + 2δ2

8δ
log

(
∆1 + δ

∆1 − δ
· ∆2 + δ

∆2 − δ

)
, (2)

with
∆1(2) = 1 + r2

1(2) − r2
2(1) ri =

mi

mB

(3)

and
δ =

√
[1− (r1 + r2)2] [1− (r1 − r2)2], (4)

where m1 and m2 are the masses of the two pseudo-scalar mesons.
Considering for simplicity the case of a single photon emission (multiple emissions are

suppressed by the corresponding powers of α), mB is given by:

mB = E1 + E2 + Eγ, (5)

where E1, E2 and Eγ are the energies of the two pseudo-scalars and of the photon in the
rest frame of the B, where by definition we have:

~p1 + ~p2 + ~pγ = 0. (6)

The invariant mass of the two pseudo-scalars alone m12 is then given by:

m2
12 = (E1 + E2)

2 − (~p1 + ~p2)
2 = (E1 + E2)

2 − E2
γ , (7)

and then we can conclude that

m12 = mB

√
1− 2Eγ

mB

' mB − Eγ. (8)

In other words, the effect of the missing photon is a leakage in the measured invariant
mass equal to the photon energy in the rest frame of the B.

3 Parameterization under the correct mass hypoth-

esis

Since the expression of the photon energy is given by Eq. (1), we can write the p.d.f. for
the invariant mass of the two charged daughters, ignoring for the moment experimental
effects, as:

f(m) = Θ(mB −m)
s + 1

(mB −mmin)s+1 (mB −m)s , (9)
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where Θ(mB −m) is the Heaviside function, mmin = 5 GeV/c2 is the lower limit of the
invariant mass accepted by the offline event selection, and the parameter s is given by:

s =
2α

π
|b12| − 1. (10)

Since s is numerically less than zero (in fact it is close to -1), f(m) diverges for m → mB.
Nevertheless, the p.d.f. is integrable and correctly normalized to one.

In order to take into account the experimental resolution, f(m) can be convoluted
with the sum of two Gaussian p.d.f.’s:

g(m) = Θ(mB −m′) A (mB −m′)
s ⊗Gd(m−m′; f1, σ1, σ2) (11)

where A is a normalization factor, and with Gd defined as:

Gd(m− µ; f1, σ1, σ2) =
f1√
2πσ1

e
− (m−µ)2

2σ2
1 +

1− f1√
2πσ2

e
− (m−µ)2

2σ2
2 . (12)

The convolution in Eq. (11) cannot be calculated analytically, hence it must be cal-
culated numerically. Unfortunately, due to both the fast rise and divergence of f(m)
for m → mB, such numerical computation is not straightforward, either using a Fast
Fourier Transform technique or a numerical integration. In order to overcome numerical
problems, f(m) has been approximated as follows:

f(m) = wΘ(mB −m− ε)
s + 1

(mB −mmin)s+1 − εs+1
(mB −m)s + (1− w) δ(mB −m) (13)

where ε represents a small cutoff that determines the splitting of f(m) in two parts, a
regular one plus a Dirac δ function. The weight w is given by:

w = 1−
(

ε

mB −mmin

)s+1

. (14)

We can now rewrite g(m) as in the following:

g(m) = wΘ(mB −m′ − ε) A′ (mB −m′)
s ⊗Gd(m−m′; f1, σ1, σ2) +

+ (1− w) B′ Gd(m−mB; f1, σ1, σ2) (15)

where A′ and B′ are two normalization factors, and where the remaining convolution no
longer presents numerical problems since the function is regular and finite in the entire
domain. The choice of ε is somewhat arbitrary; it should be small enough in order to
properly take into account softer photons, but not too small as again to lead to numerical
troubles. For our practical purposes, we find that setting ε = 10 keV/c2 satisfies both the
requirements.

Before performing fits to the invariant mass distributions, we need to introduce a
further ingredient. Eq. (15) assumes that the selection efficiency (the offline and online

3



2GeV/c
5 5.05 5.1 5.15 5.2 5.25 5.3 5.35 5.4

A
rb

it
ra

ry
 u

n
it

s

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2GeV/c
5 5.05 5.1 5.15 5.2 5.25 5.3 5.35 5.4

A
rb

it
ra

ry
 u

n
it

s

0.5

0.6

0.7

0.8

0.9

2GeV/c
5.1 5.15 5.2 5.25 5.3 5.35 5.4 5.45 5.5

A
rb

it
ra

ry
 u

n
it

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2GeV/c
5 5.05 5.1 5.15 5.2 5.25 5.3 5.35 5.4 5.45 5.5

A
rb

it
ra

ry
 u

n
it

s

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

2GeV/c
5.25 5.3 5.35 5.4 5.45 5.5 5.55 5.6 5.65 5.7 5.75

A
rb

it
ra

ry
 u

n
it

s

0.2

0.4

0.6

0.8

1

2GeV/c
5.25 5.3 5.35 5.4 5.45 5.5 5.55 5.6 5.65 5.7 5.75

A
rb

it
ra

ry
 u

n
it

s

0

0.2

0.4

0.6

0.8

1

1.2

Figure 1: Relative dependence on the invariant mass of the event selection acceptance,
with superimposed a χ2 fit of Eq. (16): B0 → π+π− (top left), B0 → K+π− (top right),
B0

s → π+K− (middle left), B0
s → K+K− (middle right), Λb → pπ− (bottom left) and

Λb → pK− (bottom right).

event selections are described in Ref. [2]) has no dependence on the invariant mass value.
As is clear from Fig. 1, however, the efficiency has an appreciable dependence on the mass.
This dependence can be approximated by a linear relation within the mass window:

εm(m) ∝ 1 + q · |m−mB|, (16)

where q is a free parameter to be determined. The main cause of this mass dependence
introduced by the event selection is the cut on the impact parameter of the B hadron with
respect to the primary vertex. This cut is used to constrain the B hadron momentum
to point to the primary vertex, but in case of missing (or excessive) momentum of the
charged daughters, the reconstructed B momentum pointing to the primary vertex is
altered. Consequently, this cut introduces a dependence of the selection efficiency on
the B invariant mass value, which is visible in Fig. 1. The values of the q parameters
resulting from the fits are summarized in Tab. 1. There is no evidence for any dependence
of the results on the decay channel. The average value of the q parameter is q = (−1.5±
0.1) c2/GeV.

By multiplying g(m) of Eq. (15) by this acceptance, we finally get a p.d.f. for m:

h(m) = K−1 g(m) · (1 + q · |m−mB|), (17)
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Channel q [c2/GeV]

B0 → π+π− −1.5± 0.3
B0 → K+π− −1.4± 0.2
B0

s → π+K− −2.0± 0.5
B0

s → K+K− −1.5± 0.2
Λb → pπ− −1.7± 0.4
Λb → pK− −1.3± 0.4

Average −1.5± 0.1

Table 1: Results of the fits to the invariant mass dependence of the selection efficiency,
using Eq. (16).

Channel µ fG σ1 σ2 s µMC sth

[MeV/c2] [MeV/c2] [MeV/c2] [MeV/c2]

B0 → π+π− 5279.1± 0.2 0.83± 0.02 18.9± 0.3 49± 2 −0.971± 0.002 5279.4 −0.971
B0 → K+π− 5279.1± 0.1 0.83± 0.01 18.6± 0.2 47± 1 −0.977± 0.001 5279.4 −0.977
B0

s → π+K− 5369.2± 0.5 0.88± 0.02 19.2± 0.5 57± 3 −0.984± 0.003 5369.6 −0.977
B0

s → K+K− 5368.9± 0.2 0.84± 0.02 19.2± 0.3 47± 2 −0.984± 0.001 5369.6 −0.983
Λb → pπ− 5623.9± 0.7 0.90± 0.03 19.3± 0.6 57± 7 −0.981± 0.004 5624.0 −0.979
Λb → pK− 5624.3± 0.5 0.84± 0.04 18.9± 0.7 49± 4 −0.984± 0.003 5624.0 −0.985

Table 2: Results of the fits to the invariant mass distributions of the p.d.f. defined by
Eq. (17). For comparison, the last two columns show the B mass values used in the MC
simulation and the theoretical expectation for the parameter s respectively.

where the normalization factor K is given by:

K =

∫ mmax

mmin

g(m′) · (1 + q · |m′ −mB|)dm′. (18)

Fig. 2 shows the invariant mass distributions of all the channels under study with the
result of an unbinned likelihood fit using the p.d.f. defined by Eq. (17). The numerical
results of the fits are shown in Tab. 2.

The fitted values of the s parameters are notably compatible with the theoretical
expectations sth, calculated using Eq. (10). However, the fits seem to indicate that a
small systematic shift downwards of the B mass values by about 300 keV/c2 still remains,
and its proper understanding deserves further study. Note that the formalism outlined
above just applies to decays of B mesons to two pseudo-scalars, hence it is not strictly
valid for the two Λb decays. Nonetheless, we have used the same p.d.f. in the fits to the
two Λb modes. It can be seen that indeed the p.d.f. fits very well to the two Λb invariant
mass distributions, with results which are consistent to those of the B meson fits.

Although the parameterization discussed above is well motivated on theoretical
grounds and the fits give good results, its usage is not in general practical when per-
forming high statistics toy MC studies of the sensitivity on CP violating observables,
discussed in Ref [2], since the time needed for the numerical computation of the convo-
lution would dominate the calculation of the likelihood function. In this case, instead of
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Figure 2: Invariant mass distributions of the various modes, with superimposed the result
of the fit of the p.d.f. defined by Eq. (17): B0 → π+π− (top left), B0 → K+π− (top
right), B0

s → π+K− (middle left), B0
s → K+K− (middle right), Λb → pπ− (bottom left)

and Λb → pK− (bottom right).

using the expression given in Eq. (13) for f(m), we write:

f(m) = fE Θ(mB −m)
1

r
e−r(mB−m) + (1− fE) δ(mB −m), (19)

i.e. we decompose the mass distribution, in the absence of detector effects, into an ex-
ponential p.d.f. describing events where the emission of photons took place, plus a com-
ponent with no emission. The factor fE weights the number of events where radiation
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Channel µ fG σ1 σ2 fE r µMC

[MeV/c2] [MeV/c2] [MeV/c2] [c2/GeV] [MeV/c2]

B0 → π+π− 5278.5± 0.3 0.832± 0.018 18.8± 0.3 47± 2 0.066± 0.007 9.6± 1.2 5279.4
B0 → K+π− 5278.5± 0.1 0.835± 0.010 18.5± 0.2 46± 1 0.049± 0.003 9.1± 0.7 5279.4
B0

s → π+K− 5368.5± 0.5 0.86± 0.02 18.9± 0.5 54± 4 0.024± 0.007 3.6± 2.6 5369.6
B0

s → K+K− 5368.4± 0.2 0.838± 0.017 18.9± 0.3 45± 2 0.035± 0.004 8.4± 1.1 5369.6
Λb → pπ− 5623.5± 0.6 0.90± 0.03 19.1± 0.7 53± 7 0.053± 0.014 9.9± 2.0 5624.0
Λb → pK− 5623.7± 0.5 0.83± 0.03 18.7± 0.7 47± 4 0.029± 0.006 5.7± 1.3 5624.0

Table 3: Results of the fits to the invariant mass distributions of the p.d.f. defined by Eq.
(20). For comparison, the last column shows the mass value used in the MC simulation.
The average width defined as σ =

√
f1σ2

1 + (1− f1)σ2
2 is about 25 MeV/c2.

occurred with respect to events with no radiation. In practice, we replace the hyperboli-
cally divergent behaviour of the mass distribution for m → mB with a regular exponential,
which is of course finite for m = mB. From a physical point of view, such approximation
corresponds to an underestimation of the rate of soft photon emissions of low energies.
Taking into account resolution effects, the p.d.f. g(m) becomes:

g(m) = fE Ed(m−mB; f1, σ1, σ2, r) + (1− fE) C Gd(m−mB; f1, σ1, σ2), (20)

where C is a normalization factor, and Ed is defined as:

Ed(m−mB; f1, σ1, σ2, r) = f1 K−1
1 er(m−mB)

[
1− Erf

(
m−mB + rσ2

1√
2σ1

)]
+ (21)

+ (1− f1) K−1
2 er(m−mB)

[
1− Erf

(
m−mB + rσ2

2√
2σ2

)]
.

The normalization factors K1(2) are given by:

K1(2) =

∫ mmax

mmin

er(m−mB)

[
1− Erf

(
m−mB + rσ2

1(2)√
2σ1(2)

)]
dm, (22)

with mmin = 5 GeV/c2 and mmax = 5.8 GeV/c2, corresponding to the mass window
accepted by the offline selection. The integral in Eq. (22) can be calculated analytically,
hence the whole expression of the g(m) p.d.f. is analytic and no longer involves lengthy
numerical computations.

Fig. 3 shows the invariant mass distributions of each decay mode with the result of
an unbinned likelihood fit using the p.d.f. defined by Eq. (20). The numerical results of
the fits are shown in Tab. 3.

The bias of the mass values of the B hadrons are much larger than before, exceeding in
most cases 1 MeV/c2. This is expected since, as stated previously, this parameterization
clearly underestimates the emission of low energy photons. Note that we are ignoring
any dependence of the selection efficiency on the invariant mass value in this case, as
using such a phenomenological parameterization an efficiency correction would not lead
to any practical improvement of knowledge. As far as the fractions and the widths of the
Gaussian p.d.f.’s are concerned, they are practically equal to those obtained previously
and shown in Tab. 2.
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Figure 3: Invariant mass distributions of the various modes, with superimposed the result
of the fit of the p.d.f. defined by Eq. (20): B0 → π+π− (top left), B0 → K+π− (top
right), B0

s → π+K− (middle left), B0
s → K+K− (middle right), Λb → pπ− (bottom left)

and Λb → pK− (bottom right). As a reference, the lighter curve represents just the first
component of Eq. (20), i.e. the one representing the radiation tail.

4 Parameterization under the π+π− hypothesis

All studies presented hitherto assume the correct mass hypotheses for the daughter par-
ticles. In this section we will show how to parameterize the invariant mass if instead one
ignores any information on the masses of the daughter particles, in particular making the
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conventional assumption that the daughter particles are pions for every decay mode.
For a generic Hb → h+h′− decay, the B mass squared is given by:

m2
B = m2

h+ + m2
h′− + 2

√
p2

+ + m2
h+

√
p2
− + m2

h′− − 2~p+ · ~p−, (23)

where mh+ and mh− are the masses of the positive and negative decay products, and p+

and p− their momenta. If we make the π+π− hypothesis for the final state particles, we
can write:

m2
ππ = m2

π + m2
π + 2

√
p2

+ + m2
π

√
p2
− + m2

π − 2~p+ · ~p−. (24)

By subtracting these two equations we obtain:

m2
B −m2

ππ = (m2
h+ −m2

π) + (m2
h− −m2

π) +

+ 2 ·
(√

p2
+ + m2

h+

√
p2
− + m2

h′− −
√

p2
+ + m2

π

√
p2
− + m2

π

)
. (25)

In the limit of small particle masses with respect to the momenta, the previous identity
can be approximated as:

m2
B −m2

ππ ' (m2
h+ −m2

π) + (m2
h− −m2

π) +

+ 2p+p−

[(
1 +

m2
h+

2p2
+

)
·
(

1 +
m2

h′−

2p2
−

)
−
(

1 +
m2

π

2p2
+

)
·
(

1 +
m2

π

2p2
−

)]
'

' (m2
h+ −m2

π)

(
1 +

p−
p+

)
+ (m2

h− −m2
π)

(
1 +

p+

p−

)
=

= (m2
h+ −m2

π)

(
1 +

1− β

1 + β

)
+ (m2

h− −m2
π)

(
1 +

1 + β

1− β

)
, (26)

where we have introduced the momentum asymmetry β, defined as:

β =
p+ − p−
p+ + p−

. (27)

For a given value of β, the mass distribution under the π+π− hypothesis can then be
written as:

f(mππ|β) = g

(
mππ;

√
m2

B − Fh+h′−(β)

)
, (28)

where g(m; mB) is the mass p.d.f. for a B meson of true mass mB, defined using the
correct hypothesis for the daughter particles, and the function Fh+h′−(β) is defined as:

Fh+h′−(β) = (m2
h+ −m2

π)

(
1 +

1− β

1 + β

)
+ (m2

h− −m2
π)

(
1 +

1 + β

1− β

)
. (29)

In practice, for a given value of β, the mB mass is shifted towards lower mass values by
an amount equal to ∆(β) = mB −

√
m2

B − Fh+h′−(β).

9



It is now straightforward to write the joint p.d.f. for mππ and β, by multiplying
f(mππ| β) by a p.d.f. for β:

f(mππ, β) = g

(
mππ;

√
m2

B − Fh+h′−(β)

)
· h(β). (30)

Fig. 4 shows the distributions of mππ versus β for offline selected full MC events.
In the case of the B0 → π+π− decay, as shown in Fig. 5, we have found empirically

that an accurate parameterization for h(β) is:

h(β) = K−1Θ(|β0| − |β′|)

√
1− β′2

β2
0

⊗G(β − β′; σβ), (31)

where K is a normalization factor, β0 is a free parameter and G(β − β′; σ) is a Gaussian
with width equal to the free parameter σβ.

Although we expect h(β) to be very similar for all the channels, at least as far as the
shape is concerned, there is a kinematical constraint induced by the lower limit of the
π+π− invariant mass window, that according to the event selection is mmin = 5 GeV/c2,
which visibly modifies h(β) when the daughter particles are not pions. In fact, neglecting
experimental resolutions, the following inequality holds:√

m2
B − Fh+h′−(β) > mmin, (32)

which leads to the allowed range for β

β− < β < β+, (33)

where

β± =
∆m2

+ −∆m2
− ±

√
(∆m2

+ −∆m2
−)2 −∆m2

B · (2∆m2
+ + 2∆m2

− −∆m2
B)

∆m2
B

(34)

with
∆m2

± = m2
h± −m2

π (35)

and
∆m2

B = m2
B −m2

min. (36)

In practice, the effect of the π+π− invariant mass cut on h(β) is to introduce an abrupt
cutoff at the β− and β+ limits (see Tab. 4 for the actual values of β− and β+). Indeed,
due to resolution effects, we do not expect the previous inequalities to be strictly valid,
but nonetheless to be a good approximation.

In order to obtain a general expression of the p.d.f. for β we can proceed as follows.
If h(β) and f(mππ|β) are the p.d.f.’s for β and mππ given the value of β in the absence
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Figure 4: Distributions of the invariant mass mππ versus the momentum asymmetry β
for offline selected events: B0 → π+π− (top left), B0 → K+π− (top right), B0

s → π+K−

(middle left), B0
s → K+K− (middle right), Λb → pπ− (bottom left) and Λb → pK−

(bottom right). Note that, for the flavour specific decays, β transforms to −β when
passing from a decay to its CP-conjugate. For this reason, the β values of CP-conjugate
decays have been reflected around β = 0 in order to increase the available statistics.
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Figure 5: Distribution of the momentum asymmetry β for B0 → π+π− offline selected
events, with the result of an unbinned likelihood fit of the p.d.f., defined in Eq. (31),
superimposed.

of any mass cut, the p.d.f. for mππ and β, when a mass cut between mmin and mmax is
applied, is given by:

f̃(mππ, β) =
f(mππ|β)h(β)∫ 1

−1
dβ′h(β′)

∫ mmax

mmin
dm′

ππf(m′
ππ|β′)

. (37)

The p.d.f. for β in the presence of mass cuts is then obtained by integrating this expression
with respect to mππ:

h̃(β) =
h(β)

∫ mmax

mmin
f(m′

ππ|β)dm′
ππ∫ 1

−1
dβ′h(β′)

∫ mmax

mmin
dm′

ππf(m′
ππ|β′)

. (38)

By approximating for simplicity f(mππ|β) as a single Gaussian

f(mππ|β) = G(mππ; µ(β), σ), (39)

with mean µ(β) =
√

m2
B − Fh+h′−(β) and width σ ' 25 MeV/c2, i.e. the average width

of the mass distributions under the correct mass hypotheses (see Tab. 3), we obtain:

q(β) =

∫ mmax

mmin

f(m′
ππ|β)dm′

ππ =
1

2

[
Erf

(
mmax − µ(β)√

2σ

)
− Erf

(
mmin − µ(β)√

2σ

)]
. (40)
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Channel β− β+

B0 → π+π− −1 1
B0 → K+π− −0.844 1
B0

s → π+K− −1 0.883
B0

s → K+K− −0.875 0.875
Λb → pπ− −0.740 1
Λb → pK− −0.730 0.922

Table 4: Values of the β− and β+ parameters, calculated using Eq. (34).

As a consequence, the general expression of the p.d.f. for β becomes:

h̃(β) =
h(β) · q(β)∫ 1

−1
h(β′) · q(β′)dβ′

, (41)

with h(β) given by Eq. (31).
Fig. 6 shows the distributions h̃(β) for all the decay modes under study, with the

p.d.f. of Eq. (41) superimposed. The values of the parameters β0 and σβ have been fixed
to the ones determined by fitting the B0 → π+π− spectrum (see Fig. 5). As expected,
the p.d.f.’s are characterized by abrupt cutoffs at the values of β− and β+ reported in
Tab. 4.

By employing the parameterization of the invariant mass under the correct mass hy-
pothesis introduced in Eq. (20), we are finally able to write the joint p.d.f. for mππ and
β as follows:

f̃(mππ, β) = [fE Ed(m− µ(β); f1, σ1, σ2, s)+

+ (1− fE) C Gd(m− µ(β); f1, σ1, σ2)] · h̃(β), (42)

where the factor C normalizes the double Gaussian Gd to 1 inside the mass window.
Fig. 7 shows the invariant mass distributions under the π+π− hypothesis for the

various decay modes, with the projections on mππ of the results of unbinned likelihood
fits of the p.d.f. defined in Eq. (42) to the spectra. The numerical results of the fits
are summarized in Tab. 5. The fitted curves describe the data well, and the numerical
results of Tab. 5 are in very good agreement with those obtained by studying the mass
distributions under the correct mass hypothesis, summarized in Tab. 3. It must be
emphasized that, although the original MC samples on which the fits are performed are
the same, we do not expect the results of Tabs. 3 and 5 to be strictly identical. Besides
additional approximations, in the latter case we are imposing that the mππ mass is inside
a given window, while this is not required in the former case, except of course for the
B0 → π+π− decay, where the π+π− hypothesis is the correct one. The requirement on
mππ leads to a greater probability of discarding events which are placed in the radiative
tail of the mass distributions under the correct mass hypothesis. Hence we expect to have
reduced sensitivity for the parameters describing the radiative tail, since indeed we have
fewer events where large radiation occurred surviving the cut on mππ.
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Figure 6: Distributions of the momentum asymmetry β for offline selected events, with
the p.d.f. defined in Eq. (41) superimposed: B0 → π+π− (top left), B0 → K+π− (top
right), B0

s → π+K− (middle left), B0
s → K+K− (middle right), Λb → pπ− (bottom left)

and Λb → pK− (bottom right). Note that, for the flavour specific decays, β transforms to
−β when passing from a decay to its CP-conjugate. For this reason, the β distributions
of CP-conjugate decays have been reflected around β = 0 and summed up in the same
histograms in order to increase the available statistics.
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Figure 7: Invariant mass distributions of the various modes under the π+π− hypothesis,
with superimposed the projections on mππ of the results of unbinned likelihood fits of the
p.d.f. defined by Eq. (42): B0 → π+π− (top left), B0 → K+π− (top right), B0

s → π+K−

(middle left), B0
s → K+K− (middle right), Λb → pπ− (bottom left) and Λb → pK−

(bottom right).
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Channel µ fG σ1 σ2 fE r µMC

[MeV/c2] [MeV/c2] [MeV/c2] [c2/GeV] [MeV/c2]

B0 → π+π− 5278.5± 0.3 0.832± 0.018 18.8± 0.3 47± 2 0.066± 0.007 9.6± 1.2 5279.4
B0 → K+π− 5278.6± 0.1 0.835± 0.010 18.8± 0.2 47± 1 0.049± 0.004 10.2± 1.0 5279.4
B0

s → π+K− 5368.6± 0.5 0.83± 0.03 18.6± 0.6 46± 4 0.028± 0.008 5.0± 3.0 5369.6
B0

s → K+K− 5368.4± 0.2 0.814± 0.019 19.0± 0.3 44± 2 0.031± 0.005 6.3± 1.8 5369.6
Λb → pπ− 5623.4± 0.7 0.85± 0.06 19.2± 0.9 43± 5 0.058± 0.016 10.6± 2.4 5624.0
Λb → pK− 5623.7± 0.5 0.86± 0.03 20.0± 0.7 53± 5 0.023± 0.007 4.9± 2.7 5624.0

Table 5: Results of the fits to the distributions (mππ, β) of the p.d.f. defined by Eq. (42).
For comparison, the last column shows the mass value used in the MC simulation.

5 Conclusions

We have shown how to describe the line shape of the mass distribution for each
Hb → h+h′− decay mode, either using the correct mass hypothesis or, as a conventional
choice, the π+π− hypothesis. The description of the invariant mass line shape under a
common mass hypothesis is an important ingredient for performing maximum likelihood
fits including all the decay modes simultaneously, as discussed in Ref. [2].

Due to the presence of QED final state radiation, each mass distribution presents a
long tail on the lower side of the mass peak. The LHCb Monte Carlo simulation makes
use of the PHOTOS generator [4] in order to simulate QED radiation in decays, which
employs the calculation of O(α) radiative corrections for charged particles using a leading
log collinear approximation. In order to construct a parameterization which takes into
account the effect of QED radiation on the invariant mass spectrum, we employed an exact
calculation of the differential decay rate as a function of the emitted photon energy, made
available in Ref. [6]. Such a calculation was specifically performed for the non-leptonic
decays of B and D mesons to two pseudo-scalars.

We have also seen that the effect of QED radiation on the mass distributions can be
well described by means of a phenomenological parameterization. Although slightly less
accurate with respect to the theoretical one, such a parameterization is much simpler and
faster to calculate in a computer program, and can be useful when performing maximum
likelihood fits with large data samples, where timing may become an effective limiting
factor.
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