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Abstract. In this paper, the aggregation problem for high dimensional systems is studied
in a different point of view. The deviations occuring when macro-descriptions are built and
evaluated statistically. The systems asymptotic ideal with the aggregation is studied in this
sense. Also for some classes of matrices the leading eigenvalues and norms have been taken
as aggregate and aggregation is studied in this sense (errors are evaluated statistically).

Key words: High dimensional systems, asymptotic aggregation, macro-description, Cobb-
Douglas function, norms and leading eigenvalues of matrices

1. Introduction

The high dimensional complicated systems are generally described and studied in
terms of macro-parameters. Some reasons for this are the following:

• the complexity of the detailed description,
• the difficulties in solution of the large dimensional systems,
• the insufficiency of the memory of computers.

In addition to these reasons, sometimes in some situations the detailed description is
not required. For example, there can exist an exact solution for a large dimensional
complicated optimization problem, but the system may not work in an optimal man-
ner.

In economics the systems are usually described via macro-parameters and then
studied. The following well-known model can be given as an example. Let V be real
output, K the capital stock, and L the labor force. There exists a functional relation
V = f(K, L) between them. In reality V depends not only on K and L but also on
the distribution of K and L.
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Another example is Leontief’s static input–output model x = Ax + y. Here,
x = (x1, x2, . . . , xn) is the total output vector, xi is the output of ith industry and
it is the sum of the xk

i which is the output of the kth factory. It can be seen that the
elements of matrix A are not constant and are dependent on how xi is distributed to
the factories.

We can add many similar examples. In general, economic models are based on
the parameters which don’t take the interior structure of the model into account.
There exist differences between macro-description of the model and implementation
of the model in practice and these differences must be studied (see [6, 7]).

In dealing with macromodels the aggregation is a very useful tool. Many meth-
ods of aggregation have been proposed. Generally systems for which aggregation is
applied are classified into two types.

The first ones are the systems in which aggregation is ideal, i.e. the macro-
description of the system can be given without any information loss. This kind of
systems are rare and they don’t give information about the general situation. The
second ones are those in which the aggregation is not ideal. The macro-description
of the system is given via required aggregates and the possible information losses are
minimized or at least predicted (see [8]).

In [3, 4, 5, 6, 7] and in this paper, the aggregation of high dimensional systems
is studied in a different viewpoint. The errors arising during transition to macro-
description are evaluated in the sense of mean statistics. This is a different approach
from others and many models are examined.

In Section 2, the constant elasticity of substitution production function, which
plays important role in economics is considered and for the some special cases of
this function concrete expressions of macro-description is derived. Errors existing
in transition to macro-description are evaluated in the sense of mean statistics and
expressed depending on the dimension of system.It is proved that under certain con-
ditions it goes to zero when dimension goes to infinity.

In Section 3 the leading eigenvalues and norms of matrices are considered as
an aggregate for high dimensional matrices. For a specific class of matrices with
sufficiently large dimension it is shown that the norms and leading eigenvalues of
almost every element of matrix lies in a small neighbourhood of a certain number.

We note that thermodynamic methods are also used for solution of aggregation
problems (see [1, 9]). Although the handling of high dimensional systems in our
method is similar to that in thermodynamic methods, it differs from the thermody-
namic methods in a radical manner.

2. Asymptotic Aggregation of Constant Elasticity of Substitution
Production Function

The general expression of the constant elasticity of substitution production functions
is given in the following form

f(x1, x2, . . . , xn) =

[
n∑

i=1

αix
−ρ
i

]− ν
ρ

,
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here ρ denotes the elasticity of production, ν denotes the degree of homogeneity of
the function. Many production functions used in economics are special cases of this
function. Here are some examples:

a) If
n∑

i=1

αi = 1, αi ≥ 0, ν = 1, then we have

ϕ(x1, x2, . . . , xn) = lim
ρ→0

f(x1, x2, . . . , xn) = xα1

1 xα2

2 · · ·xαn
n ,

namely the Cobb-Douglas production function;

b) If ν = 1

2
and ρ = − 1

2
, then we have

Ψ(x1, x2, . . . , xn) =

n∑

i=1

αi

√
xi,

i.e. the resource distribution function,

c) If ν = 1, then we have

η(x1, x2, . . . , xn) = lim
ρ→∞

f(x1, x2, . . . , xn) = min
i=1,n

xi,

i.e. the production function with constant ratio. We can add similar examples by
changing the given parameters.

In order to show our new idea for the aggregation problem let us take one of the
special cases given above, the Cobb-Douglas production function:

ϕ(x1, x2, . . . , xn) = xα1

1 xα2

2 · · ·xαn
n .

When large dimensional systems are studied, the use of the aggregates in the

form Xi =
n∑

j=1

αijxj can be desired for evaluation of Cobb-Douglas production

function. For the sake of simplicity, let us consider the following aggregate:

X =
x1 + x2 + · · · + xn

n
.

It seems impossible to evaluate function ϕ(x1, x2, . . . , xn) via the parameter X

for a general case. But this can be done for large dimension systems. Let us denote
the following simplex by Q(h):

Q(h) = {x = (x1, x2, · · · , xn) | x1 + x2 + · · · + xn = h, xi ≥ 0, i = 1, n}.

It is well-known that the area of this simplex is calculated by the following formula:

S =

∫

· · ·
∫

x∈Q

dQ =

√
nhn−1

(n − 1)!
.

Let ϕ̄(x1, x2, . . . , xn) be the mean value of ϕ(x1, x2, . . . , xn) on Q(h):

ϕ̄(x1, x2, . . . , xn) =
1

S

∫

· · ·
∫

x∈Q

ϕ(x1, x2, . . . , xn) dQ .
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Theorem 1. Suppose that for i = 1, n the numbers αi satisfy the following condi-
tion

n∑

i=1

α2
i = o

(
n∑

i=1

αi

)

= o(1), n → ∞. (2.1)

Then the relative mean quadratic deviation of function ϕ(x1, x2, . . . , xn) from
ϕ̄(x1, x2, . . . , xn) vanishes whenever n goes to infinity, i.e.

lim
n→∞

1

S

∫
· · ·
∫

x∈Q

(
ϕ(x1, x2, . . . , xn) − ϕ̄(x1, x2, . . . , xn)

)2
dQ

ϕ̄2(x1, x2, . . . , xn)
= 0.

Proof. We can compute the integral of ϕ(x1, x2, . . . , xn) on the simplex Q(h) with
the help of Dirichlet formula:

∫

· · ·
∫

x1+x2+···+xn≤1

x1,...,xn≥0

x
p1−1

1 · · ·xpn−1
n dx1 · · · dxn =

Γ (p1) . . . Γ (pn)

Γ (p1 + · · · + pn + 1)
.

Then we find ∫

· · ·
∫

x∈Q

ϕ(x1, x2, . . . , xn) dQ =

√
nhnAn

n!
,

where
An = Γ (α1 + 1)Γ (α2 + 1) · · ·Γ (αn + 1).

So we can write

ϕ̄(x1, x2, . . . , xn) =
Anh

n
. (2.2)

Now let us compute the mean quadratic distance of ϕ(x1, x2, . . . , xn) from
ϕ̄(x1, x2, . . . , xn) :

1

S

∫

· · ·
∫

x∈Q

(
ϕ(x1, x2, . . . , xn) − ϕ̄(x1, x2, . . . , xn)

)2
dQ

=
1

S

∫

· · ·
∫

x∈Q

x2α1

1 . . . x2αn
n dQ − A2

nh2

n2
=

{

Ãn

n(n + 1)
− A2

n

n2

}

h2, (2.3)

where
Ãn = Γ (1 + 2α1)Γ (1 + 2α2) · · ·Γ (1 + 2αn). (2.4)

The relative mean quadratic distance can be calculated via (2.2) and (2.3):

d(n) ≡

1

S

∫
· · ·
∫

x∈Q

(
ϕ(x1, x2, . . . , xn) − ϕ̄(x1, x2, . . . , xn)

)2
dQ

ϕ̄2(x1, x2, . . . , xn)
=

n

n + 1

Ãn

A2
n

− 1.

Writing the Taylor expansions of ln Ãn and ln A2
n, the following equalities are ob-

tained
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ln Ãn =

n∑

i=1

ln Γ (1 + 2αi) =

n∑

i=1

ln Γ (1) +
Γ ′(1)

Γ (1)

n∑

i=1

2αi + O

(
n∑

i=1

4α2
i

)

,

ln A2
n = 2

n∑

i=1

ln Γ (1 + αi) = 2
n∑

i=1

ln Γ (1) + 2
Γ ′(1)

Γ (1)

n∑

i=1

αi + O

(
n∑

i=1

α2
i

)

.

Taking into account condition (2.1) and equalities

n∑

i=1

αi = 1, Γ (1) = 1, Γ ′(1) = −c,

we obtain

ln An = −2c + o (1) , ln A2
n = −2c + o (1) ,

where c is the Euler constant ( c = 0.577215 . . .). Referring (2.4) and the statements
given above it follows that

lim
n→∞

d(n) = lim
n→∞

{

n

n + 1

Ãn

A2
n

− 1

}

= 0.

The proof is completed. �

Remark 1. If condition (2.1) is provided, then it can be easily shown that lim
n→∞

An =

e−c. Considering this observation and Theorem 1, we can prove that for sufficiently
large n function ϕ(x1, x2, . . . , xn) can be expressed via X aggregate in the following
form (note, that for sufficiently large n the mean statistics error d(n) is close enough
to zero):

ϕ(x1, x2, . . . , xn) ≈ e−cX.

Repeating the same arguments for the aggregate X̃ =
√

1

n
(x2

1 + x2
2 + . . . + x2

n),

a similar theorem can be proved and the following result can be obtained:

ϕ(x1, x2, . . . , xn) ≈ e−
c
2

√
2

X̃.

See [5, 7] for details.

Remark 2. Many special cases of constant elasticity of substitution production func-
tion are studied in a similar way (see [7]), but no theoretical results are obtained for a
general case. The following formula, which is confirmed by numerical experiments
and is compatible with the results of special cases, is asserted: for sufficiently large
n the equality

f(x1, x2, . . . , xn) ≈ νΓ (ν)

n∑

i=1

αiX
q

is valid, where q = max{1 + ρ,−ρ} and αi satisfies some necessary conditions.
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Remark 3. In studying hierarchical optimization problems, the aggregation of the
subsystems by using this approach is a very necessary step [6, 7].

Remark 4. The obtained results show that the idea ” Having large dimension makes
the study of system difficult every time ” is not true, i.e., macro-description of system
can be given with less error as dimension is increased.

3. The Leading Eigenvalues and Norms of High Dimensional
Matrices

In this section we investigate the other types of problems by using the same approach.
It is well-known that the norm and the leading eigenvalue of matrix is characterized
as a necessary aggregate macro-parameter of the given matrix.

Let us investigate these parameters in the class of high dimensional matrices with
non-negative arrays. This class of matrices is often used in mathematical economics,
probability theory, small oscillations theory of elastic systems and etc. Let M(n) be
a set of square matrices of order n, and the following sets be defined as above;

K(n; h) = {A ∈ M(n) : 0 ≤ aij ≤ h, i, j = 1, n},

G(n; h, ε, µ) = {A ∈ K(n; h) :

∣
∣
∣
∣

λ(A)

n
− µ

∣
∣
∣
∣
≤ ε},

Φ(n; h, ε, µ) = {A ∈ K(n; h) :

∣
∣
∣
∣

‖A‖
n

− µ

∣
∣
∣
∣
≤ ε},

where λ(A) is the leading eigen-value of the matrix A; h, ε, µ are the given numbers
satisfying the following conditions µ > ε > 0, µ + ε ≤ h.

Theorem 2. Let ε > 0 be a given number as small as desired. Then

[

1 − h4

ε4

(
1

48n2
− 1

120n3

)]n

θ

(

1 − h4

ε4

(
1

48n2
− 1

120n3

))

≤ meas G(n; h, ε, µ)

meas K(n; h)
≤ 1 ,

[

1 − h4

ε4

(
1

48n2
− 1

120n3

)]n

θ

(

1 − h4

ε4

(
1

48n2
− 1

120n3

))

≤ meas Φ(n; h, ε, µ)

meas K(n; h)
≤ 1,

for µ =
h

2
, where θ(x) is a Heavyside function:

θ(x) =

{
1, if x > 0,

0, if x ≤ 0 .
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Proof. The following inequalities hold for non-negative matrices:

min
i

n∑

j=1

aij ≤ λ(A) ≤ max
i

n∑

j=1

aij = ‖A‖.

Let us denote Λ(n; h, ε, µ) =

{

A ∈ K(n; h) :

∣
∣
∣
∣
∣

1

n

n∑

j=1

aij − µ

∣
∣
∣
∣
∣
≤ ε, i = 1, n

}

.

Then it is clear that

Λ(n; h, ε, µ) ⊂ Φ(n; h, ε, µ) ⊂ K(n; h),

Λ(n; h, ε, µ) ⊂ G(n; h, ε, µ) ⊂ K(n; h),

and it is sufficient to show that

[

1 − h4

ε4

(
1

48n2
− 1

120n3

)]n

θ

(

1 − h4

ε4

(
1

48n2
− 1

120n3

))

≤ meas Λ(n; h, ε, µ)

meas K(n; h)
≤ 1 (3.1)

for µ =
h

2
. Let us calculate measΛ(n; h, ε, µ). Since aij (i, j = 1, n) are indepen-

dent variables, we get

meas Λ(n; h, ε, µ) =

n2

︷ ︸︸ ︷∫

...

∫

˛

˛

˛

˛

˛

1

n

n
P

j=1

aij−µ

˛

˛

˛

˛

˛

≤ε, i=1,n

0≤aij≤h, i,j=1,n

da11da12...dann

=
[ ∫

....

∫

˛

˛

˛

˛

˛

1

n

n
P

j=1

a1j−µ

˛

˛

˛

˛

˛

≤ε,

0≤a1j≤h, j=1,n

da11da12...da1n

]n

=
[

hn −
∫

...

∫

˛

˛

˛

˛

˛

1

n

n
P

j=1

a1j−µ

˛

˛

˛

˛

˛

>ε,

0≤a1j≤h, j=1,n

da11da12...da1n

]n

.

The integrability region of V (n; h, ε, µ) =

n
︷ ︸︸ ︷∫

...

∫

˛

˛

˛

˛

˛

1

n

n
P

j=1

a1j−µ

˛

˛

˛

˛

˛

>ε

0≤a1j≤h, j=1,n

da11da12...da1n can be

written as follows:






a1j :




1

n

n∑

j=1

a1j − µ





4

> ε4, 0 ≤ a1j ≤ h, j = 1, n







, (3.2)
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thus

V (n; h, ε, µ) =

n
︷ ︸︸ ︷∫

....

∫

 

1

n

n
P

j=1

a1j−µ

!

4

>ε4,

0≤a1j≤h, j=1,n

da11da12...da1n.

Also we have the following inequality:

h∫

0

...

h∫

0




1

n

n∑

j=1

a1j − µ





4

da11da12...da1n ≥ ε4

∫

...

∫

 

1

n

n
P

j=1

a1j−µ

!

4

>ε4,

0≤a1j≤h, j=1,n

da11da12...da1n.

Hence it follows that

V (n; h, ε, µ) ≤ 1

ε4

h∫

0

...

h∫

0




1

n

n∑

j=1

a1j − µ





4

da11da12...da1n.

Now let us calculate the integral at the right-hand side of this inequality

h∫

0

...

h∫

0




1

n

n∑

j=1

a1j − µ





4

da11da12...da1n

=
1

n4

h∫

0

...

h∫

0










n∑

j=1

a1j





4

− 4µn





n∑

j=1

a1j





3

+ 6µ2n2





n∑

j=1

a1j





2

−4µ3n3





n∑

j=1

a1j



+ µ4n4



 da11da12...da1n, (3.3)

h∫

0

...

h∫

0





n∑

j=1

a1j





4

da11da12...da1n

=

h∫

0

...

h∫

0





n∑

i6=j 6=k 6=l

a1ja1ia1ka1l + 6

n∑

i6=j 6=k

a2
1ja1ia1k

+3

n∑

i6=j

a2
1ia

2
1j + 4

n∑

i6=j

a3
1ja1i +

n∑

j=1

a4
1j



 da11da12...da1n
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= n(n − 1)(n − 2)(n − 3)
hn+4

16
+ 6n(n − 1)(n − 2)

hn+4

12

+3n(n − 1)
hn+4

8
+ 4n(n − 1)

hn+4

8
+ n

hn+4

5

= hn+4

(
n(n − 1)(n − 2)(n − 3)

16
+

n(n − 1)(n − 2)

2

+
5n(n − 1)

6
+

n

5

)

. (3.4)

Analogously, we have

h∫

0

. . .

h∫

0





n∑

j=1

a1j





3

da11da12 . . . da1n = hn+3

(
n(n − 1)(n + 2)

8
+

n

4

)

(3.5)

h∫

0

. . .

h∫

0





n∑

j=1

a1j





2

da11da12...da1n = hn+2

(
n(n − 1)

4
+

n

3

)

, (3.6)

h∫

0

. . .

h∫

0





n∑

j=1

a1j



 da11da12 . . . da1n = hn+1 n

2
. (3.7)

Substituting (3.4) – (3.7) into (3.3), we get the following equality

h∫

0

...

h∫

0




1

n

n∑

j=1

a1j − µ





4

da11da12...da1n

= h4

[(

µ − h

2

)4

+

(

µ − h

2

)2
h2

2n
+

h4

48n2
− h4

120n3

]

.

Thus we have the estimate of V :

V (n; h, ε, µ) ≤ h4

ε4

[(

µ − h

2

)4

+

(

µ − h

2

)2
h2

2n
+

h4

48n2
− h4

120n3

]

and the following inequality

meas Λ(n; h, ε, µ)

≥ hn2

{

1 − 1

ε4

[(

µ − h

2

)4

+

(

µ − h

2

)2
h2

2n
+

h4

48n2
− h4

120n3

]}n

×θ

[

1 − 1

ε4

((

µ − h

2

)4

+

(

µ − h

2

)2
h2

2n
+

h4

48n2
− h4

120n3

)]

. (3.8)

The expression at the right hand side achieves its maximum (with respect to the

parameter µ) for µ =
h

2
. Thus (3.1) follows from (3.8). The theorem is proved. �
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The following corollary is an immediate result of Theorem 2.

Corollary 1.

lim
n→∞

meas G(n; h, ε, µ)

meas K(n; h)
= lim

n→∞

meas Φ(n; h, ε, µ)

meas K(n; h)
= 1 for µ =

h

2
.

Remark 5. If for the estimation of V (n; h, ε, µ) instead of (3.2) we would take the
domain

{
a1j :




1

n

n∑

j=1

a1j − µ





2

> ε2, 0 ≤ a1j ≤ h, j = 1, n
}
,

then this estimate would be rough and we can’t obtain the desired result, since

h∫

0

...

h∫

0




1

n

n∑

j=1

a1j − µ





2

da11da12...da1n = hn

[(

µ − h

2

)2

+
h2

12n

]

and then
{

1 − 1

ε2

[(

µ − h

2

)2

+
h2

12n

]}n

θ

[

1 − 1

ε2

((

µ − h

2

)2

+
h2

12n

)]

≤ meas Φ(n; h, ε, µ)

meas K(n; h)
≤ 1.

For µ =
h

2
, the left hand side is equal to

(

1 − h2

12nε2

)n

θ

(

1 − h2

12nε2

)

,

which converges to e−
h2

12ε2 for n → ∞.

As it follows from the proof of Theorem 2, the part of this theorem related to
norms is valid for all matrices, i.e. the constraint about positivity of elements is not
necessary.

Useful results can be obtained by applying Theorem 2 to the problems which
include norms and leading eigenvalues of matrices, some examples are presented in
[2].

4. Conclusions

In this article, a macro-description problem (i.e. a description of the system by using
less variables) is studied in a different viewpoint. It is an effective way to examine the
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complex systems with high dimensions and interesting results are derived. The errors
existing in transition to macro-description are evaluated in the sense of mean statis-
tics. It is a different approach from others and we have shown that the approximation
error goes to zero when dimension of the system goes to infinity.

The special cases of the constant elasticity of substitution production function,
for example, the Cobb-Douglas production function, are investigated and concrete
expressions for macro-description are derived. In transition to macro-description, the
errors are derived in the sense of mean statistics and they are evaluated with respect
to dimension. It is shown that these errors go to zero when the dimension goes to
infinity.

Then the norms and the largest eigenvalues of matrices which play important
role in linear systems are studied. It is shown that when the dimensions of matrices
in a certain class are increased infinitely, the measure of matrices whose norms and
smallest eigenvalues are out of the neighborhood of a certain point goes to zero.
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Asimptotinis agregacijos uždavinys ir didelės eilės sistemų makrodeskripcija

G.R. Adilov, G. Tinaztepe

Straipsnyje nagrinėjamas daugiamačių sistemų agregacijos uždavinys. Nuokrypiai, atsiran-
dantys keičiant sistemą jos makrodeskripcija, įvertinti statistiškai. Sistemos agreguotasis
asimptotinis idealas nagrinėjamas tuo pačiu požiūriu. Taip pat straipsnyje nagrinėjama ke-
lių matricų klasių agregacija, jų pagrindines tikrines vertes ir normas naudojant kaip agregatą
ir nuokrypius įvertinant statistiškai.


