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Abstract. We study the second order Fuč́ık type problem with cubic nonlinearity
−x′′ = µ(x+)3 − λ(x−)3, x(0) = 0, x(1) = γ

∫ 1

0
x(s)ds and construct the Fuč́ık

spectrum for this problem. The spectrum obtained under normalization condition
(otherwise problem may have continuous spectra) structurally is similar to Fuč́ık
spectra for the problem −x′′ = µx+

− λx− with the same boundary conditions.
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1 Introduction

There is intensive literature about asymmetric ordinary differential equations.
One of the pioneering work is the article by S. Fuč́ık which can be found in
the book [4]. In the mentioned source a specific formally nonlinear equation is
considered containing two spectral parameters. The classical (and the simplest)
equation of this kind is a famous Fuč́ık equation

− x′′ = µx+ − λx−, µ, λ ∈ R, (1.1)

x+ = max{x, 0}, x− = max{−x, 0}.

The Fuč́ık problem is a problem of finding a set of parameters (µ, λ) such that
the problem (1.1),

x(0) = 0, x(1) = 0 (1.2)

has nontrivial solutions. This set is called a Fuč́ık spectrum.
The problem (1.1), (1.2) generalizes classical spectral problems with one

parameter and reduces to the classical problem if µ = λ. The Fuč́ık spectrum
is a two-dimensional set which may have interesting properties. The Fuč́ık
spectrum for the problem (1.1), (1.2) is well known and consists of infinite
set of curves (branches) F+

i
and F−

i
(i = 0, 1, 2, . . .) which can be obtained

analytically and graphically. The lower index shows how many zeroes has the
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respective solution in the interval (0; 1), and the upper index shows the sign of
the derivative of a solution at t = 0. Some of the branches for the spectrum of
the classical Fuč́ık problem are shown in Fig. 1.
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Figure 1. The spectrum for the problems (1.1), (1.2) and (1.1), (1.3).

Since the work of Fuč́ık, this equation has been studied together with dif-
ferent boundary conditions.

There is little information about Fuč́ık type problems with the integral con-
ditions. The investigations for linear differential equations with one parameter
and integral conditions were made in the works [1, 5, 6]. Some new investi-
gations of Green’s function for second-order problems with nonlocal boundary
condition (inc. integral conditions) are presented in papers [7, 13]. There are
some author’s works devoted to Fuč́ık type problem with integral condition.
The results about the Fuč́ık equation (1.1) with zero integral condition

x(0) = 0,

∫ 1

0

x(s) ds = 0 (1.3)

were considered in the work [9]. The spectrum of the problem (1.1), (1.3) is
essentially different from the classical one. It is not a countable set of hyper-
bolas, but a two-sided wave spreading along the bisectrix of the first quadrant
in the parameter (µ, λ) plane. Some of the branches for the spectrum of the
problem (1.1), (1.3) are depicted in Fig. 1.

The results about the Fuč́ık equation (1.1) with conditions

x(0) = 0, x(1) = γ

∫ 1

0

x(s) ds, γ ∈ R. (1.4)

which include both conditions (1.2) and (1.3) were considered in [12]. The
description of the spectrum for different values of γ was given too.

In the present work we study the Fuč́ık type problems which include equa-
tion with nonlinear (cubic) functions on the right side

−x′′ = µ(x+)3 − λ(x−)3, µ ≥ 0, λ ≥ 0 (1.5)

and different boundary conditions.

Math. Model. Anal., 16(1):52–61, 2011.
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The paper is organized as follows. Section 2 is devoted to the spectrum
of the Fuč́ık type problem which includes the equation (1.5) and Dirichlet
boundary conditions. This spectrum was considered in [8] for different power
functions. In Section 3, we present the results about the problem which includes
the equation (1.5) and zero integral condition. The description of the spectrum
was given in the work [10] (or in the work [11]) where the equation (1.5) was
considered in the form

−x′′ = 2µ4(x+)3 − 2λ4(x−)3, µ > 0, λ > 0.

In Section 4, we provide explicit formulas for the spectrum of the problem
(1.5), (4.1) and graphically construct the spectrum for different γ values. The
analysis of the spectrum of this problem for different γ values is the main goal
of this work. The expressions of the spectrum branches are carried out using
the lemniscatic functions. The lemniscatic sine and cosine functions can be
expressed in terms of the Jacobi elliptic functions as [14]

sl t = k
sn (t/k)

dn (t/k)
, cl t = cn

t

k
, k =

1√
2
.

The formulas for relations between lemniscatic functions and their derivatives
are known from [2]. The spectrum is obtained under the normalization condi-
tion |x′(0)| = 1, because otherwise problems may have continuous spectra.

2 The Spectrum of the Problem with Dirichlet Condi-

tions

Consider the equation (1.5) with the conditions

x(0) = 0, x(1) = 0, |x′(0)| = 1. (2.1)

Theorem 1 [see [8]]. The Fuč́ık spectrum for the problem (1.5), (2.1) consists
of the branches given by

F+
0 =

{

(2(2A)4, λ)
}

, F−
0 =

{

(µ, 2(2A)4)
}

,

F+
2i−1 =

{

(µ, λ)
∣

∣ 2A 4

√

2

µ
i+ 2A

4

√

2

λ
i = 1

}

,

F+
2i =

{

(µ, λ)
∣

∣ 2A 4

√

2

µ
(i + 1) + 2A

4

√

2

λ
i = 1

}

,

F−
i

=
{

(µ, λ)
∣

∣ (λ, µ) ∈ F+
i

}

,

where A =
∫ 1

0
ds√
1−s4

, i = 1, 2, . . . .

The first five pairs of branches of the spectrum to the problem (1.5), (2.1)
are depicted in Fig. 2.
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Figure 2. The spectrum for the problems (1.5), (2.1) and (1.5), (3.1).

3 The Spectrum of the Problem with Zero Integral Con-

dition

Consider the equation (1.5) with the conditions

x(0) = 0,

∫ 1

0

x(s) ds = 0, |x′(0)| = 1. (3.1)

Theorem 2. The Fuč́ık spectrum for the problem (1.5), (3.1) consists of the

branches given by

F+
1 =

{

(µ, λ)
∣

∣

∣

2π

4

√
λ− π

4

√
µ+

√
µ arctan cl

(

4

√

λ/2− 2A 4

√

λ/µ
)

= 0,

µ > 32A4, 2A 4

√

2/µ+ 2A 4

√

2/λ ≥ 1
}

∪
{

(µ, λ)
∣

∣

∣
µ = 32

(

A+
√

π/4
)4

, λ = 0
}

,

F+
2i =

{

(µ, λ)
∣

∣

∣
(2i+ 1)

π

4

√
λ− 2i

π

4

√
µ−

√
λ arctan cl

(

4

√

µ

2
− 2Ai 4

√

µ

λ

+ 2Ai
)

= 0, 2A 4

√

2

µ
i+ 2A

4

√

2

λ
i < 1, 2A 4

√

2

µ
i+ 2A

4

√

2

λ
(i+ 1) ≥ 1

}

,

F+
2i+1 =

{

(µ, λ)
∣

∣

∣
(2i+ 2)

π

4

√
λ− (2i+ 1)

π

4

√
µ−√

µ arctan cl
(

4

√

λ

2

− 2A(i+ 1) 4

√

λ

µ
+ 2A(i+ 1)

)

= 0, 2A 4

√

2

µ
(i+ 1) + 2A

4

√

2

λ
i < 1,

2A 4

√

2/µ(i + 1) + 2A 4

√

2/λ(i + 1) ≥ 1
}

,

F−
i

=
{

(µ, λ)
∣

∣

∣
(λ, µ) ∈ F+

i

}

,

where cl (t) is the lemniscatic cosine function, A =
∫ 1

0
ds√
1−s4

, i = 1, 2, . . . .
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Remark 1. The branches F±
1 consist of two parts: the part in the first quadrant

and the point on the axis. The point on the axis corresponds to the solution
which consists of the lemniscatic sine function continued by straight line (not
by lemniscatic sine function as in the first quadrant of (µ, λ) plane).

Some pairs of branches of the spectrum to the problem (1.5), (3.1) are
presented in Fig. 2, the dashed curves in this figure are the branches of the
spectrum for the problem (1.5), (2.1), which separate branches of the spectrum
for the problem (1.5), (3.1).

4 The Connection of the Spectra

Consider the equation (1.5) with the conditions

x(0) = 0, |x′(0)| = 1, x(1) = γ

∫ 1

0

x(s) ds, γ ∈ R. (4.1)

The expressions of the branches of the spectrum for the problem (1.5), (4.1)
are given in the next theorem.

Theorem 3. The spectrum for the problem (1.5), (4.1) consists of the branches
(if these branches exist for corresponding value of γ) given by

F+
0 =

{

(µ, λ)
∣

∣

∣

4

√

2

µ
sl 4

√

µ

2
= γ

√

2

µ

(π

4
− arctan cl 4

√

µ

2

)

, 0 < µ ≤ 2(2A)4
}

,

F+
1 =

{

(µ, λ)
∣

∣

∣

2π
√
λ

4
γ − π

√
µ

4
γ +

√
µγ arctan cl

(

4

√

λ

2
− 2Ai 4

√

λ

µ

)

+
4

√

µ2λ

2
sl
(

4

√

λ

2
− 2Ai 4

√

λ

µ

)

= 0, µ > 32A4, 2A 4

√

2

µ
+ 2A

4

√

2

λ
≥ 1

}

∪
{

(µ, λ)
∣

∣

∣
2A 4

√

2

µ
− 1 = γ

(π

2

√

2

µ
+ 2A 4

√

2

µ
− 2A2

√

2

µ
− 1

2

)

, λ = 0
}

,

F+
2i =

{

(µ, λ)
∣

∣

∣

√
λγ arctan cl

(

4

√

µ

2
− 2Ai 4

√

µ

λ
+ 2Ai

)

+
4

√

λ2µ

2
sl
(

4

√

µ

2
− 2Ai 4

√

µ

λ
+ 2Ai

)

− (2i+ 1)π
√
λ

4
γ +

2iπ
√
µ

4
γ = 0,

2A 4

√

2

µ
i+ 2A

4

√

2

λ
i < 1, 2A 4

√

2

µ
i+ 2A

4

√

2

λ
(i+ 1) ≥ 1

}

,

F+
2i+1 =

{

(µ, λ)
∣

∣

∣

√
µγ arctan cl

(

4

√

λ

2
− 2A(i+ 1) 4

√

λ

µ
+ 2A(i+ 1)

)

+
4

√

µ2λ

2
sl
(

4

√

λ

2
− 2A(i+ 1) 4

√

λ

µ
+ 2A(i+ 1)

)

− (2i+ 2)π
√
λ

4
γ
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+
(2i+ 1)π

√
µ

4
γ = 0, 2A 4

√

2

µ
(i + 1) + 2A

4

√

2

λ
i < 1, 2A 4

√

2

µ
(i+ 1)

+ 2A
4

√

2

λ
(i + 1) ≥ 1

}

, F−
i

=
{

(µ, λ)
∣

∣

∣
(λ, µ) ∈ F+

i

}

,

where sl (t), cl (t) are the lemniscatic sine and cosine functions, A =
∫ 1

0
ds√
1−s4

,

i = 1, 2, . . ..

Proof. The proof of this theorem is similar to the proof given in the works
[10] or [12].

Some comments follow. First of all we obtain the expression for F+
0 . Let

us suppose that the solution without zeroes in the interval (0, 1) exists and
x′(0) = 1. In this case we obtain that the problem (1.5), (4.1) reduces to the
eigenvalue problem

−x′′ = µx3, x(0) = 0, x(1) = γ

∫ 1

0

x(s) ds. (4.2)

The solution of the equation (4.2) which satisfies the first boundary condition
is given by x(t) = 4

√

2/µ sl
(

4

√

µ/2t
)

. It must satisfy the integral condition from

(4.2). From the work [10] we know that
∫

t

0 sl s ds = π

4 − arctan cl t. In view of

x(1) = 4

√

2/µ sl
(

4

√

µ/2
)

and

∫ 1

0

x(s) ds =
√

2/µ
(π

4
− arctan cl

(

4

√

µ/2
)

)

we obtain the expression for F+
0 .

The idea of the proof for other branches is similar. We consider the eigen-
value problems in the intervals between two consecutive zeroes of the solution
and use the conditions of the solutions for these problems. For example, we
will prove this theorem for F+

1 . Suppose that (µ, λ) ∈ F+
1 and let x(t) be the

corresponding nontrivial solution of the problem (1.5), (4.1). The solution has
only one zero in (0, 1) and x′(0) = 1. Let this zero be denoted by τ . Consider
a solution of the problem (1.5), (4.1) in the interval (0, τ). We obtain that the
problem (1.5), (4.1) in this interval reduces to the eigenvalue problem

−x′′ = µx3, x(0) = x(τ) = 0.

Since x(t) = 4

√

2/µ sl
(

4

√

µ/2t
)

in the interval (0, τ) and x(τ) = 0, we obtain

that τ = 2A 4

√

2/µ. It follows that
∫ τ

0

4

√

2/µ sl
(

4

√

µ/2s
)

ds =
π

2

√

2/µ. (4.3)

Now consider a solution of the problem (1.5), (4.1) in the interval (τ, 1).
We obtain the problem −x′′ = λx3 (λ > 0) with boundary condition x(τ) = 0
in this interval. Since x(t) = − 4

√

2/λ sl
(

4

√

λ/2
(

t− 2A 4

√

2/µ
))

in the interval
(τ, 1) we obtain that

x(1) = − 4

√

2/λ sl
(

4

√

λ/2
(

1− 2A 4

√

2/µ
)

)

, (4.4)

Math. Model. Anal., 16(1):52–61, 2011.



58 N. Sergejeva

∫ 1

τ

(−1) 4

√

2/λ sl
(

4

√

λ/2
(

s− 2A 4

√

2/µ
)

)

ds

=
√

2/λ
(

arctan cl
(

4

√

λ/2
(

1− 2A 4

√

2/µ
))

− π

4

)

. (4.5)

Using (4.3), (4.4) and (4.5) in the condition x(1) = γ
∫ 1

0 x(s) ds we obtain

the expression for F+
1 (for γ > 0).

Now consider a solution of the problem (1.5), (4.1) which consists of the
lemniscatic sine function continued by straight line or x′′ = 0 in the interval
(τ, 1). Since x(t) = −t+2A 4

√

2/µ in the interval (τ, 1) we obtain the expression
for finding the point on the axis.

Considering the solution of the problem (1.5), (4.1) it is easy to prove that

0 < 2A 4

√

2/µ < 1 ≤ 2A 4

√

2/µ+ 2A 4

√

2/λ.

The proof for other branches is analogous. ut

Some properties of the spectrum for the problem (1.5), (4.1) are given in
the next lemmas.

Lemma 1. The problem (1.5), (4.1) connects both above considered problems.

If γ = 0 we obtain the problem (1.5), (2.1), but if γ = ±∞ we obtain the

problem (1.5), (3.1).

Proof. The first part of Lemma is evident. Let us consider γ = ±∞. We
rewrite the integral condition of the problem (1.5), (4.1) in the form (we can
do it because γ 6= 0)

x(1)

γ
=

∫ 1

0

x(s) ds.

The left side tends to zero and the integral tends to zero also. The proof of
Lemma 1 follows. ut

Lemma 2. The point on the axis in the F±
1 of the spectrum for the problem

(1.5), (4.1) exists for γ < 0 and γ > 2.

Proof. Consider the equation

2A 4

√

2

µ
− 1 = γ

(π

2

√

2

µ
+ 2A 4

√

2

µ
− 2A2

√

2

µ
− 1

2

)

. (4.6)

The investigation of the (4.6) as a quadratic equation for k = 4

√

2/µ with
parameter γ shows that solutions of this equation exist for any real γ values.
These solutions satisfy the condition µ > 32A4 (which is necessary for one zero
in the interval (0, 1)) only for γ < 0 and γ > 2. This proves the lemma. ut

Lemma 3. The branches F±
0 of the spectrum for the problem (1.5), (4.1) do

not exist for γ < 0.
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Proof. Consider the solution without zeroes in the interval (0, 1). It is clear

that signx′(0) = signx(t) = sign
∫ 1

0
x(s) ds (where t ∈ (0, 1)). It follows that

sign
(

γ

∫ 1

0

x(s) ds
)

6= signx(t)

for negative γ values. Therefore the branches F±
0 do not exist for γ < 0. ut

Lemma 4. The spectrum of the problem (1.5), (4.1) is symmetric with respect

the bisectrix of the first quadrant of the parameter (µ, λ) plane.

Proof. This lemma is a direct consequence of the proof of the Theorem 3. ut

Lemma 5. There are the points of (µ, λ)-plane, which are fixed for any values

of γ. For any values of γ, except γ = 0, the odd-numbered and the even-

numbered branches are separated by (2(4Ai)4, 2(4Ai)4), but the even-numbered

and the odd-numbered branches are separated by the points

F+
2i ∩ F+

2i+1 =
(

(
√

i(i+ 1) + i+ 1)42(2A)4; (
√

i(i+ 1) + i)42(2A)4
)

,

F−
2i ∩ F−

2i+1 =
(

(
√

i(i+ 1) + i)42(2A)4, (
√

i(i+ 1) + i+ 1)42(2A)4
)

,

where i = 1, 2, . . ..

Proof. It is clear that the odd-numbered branches and the even-numbered
ones intersect at the points in which the problem (1.5), (4.1) reduces to the
eigenvalue problem

−x′′ = µx3, x(0) = 0,

∫ 1

0

x(s) ds = 0.

The eigenvalues of this problem are µ = 2(4Ai)4. It follows the first assertion
of lemma. The even-numbered branches F+

2i and the odd-numbered ones F+
2i+1

intersect at the points which satisfy the system of equations


















2A 4

√

2

µ
(i + 1) + 2A 4

√

2

λ
i = 1,

π

2

√

2

µ
(i+ 1) =

π

2

√

2

λ
i.

(4.7)

In view of the second equation of the system (4.7) we obtain that λ =
(

i

i+1

)2
µ.

The second assertion of Lemma 5 follows from the first equation of the sys-
tem (4.7). ut

Several first branches of the spectrum to the problem (1.5), (4.1) for different
γ values are depicted in Fig. 3, the dashed curves is the spectrum for the
problem (1.5), (2.1), the other ones - F+

i
and F−

i
branches of the spectrum for

the problem (1.5), (4.1). The spectrum of the problem (1.5), (4.1) for γ = 0
and γ = ±∞ is shown in Fig. 2 as follows from Lemma 1.
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Figure 3. The spectrum for the problem (1.5), (4.1) for different γ values.

5 Conclusions

The spectrum of the problem (1.5), (4.1) was investigated and the following
properties of the spectrum were established:

• The spectrum for small γ is similar to the Fuč́ık type spectrum for Dirich-
let problem, which was considered in [8].

• The spectrum for large γ is similar to the Fuč́ık type spectrum for the
integral problem, the analog of this problem was considered in [10].

• Passage from γ = 0 to γ = ±∞ is different for γ > 0 and γ < 0 (for
example, the asymptotic of the branches is different).
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• Some branches of the spectrum (F+
0 and F−

0 ) do not exist for some values
of γ.

• The spectrum can be visualized by using analytical representation of so-
lutions via the Jacobi elliptic functions. The respective diagrams were
constructed in the article.
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