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Abstract. In this paper, we consider the Monte Carlo method for finding the so-
lution of nonlinear integral equations at a fixed point x0. In this method, simulated
Galton-Watson branching process is employed for solving the proposed integral equa-
tion. The main goal of this paper is to compare the behavior of three classifications
of branching process based on the mean progeny, i.e. the subcritical, critical and
supercritical process.
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1 Introduction

Consider the following Fredholm integral equation with polynomial nonlinear-
ity:

u(x) = f(x) +

∫

D

. . .

∫

D

K(x, y1, . . . , ym)

m
∏

i=1

u(yi)

m
∏

i=1

dyi, (1.1)

where D ⊆ R and m is a natural number greater than or equal to 2, f(x) ∈

L2(D) and the kernel K(x, y1, . . . , ym) belongs to L2(D × D × . . . × D) ≡

L2(D
m+1). It is assumed that this equation has an iterative solution corre-

sponding to the iteration process:

uj+1(x) = f(x) +

∫

D

. . .

∫

D

K(x, y1, . . . , ym)

m
∏

i=1

uj(yi)

m
∏

i=1

dyi. (1.2)

where u0(x) = f(x), j = 0, 1, . . . .
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The first task is to construct a Monte Carlo estimator for evaluating the
functional

< g, u >=

∫

D

g(x)u(x)dx. (1.3)

The functions u(x) and g(x) belong to any Banach space X and to the adjoint
space X∗, respectively, and u(x) is a unique solution of the iterative process
(1.2). More details can be found in [3].

2 Monte Carlo Method

In this section we introduce Monte Carlo method for estimating (1.3). If the
method of successive approximations

uj+1(x) = |f(x)|+

∫

D

. . .

∫

D

|K(x, y1, . . . , ym)|
m
∏

i=1

uj(yi)
m
∏

i=1

dyi

with initial approximation u0(x) = |f(x)|, converges, then a branching process
enables us to establish random variables which mathematical expectations are
equal to functional (1.3).

In theory of branching process, we usually consider particles (such as neu-
trons or bacteria) that can generate new particles of the same type. The initial
set of objects is referred to as belonging to the zero generation. Particles gen-
erated from the nth generation are said to belong to the (n+1)-th generation.
In Galton-Watson branching processes single particle is remained alive just for
a unit of time, and only at the end of its life produces a random number of
progeny according to a probability distribution. Every generated particle at
the first generation may alive and generate similar particles as particles in zero
generation. In the second generation, progeny particles behaves in the identi-
cal way and so on. In this process the life spans of all particles are identical
and equal to one, then this process can be modeled by a discrete-time index,
identical to the number of generations [1].

To obtain a random variable which mathematical expectation is equal to
(1.3), we consider a branching process with the following property: any particle
distributed with initial density function

p0(x) ≥ 0, and

∫

D

p0(x) dx = 1

is born in the domain R
m at a random point x0. In the next generation, this

particle either dies out with probability h(x0), where 0 ≤ h(x0) < 1, or gener-
ates m ≥ 2 new analogical particles in the random points x00, x01, . . . , x0m−1

with probability pm(x0) = 1− h(x0) and the transition density function
p(x0, x00, x01, . . . , x0m−1) ≥ 0, where

∫

D

. . .

∫

D

p(x0, x00, x01, . . . , x0m−1)

m−1
∏

i=0

dx0i = 1.



i

i

“MMA15v29” — 2010/7/7 — 9:05 — page 373 — #3
i

i

i

i

i

i

Three Classifications on Branching Processes and Their Behavior 373

The used index numbers are called multi-indices. The particle which belongs
to zero generation is enumerated with zero index, i.e. x0. Its discrete inher-
itors are enumerated with the indices 00, 01, . . . , 0m − 1, i.e. the next points
x00, x01, . . . , x0m−1 belong to the first generation. If a parent particle has index
t, then its progeny have index t0, . . . , t1, . . . , tm − 1. The generated particles
behave in the next moment as the initial one and etc. The trace of such a
process is a tree form structure shown in Figure 1.

0x

00x 01x 0 1m
x

−

01 1m
x

−011x
010x

Figure 1. A trace of the branching process.

To find relation between the branching process and a solution of the integral
equation (1.1), we calculate the first two iterations of iterative equation (1.2)
in the simple case when m = 2. The branching process which corresponds to
these two iterations is presented in Figure 2.

c)b)a)

e)d)

0x

0x
0x

0x 0x

00x

00x

00x 00x

01x

01x

01x 01x

000x

000x
001x

001x

010x 010x

011x
011x

Figure 2. The branching processes in the case m = 2.

Math. Model. Anal., 15(3):371–381, 2010.
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u0(x0) = f(x0), u1(x0) = f(x0) +

∫∫

K(x0, x00, x01)f(x00)f(x01)dx00dx01,

u2(x0) = f(x0)+

∫∫

K(x0, x00, x01)f(x00)f(x01)dx00dx01 +

∫∫

K(x0, x00, x01)

× f(x00)
(

∫∫

K(x00, x000, x001)f(x000)
)

f(x001)dx000dx001dx00dx01

+

∫∫

K(x0, x00, x01)f(x00)
(

∫∫

K(x01, x010, x011)f(x010

)

× f(x011) dx010dx011dx00dx01 +

∫∫

K(x0, x00, x01)

×

(

∫∫

K(x01, x010, x011)f(x010)f(x011)dx010dx011

)

×

(

∫∫

K(x00, x000, x001)f(x000)f(x001)dx000dx001

)

dx00dx01.

Obviously, the term of u0 corresponds to zero generation, see Fig. 2a, and itera-
tive equation u1 corresponds to all trees which appear until the first generation,
see Figures 2a and 2b. The structure of iterative equation u2 is linked with all
trees which appear until the second generation.

A full tree with n generations is called the tree Γn, where the dying of
particles is not visible from zero to (n − 2)-th generation, but all generated
particles of (n − 1)-th generation die. We present Γ as the subtree from a
full tree. Consider A be the all particles that can generate the same particles
in the next steps and B denotes the all died particles of the above explained
branches. Consider a branching process with l generations in the general case
m ≥ 2. It corresponds to the truncated iterative process with l iterations (1.2).
There is a one-to-one correspondence between the number of subtrees of the
number of the terms of the truncated iterative process with l iterations. This
correspondence allows us to construct a procedure for a random choice of the
tree and to calculate the value of a random variable which corresponds to
this tree. Thus, when we construct the branching process we receive arbitrary
subtrees Γ from the full tree Γl. We set the random variable

Θg(Γ ) =
g(x0)

p0(x0)

∏

xt∈A

K(xt)

p(xt)

∏

xt∈B

f(xt)

h(xt)

with the density function

p(Γ ) = p0(x0)
∏

xt∈A

p(xt)
∏

xt∈B

h(xt), (2.1)

where K(xt), denotes K(xt) = K(xt, xt1, xt2, . . . , xtm) and

p(xt) = pm(xt)p(xt, xt1, xt2, . . . , xtm), h(xt) = 1− pm(xt),
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where points xt1, xt2, . . . , xtm are generated by xt.
According to the following theorem, we obtain random variable for arbitrary

tree Γ which estimate lth iteration, ul, of the iterative process (1.2) [3].

Theorem 1. The mathematical expectation of the r.v. Θg(Γ ) is equal to the

functional < g, ul >, i.e.

E(Θg(Γ )) =< g, ul >=

∫

D

g(x)ul(x) dx.

It is clear that if l → ∞, then the mathematical expectation of the random
variable is:

lim
l→∞

E(Θg(Γ )) =< g, u >=

∫

D

g(x)u(x)dx.

The case, when the given function g(x) = δ(x− x0), where δ(·) is the delta
function, is of special interest, because we are interested in calculating the value
of u in a fixed point as x0. If we simulate N branches as Γ (Number of Markov
chains), we can estimate u(x0) by taking the average of estimation of u(x0) as
Monte Carlo solution where g(x) = δ(x− x0).

The probable error of this method is rN = 0.6745σ(Θ(Γ ))/
√

N , where
σ(Θ(Γ )) is the standard deviation of Θ(Γ ) [5]. For reducing the error we can
consider sufficiently large N or reduce the variance of the error i.e. σ2(Θ(Γ )).

The problem of optimization of Monte Carlo algorithms consists in mini-
mization of the standard deviation, i.e. minimization of the second moment
E(Θ2

g(Γ )) of the r.v. Θg(Γ ). This is done by a suitable choice of the density
function p(Γ ). Dimov have shown that the probability transition density

p(x, y1, y2, . . . , ym) =
|K(x, y1, y2, . . . , ym)|

∫

. . .
∫

|K(x, y1, y2, . . . , ym)|
∏m

i=1
dyi

and the initial transition probability p0(x) = |g(x)|/
∫

|g(x)|dx, minimizes the
variance and in this case the density function p(Γ ) in (2.1) is called almost

optimal [2].
Now, we present the Monte Carlo algorithm using the almost optimal den-

sity function:

Almost Optimal Monte Carlo Algorithm

1. Set Θg(Γ ) = 1 and get point ξ for calculate of u(ξ).

2. Chose an independent realization, α, of the uniformly distributed random
variable in the interval (0, 1).

3. If α ≤ pm(ξ) then go to steps 5 else go to step 4.

4. Set Θg(Γ ) = Θg(Γ ) × f(ξ)
1−pm(ξ) . In this case we say that the point dies

out.

5. Generate the numbers ξ1, ξ2, . . . , ξm with transition density function

p(x, y1, y2, . . . , ym) =
|K(x, y1, y2, . . . , ym)|

∫

. . .
∫

|K(x, y1, y2, . . . , ym)|
∏m

i=1
dyi

.

Math. Model. Anal., 15(3):371–381, 2010.
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6. Obtain

Θg(Γ ) = Θg(Γ )×
K(ξ1, ξ2, . . . , ξm)

pm(ξ)× p(x, ξ1, ξ2, . . . , ξm)
.

7. Repeat the steps 2 and 3 for the generated points: ξ1, ξ2, . . . , ξm

8. Stop the algorithm when all points die out.

3 Classification of Branching Processes

A very important classification of a branching process is based on the mean
progeny of a particle, i.e. m = E(X), where the random variable X denotes
the number of progeny of a particle. Therefore, in the expected value sense,
the process grows geometrically if m > 1, stays constant if m = 1, and decays
geometrically if m < 1. We call these cases as supercritical, critical, and
subcritical for the process, respectively. If we denote the number of particles
at time t by Zt, then E[Zt] = mt so E[Zt] ↑ ∞, E[Zt] = 1 and E[Zt] ↓ 0 for
supercritical, critical, and subcritical branching process, respectively.

Let us consider the probability qt = P (Zt = 0) that the process extincts at
time t. The sequence qt tends to a limit q which is the probability of eventual
extinction. If m > 1, then 0 ≤ q < 1. If m ≤ 1, then q has to be equal to 1.

The supercritical and subcritical processes behave as expected from the
expression for the means. The critical process is counterintuitive. Although
the mean value stays constant and equal to 1, the process becomes extinct
almost surely [7]. In this paper we want to have comparison between these
classifications, if pm < 1

m , pm = 1

m and pm > 1

m then we have the subcritical,
critical and supercritical processes respectively.

4 Numerical Results

For the numerical tests of the Monte Carlo algorithm, we focus on three pa-
rameters: (i) pm, (ii) the number of employed Markov chain (N), (iii) total
number of employed points in branching process. Since in the case of supercrit-
ical branching process, the probability of extinction is not equal to one, then
with positive probability, the number of generated points tends to infinity. So
we have to consider a rule to limit the number of points. We note that with
this stopping rule for terminating process, we have biased on our results. For
this, we consider the maximum height of supercritical branching process as 20.
The height of a branching process is the length of the path from the parent
node to the deepest node in the branching process.

Consider the following Fredholm integral equation (m = 2):

u(x) = ax4 + bx3 + cx2 + dx+ e+ λ

∫ 1

0

∫ 1

0

x4yzu(y)u(z) dydz.

This integral equation under condition

λ =
3

2

(a

6
+

b

5
+

c

4
+

d

3
+

e

2

)

−1
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Figure 3. The results of Monte Carlo simulation in case p2 = 0.1.
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Figure 4. The results of Monte Carlo simulation in case p2 = 0.2
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Figure 5. The results of Monte Carlo simulation in case p2 = 0.3.

has the exact solution

u(x) =
(

a+
9

λ

)

x4 + bx3 + cx2 + dx+ e.

Here, we want to evaluate the following integral equation with unique solution

Math. Model. Anal., 15(3):371–381, 2010.
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Figure 6. The results of Monte Carlo simulation in case p2 = 0.4.
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Figure 7. The results of Monte Carlo simulation in case p2 = 0.5.
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Figure 8. The results of Monte Carlo simulation in case p2 = 0.6.

u(x) = 2 by Monte Carlo simulation:

u(x) = 2− 3x4 + 3

∫

1

0

∫

1

0

x4yzu(y)u(z) dydz. (4.1)
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Figures 3–10 present the Monte Carlo solutions and their errors for p2 =
0.1, . . . , 0.8 and N = 3000. From these figures, we conclude that using p2 =
0.2, 0.3, 0.4, 0.5 we have better results, see Figures 5–8.
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Figure 9. The results of Monte Carlo simulation in case p2 = 0.7.
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Figure 10. The results of Monte Carlo simulation in case p2 = 0.8.

To see the behavior of the Monte Carlo method, we have repeated the
algorithm five times using the same parameters. For p2 = 0.1, 0.2, . . . , 0.8 and
N = 500, 1000, 2000, 3000, 4000, 5000 the solution of (4.1) is shown in Figs. 11
and 12. These figures show the relation between the Monte Carlo simulation
and total employed points in simulated branching processes with error of Monte
Carlo method. We find that total points in simulated branching processes and
error are independent (see Fig. 11, left hand side). We conclude that for
p2 = 0.3 and p2 = 0.4 the obtained results are better than the others (Fig. 12,
left hand side).

Now, we may consider the following testing of hypothesis
{

H0 : µ1 < µ2

H1 : µ1 ≥ µ2

where µ1 denotes the mean of errors of the Monte Carlo simulation in the
subcritical and critical classifications, and µ2 denotes the same error for su-

Math. Model. Anal., 15(3):371–381, 2010.
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Figure 11. The results for five repeats of Monte Carlo simulation.
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Figure 12. The results for five repeats of Monte Carlo simulation.

percritical classification process. Using t-test for two independent samples, we
accept H0 with 99 percent confidence.

5 Conclusion

Monte Carlo method can be efficiently used for obtaining the solution of integral
equations with polynomial nonlinearity (1.1), if we employ the subcritical or
critical branching process. Since the employed estimator in the supercritical is
biased, then there is a systematic error which is relatively high.
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