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Abstract

Pathways of exchange between the shelf and slope in the Mid-Atlantic Bight were in-
vestigated using a combination of radiochemical tracer and hydrographic measurements.
The motivation was to provide evidence of transport routes for shelfwater that could be
important to the balance of shelf-slope exchange, as well as to the biogeochemical fluxes

across this crucial ocean boundary. The four radium isotopes, with half-lives of 4 days to

1600 years, a coastal source, and conservative properties in seawater, were used as coastal

water mass tracers. The final study was comprised of data from 5 cruises, with a total of 8
cross-shelfbreak transects. Two areas were studied, a northern Mid-Atlantic Bight transect

south of Nantucket Shoals, and a southern Mid-Atlantic Bight series of transects off the

coast of Delaware. In addition, data were collected from the shelfbreak at Cape Hatteras

crossing the western wall of the Gulf Stream to help determine sources of anomalous 224Ra

enrichment which was observed on several of the shelfbreak transects. Combined with the

hydrographic data, radium measurements suggested a pathway for exchange in the Mid-

Atlantic Bight that was not a direct advection of shelf water toward the slope. Rather, the

evidence suggested limited direct exchange of surface shelf water across the shelfbreak front.

This provides observational evidence that is consistent with models (e.g., Gawarkiewicz and

Chapman, 1991) which predict the shelfbreak front will impede exchange. Furthermore,
224Ra activity on the upper slope points to a rapid transport pathway for bottom water

from the Cape Hatteras shelf via the Gulf Stream onto the Mid-Atlantic Bight slope. The

radiochemical and hydrographic evidence suggests that recirculation around the slope sea

gyre may be a more important pathway than direct cross-shelf transport.
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Chapter 1

Introduction

The focus of this dissertation project has been to help determine pathways of exchange

between the shelf and slope in the Mid-Atlantic Bight using a combination of radiochemical

tracer and hydrographic measurements. The motivation was to provide evidence of trans-

port routes for shelfwater that could be important to the balance of shelf-slope exchange,

as well as to the biogeochemical fluxes across this crucial ocean boundary. The four radium

isotopes, with half-lives of 4 days to 1600 years, a coastal source, and conservative properties

in seawater, were ideal candidates to conduct such a study.

Although research has been intensive in this area for the past 15-20 years, still only

"crude estimates" of cross-shelf exchange rates exist (Loder et al. 1998). Physical observa-

tions and modeling of exchange across the shelfbreak over the past 15 years have clarified

some of the processes operating there (Chapman and Lentz 1994; Gawarkiewicz and Chap-

man 1991; Pickart 2000; Houghton and Visbeck 1998), but exact mechanisms are still

unclear. Loder et al. note that the estimates that do exist do not identify the mechanisms

of exchange, where the exchange takes place, and how seasonal or longer variability affects

the estimates. Gulf Stream ring effects on the slope and outer shelf have been noted along

with other processes that are suspected to play some role (frontal eddies, flow through



canyons, wind forcing) but the magnitude to which each contributes to cross-shelf exchange

is considered to be "poorly known in general."

1.1 New uses for radium tracers

Previous work with radium tracers had observed smooth, exponential distributions across

the South Atlantic Bight shelf that were used to estimate horizontal eddy diffusivity and

groundwater inputs (Moore 1997; Moore 1996). I set out to expand this line of inquiry

in several respects. First, short-lived radium tracers had not been used in the shelfbreak

region. Preliminary measurements suggested that activities up to 200 km from shore were

still high enough to make useful observations of shelfwater exchange across the shelfbreak

front.

Secondly, physical circulation in the Mid-Atlantic Bight is characterized by processes

which are highly energetic, episodic, small scale, and of short duration (Gawarkiewicz et al.

submitted 2002; Gawarkiewicz et al. 1996b; Gawarkiewicz et al. 1990; Churchill and Cornil-

lon 1991; Garvine et al. 1988; Garvine et al. 1989; Beardsley et al. 1985). These include

many advective processes, such as Gulf Stream ring intrusion, entrainment of shelfwater

streamers, wind forcing, bottom boundary layer transport, and effects of frontal eddies. Be-

cause of the nature of the circulation in the Mid-Atlantic Bight it appeared that short-lived

radium could possibly be more useful as a tracer of small-scale events than of large-scale

mixing. Previously, methods for determining mixing coefficients have assumed steady-state

conditions with no advection, and thus were of limited use under realistic shelfbreak con-

ditions. However, mechanisms of physical exchange such as shelfwater streamers or other

small-scale advective mechanisms might be reasonably examined using radium isotopes.



Radiotracers have the potential to provide an internal "clock" in these situations to help

determine water mass ages and transport times.

1.2 Importance of Continental Shelves in Global Fluxes

The total area of continental shelves comprises only about 10% of the global ocean, yet bio-

logical activity is high enough to account for nearly half of ocean productivity (Eppley and

Peterson 1979). The ocean margins are thus extremely important both economically and

evironmentally. High production and sedimentation rates make ocean margins a potentially

signficant location for removal of atmospheric carbon into deep ocean burial and circula-

tion cycles. However, many questions still remain about the mechanisms and magnitude

of export, as well as how nutrients are supplied to support this system. During the 1980's,

the Shelf Edge Exchange Processes program conducted the SEEP I and SEEP II experi-

ments on the eastern continental shelf of North America. SEEP II sediment trap fluxes and

species composition analysis indicated on offshelf C flux which was equal to about 6% of

estimated shelf primary production (Falkowski et al. 1994), while measurements of bacterial

remineralization in the water column and in the sediments of the shelf and slope pointed to

a lateral downslope C flux of about 7-15% of primary production (Kemp 1994). Both stud-

ies concluded that the requirement for nutrient and carbon import onto the shelf to balance

the export was small, and that recycling of nutrients on the shelf must be large to support

the high productivity. 210Pb measurements by Bacon (1994) also indicated a small particle

export to the shelf, as well as a long residence time of material on the shelf. Several of the

SEEP investigators also found evidence that export events were highly episodic (Falkowski

et al. 1994; Biscaye et al. 1994a).



The SEEP program uncovered or left unresolved many key questions. Among these

are how nitrogen is supplied to support high levels of shelf productivity (Biscaye et al.

1994b). Import of nitrate rich deeper slope water implies a corresponding export of surface

water from the shelf, but little was observed in this or subsequent studies. This problem

is magnified by the results of Seitzinger & Giblin (1996) who estimated denitrification on

the North Atlantic shelf via direct measurements and empirical relationships with sediment

oxygen demand and surface productivity. Their results indicate that shelf sediments are

a large sink for nitrogen which is not balanced by inputs from rivers and atmospheric

deposition. They and Michaels et al. (1996) in a companion study on nitrogen cycling in the

North Atlantic gyre, suggest the deficit is most likely balanced by the onwelling of nitrate-

rich slope water. However this is contradicted by the SEEP results which indicate movement

of deep shelfbreak water is downslope (offshelf), with little offshore surface advection to

compensate for any onwelling of slope water (Biscaye et al. 1994a). Observational and

modeling studies of circulation and shelfbreak processes in the Mid-Atlantic Bight in recent

years have not resolved this problem.

1.3 Physical circulation in the Mid-Atlantic Bight

The Middle Atlantic Bight continental margin is characterized by a shallow continental shelf

region (0-200 m depth spanning 100-200 km) which steepens sharply at the shelfbreak (200-

2000 m depth over <50 km). The shelfbreak forms a distinct boundary between coastal

and pelagic waters and their contrasting biological systems. Shelf waters are typically

fresher than slope and open ocean waters because of the input of rivers, melting ice, and
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Figure 1.1: Circulation in the Mid-Atlantic Bight as part of the large scale northeastern
North American coastal system. From Loder et al. (1998)

groundwater, and may also have strong temperature differences as well, especially in cold

winter areas.

The large scale current system in the MAB consists of a broad south-southwestward

flow which is most likely dominated by local bouyancy forcing from freshwater inputs, as

well as remote buoyancy forcing resulting in a barotropic inflow from the north, as shown in

Figure 1.1 (Loder et al. 1998). Mean flow over the shelf is on the order of 10 cm/s (Beardsley

et al. 1985; Shearman and Lentz submitted), with substantial temporal variability (standard

deviations of the same order as the mean flow). Salinity and temperature gradients across



the shelfbreak can create strong density fronts, as seen in the hydrographic sections in

Figure 1.2 (Lyne and Csanady 1984) although they are sometimes density-compensating,

resulting in little horizontal stratification. Strong density gradients at the shelfbreak result

in the rapid current known as the shelfbreak jet, with velocities as high as 50 cm/s or more.

Density gradients and the shelfbreak jet may inhibit horizontal exchange across the front,

but also create frontal eddies whose episodic action could be responsible for significant

transport. Frontal eddies are spun off from meanders in the jet on the order of tens of

kilometers and form on a timescale of a few days (Garvine et al. 1988). The eddies are deep

features around which have been observed shallow plumes of shelf water with strong offshore

flow. However calculations of cross-shelf fluxes of heat and salinity showed no significant

enhancement of exchange from eddies, unless they become completely detatched from the

jet (Garvine et al. 1989). Recent models also suggest the presence of upwelling cells on

either side of the jet and advection of water from a shelf bottom boundary layer up along

the frontal isopycnals at the shelfbreak, where they then turn downstream (Gawrkiewicz

et al. 1992; Houghton 1997; Houghton and Visbeck 1998; Pickart 2000). As a result, surface

advection measured seaward of the density front may actually be carrying upwelled deep

slope water offshore instead of shallow shelf water. Because of the complexities of shelfbreak

circulation, geochemical observations have the potential to provide a useful concrete measure

of the physical processes that are occuring and the biogeochemical fluxes that may result.

1.4 Study structure and findings

The final study was comprised of data from 5 cruises, with a total of 8 cross-shelfbreak tran-

sects. Two areas were studied, a northern Mid-Atlantic Bight transect south of Nantucket
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Figure 1.2: Water column structure at the Mid-Atlantic Bight shelfbreak, February 1956.

From Lyne and Csanady (1984).



Shoals, and a southern Mid-Atlantic Bight series of transects off the coast of Delaware. In

addition, data were collected from the shelfbreak at Cape Hatteras crossing the western

wall of the Gulf Stream to help determine sources of anomalous 224Ra which were observed

on several of the shelfbreak transects. The results of the shelfbreak crossings were not what

was expected. No evidence of recent cross-shelf transport of shelfwater was found (i.e.,

transport on the scale of weeks to months). On several occasions, unusually high activity

of 224Ra was measured beyond the shelfbreak front. However instead of being found in a

shelf water mass, the anomalous 224Ra was consistently found in water with high salinity,

high temperature, and no characteristics of a coastal source. This appeared to contradict

what was known about radium sources, and was additionally perplexing because of the

lack of enrichment of the other three isotopes which normally occur together with 224 Ra

in groundwater and river water. Bottom water sources from the Mid-Atlantic Bight shelf,

though enriched in 224Ra, did not supply enough activity to account for the observed 224Ra

peaks over the upper slope.

Physical data collected during these surveys pointed to the presence of strong frontal

features, often associated with Gulf Stream influences. Transport rates measured in the

southern Mid-Atlantic Bight were much higher than expected, on the order of 1-2 Sv,

but were found to be consistent with the unusual hydrographic structure which included

a large slopewater intrusion and a prominent Gulf Stream water mass. These transport

rates, about 1 Sv higher than the most cited estimate from the Nantucket Shoals Flux

Experiemtnt (Beardsley et al. 1985) could suggest that there is less cross-shelf export of

shelfwater than is inferred from current budgets.

Combined with the hydrographic data, radium measurements suggested a pathway for



exchange in the Mid-Atlantic Bight that was not the direct advection of shelf water toward

the slope that we anticipated. Rather, the evidence suggests limited direct exchange of

surface shelf water across the shelfbreak front. This provides observational evidence that

is consistent with models (e.g., Gawarkiewicz and Chapman, 1991) which predict the shelf-

break front will impede exchange. Furthermore, 224Ra activity on the upper slope points

to a rapid transport pathway for bottom water from the Cape Hatteras shelf via the Gulf

Stream onto the Mid-Atlantic Bight slope. Although the current data set is limited, the

possibility is raised that circulation around the Mid-Atlantic Bight "slope-sea gyre," with

intrusions from Gulf Stream meanders and warm-core rings, may be more important for

exchange between the shelf, slope and deep ocean than more direct pathways.

This study is divided into four sections which will cover the theory and analytical meth-

ods that were used or developed, Chapter 2; the overall results of the radiochemical and nu-

trient data collected in the Mid-Atlantic Bight, and inferences that can be drawn from them

in terms of cross-shelf exchange and nutrient flux, Chapter 3; Gulf Stream and slopewater

influences during an intensive hydrographic survey, with evidence of substantial alongshelf

transport, Chapter 4; and finally evidence for strong Gulf Stream influence on exchange

pathways in the Mid-Atlantic Bight, Chapter 5.



Chapter 2

Radium as a tracer of coastal waters:

Theory and methods of analysis

Radium is an element that has been employed increasingly in recent years to study

coastal processes because its unique properties make it especially suitable as a water mass

tracer (Levy and Moore 1985; Schmidt and Reyss 1996; Moore 1997; Moore and Shaw

1998; Krest et al. 1999; Moore 2000b). It is not bioactive or particle reactive in seawater,

so it can be treated as a conservative tracer, and unlike salinity, it does not affect the

physical properties of the water mass. Four radioactive isotopes of radium occur naturally

in the environment as decay products from uranium and thorium (Figure 2.2). Radium

enters the ocean when terrestrial water that has been in contact with these elements via

streambottoms, suspended riverine sediments and aquifers reaches the freshwater-saltwater

interface. When particulate radium encounters seawater, it is desorbed through cation

exchange with sodium, calcium and magnesium. As a result there is a large input of

radium in coastal marshes, estuaries, and aquifer outcrops (Moore 1996; Rama and Moore

1996; Moore and Shaw 1998). It is this nearshore flux that makes radium useful as a tracer

for shelfwater circulation.

This chapter will present the theory behind use of radium as a coastal tracer; some of



the traditional methods of analysis of radium data; and finally, some new methods of data

analysis that may be useful in coastal settings, particularly where advective processes are

signficant. As an example, new data analysis methods will be applied to one of the "classic"

data sets from the South Atlantic Bight collected by W. Moore (2000a; 2000b).

2.1 Physical properties and sources of radium

The ultimate sources of radium are rocks and minerals containing uranium and thorium,

although they are present in somewhat different quantities in different types of rock (NCRP

1987). In general, rocks that are formed early in the magma cooling process (such as the

dark basalts) contain the lowest activities of both isotopes, because they are incompatible

with the crystal formation of these minerals. Likewise, quartz minerals contain little of

these isotopes. Aluminum-silicate minerals forming late in the cooling process contain the

most U and Th. Sedimentary rocks are generally higher in U and Th, especially those such

as shales which contain organic material to which reduced forms of U adsorb in addition to

the particle reactive Th. Comparable with shales are continental crust and soils. Carbonate

rocks created from the shells and skeletons of corals and other marine biota are enriched

in uranium but not thorium because of the substitution of uranium for calcium during

their formation. Because of this enrichment, the radium isotopes that occur in the uranium

series are also enriched in carbonates (i.e., 226Ra from the 238U series, and 223Ra from the

235U series.) Carbonate-rich apatite minerals (including phosphorites) will show similar

enrichment in these minerals. It should be noted however that the natural abundance of

the two U parents differs significantly, with 238U accounting for over 99% of all naturally

occuring uranium by mass. Thus, 226Ra is considerably more abundant than 223Ra, with
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Figure 2.1: Natural uranium and thorium decay series.

activity ratios of approximately 1 : 1 : 0.05 : 1 for 226Ra : 228Ra : 223Ra : 224Ra.

All of the isotopes also have sources in the water column from parent isotopes in the

uranium-thorium decay chains that are dissolved in seawater, however only 226 pa is present

in substantial activities in the open ocean (Broecker et al. 1967; Moore 1969; Kaufman et al.

1973; Moore 1976). The other three isotopes are less abundant due to a combination of

faster radioactive decay, less abundant parent isotopes, and the presence of several particle-

reactive precursors (thorium, protactinium and actinium) which are scavenged from the

water column. While 228Ra is present in small quantities, the unsupported short-lived



isotopes are virtually absent away from the coast. Open ocean activities of 226Ra and

228Ra for the North Atlantic from Moore (1969) and Kaufman et al. (1973) are shown in

Table 3.3 and discussed in more detail in Chapter 3. For the purpose of tracing coastal

water masses, it is the "excess" radium over open ocean values that is of interest. For

224Ra this can be determined easily by allowing the initial activity to decay, and making

subsequent measurements of the ingrowth from its parent 228Th which is also adsorbed

onto the collection fibers. The "supported" 224Ra can then be subtracted from the initial

measurements to obtain the "excess" 224Ra. A similar procedure can be used to obtain

the excess 223Ra that is unsupported by dissolved 227Ac. Unlike the short-lived isotopes,

most of the open ocean 228Ra and 226Ra results from the long half-life of these isotopes

which allows them to be mixed well offshore. Because its half-life is of the same order as

ocean mixing, 22 6Ra activities are quite high throughout the Atlantic, around 8 dpm/100L.

Mean 228Ra activity in the open Atlantic, approximately 1.5 dpm/100L, reflect its shorter

half-life. The mean open ocean activities of these isotopes can be subtracted from coastal

activities to estimate the "excess" long-lived activity in a coastal sample.

In addition to freshwater and seawater sources, radium enters the water column from

marine sediments which have high activities of thorium plus some uranium that accumulates

in sediments with settling particles. Sand and gravel which are composed primarily of quartz

have relatively little of these parent isotopes, but fine-grained silts and clays can contribute

a significant amount of radium to bottom waters, especially if particle scavenging has been

high in the overlying water column. Because most radium on the surface of particles will

have desorbed while in the water column, the diffusion of radium from sediments depends

on regeneration from the parent isotopes after deposition. This in turn is affected by the
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Figure 2.2: Sources of "excess" radium to seawater. Coastal sources include both river and
groundwater inputs.

different radium half-lives which determine how long it takes to reach radioactive equilibrium

with the parent isotopes. Short-lived isotopes will come into equilibrium with longer lived

parents relatively quickly. 228Ra activity, for example, is regenerated about 280 times faster

than 226Ra activity (Krest et al. 1999). The very short-lived isotopes 223Ra and 224Ra in

particular are generated rapidly from thorium deposited in the sediments. The activity ratio

of a short-lived radium isotope to a long-lived isotope could be expected to be higher in

waters where sediment resuspension has occurred than in waters where the radium quartet is

being introduced from source water that has had a long residence time for all of the isotopes

to equilibrate, such as groundwater. Sediment type and environmental conditions may also

affect radium flux from sediments. Measurements made by Torgersen et al. (1996) of 224Ra

in Long Island Sound revealed that while nearshore water was enriched in this isotope,

Shelf Simpe



bottom water in the middle of the sound was enriched twice as much, possibly due to finer

grained sediments. They also point out that in oxygenated water, manganese oxides at

the sediment surface can scavenge diffusing Ra before it reaches the water column; hence

oxygen levels can also affect relative radium flux. Li et al. (1979) have observed that Ra

and salinity do not always follow a simple linear relationship over the shelf in the New

York Bight, as would be expected when radium has a freshwater source; this could be an

indicator of vertical mixing of radium with sediment sources.

Radium from sediment sources contributes to the coastal enrichment, and can also reach

surface water when there is strong vertical mixing, upwelling over the shelf, or currents

passing over shallow sills or outcrops. Schmidt and Reyss (1996) observed enrichments of

228Ra in Mediterranean Outflow Water that had contact with sediment over the Straits of

Gibraltar. The enrichment was traceable all the way into mid-depth "meddies," eddies in

the Atlantic formed from Mediterranean outflow water, where both salinity and 228Ra were

considerably elevated over surrounding water outside the eddies. It should be noted that

not all radium diffusing from marine sediments is produced in the sediment. Moore (1997)

observed Ra enrichments of 3-10 times open ocean activities at the shelf edge off South

Carolina 80 km from shore. In this case the isotopic composition was a clue to the origin

of the enrichment. Sediments in the area were composed of sand, gravel and phosphorites.

Only the phosphorites could be a potential source, but the radium in phosphorites originates

from uranium enrichment, so 228Ra, a product of the 232Th decay chain, is not produced.

The bottom water observed at the shelf edge was enriched in all four isotopes, typical of an

aquifer source.

The four isotopes also have a range of half-lives that make them useful "clocks" for



studying natural phenomena on a wide range of timescales. Two isotopes have fairly long

half-lives, 226 Ra (half-life 1600 years) and 228Ra (half-life 5.7 years), while two have very

short half lives, 223Ra (half-life 11.4 days) and 224Ra (half-life 3.7 days). Any observa-

tions made using these isotopes must be considered to be integrations over the appropriate

timescale for the isotope half-life. A dynamic process like coastal mixing may not be in

"steady state" over any of these time scales however. While limiting in model calculations

that require a steady state simplification, this property can also be advantageous for observ-

ing transient phenomena such as streamers, plumes, or eddies which can be identified and

aged by isotopic decay. In the observations of meddies (Schmidt and Reyss 1996) features

which have lifetimes on the order of months to years, ratios of the decaying 228Ra and the

relatively "stable" 226Ra were employed to constrain the age of the meddies since forma-

tion near the outflow. The time scale of the isotope is then a critical factor when using

it to observe physical phenomena. As a general rule, one can consider naturally occuring

radioisotopes to be readily measurable for a period of approximately 6 half lives. For 224Ra

and 223Ra six half-lives are equal to about 3 weeks and 2 months, respectively, and for 228 Ra

and 226Ra approximately 35 years and 9600 years.

Finally, in reporting radioisotope levels in seawater an "activity" scale is used rather

than concentration. Activity is the rate at which disintegrations occur in a sample. Starting

with the exponential law of radioactive decay:

dN-- = -AN, N(t) = No e-At (2.1)
dit

where N is the number of radioactive nuclei present, the absolute rate of decay is then



IdN/dtl = AN(t) = ANoe-At. The rate of decay of a sample is defined as the activity, A,

where A AN, and the decay law can then be written as

A = A0 e-At (2.2)

One advantage in using activity units is that when parent and daughter isotopes are in

equilibrium, their concentrations may be quite different but their activities are equal. This

is expressed in the Bateman equation for activity of a daughter isotope. When the parent

isotope has a very long half-life (as the U and Th parent isotopes of radium do), the Bateman

equation simplifies to

Ad(t) ; A, (1 - e-Adt) (2.3)

where Ad and A, are the activities of the daughter and parent isotopes. This goes to Ad(t) =

A, at large values of t and enables one to discern quickly, from activity measurements,

whether a system is in equilibrium or if there has been removal or addition of an isotope.

Detection methods count individual decay events in a sample, rather than mass or

concentration, which are then averaged over time (decays per minute, or dpm) and divided

by the volume of the sample to give units of actvity per unit volume. Traditionally, the

units used for radium activity in seawater in the U.S. are dpm/100 L (equivalent to 1/60

Bq/100L).

2.2 Interpretation of Radium Distributions: Physical Mixing

If mixing coefficients can be reliably estimated they can be extremely useful in calculating

oceanic fluxes of biologically or environmentally important compounds, particularly when



horizontal gradients of the compounds are measured concurrently. Somayajulu et al., (1996)

calculated lateral eddy mixing rates for the eastern Arabian Sea using 228Ra (half life 5.7

years) over a large area bounded on one side by organic-rich anoxic Indian shelf sediments.

Using a two-dimensional balance between diffusion and decay, they calculated mixing rates

both zonally and meridionally and used these to estimate the horizontal flux of DOC from

the shelf to denitrifying regions of the Arabian sea where researchers were puzzled by budget

deficits of organic matter. Similar techniques can be used to estimate nutrient and pollutant

fluxes in the coastal zone if steady state can be assumed on a decadal time scale.

However, several assumptions are made in these type of calculations that may lead

to unreliable results. The assumptions most commonly made are that the system is in

steady state on the time scale of the isotope being used, and that advection is negligible.

Both of these assumptions are risky in a coastal setting, and as will be shown below,

estimates of eddy mixing can have a very broad margin of error if advection is not included

in calculations, even if it is a slow flow rate. Mean current data collected during the

Nantucket Shoals Flux Experiment (NSFE) shows cross-shelf flow is common in both the

offshore and shoreward directions. Data means from the outer 3 current meters over the

shelfbreak show mean flow rates in the upper 30 meters ranging from -2.1 cm/s to +1.0 cm/s

with standard deviations of 12-15 cm/s. In addition, the correlation time scales of the data

range from 2 days over the shelf and shelfbreak, to 7 days over the upper slope, which shows

how rapidly conditions can change. High resolution studies of shelf and slope circulation

indicate that over the timescale of the short-lived isotopes, conditions over the outer shelf

can shift dramatically over a time scale of hours to days (Gawarkiewicz et al. submitted

2002). Near the shelfbreak front, cross-shelf advection is subject to strong variations in both



direction and magnitude due to the influence of density driven currents; similar currents

have been observed in the mid-shelf region as well and the variability of these is unknown

(see Chapter 4). Moore (2000a) has noted that the shift in Ra activity gradients at mid-

shelf could be the effect of more complex processes operating over the outer shelf that are

not clearly discernable from the radium data. Caution must especially be exercised when

using short-lived Ra data to make estimates using a steady-state assumption.

Methods for using radium distribution to estimate physical mixing and transport pro-

cesses are based on basic models of advective and diffusive transport of an element with

a constant decay rate. The governing equation in one dimension is a balance of these

processes:

OA 02A OA
-- =n - --- AA(2.4)

t Ox2 - g

where A is the excess activity of the isotope from unsupported coastal sources, n is the

horizontal eddy diffusion coefficient, w is the horizontal advective velocity, and A is the

radioactive decay constant. Figure 2.3 illustrates the theoretical activity curves that would

be observed over a 100 km wide shelf under a variety of conditions with a shoreline source

of radium. The top curve (A, dotted) shows the distribution with diffusive mixing only,

no radioactive decay or advection. On the distance scale used here, decay at the rate of a

1600 year half life (226Ra) can be considered the same as "no decay"; results are identical.

The element is well-mixed across the shelf even with a very small eddy diffusion coefficient,

. = 10 m2 S-1; the curve of diffusive mixing is a straight line. Increasing the value of r

increases the transport and homogeneity of the tracer and the distribution curve approaches

a horizontal line. If the diffusivity r is high enough, even elements with shorter half-lives

will exhibit a flat distribution. The dashed curves (B, C) show the case where the element



is decaying at the rate of 228Ra (5.75 year half life) with no advection. With the same low

n as in curve A, an exponential decay away from shore is clearly visible. Higher diffusion

coefficients push the distribution toward the pure diffusive case, i.e., toward a straight flat

line, making the signature of decay less apparent. The solid curves (D, contiguous with

C, and E) show a case with no decay, but with a slow advection rate, 0.5 cm/s, typical of

a large-scale mean flow (Beardsley et al. 1985). The distribution is a similar exponential

decrease in activity offshore. If the advective flow was in the offshore direction it would

create a convex rather than concave curve. At a moderately high mixing rate (K = 250 m2

s-1) this cross-shelf profile is virtually indistinguishable from the case where there is decay

with a low mixing rate (curve C).

These idealized curves can help in interpreting observations, but also illustrate the dif-

ficulty in determining the role of advective transport with a decaying tracer since decay

and shoreward advection have similar effects on the activity curves, as do diffusion and

offshore advection. To obtain estimates of large-scale mixing rates, steady state, a constant

n, and negligible advection are normally assumed. This creates a balance between eddy

diffusion and radioactive decay that enables solving for the mixing coefficient K once the

isotope gradient has been measured. (If r= = AX, m = V//K, where m is the slope of

the natural log plot of radium as a function of distance. Boundary conditions are A(oo) = 0

and A(0) = Ao.) But as seen in the above examples, slow advection that one might consider

"negligible" can have a large effect.

As an example, actual radium distributions for the two long-lived istopes are shown

in Figure 2.4. Moore (2000a) made measurements along four transects on the shelf of the

South Atlantic Bight and then distance-averaged the data to smooth some of the spatial
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Figure 2.3: Cross-shelf steady-state distribution of radium with diffu-
sive mixing only (top dotted curve), decay plus diffusive mixing (dashed
curves), and advection plus diffusive mixing (bottom solid curves). De-
cay and advection curves are shown with low and high eddy diffusion
coefficients.

and temporal variability. As Moore points out, it is possible to interpret the distribution as

being the result of two different mixing regimes with a boundary 50 km offshore. Seaward

of 50 km 226Ra behaves as expected for an isotope with no measureable decay where eddy

mixing is occurring, i.e., a flat distribution. The slope of the 228Ra line is consistent with

this interpretation, since we have seen that decay at a 5.7 year half life in the presence

of eddy diffusion will steepen the slope of the mixing line. From the idealized diagram,

it appears the mixing rate is moderately high seaward of 50 km, corresponding to about

K > 100 m2 s-1 in Figure 2.3 (curve B). Shoreward of the 50 km boundary, the slope of

the 228Ra distribution suggests greatly reduced diffusive mixing, or the presence of slow

shoreward advection. The slope of the 226 Ra curve is steep for an isotope with little decay

however; if there is any realistic eddy diffusivity this could only be explained by shoreward
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Figure 2.4: Cross-shelf distribution of long-lived radium isotopes in the
South Atlantic Bight (data from Moore 2000a). Solid and dashed lines
represent first order polynomial fits for the inner and outer shelf.

advection or a very recent pulse of radium from the coast that has not yet mixed, which

is an unlikely scenario. The two mixing regime scenario is also only a speculation of what

might be occuring in this situation; the Gulf Stream boundary is at the end of the transect,

not in the middle.

This example illustrates the difficulties inherent in interpreting data of this type. Slow

advection can have a major effect on Ra distribution, as seen in Figure 2.3 in which a

very slow mean flow has an effect comparable or greater than decay for isotopes with half-

lives on the order of 228Ra or shorter. Yet over a distance of 50 km the curved shape

that results from slow advection would be barely distinguishable from a straight mixing

line, particularly with the natural scatter of real data. As will be shown later, it is often

better to include advection in the calculations; in this case, the result is one curve that can

reasonably account for data over the entire transect.
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Figure 2.5: Cross-shelf steady-state distribution
of short-lived radium isotopes, 223Ra (half-life
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Theoretical decay curves for the short-lived isotopes 223Ra and 224Ra are shown in Figure

2.5, plotted with actual distance-averaged data from Moore (2000a). Even with fairly high

eddy diffusivity (n = 400 m2 s- 1) the cross-shelf activity levels decay rapidly with distance

from shore. These curves include only decay and diffusion, with no advection. Cross-shelf

advection will alter the steepness of the curves, as with the long-lived isotopes, shoreward

advection causing the curves to be steeper near shore with lower activities offshore, and

seaward advection resulting in a flatter distribution with higher activity offshore. In this

example, a single value of K fits both data sets without the addition of an advection term.

However, it can be shown that this solution is not unique, so therefore not necessarily

correct.

The distance-averaged data sets collected by Moore (2000a) are a good test case for

examining the relative effects of eddy diffusion, advection and radioactive decay on radium
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Figure 2.6: Theoretical advection-diffusion-decay solutions for 224Ra and 223 a. Several

solutions for different pairs of n and w are plotted which identically overlap. The K and

w solution pairs in the upper right hand corner show the range that is plotted. The star-

shaped data points on the plot are the actual distance-averaged data points from Moore

(2000a).

distributions and eddy diffusion coefficient calculations. With boundary conditions A(oo) =

0 and A(0) = Ao, the full steady-state solution to equation 2.4 gives the activity with

distance from shore, A(x), as a function of K, w and A:

A(x) = Ao e'x

where

W - VW_2 +A
r + 4KA (2.5)

2K

Using a nonlinear least squares regression (Levenburg-Marquardt method) a tight best-fit

can be obtained for these data sets, with solutions for w and K. However the uncertainties

in w and n are extremely large, rendering the solutions meaningless.

As it turns out, the range of possible solutions for n and w for this data set is extremely

wide, as illustrated in Figures 2.6 and 2.7. The figures show the actual data (starred

Theoretical Advection-Diffusion-Decay Curves
Theoretical Advection-Diffusion-Decay Curves
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Figure 2.7: Theoretical advection-diffusion-decay solutions for 228Ra and 226Ra. Several
solutions for different pairs of n and w are plotted which identically overlap. The n and

w solution pairs in the upper right hand corner show the range that is plotted. The star-

shaped data points on the plot are the actual distance-averaged data points from Moore

(2000a). Error bars are included for the long-lived isotopes and are equal to the +7%
estimated counting errors for individual (not distance-averaged) data points. Error bars do

not include standard deviations from distance-averaging, however one sample error bar is

shown for data at 85 km to illustrate one standard deviation in the mean at that distance.
Errors on the open ocean values used to compute the "excess" are +0.75 for 228Ra, and

+0.14 for 226Ra (one standard deviation from the mean).

data points) with several theoretical solutions superimposed on each plot. The 228Ra and

226Ra data shown are "excess" Ra, i.e., in excess of average open ocean values; means from

Chapter 3, Table 3.3, North Atlantic Western Gyre are used to compute excess. As with

the short-lived isotopes, it is the elevated nearshore activity of 228Ra and 226Ra in excess of

open ocean values that allows the isotopes to be used as coastal water mass tracers. Error

bars are included for the long-lived data sets where the curves are not as tight a fit. Each

curve plotted corresponds to a different n, w solution, and identically overlaps the others.

From this we can discern several important points. First, the range of n that is possible

is extremely large, from 0 to over 1000 m2/s (solutions >> 1000 m2/s are also possible,

but are not included). Secondly, the range in solutions for w that corresponds to this is

MINE



quite small, only a few cm/s. This shows how critical the advection term is in accurately

determining K.

The interaction of the two parameters can be seen graphically when minimizing the sum

of squares errors. For each isotope, values of r were computed for a 20 x 20 array of n, w

pairs in the range n = 50 to 1000 m2/s and w = -4.5 to 5.0 cm/s using equation 2.5, and

each r was then used to calculate a theoretical activity curve, A, c(x). The sum of squares

error between the calculated curves and the actual data, E(Amic(xi) - A',(xi)), was then

determined for each curve. Figure 2.8 shows the contours of the sum of squares error for

the entire range of n, w pairs for each data set. For unique solutions (one best fit curve) the

contours would be concentric around the K, w pair that is the best solution for the data.

Steep contours would indicate a narrow range of acceptable solutions (small uncertainty)

while widely spaced contours indicate a wide range of solutions (large uncertainty). In this

case the minimization of the sum of squares error is a zero contour line, not a closed contour,

and the contours do not converge to a single solution or set of acceptable solutions. The zero

contour lines indicate an extremely broad range of possible eddy diffusivity coefficients, and

a narrow range of advection rates. It is interesting to note that for the short-lived isotopes,

solutions are possible with both positive (offshore) and negative (shoreward) advection,

while the long-lived data sets have solutions only for shoreward advection. A sum of squares

error minimization on the data from the inner 50 km shows that the same holds true for

that sub-region.

Because the chemical behaviour of the four Ra isotopes is the same and only the decay

rates vary, it is possible to use this to better constrain the values of K, w. In effect, we have

four different tracers with identical physical properties, but different internal clocks. By
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Figure 2.8: Minimization of the sum of squares error for the advection-diffusion-decay equa-

tion and distance-averaged coastal radium data from Moore (2000a). Contours show the

sum of squares errors as functions of horizontal eddy diffusivity r and cross-shelf advection
w. The zero contour indicates K, w pairs that result in a "best fit" regression curve for the

data.

finding where the minima of the sum of squares error calculations intersect we can limit the

range of appropriate values of K, w. Figure 2.9 shows the zero sum of squares error contours

for each isotope. The first thing that is apparent from the figure is that the short-lived

and long-lived isotopes seem to have different behaviours with respect to mixing, as the

regions of intersection are different for the two pairs. This is really not so suprising when

one considers that 224Ra and 223Ra are integrating conditions over a time scale of days and

r 4 5Normalized data



228Ra and 22 6Ra are integrating over tens to thousands of years. It should also be noted

that this method is based on a steady-state assumption, which is problematic in coastal

regions because of the small spatial and temporal scales involved in advective processes.

Whether or not the long-lived isotopes can effectively measure long-term mean conditions

that reflect a longer scale steady state is a question that is open to debate.

In Figure 2.9 we see that the zero error contours for 224Ra and 223Ra intersect near

n = 500 m2/s. Figure 2.10 shows the calculated curves and their fit to the Moore data

using identical n, iv values, n = 510 m 2 /s and w = -0.7 cm/s in equation 2.2. Thus on

a short time scale, there is a unique solution that works for both tracers, assuming there

are not non-steady state processes operating that affect the two isotopes differently. The

zero contours for 228Ra and 226Ra do not intersect, but are in closest proximity at about

n = 125 m2/s. One value of w does not fit both curves well in this case, but advective rates

must differ by only 0.2 cm/s for curves to fit with n = 50 m2 /s, a difference in w that is

not measureable by any practical means. On longer time scales then, it appears that K may

be lower, approximately 50 m2/s, with advection averaging -0.2 to -0.4 cm/s (i.e., slightly

shoreward cross-shelf flow).

Method W K

224 Pa 0 420 m2/s

223Ra 0 360 m2/s

224Ra + 223Ra -0.7 cm/s 510 m2/s

228 ta + 226Ra -0.1 - -0.2 cm/s 50 m2/s

Table 2.1 Summary of eddy diffusivity constants for South Atlantic Bight obtained by
Moore (2000a) using single isotopes and assuming zero advection, and by the sum of squares

error minimization method using two isotopes.
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Figure 2.9: Minimum sum of squares errors for advection-
diffusion-decay model for all four Ra isotopes.

It is also notable that the advection-diffusion-decay curves fit the data about as well as

the two linear regression lines for the inner shelf shown in Figure 2.4 and are a better fit

when using data corrected to reflect excess 228Ra and 22 3Ra. When using excess 228Ra and

226Ra, it also may be unnecessary to divide the shelf into inner and outer mixing regimes

since one curve can adequately account for the full data set. Although the outer shelf data

still deviates more from the curve than the inner, the fit is better than Moore's method using

total Ra and zero advection, and any division between inner and outer shelf is less distinct

than with the total Ra data. This analysis shows that a solution for eddy diffusivity with

zero advection is possible, but it is by no means unique, and the system is highly sensitive

to advection rates as slow as a few centimeters per second.

The implications for neglecting advection in calculations, and thus incorrectly estimating

the eddy diffusion coefficient n, are best illustrated by considering a flux calculation. As

an example, let's use a physical setting similar to that above. Over this we will have an

element of interest (such as a nutrient) with concentration C and an offshore AC = -500



ymol/m 3 (equivalent to 0.5 pmol/L). We can examine two cases with different concentration

gradients, one with Ax1 = 500 km, dC/dx = -0.001pmol/m 4 , and one with Ax 2 = 5 km,

dC/dx = -0.1pmol/m 4 . The flux of our element can then be calculated at the midpoint of

the gradient where C = 250 pmol/m 3, using

JAD = wC - K (2.6)
dx

This equation gives the advective-diffusive flux across the shelf-slope boundary, and not the

total flux within the region which would include terms for consumption and production of

nutrients (primary production, remineralization, nitrogen fixation) as well as inputs and

sinks from other sources (such as atmospheric deposition, riverine input, and denitrifica-

tion). A full flux equation would look something like JOt = wC - KI + P, where P is the

combined effect of biological consumption, remineralization, fixation, etc. These other pro-

cesses can have important effects on the nutrient concentrations and gradient on either side

of the boundary, but the advective-diffusive flux we are concerned with here is the physical

transport of the resulting nutrient distribution; i.e., we are solving for w and n. (We are also

assuming steady state for this example, and the multitude of processes affecting nutrient

concentrations is certainly not steady state, as is evident in the data presented in the next

sections.) For a range of n, w pairs obtained in the sum of squares error minimization for

the four isotopes (Figure 2.10) we obtain the fluxes shown in Table 2.1 (with examples for

the two different concentration gradients).

Several things should be noted in the flux calculations. First, clearly variations in w are

not compensated for by the resulting changes in n. Neglecting advection does not allow the
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Figure 2.10: Best fit n, w pairs for short-lived and long-lived isotopes.

estimation of an "effective n" that includes the effects of advection. When n is estimated

using zero advection, the resulting flux calculation will be in error by a factor of 2-10 if the

actual flow is just a couple centimeters per second. In addition, and even more important for

nutrient calculations, the direction of the flux may also be in error. It is also worth noting

that shoreward flow does not necessarily cause shoreward flux, because of the down-gradient

effect of diffusion.



Table 2.2. Sample flux calculations based on possible advective rates (w) and eddy diffu-
sion coefficients (n) calculated from South Atlantic Bight data collected by Moore (2000a).
Fluxes J1 and J2 differ in the magnitude of their concentration gradients. Both have a
AC = -500 pmol/m 3 (equivalent to 0.5 pmol/L, decreasing offshore) but the length scales
Ax vary, with Ax1 = 5 km and Ax2 = 500 km. The resulting concentration gradients are
-0.1 and -0.001 pmol/m 3. m respectively.

The flux shown for 228PRa and 226Ra is based on the area of convergence for K and w

for both isotopes. This may be viewed as a long-term estimate because the parameters

are calculated using isotopes with very long half-lives. However, questions regarding steady

state over long time periods as well as the limitations of a 1-D model over any timescale

must be considered when interpreting these results. The flux J calculated for 224Ra using

zero advection is about a factor of 10 higher than the long-term estimate. Viewed in another

way, the difference between the long-lived estimate for J and the flux estimate based on

224Ra and zero advection is equivalent to using a value of r that is too high by 350 m2/s.

For J2 one would have to increase K from 50 to 1150 m2/s to arrive at the same flux based

on 224Ra and zero advection.

224 Ra 223Ra 228Ra, 226 pa

w [cm/s] -2 -1 0 1 2 -1 0 1 -0.3

K [m2/s] 700 550 400 280 140 600 360 125 50

Ji [pmol/m 2 . s] 65.0 53.0 40.0 30.5 19.0 -58.0 36.0 15.0 4.3

J2 [pmol/m 2 . s] -4.3 -2.0 0.40 2.8 5.1 -1.9 0.36 2.6 -0.70

Jad [pUmol/m 2 . s] -5.0 -2.5 0 2.5 5.0 -2.5 0 2.5 -0.75

Pei 0.14 0.09 0 0.18 0.71 0.08 0 0.40 0.30

Pe 2 14 9.1 0 18 71 8.3 0 40 30



The purely advective component of the flux is also shown for comparison and we can see

that this is a much larger fraction of J2 than J1. The Peclet number, Pe, can be used as a

measure of the relative dominance of the advective and diffusive components. Pe = wL/K,

where L is the length scale associated with the concentration gradient. A Pe > 1 indicates

dominance of the advective component and results when w or the length scale of the gradient

is large relative to rn, the former increasing the advective term, and the latter decreasing the

diffusive term. Peclet numbers for the two cases J1 and J2 are shown at the bottom of the

table. The difference in the two regimes is apparent in the Peclet numbers of Pe << 1 in

the case of J1 where diffusion is dominant, and Pe >> 1 in the case of J2 where advective

flow accounts for the bulk of the flux.

2.3 Interpretation of Radium Distributions: Transport Times

Radium measurements can also be used to determine water mass ages or transport times

(Moore 2000b). The principle behind this method is the simple radioactive decay equation:

A(t) = A(O) e~A fEM (2-7)

where fEM is the fraction of end member remaining in the sample after mixing. Expressing

the equation as a ratio of two isotopes solves the problem of the unknown mixing fraction,

since fEM is the same for both.

Ashort(t) _Ashort(0) e-A'hor*t(28

Ajing(t) Ajong(0) e-Along 28



The variable t then gives the "age" or transit time of the water mass:

in (Ahort(t)4Ahot(0)

k A=o- (t)nAj**9 (0) /(2.9)
Along - Ashort

When using the ratio of a short-lived isotope to a long-lived isotope, the elapsed time

since the water mass left its source is determined from the decreasing isotope ratio, as

illustrated in Figure 2.11. Although this method is used to normalize for mixing, some

assumptions inherent in this method must be recognized. Using the ratio method to deter-

mine water mass transit time assumes that the water mass with the tracer is mixed with

a zero activity end member. When this is the case, the method is extremely accurate, and

gives the transit time of the tracer as if no dilution had occurred. Although it may appear

that the method could be used to correct for any type of mixing, with a slight underesti-

mation of water mass age, the method breaks down when the time elapsed is large or when

the difference in ages between the two water masses is large. This is because the method

does not actually give an "average" age for the two combined water masses. The problem is

discussed by Musgrave (1985) and Jenkins (1987) for other passive tracers such as tritium,

and is demonstrated below for radium isotopes.

To illustrate the problem, we can use two theoretical isotopes, IL and Is, with half-

lives of 1000 days (long) and 10 days (short) respectively, and initial activities of IL = 10

dpm/100L, Is = 20 dpm/100L. As a water mass with these isotopes is removed from its

source, it will have these properties, assuming there is no mixing or dilution (ages given in

half-lives of the respective isotopes):



Table 2.3 Sample water mass properties during transit.

If we sample a water mass that is a 50-50 mixture of one water mass that is 10 days old

(10 days removed from source) and a second water mass that is 20 days old, the isotopes

will have the following activities:

~5L 9.93 dpm ~+5L~ 9.86 dpm

IL = 50L x + 50LL x = 9.90 dpm/L
100 L )100 L)

(o 10.0 dpm\ ( 5.0 dpm -7.dp/

is= 50L x + 50L x = 7.5 dpm/L
100L 100L

Since we know the fraction and age of each endmember, we know that the average age of

the mixture is 15 days. However if we did not know that the water mass we sampled was

a mixture of two distinct water masses and used the radioactive decay equation (Eq. 2.7)

with fEM = 1, we would get different ages based on IL or Is:

ln(9.90/10) 15.23dy
AL

ln(7.5/20)
ts- - = 14.15 dy

As

If we use the isotope ratio method as shown in equation 2.9 to normalize for mixing, we

Time O dy 10 dy 20 dy 30 dy 60 dy o

IL age ( 1/2) 0 0.01 0.02 0.03 0.06 oo

IL activity (dpm/100L) 10.0 9.93 9.86 9.79 9.59 0

Is age (t1/2) 0 1.0 2.0 3.0 6.0 oo

Is activity (dpm/100L) 20.0 10.0 5.0 2.5 0.31 0



then obtain an age that is an underestimation of the average age of the mixed water mass:

tS:L = -In ((7.5/20.0)/(9.90/10.0)) = 14-00 dy
AS - AL

However, it is only because the time intervals and difference in end member ages are small

that the result is close to the average age of the mixed water mass. (In fact the estimate

would be closer to the average age had we used either one of the isotopes individually.) The

problem is more apparent in the following example, a 50-50 mixture of water masses that

are 10 days old and 60 days old, with an average age of 35 days. Now the error from the

ratioing method is more apparent:

IL = 50L x 9+ 50L x 9.59 dpm = 9.76 dpm/L

is = 50L x 10.0 dpm + 50L x 0.31 dpm = 5.16 dpm/L
100 L 100OL

and

ln(9.76/10) = 30dy
AL

s = ln(5.16/20) = 19.56 dy
AS

tS:L In ((5.16/20.0)/(9.76/10.0)) - 1940 dy
AS - AL

On the other hand, using a mixture with one end member zero (t = /inf ty) we can calculate

an age for the tracer-containing end member within rounding error accuracy. For example,

a 50:50 mixture of 30-day old water and a zero activity end member has a diluted activity



of IL = 4.8971 dpm/100L and Is = 1.25 dpm/100L. Ratioing gives an age of 30 days:

In [(1.25/20.0)/(4.8971/10.0)] -
tS:L = -= 29. dy

If the two end members both have non-zero tracer activity (such as water masses from

two nearshore sources that travel different paths before combining) the water sample that

is measured must be described by combining the decay equations for each end member:

Ameasured = AEM1 + AEM2 = A(0) eAtl fEM1 + A(0) eAt' fEM2

where ti and t2 are the transit times for the two separate water masses, including their

transits before mixing. Because of the different time variables, this cannot be simplified by

expressing as a ratio, so the fraction of each end member must be known. Fortunately, in

many cases we can assume as a first approximation that the predominant form of mixing

is between one nearshore end member and one near-zero offshore end member. But the

possibility of two nearshore end members mixing after separate transits should be borne in

mind.

2.4 Discussion

The method of using two or more isotopes in conjunction with a model that includes the

advective term is promising for better constraining a horizontal coastal eddy diffusion co-

efficient, r.. The importance of considering the advective term is not merely to include

the effects of advective solute transport. When w is not significant in flux calculations

(Pe << 1), it is still crucial in constraining where on the continuum of the zero SOS con-
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Figure 2.11: Decay of isotope ratios over time, for activity ratio of a short-lived isotope to
a longer-lived isotope. Age or transit time is determined by measuring the isotope ratio in
transported water mass and in a known source.

tour n should fall. Regardless of whether or not w -C is large enough to impact the diffusive

term in the flux equation, including the term in the basic model (Eqns. 2.4 and 2.5) is what

allows one to put limits on K by finding the intersection or convergence region of two or

more zero SOS error contours.

One assumption in using the advection-diffusion equation to establish n and w is that

the system is at steady-state on the time-scale of the isotopes involved. This is a tenu-

ous assumption even for the short-lived isotopes considering conditions over the shelf, and

particularly near the shelfbreak, can change on timescales as rapid as days (Gawarkiewicz

et al. submitted 2002). This is one of the most potentially problematic limitations in using

radiotracers to estimate eddy diffusivity. It was also a major factor in decisions to attempt

using radium activity to trace short-lived or episodic plumes of shelfwater, as opposed to

using it in the more traditional manner for estimating n.



Steady state with respect to 228Ra might also be a problem due to seasonality of up-

welling inputs near the shelfbreak. Moore's article (1987) on 228Ra in the South Atlantic

Bight points out that the activity ratio of 228Pa: 226Ra is affected not only by decay and

horizontal mixing, but also by vertical movement of water near the shelfbreak. The ratios

are particularly revealing in 2-D vertical contours showing a distinct tongue of high activity

ratio water penetrating below the shelfbreak in the winter, and a tongue of low activity

ratio water extending up toward the shelfbreak in the spring.

Non-steady state conditions are not necessarily a problem if the measurements reflect

long term mean conditions, i.e., if the variability is on a time scale much shorter than

what the tracer measures. If variability is on time scales much less than the half life of

long-lived isotopes, the isotope activities may average that variability over the time scale

of their decay constants. The question is whether or not there is also long-term variability,

so that even long-lived isotopes have steady-state problems. Data from the Mid-Atlantic

Bight, presented in Chapter 3 suggest that there is some consistency over large time scales

in processes affecting the long-lived isotopes. Even so, there is a range of possible solutions

for r., w that is open to considerable variability.

It would seem that variable . and w are not only possible, but almost inevitable. Surely

if we are looking at isotopes with half lives of 6-1600 years these parameters do not remain

constant over that range of time scales. Even with short-lived isotope data, one would

have to consider whether or not the measurements can be considered a reflection of steady

state conditions, and if so, over what period does steady state apply? Time scales for

variability in coastal areas are on the order of days. Moored arrays from NSFE (Beardsley

et al. 1985) had correlation time scales for subtidal alongshelf currents of 4-10 days, and 3-7



days for cross-shelf currents. More recently, data from the shelfbreak PRIMER experiment

(Gawarkiewicz et al., submitted) had correlation time scales of only 0.6 and 1.4 days for

alongshelf and cross-shelf currents respectively, and 1.7 days for salinity.

Is it fair to say that data from long-lived tracers is actually measuring long-term mean

parameters? Non-steady state is most important to consider are when a system is in flux

between one state and another, such that the measurements taken reflect a prior state

that has not come into equilibrium with current (or evolving) conditions. This could be a

greater problem for the short-lived isotopes than for the long-lived isotopes because their

short life span makes them extremely sensitive to conditions changing on a timescale of

days; transient events that would not affect a stable element might affect the distribution of

a quickly decaying element and therefore create a misrepresentation of the average state of

the system. The long-lived isotopes ought to respond more sluggishly, and therefore would

be more representative of mean conditions. On the other hand, large scale circulation

may contribute to distribution patterns of the longer lived isotopes, so it is still a risky

assumption even if some averaging is occuring over these isotopes' integration timescales.

There is also the question of n itself being inherently non-steady. For eddy diffusivity

of discrete patches over time, the diffusivity is a function of the age of the patch:

n, = Ct"

The numerical values of C and n were derived empirically by Okubo (1974) for radially

symmetrical tracer patches. The principle behind this is that over time, as a point source

tracer diffuses by turbulent eddy diffusion into a larger and larger patch, a greater range



of eddy sizes are able to diffuse the tracer. At any given time, only eddy sizes less than

the patch size are able to act on it in a diffusive manner. Eddies larger than the patch size

simply advect the tracer in intact parcels rather than dispersing it. Eventually the patch is

larger than all the eddies, and this relationship breaks down, such that . becomes constant

at large t (at least insofar as the total energy of the eddies themselves remains more or

less constant). In any case there is no real time dependence once the patch is large; r. may

remain constant or it may not depending on the physical processes controlling the eddies.

The theory behind this assumes a normal distribution of concentration radially outward

in the patch, such that the length of the patch L = 4a. Then equating the diffusion equation

with the probability function, one gets a.2 = 2Kt, and L = 2/-2i . This last equation allows

estimation of K from a tracer experiment by measuring the diameter of the patch and the

time elapsed since it was released.

Because the tracers were are concerned with here are not introduced as discrete patches,

this relationship would probably not apply even on short time scales. Radium is introduced

as a line source all along the coastline and so is subject to dispersion by both large and

small eddies as soon as it has been dispersed into water deep enough for large eddies to

exist. Different behaviour between the two short-lived isotopes would only be expected if

one had an effective lifetime so short that it was never dispersed far enough out from shore

to be affected by anything but the smallest scale disturbances. With both isotopes found

at significant activities tens of kilometers from shore, this is not a problem.

Where these isotopes might be affected differently is on the upper slope where large

Gulf Stream eddies are frequently found. If eddies on the shelf are not as large or vigorous

as Gulf Stream rings, longer lived isotopes (especially 228Ra and 226Ra) could have a larger



eddy diffusivity when they encounter upper slope processes. It must be taken into account

that eddies associated with the shelfbreak jet are also quite vigorous, so it is not clear that

there would be a difference between the two regions in terms of horizontal turbulence. This

must be considered an unresolved question for both the shelfbreak region and warm-core

rings however. Observations by Garvine et al. (1989) showed shelfbreak jet eddies had

surprising little net effect on horizontal diffusivity and cross-shelf exchange, and this could

be true for Gulf Stream rings as well.

The methods described here present an alternative for estimating eddy diffusivity with-

out making assumptions of zero advection which are unrealistic in coastal settings. While

there are still many problems inherent in these calculations, particularly with regard to

the steady-state assumption, the method does show the different effects of neglecting or

including the velocity term. The steady state assumption may in fact severly limit the ap-

plicability of radium isotopes in general to determining horizontal mixing rates in settings

with even moderate currents and advective variability. The following chapters present data

from the Mid-Atlantic Bight that are analysed using methods described here. Horizon-

tal distributions of radium were frequently surpising, however, leading to examination of

alternative transport pathways than that of direct cross-shelf advection or diffusion.



Chapter 3

Cross-shelf Distribution of Radium and Nutrients

in the Mid-Atlantic Bight

3.1 Introduction

The objective of this field study was to determine radium isotope distribution across the

shelf-slope boundary in the Mid-Atlantic Bight in an effort to help understand cross-shelf

transport. Earlier studies have been limited to estimating mixing rates and water mass ages

for the inner shelf only (Moore 1997; Moore 2000a; Moore 2000b) and do not address the

problem of transport across the shelfbreak front. Exchange between ocean margins and the

open ocean is a continuing concern for balancing biogeochemical fluxes and carbon budgets

in both large scale ocean models and regional ecological studies (Mahadevan and Archer

2000; Nixon et al. 1996; Seitzinger and Giblin 1996; Somayajulu et al. 1996; Michaels

et al. 1996; Biscaye et al. 1994b; Falkowski et al. 1994). Problems related to complex

physical conditions at the shelfbreak can only be resolved by considering a variety of data

sources in order to assist in interpretation of results. I have designed a multi-disciplinary

approach, conducting high resolution cross-shelf surveys that include measurement of the

quartet of radium isotopes, salinity and nutrients, and interpreting results with the benefit

of concurrently collected hydrographic and current data. Interpretation of these results will



41

40

NS1 Sept-Oct 1999
NS2 April 2000

39. NS3 Decemb 0

A

37 - Nove er 2000

36

35* Oct er 2001

km
0 50 100

34' -
76'W 74' W 72'W 70'W

Figure 3.1: Location of sampling transects in Mid-Atlantic Bight.

be aided by methods presented in Chapter 2, but the datasets in the end were problematic

for considering direct cross-shelf transport. The anomalies found in the data, the physical

settings in which they occurred, and their implications for Mid-Atlantic Bight circulation

are discussed further in Chapters 4 and 5.



3.2 Field and Laboratory Methods

The data for this study were collected during five cruises in the Mid-Atlantic Bight (Figure

3.1). Three of these were single transects of the shelfbreak near Nantucket Shoals (which

will be referred to as NS1, NS2 and NS3), and one was a shelfbreak survey in the south-

central MAB approximately 300 km north of Cape Hatteras, off the Delaware coast (DE).

Measurements were made for the four radium isotopes, salinity, and current velocity on all

transects, and supplementary nutrient, temperature, and hydrographic data were collected

when possible.

3.2.1 Field Sampling

The Nantucket Shoals transect that was sampled is a well studied one, which overlaps the

TOPEX satellite sub-track used by Fratantoni et al. (2001) for extensive ADCP studies of

the shelfbreak front, and also includes stations from the PRIMER and Coastal Mixing and

Optics (CMO) experiements. The three cruises were in fall, early winter, and spring. NS1

data were collected on the R/V Oceanus cruise OC349. Radioisotope and salinity samples

were collected on 21 September 1999 at 7 stations along a 140 km transect across the shelf

and upper slope, ending at the 75 m isobath. Distance from shore spanned approximately

120-260 km. A second crossing was made on the return trip on 7 October 1999, sampling

only the inner 4 stations from the first crossing. Stations were spaced at approximately equal

20 km intervals. Shipboard acoustic doppler current profiling (ADCP) data was collected

along the transects in both directions from the 60 m isobath to 50 km offshore of the 1500

m isobath.

NS2 data were collected along the same transect on the R/V Endeavor cruise EN335.



Radioisotope, nutrient, and salinity samples were collected on 1 April 2000 at 15 stations

along a 170 km line starting near the 57 m isobath. Distance from shore spanned ap-

proximately 80-250 km. Sampling stations were spaced with higher resolution over the

shelfbreak (6-10 km), and lower resolution over the outer shelf and upper slope (10-20 km).

Shipboard ADCP data were collected simultaneously, ending 5 km offshore of the 1500 m

isobath. Expendable bathythermograph (XBT) temperature data were also collected along

the transect at approximately 5 km intervals.

NS3 data were collected on 4-5 December 2000 over 100 km of the Nantucket Shoals

transect, from 100-200 km offshore, during cruise EN348 on the R/V Endeavor. Surface

radiochemical and salinity data was collected with resolution of 6-7 km, as well as mid-

depth and bottom samples from three stations. Due to time limitations, the transect ended

near the edge of the shelf and a shelfbreak front was not resolved. The salinity at the outer

station was only 34.13, indicating that the ship was still in shelf water. Nevertheless, bottom

samples from this cruise provided valuable information on radium activity and isotope ratios

in bottom water directly overlying MAB shelf sediments.

The survey in the south-central Mid-Atlantic Bight was conducted on the R/V Cape

Hatteras cruise CH2300 and covered 4 cross-shelfbreak transects, spaced 20 km apart. All

transects were sampled at 5 km intervals, with the exception of the most shoreward ends of 3

transects where resolution was lowered to 10 km. Surface radioisotope, nutrient, and salinity

data were collected along 3 of the 4 transects (A, B and D). Conductivity, temperature,

depth (CTD) profiles were performed at all stations, and ADCP data were collected over

all transects. Mid-depth and bottom samples for radioisotopes were also collected at two

stations.



3.2.2 Radium Measurement Methods

Seawater was collected in 150-250 L plastic barrels through 10 pm and 1 pm prefilters to

remove large particles. Surface samples for the four radium isotopes were collected from

2-3 m depth via the ships' clean seawater lines. Subsurface samples were collected either

by attaching a hose to the CTD frame and pumping from selected depths, or by filling

multiple large volume Niskin bottles which were then drained into large barrels. The water

was then pumped at approximately 1 L min-' through filters made of acrylic fiber coated

with manganese oxide to quantitatively remove the radium and preconcentrate it onto the

filter column (Moore 1976).

For measurement of 223Ra and 224Ra, the Mn fibers were rinsed in distilled water,

partially dried, fluffed, and placed in delayed coincidence alpha counters according to the

methods developed by Moore and Arnold (1996). Within the counting apparatus, helium

gas is passed through a closed system that includes a 1.1 L alpha scintillation cell. As the

gas passes through the fiber columns, 219Rtn and 220Rn, created by decay of 223Ra and 224Ra

respectively, are flushed out and and circulate through the scintillation cell. Alpha decays

of the Rn isotopes and their daughters are recorded by a photo-multiplier tube and routed

through an electronic delayed coincidence system. The system differentiates between the

223Ra and 224Ra decay chains by looking for the difference in timing between their decay

sequences. 219Rn decays into 215 Po which has a 1.78 ms half-life. 220Rn decays into 216po

which has a 150 ms half-life. The first decay detected in the scintillation cell opens an

electronic gate for 215Po counts; if a second decay occurs within 5.6 ms, the pair is counted

as a product of 223Ra decay. If no decay occurs within this time period, the 223Ra gate closes

and a gate opens for 600 ms to register 216Po decays; if a second decay occurs within this



time period the pair is counted as a product of 224Ra decay. When analysis of the counts is

done, statistical methods are used to correct for counts that are by chance misdirected into

the wrong channel (e.g., a 216Po decay that occurs during the first 5.6 ms when the 215 po

channel is open.)

After all short-lived counting is completed (see "Corrections" below), sample fibers were

then ashed at high temperature, pulverized, and sealed in vials for 226 Ra and 228Ra counting

by well-type gamma spectrometers (Charette et al. 2001). 221Ra is counted by way of its

daughter isotope, 214Pb, which has a strong gamma emission at 352 keV, while the 228Ra

daughter 228Ac has a distinctive emission at 911 keV. To ensure equilibration of the daughter

isotopes with their parents, sealed samples are counted after a minimum of 4 weeks.

The reliability of measurements is an important issue when sampling along transects

where spatial resolution is necessarily limited and sample volume precludes taking multiple

samples per station. Because the mechanics for counting both long- and short-lived radium

are so isotope-specific, the chances of "false positive" results are extremely unlikely. A few

conditions could result in high counts of short-lived isotopes, but they are simple to detect

and correct. Electrical "spikes" that result in false counts occasionally occur despite surge-

protection precautions. These spikes are identifiable in the data record because a) counts

of both isotopes will be exceptionally high, and b) the data recorded will show a single time

interval containing all the excess counts. The data is easily corrected by subtracting the

counts and counting time from that interval. Secondly, if many counts are done in sucession

with moderate to high levels of 224Ra, its 212Pb daughter can build up in the detectors.

This can be prevented by performing the long counts for 223Ra after the 224Ra counts, as

well as by flushing the detectors well and checking background between counts. Because



radium isotopes occur naturally in low levels, are not bioreactive, and are not normally

found in man-made objects, direct contamination of samples is extremely unlikely. There

is speculation that because the thorium parents of radium isotopes are particle-reactive,

they could build up within the ship's intake system and release radium into sampled water,

but there is no evidence of this actually occuring. A good check for this possibility is the

presence of very low Ra measurements within a set of samples, which would not occur if

the seawater system itself was introducing Ra. Erroneously low counts can occur if there

are leaks in the counting system (the delayed coincidence system, the fiber column, or the

counting vial) or if the radium has not been collected with high efficiency. To prevent errors

of the first kind, standards are run regularly to test the integrity of the system and calculate

counting efficiencies. Collection efficiency errors are suspected when all four sister isotopes

are low; the more stable long-lived isotopes should not show great variability, and when

both are unusually low it may be an indication that a significant portion of the radium has

bypassed the filter fibers.

3.2.3 Corrections and Error Calculation

A small but significant amount of 224Ra that is collected on the fibers will be from decay

of its parent 228Th in the water column and not from terrestrial inputs. Because thorium

is also extracted onto manganese fibers, a correction for this "supported" 224Ra can be

made by performing second counts when 228Th has equilibrated and the original 224Ra has

decayed away. This occurs at about 3-4 weeks after collection. All reported 224Ra data

is "excess" 224Ra from coastal or sediment sources not supported by parent isotopes in

the water column. 227Th and 227Ac, also collected on the fibers, behave similarly with



respect to 223Ra (Figure 3.2). If there are initial 227Th and 227Ac activities on the fibers

of 0.025 dpm/100L and 0.050 dpm/100L respectively (disequilibrium from more efficient

scavenging of thorium) the decay of 223Ra on the fibers would appear to be normal for the

first week or two, but after one month there is a significant 223Ra signal from ingrowth of

the parent isotopes. Figure 3.3 shows the 223Ra signal on samples from NS2 as they decay

over a period of approximately 3 months; the square symbols indicate the expected activity

without ingrowth from parent isotopes. 227Ac activity at 2-3 months does not decay to zero,

though it is lower than in the theoretical case shown. 227Ac activity was nearly the same

in nearshore samples with much higher initial 223Ra. Measurements from transects NS2,

NS3 and DE were corrected for 227Ac-supported 223Ra, which consistently averaged 0.015

dpm/100L over each sampling period. This is in close agreement with the measurements

made by Shaw and Moore (2002) in the Southern Ocean southeast of Cape Horn, where

activities were 0.01-0.02 dpm/100L in surface water. 227Ac activity in open ocean waters

of the Pacific are lower by about half, which they attribute to distance from continental

sources of parent isotopes.

The propagated counting error was calculated for each sample to take into account

counting error at each step. For the short-lived isotopes, the error for the first counts was

calculated at the 2- level (95% confidence level) using the total number of raw counts from

the 219Po and 220 Po channels (% error = 2/ /numbercounts). When second counts were

done for supported Ra from 228Th or 227Ac, the 2- errors from both counts were propagated

as ± y(ERR1) 2 + (ERR2)2 for the final counting error. Because of the much lower natural

abundance of 223Ra, counting errors are generally higher for this isotope than for its short-

lived sister 224Ra. The error on the short-lived samples ranged in general from 5-12% for
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224Ra, and 15-30% for 223Ra. In samples where the short-lived isotopes are very depleted

the percent counting error can be much higher, but the absolute error is still very small.

Counting errors on the long-lived isotopes were maintained at approximately 2-5% for 226Ra,

and 7-15% for 228Ra. Because 223 Ra has such a low initial activity nearshore, and lower over

the outer shelf and slope, count rates are quite low for samples in this region. When these

low initial counts are combined with 227Ac corrections, the accumulated counting error

makes variations in activity almost insignificant. The low activities and large margin of

error in 223Ra beyond mid-shelf thus limits its utility in transport calculations, particularly

those involving isotope ratios. It should also be noted that within a large group of samples,

counting error can be expected to increase due to decay while a sample is in the queue to be

counted (i.e., samples counted last will have fewer counts, and a larger ingrowth correction,

and thus higher counting errors).

The efficiency of radium extraction onto the sampling filters was tested using dual filter

cartridges placed in series. Mean extraction efficiencies for the short-lived isotopes were

near 99% or higher.

Sample No. caRa 2 3Ra 2 S~a 2 6Ra
NS3-113 96% > 100% 97% 97.30%
QC-01 99% 100% n/a n/a
QC-03 98% 100% n/a n/a
Mean 98% 100% 97% 97%

Table 3.1. Extraction efficiencies for seawater radium onto manganese-coated filter
fibers.

3.2.4 Reproduceability

To test the reproduceability of short-lived radium isotope results with low level samples,

12 replicates were counted from one uniform seawater source using the methods described



above. Nearshore filtered seawater was delivered to four large volume barrels in a rotating

fashion so that each barrel had as similar a mixture of water as possible. To reproduce raw

counts on fibers similar to those that might be encountered in mid-shelf or slope samples,

the large volumes were subdivided into volumes of approximately one-quarter, one-eighth,

and one-twentieth of the normal 200 L sample volume (Figure 3.4 a,b). 50 L and 25 L

samples were filtered by pump the same as shipboard samples. 10 L sample were gravity

filtered because the pump would not fit in the containers.

The standard deviation among eight pumped samples was ±6.9% for 224Ra and ±10.4%

for 223Ra (dashed lines in figure). Two of the 10 L samples fell outside one standard de-

viation of the mean for the pumped samples. Possible reasons for the outliers are the

non-standard delivery method, and the very low sample volume (more prone to measure-

ment error when extrapolating to equivalent large volume activities). Among the pumped

samples, the total error attributable to sampling and counting (1 standard deviation) is is

well within the calculated counting errors which averaged 7.4% and 19.6% respectively. All

of the pumped samples, plus or minus counting error, fell within one standard deviation of

the mean. Errorbars reported with the study results are counting errors calculated at the

95% confidence level.

3.3 Results

Radium measured on cross-shelf transects in the Middle Atlantic Bight is presented here,

followed by concurrently collected nutrient measurements. In order to better interpret

radium distributions across the MAB shelf and upper slope, Tables 3.2 and 3.3 present

average radium and salinity data for several nearshore sites in the Middle and South Atlantic
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Bight, as well as for sites 100 km offshore, and for the open North Atlantic. Data is taken

from several previous studies (Moore 1969; Kaufman et al. 1973; Moore 2000a; Charette

et al. 2001) as well as the current one, and unpublished data from C. Gramling. 224Ra

activities in the nearshore zone (< 5 km from shore) average 13-26 dpm/100L, with higher

means in the north. Nearshore 223Ra averages 1.5-3.5 dpm/100 L, with higher means in the

south. Accordingly,224Ra:223Ra ratios are higher in the north, 13-14, compared to about

5 in the south. It should be noted that there is considerable overlap within the data for

each region, and the means for all regions are within one standard deviation of each other.

An important point to keep in mind is that there is a great deal of variability spatially

and temporally. Equally important, and mitigating the variability, processes that mix these

isotopes offshore will in effect average them over timescales on the order of their half-

lives. Nearshore activities of 228Ra and 226Ra average 21-25 dpm/100L and 7-19 dpm/100L

respectively.

At 100 km from shore, 224Ra activities average 0.1-1.0 dpm/100L, again higher in the

north. At this distance, however, there is overlap between north and central regions, and



Location
Distance Salinity 2 2 4 Raex

Sample [km] [PSU] [dpm/
10L]

2Ra
[dpm/
100L]

228Ra

[dpm/
100L]

226Ra
[dpm/
100L]

Woods Hole, MA
mean of replicate tests QC01-08 <1 32.00 26.08 1.83 40.21 15.06
Standard Deviation 2.82 0.36 1.43 2.12

Elizabeth Islands, MA
. Mid-Atlantic Bight NS-012 5 32.40 7.05 0.5

Waquoit Bay Outlet, MA WB1 <1 31.13 18.3 1.2 26.5 7.5
N. Mid-Atlantic Bight WB2 <1 31.09 28.5 1.6 27.4 6.2
Charette, et al. (2001) WB13 <1 31.49 13.1 0.8 11.6 4.3

WB14 <1 31.43 18.0 2 20.7 6.6
WB15 <1 31.02 19.9 2.3 21.1 7.8
WB21 <1 31.46 12.4 1 17.7 7

Mean 31.27 18.4 1.5 20.8 6.6
Standard Deviation 0.19 5.3 0.5 5.3 1.1

Wilmington, NC NC228* <1 36.24 9.6 2.3
South Atlantic Bight NC247* <1 36.29 11.2 3.1
C. Gramling NC229* <1 36.29 10.7 1.7
(unpublished) NC231** <1 36.14 21.6 3.8

high tide, ** low tide NC250** <1 36.22 24.4 6.4
NC232** <1 36.17 24.3 3.2

Mean 36.22 17.0 3.4
Standard Deviation 0.06 7.2 1.7

Cape Fear-Savannah R. 1A 0.9 33.97 16.51 3.75 24.61 23.37
South Carolina, lB 0.9 35.53 32.27 4.91 27.94 21.75
South Atlantic Bight 2 1.9 n/a 14.78 4.25 27.49 20.04

oore (2000) 3 3.7 33.86 3.62 2.11 40.56 27.83
28 4.0 34.30 5.71 1.75 24.08 6.44
29 3.0 34.52 10.45 1.88 27.84 18.61
33 3.0 34.96 15.41 4.34 27.88 20.01
37 4.8 35.20 14.43 2.93 25.54 20.10
57 4.8 33.60 20.58 2.44 25.33 17.33
123 4.6 35.56 5.00 1 15.96 14.07
150 4.6 32.70 12.84 3.08 24.38 18.98
163 3.7 35.95 8.04 1.41 14.08 13.53
209 3.7 33.78 24.59 2.92 40.13 30.75
239 3.7 36.03 5.04 1.29 14.71 15.26
242 4.0 35.00 9.02 1.77 17.45 13.61

Mean 34.64 13.22 2.65 25.20 18.78
Standard Deviation 0.98 8.02 1.22 7.87 6.00

Table 3.2. Average nearshore radium activities on the western North Atlantic coast.



Location
Distance Salinity 2 2 4 Raex

Sample [km] [PSUI [dpm/
1OOL]

223Ra
[dpm/
10L]

228Ra

[dpm/l
10L]

226Ra

[dpm/
10OL]

Nantucket Shoals NS2-025 110 33.22 0.66 0.09 8.85 9.71
N. Mid-Atlantic Bight NS3-119 100 32.55 1.26 0.11 17.18 9.55

NS3-118 106 32.56 1.15 0.27 12.37 7.39
Mean 105 32.78 1.02 0.16 12.8 8.88
Standard Deviation 0.38 0.32 0.1 4.18 1.3

Delaware Shelf DEA-009 94 33.68 0.79 0.09 7.05 8.15
Cen. Mid-Atlantic Bight DEA-010 99 33.72 0.79 0.07 7.26 7.2

DEA-011 104 34.72 0.4 0.07 6.55 8.94
DEB-024 95 33.71 1.35 0.03 7.3 7.81
DED-055 95 33.87 0.19 0.06 8.16 8.73
DED-054 100 33.86 0.1 0.04 7.73 8.93
DED-053 105 34.18 0.64 0.04 7.27 7.95

Mean 99 33.96 0.61 0.06 7.33 8.24

Standard Deviation 0.37 0.43 0.02 0.51 0.65

Cape Fear-Savannah R. 11 98 36.26 0.04 0.02 -- --

South Carolina, 136 98 36.29 0.00 0.13 8.16 8.84
South Atlantic Bight 179 95 35.26 0.00 0.15 11.17 9.63
Moore (2000) 180 106 35.96 0.58 0.13 7.53 10.10

185 102 35.74 -- -- 11.03 10.51
223 100 36.23 0.10 0.05 4.82 8.20
226 100 35.89 0.00 0.08 6.73 8.73

Mean 100 35.95 0.12 0.09 8.24 9.33
Standard Deviation 0.37 0.23 0.05 2.48 0.89

N. Atlantic, Western Gyre LV-8 -- -- -- -- 2.90 8.29

Moore (1969); Ra-I -- -- -- -- 1.60 8.42

Kaufman, et at. (1973) LV-6 -- -- -- -- 1.50 8.82

966 -- -- -- -- 2.60 8.67

965 -- -- -- -- 3.50 8.54

849 -- -- -- -- 3.50 8.54

1007 -- -- -- -- 2.90 8.53

903 -- -- -- -- 2.00 8.70

964 -- -- -- -- 3.10 8.38

Mean 2.73 8.60
Standard Deviation 0.75 0.14

N. Atlantic, Central Gyre 1001 -- -- -- -- 1.50 8.33

Kaufman, et at. (1973) 1002 -- -- -- -- 1.70 8.95

1003 -- -- -- -- 1.40 8.24

1004 -- -- -- -- 1.30 8.67

1005 -- -- -- -- 1.40 8.24

1006 -- -- -- -- 1.70 8.50

Mean 1.50 8.49

Standard Deviation 0.17 0.28

Table 3.3. Average offshore radium activities in the North Atlantic.



between central and southern regions, but not between north and south. Activity in the

South Atlantic Bight is on average nearly an order of magnitude less than in the northern

MAB, an indication that local mixing processes are different in the two regions, and may

be more rapid in the north. 223Ra activities average 0.06-0.16 dpm/100L, higher in the

north, and all within one standard deviation of the others. If the northern average is not

an artifact of sparse sampling, this would also support the idea of more rapid mixing in the

north, particularly since the 223Ra activity is initially lower in the north than the south in

the nearshore zone. The Gulf Stream, which is much more proximate to shore in the South

Atlantic Bight, could also play a role in diluting the coastal signal in that region. Average

228Ra activities at 100 km are 7-13 dpm/100L. Individual activities in the northern MAB

(NS2, NS3) and South Atlantic Bight sample sets vary by over a factor of two, while the

central region (DE) activities are much more consistent. This is most likely due to the range

in times over which the sampling took place, over months in the case of the northern and

southern regions, and over a period of a few days in the central region. The very long-lived

226Ra should be much more well mixed, as the 226Ra means at 100 km demonstrate. Average

activities of 226Ra at 100 km are 8.2-9.3 dpm/100L, all within one standard deviation of

each other.

In the western edge of the North Atlantic gyre, 228Ra decreases to an average of 2.7

dpm/100L; 226Ra is in the same range as it is on the shelf, averaging 8.6 dpm/100L with

a standard deviation of only 0.14. In the central gyre 228Ra activities are at their lowest

and most consistent, with a mean of 1.5 dpm/100L. 226Ra is steady at 8.5 dpm/100L. No

short-lived Ra isotope data exists for the open Atlantic, however with parent isotopes in

short supply their supported activities could not be high. 224Ra is a product of the low



activity 228Ra, and is preceded by a particle reactive parent which can be depleted from

surface waters. The 235U series of which 223Ra is a member is much less abundant than 238U

series isotopes, and 223PRa is preceded by three particle reactive parents as well. "Excess"

activities of these isotopes, with no local sources, would of course be zero at great distance

from the shore and bottom sediments.

To help determine when sediment disturbances or upwelling had affected surface radium

activity, water samples were pumped from mid- and bottom depths on transects DE-A and

NS3. Profiles of 224Ra and 223Ra from the pumped samples are shown in Figure 3.5. With

the exception of the one shallow water sample at DEA-007, all are elevated in 224Ra over

the surface activity. (DEA-007 shows no deep enrichment primarily because it is nearer

to shore and the surface 224Ra is higher to begin with.) In three of the profiles, 223Ra

is also elevated over the surface activity, but not by as great a percentage as 224Ra. In

the four samples where 224Ra is elevated at depth, the 224Ra:223Ra ratios are significantly

higher in the bottom samples, ranging from 0.6-8.8 at the surface to 9.1-19.7 at the bottom.

Complete isotope, salinity and nutrient data for subsurface profiles are in Tables 3.6-3.8 of

the end of the chapter.

In this study, a high degree of variability was seen in radium distribution across the Mid-

Atlantic Bight shelf, but there were some recurrent features which will be discussed in the

following sections. 228Ra and 226Ra show the most consistency, as might be expected; their

distribution reflects the long integration time characteristic of isotopes with long half-lives.

In these transects, 228Ra typically decreased by 30-50% from mid-shelf to upper slope, while

226Ra was relatively well mixed over this region, showing little if any decrease away from

shore after the mid-shelf. 223Ra was often low across the whole transect, but occasionally
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Figure 3.5: Vertical profiles of 224 pa and 223Ra from transects DE-A and NS-3. Each

horizontal segment is equivalent to 0-2.0 dpm/100L for 224Ra, and 0-0.2 dpm/100L for
223 Rpa

was elevated at mid-shelf and decreased to near zero over the upper slope. On the other

hand, 224Ra, though frequently elevated at mid-shelf, always decreased to zero before the

shelfbreak jet. This indicates that cross-shelf transport may have been occurring on the

timescale of the 223Ra (2 months), but not on the timescale of 224Ra (3 weeks). Small-scale

features were frequently observed in the short-lived isotope data, which often corresponded

to anomalies in salinity and nutrients. Frequently these were associated with Gulf Stream

filaments or warm core rings that we observed in the area in hydrographic or satellite sea

surface temperature data. The temporal and spatial variability in the short-lived isotope

data, particularly 224Ra, meant they were often of limited usefulness in calculating mixing

rates that depend on steady-state conditions. However, the same characteristics made these

isotopes especially useful as tracers of small-scale water mass movement.

22 fdium Vertical Water Column Profiles
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Figure 3.6: Potential pathways of transport in the Mid-Atlantic Bight.

3.3.1 Central Mid-Atlantic Bight

Because the short-lived Ra signal is detectable further offshore in the Mid-Atlantic Bight,

it is possible to use these isotopes as a new tool for studying cross-shelf transport in this

region. Rapid or transient exchange processes such as shelf streamers, eddy filaments, or

short-lived water mass intrusions axe therefore within the realm of detection using 223Ra

and 224Ra.

The radium and nutrient distributions measured over a 60x70 km outer shelf region
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3-5 November 2000. Dotted line indicates the position of the 100 m isobath.

over the course of 3 days during the late fall 2000 cruise axe illustrative of the small-scale

variability that is possible in the coastal zone. Figures 3.7-3.12 show cross-shelf sections of

long- and short-lived radium, salinity, nitrate, silicate and phosphate for each of the three

transects that were sampled. Complete data tables are located in Tables 3.6 to 3.14 at the

end of the chapter. Plots axe annotated with the location of the maximum velocity of the

shelfbreak jet, and the position of the 100 m isobath which is located here at about 90-95

km from shore. The width of the shelfbreak jet where velocity exceeds 30 cm/s is 10-15 km.

Maximum jet velocity at the surface during this period was 40-60 cm/s. A saline surface
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Figure 3.8: Nitrate, silicate and phosphate over transect DE-A, Mid-Atlantic Bight

Delaware shelf, 3-5 November 2000. Dotted line indicates the position of the 100 m isobath.

intrusion was present over the outer 10-30 km of the transects, with salinity over 36 PSU

at some outermost stations. Satellite imagery shows the presence of streamers extending

from the crests of Gulf Stream meanders in this area (see Chapter 4, Figure 4.9). Strong

salinity fronts were observed near the shelfbreak at the boundary of the saline intrusion,

and weaker fronts were detected at mid-shelf, with surface outcrops 75-80 km offshore near

the 60 m isobath.

The activity of the short-lived isotopes shows a great deal of variability, especially over
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Figure 3.9: Radium and salinity over transect DE-B, Mid-Atlantic Bight Delaware shelf,
3-5 November 2000. Dotted line indicates the position of the 100 m isobath.

transects DE-B and DE-D. Only transect DE-A shows a fairly consistent decrease of 2 24 Ra

with distance from shore. 2 23 Ra is very low across all transects, with little discernable

trend. However on all transects 22 4 Ra decreases to zero immediately after the shelfbreak

jet maximum. Thus it appears that the jet is a barrier to transport on the timescale of this

isotope (approximately 3 weeks). On the other hand , 2 23 Ra maintains a more consistent

activity on both sides of the jet and may be transported cross-shelf within the span of its

useful (measurable) lifetime (approximately 2 months). This gives us some rough guidelines

for estimating transport times across the jet boundary. If there was a clear gradient in 223Ra
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Figure 3.10: Nitrate, silicate and phosphate over transect DE-B, Mid-Atlantic Bight
Delaware shelf, 3-5 November 2000. Dotted line indicates the position of the 100 m isobath.

across the shelfbreak it would be possible to use an isotope ratio of 223Ra:228Ra to determine

a cross-jet transport time, but none of the transects here have differences in starting and

ending activities of 223Ra that are significantly larger than the error associated with the

measurements. From this data is is really only possible to say that the transport time is

probably greater than 16 days and perhaps less than 50. Activities < 0.1 dpm/100L are

extremely low (approximately 1-5% of nearshore activities) so one might argue that 223Ra

is effectively zero across most of the transect, especially with the large errors.
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Figure 3.11: Radium and salinity over transect DE-D, Mid-Atlantic Bight Delaware shelf,
3-5 November 2000. Dotted line indicates the position of the 100 m isobath.

Large peaks in 224Ra activity occur on transects DE-B near the shelfbreak and DE-

D at the outermost station. Both are accompanied by little or no increase in the other

radium isotopes. Other characteristics of the two samples do not match however. The

peak in transect DE-B occurs where salinity is still low and where the nutrients are at their

highest concentration. The peak ath the end of transect DE-D occurs in very high salinity

(> 35 PSU), low nutrient (NO- = OpM) water in the midst of the saline incursion. This

suggests very different sources for the two. 224Ra activity, salinity and nutrients in bottom
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Figure 3.12: Nitrate, silicate and phosphate over transect DE-D, Mid-Atlantic Bight

Delaware shelf, 3-5 November 2000. Dotted line indicates the position of the 100 m isobath.

water sampled near the shelfbreak during this survey (Tables 3.9-3.11) are similar to the

DE-B sample and this is a possible source if vertical mixing had occurred recently. The

possible sources and pathways for high salinity, high 224Ra water were unexpected and will

be discussed at length in Chapter 5.

The long-lived isotopes exhibit the expected gradual decrease in activity offshore, with

228R~a decreasing faster than 226Ra. ransect DE-A has the only major anomaly in activity,

near the shelfbreak jet maximum. It is possible this could be related to the age of the water

DE-D Nitrate : Silicate November 2000DE-D Nitrate & Silicate November 2000
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Figure 3.13: Minimization of sum of squares error for advection-diffusion-decay model with

"excess" 226Ra and 228Ra data from transect DE-A. Calculated curves (solid lines) are

shown in the lower right for the two isotopes with slightly different advective rates. Circle

and square markers are actual data points. The dotted lines indicate the curves for the two

isotopes if an intermediate value of w is used for both.

in the jet; because it is travelling predominantly along-shelf for large distances from the

northeast, water within the jet might have become depleted over time. However this is not

seen in measurements taken near the jet on the other transects.

Nutrient concentrations in this region are elevated over the mid- and outer shelf and

lower over the upper slope. There is a pronounced peak in concentration just over the

shelfbreak near the 100 m isobath, after which concentrations drop dramatically. Transect

DE-D has an anomalous peak in nutrients at 115 km, just offshore of the shelfbreak jet.



The nutrient peak is accompanied by a slight elevation in the long-lived isotopes and a drop

in salinity. This combination of features could be an indication of a small water mass or

streamer from fresher, more nutrient- and isotope-rich shelf water.

The smooth gradients in the long-lived isotopes, particularly those from transect DE-A,

make them ideal candidates for calculations of eddy diffusion coefficients using the sum of

squares method. Unfortunately the 224Ra data from transect DE-A is not as useful because

the 223Ra data does not have a discernable gradient and also has very large error relative to

the activity levels. Without a short-lived partner it would be impossible to constrain both K

and w, even though velocity data is available. Velocities from the ADCP and hydrographic

data are too large and variable to use as a constraint on w; cross-shelf surface velocity along

this transect varies from -10 cm/s (shoreward) to +20 cm/s (seaward). With that kind of

variability it is possible that the mean velocities on the timescales of 224Ra and 223Ra could

also differ significantly.

Error minimization for an advection-diffusion-decay model is shown in Figure 3.13 for

excess 226Ra and 228Ra data from transect DE-A. The closest approach of the two zero

contours occurs at about r = 40 m2/s with w ::::: -0.5 cm/s for 228Ra to -0.12 cm/s for

226Ra. Curves are shown for the two isotopes using their respective best fit value of w (solid

lines). The dashed lines indicate the calculated curves for each isotope using an intermediate

value of w = -0.9 cm/s for both. This shows how very sensitive the calculations are to

extremely small variations in advection. It must also be noted that velocities, and variations

in velocity, this small could only be realistically measured by moored instruments that can

provide a long-term mean.

In conjunction with measured nutrient gradients, these parameters can now be used



to estimate the advective-diffusive nutrient flux across the shelfbreak. Using data from

the 100 meter isobath station, and from 20 km beyond the 100 m isobath (95 km and

115 km from shore) we can calculate nutrient gradients across the shelfbreak. At the

200 m isobath, Si= 4.5 pmol/L and the gradient dSi/dx= -0.15pmol/m 3 -m. For nitrate

and phosphate, N= 2 pmol/L, dN/dx= -0.08 pmol/m 3 m and P= 0.4 pmol/L, dP/dx=

-0.015 jimol/m 3 -m. Equation 2.6 gives the following cross-shelfbreak surface fluxes (positive

offshore):

Flux [pmol/m 2-s] Total Advective Diffusive

Jsi 1.5 -4.5 6.0

JNO- 1.2 -2.0 3.2

Jp03- 0.3 -0.3 0.6

Table 3.4. Nutrient flux across the 200 m isobath of section DE-A. Parameters from
long-lived Ra isotope data: n = 40 m2 /s, w = -0.10 cm/s.

Under these conditions, the advective transport, while not the largest component, is

still of the same order as the diffusive transport and plays an important role in scaling

back the total flux. Csanady and Hamilton (1988) calculate an average 2-way shelf-slope

exchange rate of 0.3 m3/s per meter coastline over the upper 200 m. Using the shelf-slope

concentration difference for nitrate cited in their study, based on Riley (1975), AN = +0.86

pmol N/L (12 pg/L), the shoreward flux across the shelfbreak totals 258 pmol/m- s over 200

m depth, or -1.29 p4mol/m 2. s. The magnitude of the fluxes derived from the two different

methods are similar, lending some support to the n and w values derived from long-lived Ra

data. It must be noted however that nutrient measurements are instantaneous snapshots

at one point in time, whereas even the short-lived isotopes integrate over much longer time

scales (decadal to thousands of years in the case of 228Ra and 226Ra). This presents one of
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the major difficulties of calculating such fluxes based on individual measurements.

3.3.2 Northern Mid-Atlantic Bight

In the northern Mid-Atlantic Bight transects over the Nantucket Shoals shelf region were

made during three seasons, fall (NS1), spring (NS2) and early winter (NS3). The shelf

is broader in this area, with the 100 m isobath located 160 km from shore. It was not

possible to collect detailed hydrographic data on these transects, so only ADCP velocity

80
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measurements are available along with some bathythermograph data. The shelfbreak jet

was a less prominent feature on these surveys, and its velocity was lower than in the southern

transects. During surveys NS1 and NS2 large warm core rings dominated the shelfbreak

and upper slope region, influencing salinity and temperature as well as the flow magnitude

and direction.

Two days prior to the outbound transect of survey NS1 in September 1999, Hurricane

Floyd passed by the Northeast U.S. coast. The subsequent 22 Ra activity on the shelf during
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Figure 3.16: Radium and salinity over transect NS-2, Mid-Atlantic Bight, Nantucket Shoals

shelf, 1 April 2000. Dotted line indicates the position of the 100 m isobath.

this survey was unusually high (Figures 3.14, 3.15, and Tables 3.12-3.14). The elevated

224Ra relative to the other radium isotopes is characteristic of a local shelf sediment source.

Nutrients measured on the outbound leg were also unusually low over the entire transect.

An anomalously high 224Ra activity is also seen over the upper slope 240 km offshore. As

with the offshore 224Ra peak in transect DE-A, this one also occurs in water with salinity

> 35 PSU that is associated with Gulf Stream features. An advancing warm core ring that

is visible in AVHRR imagery can also be seen in the shoreward progress of the salinity front

between 21 September and 7 October (see Chapter 5, Figure 5.4).

NS-2 22nRadium April 2000 NS-2 22aRa & 22Ra April 2000
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Figure 3.17: Nitrate, silicate and phosphate over transect NS2, Mid-Atlantic Bight, Nan-
tucket Shoals shelf, 1 April 2000. Dotted line indicates the position of the 100 m isobath.

Survey NS2 in April 2000 also encountered a warm core ring at about 210 km offshore,

as seen in the steep salinity front in Figure 3.16. 223Ra, 228Ra and 226Ra decrease offshore

in a manner consistent with their decay rates. Over this transect 224Ra shows no trend,

but does drop to near zero at the shelfbreak jet as in the southern MAB (transects DE-A-

D). Also similar to the southern MAB survey, 223Ra extends past the shelfbreak. In this

case there is a measureable gradient, which allows calculation of a transit time using the

223Ra:228Ra ratio. We can calculate times for transport up to the shelfbreak jet, as well



as beyond it. The gradient between 110 km and 185 km can represent transport up to the

shelfbreak jet, and the gradient between 110 km and 218 km can represent transport past

the jet. Equation 2.9 gives transport times of 18 days up to the shoreward side of the jet,

and 43 days to reach the seaward side. The jet position will not always be the same, but on

the timescale of 223Ra, this should be a fair approximation of its location. If the transport

time estimates are correct, it is clear why 224Ra goes to zero at the jet, since 43 days is well

beyond the 3 week average lifespan of 224Ra. It is also interesting that it apparently takes

as long to cross the 10 km width of the jet as it takes to transit the 80 km before the jet.

Another similarity to the southern MAB is the peak in 22 4Ra at the end of the transect

in high salinity water. As before, 223Ra is only slightly elevated, and 226Ra and 228Ra are

not enriched. Salinity in this sample is over 36 PSU. The difference between this water and

the adjacent shelf water is most apparent in the nutrient concentrations (Figure 3.17) which

decrease sharply where the 224Ra and salinity peak. This is the region where the transect

crosses the outer edge of the warm core ring. The presence of such peaks in three surveys

that crossed Gulf Stream features suggests that this is not an entirely unusual phenomenon,

and will be the basis for additional measurements and transport calculations in Chapter 5.

The cross-shelf distributions of 223Ra, 228Ra and 226Ra can be used to estimate probable

values of n and w using sum of squares error calculations (Figures 3.18 and 3.19. All

solutions for the long-lived isotopes give a negative (shoreward) w. But the zero contours

do not intersect or converge so it is not possible to identify a unique or even most likely r, w

pair beyond knowing that the range of w is limited to a range within -1.0 to 0 cm/s. The

curves shown with the data are merely an example using an arbitrary diffusion coefficient,

K = 100 m2/s. 223Ra is not helpful in constraining the parameters either. The zero contour
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Figure 3.18: Minimization of sum of squares error for advection-diffusion-decay model with

long-lived Ra isotope data from transect NS-2, Mid-Atlantic Bight, Nantucket Shoals shelf,

1 April 2000.

of minimized error for the 223Ra falls within a range of all positive (seaward) w, and thus the

223R~a data are clearly integrating over a much smaller timescale during which conditions

differed from the long-term mean. ADCP measurements do not assist in this case either

because cross-shelf velocity from ADCP measurements ranged from -20 cm/s to +20 cm/s

over the length of the transect, with frequent shifts in direction.

The final crossing of this transect took place in early December 2000 and has many
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shelf, 1 April 2000.

characteristics in common with the previous survey (Figures 3.20, 3.21). This crossing did

not extend far enough to resolve the shelfbreak jet, and salinity remains low (< 34.5) across

the transect. However, clear gradients are seen in both 223Ra and 228Ra which are quite high

over the shelf. Calculations from 2 a:228Ra ratios between 100-191 km (AR1oo = 0.016,

AR 191 = 0.005) give a cross-shelf transit time of 21 days, similar to the time calculated

from survey NS2 for transit up to the shelfbreak jet (18 days from 110-185 km).

224Ra is variable and has no distinguishable trend with distance. Nutrients do show a

coherent pattern here, with silicate and nitrate once again peaking at the shelfbreak, while

phosphate has the opposite gradient. Sum of square error calculations were done for the

two isotopes with cross-shelf gradients, 223Ra and 228Ra. Like the other data sets from this

area, the two zero contours (from one short-lived and one long-lived isotope) do not overlap,

and solutions to the 223Ra data are all in the positive w domain while solutions to the 228Ra

data all have negative w. Curves have again been drawn using an arbitrary n = 100 m2/s

to show the difference in w that results from the different isotopes. The selection of AO



is not always obvious when transects do not extend to the coast. AO for 223Ra and 228Ra

were selected here by considering highest values observed nearshore (since both isotopes

are much higher than normally observed over the mid-shelf) and by optimizing the sum of

squares fit for the best A0 .

It should be noted here that in the transects sampled in the Middle Atlantic Bight, 228Ra

is quite variable, but the range of n calculated from sum of squares error minimization is

consistently in the negative range of w, between -1.5 and 0, just as it is with the longer-lived

226Ra. This suggests that there is some consistency over large time scales in the processes

affecting the long-lived isotope distributions. Even in survey NS3, with an apparently higher

coastal input of 228 Ra, the range of n, w solutions is similar to the other transects.

Although data from only one isotope in each long- and short-lived pair was usable, the

zero contours do tell us something about the long-term and short-term mean conditions

in this area. Data from the Coastal Mixing and Optics Experiment (Shearman and Lentz

submitted) was collected from moorings at the shoreward end of the transects. (The data

from this survey was collected during mooring deployment for follow-up studies of the same

location.) At the 86 m isobath (beginning of transect) cross-isobath subtidal current velocity

means are from 0.5 to 3 cm/s at 30 m depth, to 6-8 cm/s at 4 m depth (converting their

data to a coordinate system where positive w is in the offshore direction).

The geostrophic component of the current is 2-4 cm/s over the upper 30 m. The portion

of the short-lived 224Ra sum of squares minimization zero contour that falls in a range of

realistic n (about 0-600 m2/s) corresponds to velocities from 2-3.5 cm/s, in excellent agree-

ment with the geostrophic current velocity. More problematic is the 228Ra zero contour,

which falls almost entirely in the negative w region, from -0.6 to 0 cm/s. (Note different x-
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Figure 3.20: Radium and salinity over transect NS-3, Mid-Atlantic Bight, Nantucket Shoals

shelf, December 2000. Dotted line indicates the position of the 100 m isobath.

and y-axis limits for this isotope because of the steepness of the contours.) This indicates

a long-term mean velocity near zero and slightly negative. It is possible this reflects a

long-term trend or variability. The NSFE occupied a slightly longer mooring transect just

east of CMO, with data from 1979-80 (Beardsley et al. 1985). The subtidal cross-isobath

current means from this experiment were lower, but still in the offshelf direction, 0.5-2.8

cm/s over the upper 10-32 m at the 88 m isobath. The low, slightly negative cross-shelf ve-

locities implied by all of the long-lived Ra isotope data collected on the MAB outer shelf are

88
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Figure 3.21: Nitrate, silicate and phosphate over transect NS3, Mid-Atlantic Bight, Nan-

tucket Shoals shelf, December2000. Dotted line indicates the position of the 100 m isobath.

an interesting problem that may help reveal information about Ra transport or long-term

current means.

3.4 Discussion

In actual data from the Mid-Atlantic Bight we have seen that the advective component in

a nutrient flux calculation is of the same order as the diffusive component, so including the

advective term in our equations is especially important. Rather than resolving the advective
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Figure 3.22: Minimization of sum of squares error for advection-diffusion-decay model with
223Ra and 228Ra isotope data from transect NS-3, Mid-Atlantic Bight, Nantucket Shoals
shelf, December 2000.



problem, concurrent velocity measurements highlight the difficulty of factoring in advection

in the coastal zone. Actual velocities obtained by ADCP or geostrophic current calculations

from hydrographic data show that instantaneous cross-shelf velocity is actually much larger

than long term means, and can certainly have an effect on distributions of the short-lived

isotopes. In addition, time scales of variability are extremely short, so geochemical patterns

that are observed may be the result of small scale flow that has already shifted.

Long-term moored velocity means, while less variable and lower in magnitude than

instantaneous ADCP velocity, are still of a magnitude and variability that can strongly

affect the calculation of mixing coefficients. The Nantucket Shoals Flux Experiment means

for cross-shelf flow at the 105 m and 198 m isobaths vary from -1.0 m/s (onshelf) to 2.1

m/s (offshelf) in the upper mixed layer and have subtidal standard deviations of +7.4 - 8.6

(Beardsley et al. 1985). The more recent Coastal Mixing and Optics Experiment conducted

over 1996-97 has recorded even larger mean flows of 0.5-8.0 m/s (offshelf) in the upper 30

m at their outermost station on the 86 m isobath (Shearman and Lentz submitted). These

are of a magnitude that can alter the value of r. considerably. Long-lived Ra distributions

cross-shelf must also be reconciled to long-term mean current velocities. The cross-shelf

gradients of 228Ra and 226Ra require a slight onshore advective flow to maintain, even

with low diffusive mixing. This must be explained either through physical circulation, an

incorrect assumption such as steady-state, or some basic flaw in the model such as a spatially

variable eddy diffusivity or large scale circulation advecting tracer laterally over large time

scales.

Hydrographic data also show the difficulty of interpreting some cross-shelf geochemical

measurements. Interleaved water masses, slope intrusions, and shelf streamers can all in-



troduce data points that are not necessarily related to those from adjacent stations. For

example, gradients observed across the DE-A-D sections could be affected by the slopewa-

ter/GS intrusion in the surface layer over the outer shelf and upper slope. If the water

masses have been in contact only recently and are therefore geochemically unrelated, this

must be considered when interpreting geochemical gradients. Occasionally individual sta-

tions are observed that show abnormally high or low radium, salinity or nutrients. When all

of the chemical data is considered together, these anomalies may point to the presence of a

distinct, isolated water mass, such as at the end of transects DE-D and NS2. It is important

in constructing radium or nutrient gradients for use in flux calculations to consider that

such points may not actually be a part of the overall gradient.

Fluxes calculated from Mid-Atlantic Bight radium and nutrient data indicate a net off-

shore transport. In all but one case (phosphate on NS3) nutrient gradients are negative

(decreasing offshelf). With the positive (offshelf) advection suggested by short-lived 223Ra

data this results in net advective-diffusive export on short time scales. With the small on-

shore advection suggested by the long-lived isotope 228Ra, the corresponding eddy diffusion

is enough to create a net offshelf flux on longer time scales also, providing the nutrient

gradients are applicable.

The question of temporal and spatial variability in nutrient gradients is an important

one to consider when calculating cross-shelf fluxes. Instantaneous nutrient data across a

sampling transect could be very useful in conjunction with short-lived Ra data to calculate

a local nutrient flux that reflects current or at most seasonal conditions. However we can

see from the data in the northern MAB that nutrient gradients are quite variable over

time. Figure 3.23 shows historical nitrate data from the Mid-Atlantic Bight during the
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Figure 3.23: Cross-shelf nitrate distribution during SEEP I, Cruises 4 and 5. Red dotted
line indicates the location of the 100m isobath.

SEEP experiment of 1984. During these surveys nitrate is low over the shelf and increases

beyond the shelfbreak, in a manner more consistent with the traditional concept of high

production creating nutrient deficits over the shelf. Yet even in these "classic" nutrient

gradients, both the surface and deep water gradients change significantly between the two

surveys, just 5 days apart. When using the long-lived isotope data, which likely give more

realistic average values of r. and w on a decadal time scale, it would be preferable to obtain

long-term time-averaged nutrient gradient data.

Nixon et al (1996) have estimated a net deficit on the northeastern U.S. shelf of 77-

147 x109 mol N/yr after considering riverine inputs, denitrification, sediment burial, and

atmospheric deposition. To balance this deficit there must be onshelf transport of nitrogen

by advective and diffusive processes from deep slopewater, surface slopewater, or both.

A comparison of annual advective-diffusive flux estimates along the 900 km shelf-slope

boundary of the Mid-Atlantic Bight is shown in Table 3.5, using historical nutrient data

from SEEP and data from this survey. For SEEP, an average nitrate gradient of +0.10

jpM/km is used for the entire 200 m depth. For this study, the data from DE-A is taken as

NITRATE

SEEP I



a representative nitrate gradient (0.08 pM/km) but only applies to the surface mixed layer;

because of this the depth of integration is limited to 50 m for our nutrient data. Exchange

rates are taken from long-lived Ra isotope data from the southern MAB survey (DE) and

from calculations based on salinity balances in Csanady and Hamilton (1988).

The different nitrate gradients are similar in magnitude but opposite in direction, result-

ing in a reversal of the flux direction. The SEEP nitrate flux is onshore, while the nitrate

flux using data from this study is offshore (positive). Both exchange rates give a total flux

that makes a significant contribution to resolving the shelf deficit. Combining SEEP nutri-

ent data with the advection-diffusion rate from long-lived radium isotopes (Survey DE-A)

gives an onshore nitrate flux of 51 x 109 mol/yr, compared to 85 x 109 mol/yr for the ex-

change rate from salinity balances. For comparison with eddy diffusion calculations that do

not account for advective transport, this flux would be equivalent to using r = 90 m2/s with

zero advection. The nitrate flux calculated from radium isotope distribution is thus in fairly

good agreement with other estimates, and with nutrient budget requirements estimated for

the North Atlantic. The key factor in these cases is the magnitude and direction of the

cross-shelf nutrient gradient, which appears to be quite variable over time.

It should also be noted that nitrate concentrations axe generally higher at depth due to

remineralization and lack of primary production, so deep nutrient gradients may differ from

surface gradients in both magnitude and direction (as in SEEP data, Figure 3.23). Deep

nutrient fluxes may also be subject to entirely different physical processes such as shelfbreak

upwelling cells and bottom boundary layer transport, which may penetrate the shelfbreak

front, or merely converge there (Pickart 2000; Chapman and Lentz 1994; Houghton 1997;

Houghton and Visbeck 1998). Consequently, there may be net onshore transport of nu-



trients via subsurface pathways even if surface transport is offshore, or there may be no

penetration of the front at all (Figure 3.24). Thus in addition to temporal variability in nu-

trient concentrations, spatial differences in the vertical as well as horizontal direction must

be taken into account when estimating cross-shelf flux. It is quite possible that surface and

deep fluxes must be calculated separately, using different nutrient gradients and different

advective-diffusive exchange rates.

Exchange Nitrate Gradient J JMAB Integration
Rate [pM/km] [pmol/m 2.s] [109 mol/yr] Depth [m]
MASAR 0.10 -15.0 -85.2 200 m
MASAR -0.08 +2.25 +12.7 50 m
Ra isotopes 0.10 -9.0 -51.0 200 m
Ra isotopes -0.08 +1.2 +1.7 50 m
Shelf budget
requirement -77-147 200 m

Table 3.5. Comparison of advective-diffusive flux of nitrate across the shelf-
slope boundary. Fluxes are calculated using a) the two-way exchange rate
calculated in the MASAR publication from salinity balance (Csanady and
Hamilton 1988), 0.3 m3/s per meter coastline, and b) advection and diffusion
rates calculated with long-lived radium isotopes in this study, r. = 40 m2/s,
w = -0.10 cm/s. Nitrate gradients are from historical SEEP I data (0.10
pM/km, or AN ; 10pM between slope and shelf) and from this study (-0.08p
M/km, orAN ; -1.5pM between slope and shelf). The nitrogen flux required
to balance North Atlantic budgets is shown for comparison (Nixon et al. 1996).
Integration depth is 200 m for SEEP nutrients which include deep samples, and
50 meters for surface nutrient data from this study. Positive flux = offshelf.

Ideally field experiments aimed at determining cross-shelf fluxes or exchange rates should

incorporate some type of long-term sampling. Repeated nutrient sampling is important

to determine the extent of temporal variability. Within one area we have seen nutrient

gradients change significantly in less than one week. Over longer time periods, the direction

of the gradient is different, positive offshore during SEEP I (1984) and negative offshore in

our surveys (2000-2001). Nutrients should also be measured in at least two depths, surface
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Figure 3.24: Possible pathways for nutrient flux across the shelfbreak with alternative gra-
dient scenarios. Top: Historical nutrient gradients, and Bottom: Gradients measured in

this study.

and near bottom, to account for different concentrations at depth from remineralization and

lack of uptake. Likewise, radium isotopes would ideally be measured repeatedly across the

entire shelf and upper slope, at fairly high resolution (; 5 km). This would allow observing

both broad gradients and long-term changes, as well as small-scale, short-term physical

processes. Concurrent hydrographic sampling is also essential to determine what type of

physical structure is underlying and affecting the chemical measurements. Hydrographic

and ADCP data would also provide information on the flow regime in place at the time. In

order to determine flux of nutrients, it is also necessary to know flow patterns over longer

time scales, at the surface and at depth. Moored velocity data would be useful for this

purpose.

Combining the best possible data still leaves a difficult task of interpretation. Neither

200 m50 m



nutrient nor isotope distributions are in steady-state, and they are subject to different pro-

cesses that determine those distributions. Nutrient gradients are subject to both biological

and physical processes that can alter their concentrations on a timescale of days. Radium

isotopes originating from the coast are subject to seasonal input changes and transient

physical flow phenomena, as well as longer term changes in mixing across the shelf. Even

with ideal sampling opportunities the problem of non-steady state biochemical and physi-

cal processes operating on different time scales will make determining fluxes a challenge. It

is possible that "average" conditions are meaningless, and that exchange across the shelf-

slope boundary occurs primarily as a series of continuous transient conditions that taken

individually would be unrepresentative of their cumulative effect.



Sample Station Sample 224Raex
Location Depth (m) Depth (m) (dpm/100L) (dDm/ 100L) (dPm/ 100L) (dPm/ 100L)

DEA-007-sfc 61 2 1.42 ± 0.17 0.04 ± 0.02 8.27 ± 0.45 7.75 0.19
DEA-007-bot 61 55 0.75 ± 0.07 0.04 ± 0.01 9.07 ± 0.81 8.26 ± 0.29
DEA-009-sfc 85 2 0.79 i 0.10 0.09 i 0.02 7.05 i 0.40 8.15 - 0.17
DEA-009-mid 85 30 1.05 ± 0.10 0.04 ± 0.02 7.33 0.67 8.20 ± 0.28
DEA-009-bot 85 78 1.18 ± 0.10 0.06 0.02 8.64 0.64 7.91 0.22
DEA-011-sfc 121 2 0.40 . 0.08 0.07 - 0.03 6.55 - 0.43 8.94 0.19

DEA-011-mid 121 50 0.78 ± 0.09 0.03 ± 0.01 7.04 ± 0.54 8.33 ± 0.31
DEA-011-bot 121 116 2.05 ± 0.21 0.10 0.03 8.86 ± 0.65 8.85 0.24
NS3-116-sfc 83 2 0.94 ± 0.11 0.15 ± 0.04 11.56 i 0.91 8.19 ± 0.27
NS3-116-mid 83 52 0.80 0.10 0.14 0.04 8.92 0.68 7.77 i 0.24
NS3-116-bot 83 82 1.82 ± 0.18 0.20 ± 0.06 9.71 ± 0.57 8.78 i 0.20
NS3-113-sfc 100 2 1.02 0.12 0.12 i 0.03 8.13 ± 0.56 8.23 0.20
NS3-113-mid 100 57 0.62 0.13 0.12 0.04 7.30 0.69 8.97 0.23
NS3-113-bot 100 93 1.95 0.16 0.15 0.03 6.10 ± 0.50 8.34 0.17

Table 3.6: Subsurface radium isotope activities, Mid-Atlantic Bight. 223 Ra and 224 Ra
activities are "excess," after correcting for supported activity from 227Ac and 228Th in the

water column.

Sample Distance Salinity 2 2 8Th
I nation (kin) (PSU) (dpm/100L)

2 27 Ac
(dDm/100L)

DEA-007-sfc 84 33.44 0.35 0.08 N/A
DEA-007-bot 84 33.68 0.53 ± 0.09 0.01 0.00
DEA-009-sfc 94 33.68 0.40 ± 0.03 N/A

DEA-009-mid 94 33.89 0.39 0.04 0.02 ± 0.01
DEA-009-bot 94 33.88 0.58 ± 0.09 0.01 ± 0.00
DEA-011-sfe 104 34.72 0.49 i 0.04 N/A
DEA-011-mid 104 34.15 0.38 i 0.04 0.02 ± 0.01
DEA-011-bot 104 34.08 0.2 i 0.05 0.03 ± 0.01
NS3-116-sfc 119 32.63 0.72 0.05 0.00 ± 0.00
NS3-116-mid 119 32.91 0.80 ± 0.06 0.04 ± 0.01
NS3-116-bot 119 33.02 0.73 ± 0.06 0.02 ± 0.01
NS3-113-sfc 139 33.04 0.52 0.08 0.00 1 0.00

NS3-113-mid 139 33.74 0.77 ± 0.11 0.03 ± 0.01
NS3-113-bot 139 33.51 0.56 ± 0.10 0.01 ± 0.01

Table 3.7: Subsurface salinity, 228Th, and 227Ac activities, Mid-Atlantic Bight.
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Sample Distance Nitrate
Location (kin) (pM)

Phosphate Silicate Ammonium
(pM) (piM) (piM) N:P N:Si

DEA-007-sfc 84 1.92 0.38 4.54 0.54 5.05 0.42
DEA-007-bot 84 1.90 0.34 4.12 0.62 5.59 0.46
DEA-009-sfc 94 1.97 0.35 4.51 0.44 5.63 0.44
DEA-009-mid 94 3.63 0.49 6.16 0.51 7.41 0.59
DEA-009-bot 94 4.87 0.57 7.82 0.36 8.54 0.62
DEA-011-sfc 104 0.61 0.12 1.70 0.58 5.08 0.36
DEA-011-mid 104 3.48 0.42 5.68 0.40 8.29 0.61
DEA-011-bot 104 5.92 0.64 8.34 0.37 9.25 0.71
NS3-116-sfc 119 N/A N/A N/A N/A N/A N/A
NS3-116-mid 119 N/A N/A N/A N/A N/A N/A
NS3-116-bot 119 N/A N/A N/A N/A N/A N/A
NS3-113-sfc 139 N/A N/A N/A N/A N/A N/A
NS3-113-mid 139 N/A N/A N/A N/A N/A N/A
NS3-113-bot 139 N/A N/A N/A N/A N/A N/A

Table 3.8: Subsurface nutrient concentrations, Mid-Atlantic Bight.



Sample Distance 224Raex 223Raex
Location (km) (dpm/ 100L) (dpm/ 1OOL)

228Ra
2 2 6 Ra

(dpm/ 100L) (dpm/ 100L)
DE-A

DEA-005 64 1.46 ± 0.26 0.05 ± 0.02 9.28 i 0.46 8.44 ± 0.19 33.18
DEA-006 74 1.72 ± 0.27 0.04 ± 0.02 8.16 i 0.56 8.67 ± 0.19 33.23
DEA-007 84 1.42 ± 0.17 0.04 ± 0.02 8.27 0.45 7.75 i 0.19 33.44
DEA-008 89 1.76 ± 0.25 0.06 ± 0.03 7.25 0.44 8.14 0.20 33.55
DEA-009 94 0.79 ± 0.10 0.09 ± 0.02 7.05 i 0.40 8.15 0.17 33.68
DEA-010 99 0.79 i 0.14 0.07 ± 0.02 7.26 ± 0.45 7.20 ± 0.17 33.72
DEA-011 104 0.40 ± 0.08 0.07 ± 0.03 6.55 0.43 8.94 ± 0.19 34.72
DEA-012 109 0.67 ± 0.13 0.07 ± 0.05 3.81 0.27 4.91 ± 0.13 34.64
DEA-013 114 0.00 ± 0.08 0.07 ± 0.05 5.47 0.30 7.33 ± 0.15 34.78
DEA-014 119 0.08 ± 0.09 0.06 ± 0.05 5.14 ± 0.35 7.51 ± 0.16 34.99
DEA-105 124 0.40 ± 0.08 0.10 ± 0.03 4.96 ± 0.39 7.88 i 0.19 34.88
DEA-016 129 0.00 i 0.05 0.03 ± 0.01 5.83 ± 0.44 7.20 ± 0.22 34.82
DEA-017 134 0.00 ± 0.11 0.01 ± 0.00 5.45 0.38 7.46 0.18 34.77

DE-B

DEB-030 60 1.72 ± 0.27 0.05 0.01 7.63 0.70 7.19 0.28 33.24
DEB-029 70 0.42 0.08 0.13 i 0.04 8.62 0.62 8.28 0.29 33.35
DEB-027 80 0.65 i 0.13 0.06 0.01 8.57 0.64 8.33 0.26 33.50
DEB-025 90 1.72 ± 0.31 0.02 ± 0.01 8.47 ± 0.68 8.24 ± 0.24 33.51
DEB-024 95 1.35 0.23 0.05 0.02 7.30 0.50 7.81 0.17 33.71
DEB-021 110 0.09 ± 0.13 0.00 ± 0.01 5.87 i 0.47 7.27 0.18 34.77
DEB-019 120 0.00 ± 0.13 0.00 ± 0.01 5.67 ± 0.59 8.07 ± 0.19 35.30

DE-D

DED-063 60 1.10 ± 0.23 0.03 ± 0.01 9.67 i 0.84 8.62 ± 0.34 33.27
DED-061 65 1.73 ± 0.16 0.07 ± 0.02 10.01 0.85 10.75 0.35 33.29
DED-060 70 1.13 ± 0.14 0.02 ± 0.01 9.21 0.62 8.96 i 0.24 33.40
DED-059 75 0.51 ± 0.06 0.05 ± 0.02 8.78 0.78 9.18 ± 0.32 33.59
DED-058 80 1.50 ± 0.18 0.04 ± 0.02 8.07 ± 0.72 8.32 ± 0.29 33.51
DED-057 85 0.35 ± 0.03 0.04 ± 0.02 7.81 0.64 7.93 ± 0.27 33.51
DED-056 90 0.49 ± 0.04 0.03 ± 0.01 7.65 0.67 8.60 0.29 33.87
DED-055 95 0.19 ± 0.01 0.05 ± 0.01 8.16 0.55 8.73 0.23 33.87
DED-054 100 0.10 ± 0.01 0.00 ± 0.01 7.73 ± 0.49 8.93 ± 0.21 33.86
DED-053 105 0.64 ± 0.09 0.04 i 0.01 7.27 ± 0.57 7.95 ± 0.24 34.18
DED-052 110 0.05 ± 0.01 0.03 ± 0.01 6.78 i 0.60 8.47 ± 0.25 34.69
DED-051 115 0.16 ± 0.01 0.03 ± 0.01 7.66 ± 0.57 9.58 ± 0.25 34.24
DED-050 120 0.04 i 0.09 0.00 ± 0.00 6.41 ± 0.65 8.11 ± 0.27 34.97
DED-049 125 2.93 ± 0.14 0.06 ± 0.01 8.00 ± 0.76 9.04 ± 0.32 35.07
Alongshelf

DE-066 82 1.42 ± 0.11 0.04 ± 0.01 8.65 0.72 9.01 0.29 33.42
DE-067 86 0.01 ± 0.00 0.03 ± 0.01 8.92 ± 0.83 9.19 ± 0.34 33.51
DE-068 90 0.02 ± 0.00 0.02 ± 0.01 7.83 ± 0.79 9.26 0.34 33.76
DE-069 95 0.77 ± 0.10 0.00 ± 0.02 7.60 ± 0.61 8.98 ± 0.26 34.08

Table 3.9: Radium isotope activities and salinity, Survey DE, November 2000, southern

Mid-Atlantic Bight. 223Ra and 224Ra activities are "excess," after correcting for supported

activity from 227Ac and 22 8Th in the water colunm.
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Sample Distance 228Th

Location (km) (dpm/ 1OOL)

22 7Ac

(dpm /100L)

DE-A

DEA-005 64 0.41 ± 0.04 N/A
DEA-006 74 0.33 ± 0.07 N/A
DEA-007 84 0.35 ± 0.08 N/A
DEA-008 89 0.39 ± 0.09 N/A

DEA-009 94 0.40 0.03 N/A
DEA-010 99 0.41 ± 0.03 N/A
DEA-011 104 0.49 0.04 N/A
DEA-012 109 0.52 ± 0.07 N/A

DEA-013 114 0.50 ± 0.08 N/A
DEA-014 119 0.58 0.09 N/A
DEA-105 124 0.59 0.04 N/A
DEA-016 129 0.64 ± 0.05 N/A
DEA-017 134 0.60 ± 0.11 N/A

DE-B

DEB-030 60 0.45 i 0.08 0.0138 ± 0.0042

DEB-029 70 0.48 i 0.04 0.0086 ± 0.0017
DEB-027 80 0.44 ± 0.02 0.0071 ± 0.0017
DEB-025 90 0.28 0.02 0.0123 i 0.0024

DEB-024 95 0.26 ± 0.03 0.0124 ± 0.0025
DEB-021 110 0.65 ± 0.13 0.0090 ± 0.0029

DEB-019 120 0.64 i 0.13 0.0196 ± 0.0056
DE-D

DED-063 60 0.24 ± 0.01 0.0261 i 0.0077
DED-061 65 0.38 ± 0.03 0.0162 ± 0.0040

DED-060 70 0.47 ± 0.04 0.0107 ± 0.0033
DED-059 75 0.21 0.02 0.0172 0.0045

DED-058 80 0.48 i 0.05 0.0137 ± 0.0041

DED-057 85 0.54 ± 0.05 0.0145 ± 0.0046

DED-056 90 0.49 ± 0.10 0.0263 ± 0.0069
DED-055 95 0.62 ± 0.11 0.0104 ± 0.0031
DED-054 100 0.50 ± 0.09 0.0441 i 0.0099
DED-053 105 0.59 0.10 0.0047 ± 0.0017
DED-052 110 0.59 ± 0.10 0.0089 i 0.0027
DED-051 115 0.45 i 0.08 0.0107 ± 0.0040
DED-050 120 0.54 i 0.09 0.0102 ± 0.0035
DED-049 125 0.50 ± 0.08 0.0190 ± 0.0047

Alongshelf
DE-066 82 0.49 ± 0.02 0.0118 i 0.0034

DE-067 86 0.72 ± 0.12 0.0093 ± 0.0025
DE-068 90 0.65 0.13 0.0220 0.0053
DE-069 95 0.42 ± 0.04 0.0137 i 0.0042

Table 3.10: 228 Th and 227 Ac activities, Survey DE, November 2000, southern
Mid-Atlantic Bight.
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Sample Distance Nitrate Phosphate Silicate

Location (km) (piM) (pM) (pM)

Ammonium
(pM) N:P N:Si

DE-A

DEA-005 64 1.34 0.39 3.98 1.35 3.44 0.34
DEA-006 74 1.17 0.38 4.00 0.88 3.08 0.29
DEA-007 84 1.92 0.38 4.54 0.54 5.05 0.42
DEA-008 89 2.15 0.39 4.93 0.95 5.51 0.44
DEA-009 94 1.97 0.35 4.51 0.44 5.63 0.44
DEA-010 99 2.26 0.39 5.02 0.71 5.79 0.45
DEA-011 104 0.61 0.12 1.70 0.58 5.08 0.36
DEA-012 109 0.52 0.12 1.57 0.97 4.33 0.33
DEA-013 114 0.49 0.11 1.40 0.38 4.45 0.35
DEA-014 119 0.50 0.09 1.49 0.46 5.56 0.34
DEA-105 124 0.39 0.08 1.29 0.40 4.88 0.3
DEA-016 129 0.52 0.10 1.63 0.35 5.2 0.32
DEA-107 134 0.41 0.09 1.25 0.36 4.56 0.33

DE-B

DEB-030 60 0.18 0.32 2.58 0.49 0.57 0.07
DEB-029 70 1.58 0.38 4.67 0.47 4.20 0.34
DEB-027 80 1.69 0.34 4.58 0.44 4.92 0.37
DEB-025 90 2.27 0.36 4.93 0.45 6.32 0.46
DEB-024 95 0.58 0.09 1.82 0.52 6.14 0.32
DEB-021 110 0.15 0.07 1.27 0.27 2.04 0.12
DEB-019 120 0.08 0.05 1.09 0.31 1.49 0.07

DE-D

DED-063 60 1.27 0.62 4.68 1.37 2.06 0.27

DED-061 65 1.05 0.31 1.63 0.47 3.41 0.64

DED-060 70 1.13 0.32 3.57 0.41 3.55 0.32
DED-059 75 1.35 0.28 3.35 0.49 4.89 0.40
DED-058 80 0.57 0.28 3.00 0.34 2.00 0.19
DED-057 85 0.86 0.32 3.34 0.50 2.72 0.26
DED-056 90 2.25 0.35 4.38 0.30 6.46 0.51
DED-055 95 2.17 0.33 4.41 0.33 6.49 0.49
DED-054 100 2.65 0.37 4.76 0.36 7.25 0.56
DED-053 105 1.68 0.25 3.55 0.32 6.79 0.47
DED-052 110 0.58 0.13 1.82 0.23 4.41 0.32
DED-051 115 2.45 0.30 4.10 0.28 8.05 0.60
DED-050 120 0.20 0.07 1.18 0.41 2.87 0.17

DED-049 125 0.00 0.06 1.87 0.42 0.00 0.00

Alongshelf
DE-066 82 1.22 0.33 3.79 0.41 3.70 0.32
DE-067 86 1.78 0.35 4.35 0.33 5.09 0.41

DE-066 90 2.07 0.36 4.81 0.37 5.75 0.43

DE-069 95 1.99 0.31 4.21 0.28 6.42 0.47

Table 3.11: Nutrients, Survey DE, November 2000, southern Mid-Atlantic Bight.
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Sample Distance 224Raex 223Raex 2 28Ra

Location (kmn) (d~m OL dm OL

226Ra Salinity

(dpm/ 100L) (dPm/ 100L) (PSU)
NS1-01 120 4.94 1 0.49 0.04 ± 0.02 6.50 ± 0.98 9.00 ± 0.42 N/A

NS1-02 141 1.90 L 0.29 0.15 ± 0.04 8.51 0.85 8.53 ± 0.37 33.83
NS1-03 167 0.00 ± 0.03 0.06 ± 0.02 7.71 0.85 8.15 i 0.37 34.91

NS1-04 192 1.44 ± 0.22 0.07 ± 0.03 7.81 i 0.81 7.75 0.35 35.52
NS1-05 210 0.87 ± 0.13 0.05 ± 0.02 6.98 0.99 8.98 ± 0.40 35.53

NS1-06 234 3.60 0.35 0.05 ± 0.02 9.57 1.04 9.06 ± 0.42 35.08
NS1-07 257 0.00 0.12 0.08 ± 0.03 5.47 0.88 8.11 i 0.33 35.02

NS1-11 120 1.30 0.20 0.09 ± 0.03 7.04 ± 0.80 8.44 0.31 34.35

NS1-10 141 2.73 0.28 0.02 ± 0.01 4.75 1.05 9.09 ± 0.39 35.37
NS1-09 167 2.18 0.22 0.02 ± 0.01 7.47 i 0.94 7.98 ± 0.38 35.26
NS1-08 192 2.98 0.32 0.04 ± 0.01 5.86 ± 1.00 9.16 ± 0.40 35.87

NS2-026 80 0.71 0.21 0.16 i 0.04 N/A N/A 33.14

NS2-025 110 0.66 0.23 0.15 0.04 8.85 ± 0.66 9.71 0.25 33.22

NS2-024 125 0.76 0.22 0.12 0.04 9.77 ± 0.78 11.34 0.30 33.18
NS2-023 133 0.45 0.18 0.07 ± 0.03 6.71 ± 0.65 9.68 0.26 33.25
NS2-022 141 0.95 0.21 0.03 0.01 8.47 ± 0.62 10.23 0.26 33.27

NS2.021 148 0.28 0.15 0.06 ± 0.02 7.52 ± 0.64 9.41 ± 0.33 33.45

NS2-020 152 0.79 0.17 0.10 ± 0.03 8.94 ± 0.82 9.77 ± 0.42 33.39

NS2.019 158 0.11 0.16 0.04 ± 0.01 7.30 ± 0.91 10.00 ± 0.46 33.37

NS2-018 164 1.16 ± 0.18 0.05 ± 0.01 7.62 ± 0.70 10.86 0.35 33.50

NS2-017 171 0.41 ± 0.14 0.06 ± 0.01 7.89 ± 0.47 10.92 ± 0.22 33.50

NS2-016 177 0.47 i 0.17 0.05 ± 0.01 8.32 ± 0.68 10.38 i 0.30 33.75

NS2-015b 187 0.12 0.16 0.04 0.01 6.74 ± 0.78 9.34 ± 0.34 33.67

NS2-015 207 0.16 0.12 0.04 ± 0.01 5.97 ± 0.71 8.97 0.30 33.74

NS2-014 218 0.76 ± 0.28 0.01 i 0.01 5.77 ± 0.56 9.20 i 0.21 35.54

NS2-013 232 1.19 0.29 0.03 0.01 5.69 ± 0.54 9.42 0.24 36.21

NS2-012 249 0.49 i 0.21 0.01 ± 0.01 4.16 t 0.60 9.80 ± 0.27 35.91

NS3-119 100 1.26 ± 0.19 0.28 ± 0.07 17.18 ± 0.69 9.55 ± 0.23 32.55

NS3-118 106 1.15 ± 0.17 0.16 ± 0.04 12.37 ± 0.53 7.39 0.17 32.56

NS3-117 113 1.01 ± 0.13 0.28 ± 0.05 12.69 ± 0.43 8.15 ± 0.14 32.58

NS3-116 119 0.94 ± 0.11 0.15 ± 0.04 11.56 i 0.91 8.19 ± 0.27 32.63

NS3-115 126 1.60 0.14 0.16 ± 0.04 11.04 ± 0.61 8.64 ± 0.20 32.66

NS3-114 132 1.30 0.11 0.10 ± 0.03 9.81 ± 0.63 8.22 ± 0.22 33.16
NS3-113 139 1.02 0.12 0.12 ± 0.03 8.13 ± 0.56 8.23 i 0.20 33.04

NS3-109 145 0.10 0.06 0.06 0.01 7.27 0.65 8.60 i 0.22 33.10

NS3-108 152 0.18 0.06 0.04 0.01 5.15 0.44 5.74 0.15 33.61

NS3-107 158 0.91 ± 0.06 0.03 0.01 7.73 0.47 8.15 0.17 33.52

NS3-106 165 0.25 ± 0.15 0.08 ± 0.02 7.60 0.36 7.94 0.13 33.18

NS3-105 171 0.00 ± 0.15 0.09 ± 0.02 8.31 ± 0.53 8.84 ± 0.17 33.14

NS3-104 178 0.00 ± 0.14 0.09 ± 0.02 9.47 ± 0.55 8.22 ± 0.21 33.23

NS3-103 184 0.15 ± 0.07 0.04 ± 0.01 7.95 i 0.65 8.70 ± 0.23 33.82

NS3-102 191 1.08 ± 0.08 0.03 i 0.01 6.51 i 0.49 8.05 ± 0.19 34.26

NS3-101 197 0.88 ± 0.07 0.01 0.01 8.55 0.81 9.58 ± 0.31 34.13

Table 3.12: Radium isotope activities and salinity, Surveys NS1 (Sept. 1999), NS2 (April

2000) and NS3 (December 2000), northern Mid-Atlantic Bight. 223Ra and 224Ra activities

are "excess," after correcting for supported activity from 227Ac and 228Th.
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Sample Distance
Location (km)

22 8 Th
(dm/1OOL)

2 27 Ac
(dpm/ OL)

NS1-01 120 1.15 0.16 N/A
NS1-02 141 0.76 i 0.13 N/A
NS1-03 167 1.11 i 0.10 N/A
NS1-04 192 0.87 ± 0.10 N/A
NS1-05 210 0.83 0.05 N/A
NS1-06 234 0.94 0.06 N/A
NS1-07 257 1.14 0.17 N/A

NS1-11 120 0.80 0.09 N/A
NS1-10 141 0.72 0.14 N/A
NS1-09 167 0.71 ± 0.08 N/A
NS1-08 192 0.88 0.16 N/A

NS2-026 80 0.67 0.18 0.0165 ± 0.0055
NS2-025 110 0.80 0.22 0.0000 0.0000
NS2-024 125 0.78 ± 0.23 0.0100 ± 0.0039
NS2-023 133 0.69 ± 0.11 0.0109 ± 0.0013
NS2-022 141 0.77 i 0.15 0.0095 ± 0.0014
NS2-021 148 0.63 0.14 0.0117 0.0014
NS2-020 152 0.63 0.11 0.0179 ± 0.0041
NS2-019 158 0.33 0.09 0.0201 0.0048
NS2-018 164 0.73 ± 0.15 0.0276 ± 0.0067
NS2-017 171 0.48 ± 0.09 0.0053 ± 0.0014
NS2-016 177 0.65 ± 0.12 0.0194 ± 0.0043
NS2-015b 187 0.49 ± 0.11 0.0127 ± 0.0033
NS2-015 207 0.62 0.12 0.0155 0.0035
NS2-014 218 0.49 ± 0.14 0.0058 ± 0.0017
NS2-013 232 0.73 ± 0.16 0.0327 ± 0.0065
NS2-012 249 0.68 0.14 0.0332 ± 0.0065

NS3-119 100 1.09 ± 0.16 0.0000 0.0156
NS3-118 106 0.86 ± 0.13 0.0060 ± 0.0021
NS3-117 113 0.87 0.11 0.0159 0.0070
NS3-116 119 0.72 0.05 0.0033 ± 0.0014
NS3-115 126 0.61 0.05 0.0157 0.0081
NS3-114 132 0.59 ± 0.05 0.0129 ± 0.0042
NS3-113 139 0.52 0.08 0.0030 0.0014
NS3-109 145 0.61 ± 0.06 0.0226 0.0064
NS3-108 152 0.66 ± 0.06 0.0190 ± 0.0053
NS3-107 158 0.31 0.03 0.0061 ± 0.0022
NS3-106 165 0.74 ± 0.15 0.0147 ± 0.0047
NS3-105 171 0.83 0.15 0.0108 ± 0.0033
NS3-104 178 0.85 ± 0.14 0.0191 ± 0.0056
NS3-103 184 0.81 0.07 0.0000 ± 0.0059
NS3-102 191 0.48 0.05 0.0144 0.0109
NS3-101 197 0.39 0.04 0.0228 i 0.0133

Table 3.13: 228Th and 227Ac activities, Surveys NS1 (Sept. 1999), NS2 (April 2000) and
NS3 (December 2000), northern Mid-Atlantic Bight.
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Sample Distance
Location (km)

Nitrate

(p )

Phosphate Silicate
( M) (

Ammonium
(JpM) N:P N:Si

NS1-01 120 N/A N/A N/A N/A N/A N/A
NS1-02 141 1.51 0.31 2.85 N/A 4.87 0.53
NS1-03 167 1.51 0.25 1.58 N/A 6.04 0.96
NS1-04 192 1.49 0.16 1.35 N/A 9.31 1.10
NS1-05 210 1.48 0.15 1.35 N/A 9.87 1.10
NS1-06 234 1.48 0.12 0.91 N/A 12.33 1.63
NS1-07 257 1.48 0.15 0.86 N/A 9.87 1.72

NS1-11 120 N/A N/A N/A N/A N/A N/A
NS1-10 141 N/A N/A N/A N/A N/A N/A
NS1-09 167 N/A N/A N/A N/A N/A N/A
NS1-08 192 N/A N/A N/A N/A N/A N/A

NS2-026 80 2.50 0.72 0.89 7.11 3.47 2.81
NS2-025 110 1.53 0.69 0.29 6.16 2.22 5.28
NS2-024 125 6.55 0.89 1.71 7.44 7.36 3.83
NS2-023 133 5.29 0.75 2.19 8.31 7.05 2.42
NS2-022 141 5.49 0.96 2.36 4.60 5.72 2.33
NS2-021 148 5.81 0.80 2.26 3.47 7.26 2.57
NS2-020 152 4.41 0.70 2.16 4.69 6.30 2.04
NS2-019 158 4.36 0.71 2.25 6.74 6.14 1.94
NS2-018 164 4.80 0.68 1.76 5.01 7.06 2.73
NS2-017 171 4.47 0.73 1.75 3.26 6.12 2.55
NS2-016 177 4.52 0.63 1.82 2.98 7.17 2.48

NS2-015b 187 5.50 1.01 1.89 6.26 5.45 2.91
NS2-015 207 4.87 0.63 1.29 5.87 7.73 3.78
NS2-014 218 4.74 0.53 2.40 2.84 8.94 1.98
NS2-013 232 0.99 0.28 1.97 3.18 3.54 0.50
NS2-012 249 5.39 0.73 3.02 4.96 7.38 1.78

NS3-119 100 2.57 0.79 3.81 1.29 3.25 0.67
NS3-118 106 2.98 0.68 2.69 0.66 4.38 1.11
NS3-117 113 2.62 0.71 2.73 0.94 3.69 0.96
NS3-116 119 3.24 0.67 2.11 0.74 4.84 1.54
NS3-115 126 3.54 0.66 2.22 0.66 5.36 1.59
NS3-114 132 5.06 0.67 3.92 1.12 7.55 1.29
NS3-113 139 3.99 0.60 3.26 0.37 6.65 1.22
NS3-109 145 4.59 0.64 3.62 0.40 7.17 1.27
NS3-108 152 5.33 0.60 4.75 0.46 8.88 1.12
NS3-107 158 5.59 0.62 5.00 0.48 9.02 1.12
NS3-106 165 5.26 0.66 4.26 0.45 7.97 1.23
NS3-105 171 5.09 0.65 4.13 0.46 7.83 1.23
NS3-104 178 4.65 0.61 4.06 0.45 7.62 1.15
NS3-103 184 4.87 0.55 4.46 0.44 8.85 1.09
NS3-102 191 4.82 0.48 4.43 0.51 10.04 1.09
NS3-101 197 4.78 0.48 4.56 0.43 9.96 1.05

Table 3.14: Nutrients, Surveys NS1 (Sept. 1999), NS2 (April 2000) and NS3 (December
2000), northern Mid-Atlantic Bight.
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Station
and dent m

Distance
km

2 38 U

Salinity dum/kg
234Th

diom/kg

2 3 4 Th
238U

NS2-012 sfc 249 35.91 2.36 1.35 0.03 0.57

NS2-013 sfc 232 36.21 2.36 1.49 ± 0.03 0.63

NS2-014 sfc 218 35.54 2.36 1.60 i 0.03 0.68

S2-015 sfc 207 33.74 2.31 1.03 0.02 0.45

NS2-016 sfc 177 33.67 2.31 1.18 ± 0.02 0.51

NS2-018 sfc 164 33.49 2.30 0.97 ± 0.02 0.42

NS2-020 sfc 152 33.38 2.29 0.81 ± 0.02 0.35

S2-022 sfc 141 33.28 2.28 0.80 ± 0.02 0.35

NS2-024 sfc 125 33.18 2.28 0.54 ± 0.01 0.24

NS2-025 sfc 110 33.22 2.28 0.42 0.01 0.18

NS2-026 sfc 80 33.15 2.27 0.47 i 0.01 0.21

DEB-019 sfc 120 34.00 2.33 1.38 ± 0.03 0.59

DEB-021 sfc 110 33.83 2.32 1.64 ± 0.03 0.71

EB-024 sfc 95 33.32 2.29 1.17 i 0.02 0.51
DEB-025 sfc 90 33.10 2.27 1.05 0.02 0.46

DEB-027 sfc 80 33.07 2.27 1.13 ± 0.02 0.50

DEB-029 sfc 70 33.00 2.26 1.07 ± 0.02 0.47
DEB-030 sfc 60 32.82 2.25 0.93 ± 0.02 0.41

NS3-101 3m 197 34.13 2.34 1.29 i 0.03 0.55
NS3-101 52m 34.30 2.35 1.75 ± 0.03 0.74

NS3-101 100m 34.81 2.39 1.87 ± 0.03 0.78
NS3-101 450m 35.11 2.41 2.08 0.03 0.86

NS3-102 sfc 191 34.35 2.36 1.49 ± 0.03 0.63
NS3-103 sfc 184 34.37 2.36 1.60 i 0.03 0.68
NS3-104 4m 178 33.72 2.31 0.82 ± 0.02 0.35
NS3-104 62m 33.91 2.33 1.46 ± 0.03 0.63

NS3-104 201m 34.01 2.33 0.62 ± 0.02 0.26

NS3-105 sfc 171 33.67 2.31 1.18 ± 0.02 0.51
NS3-106 sfc 165 33.49 2.30 0.97 0.02 0.42

NS3-107 3m 158 33.38 2.29 0.93 0.02 0.41

NS3-107 100m 33.81 2.32 1.33 ± 0.03 0.57

NS3-108 sfc 152 33.28 2.28 0.80 ± 0.02 0.35
NS3-109 sfc 145 33.18 2.28 0.54 ± 0.01 0.24

NS3-113 5m 139 33.04 2.27 0.85 ± 0.02 0.37
NS3-113 55m 33.74 2.31 0.22 0.01 0.10
NS3-113 93m 33.51 2.30 1.25 ± 0.02 0.54

NS3-116 3m 119 32.63 2.24 0.36 . 0.00 0.16
NS3-116 20m 32.91 2.26 0.54 0.01 0.24

NS3-116 52m 33.02 2.27 0.61 0.02 0.27

NS3-119 3m 100 32.55 2.23 0.35 ± 0.01 0.16
NS3-119 25m 32.78 2.25 0.46 ± 0.01 0.21

NS3-119 50m 32.85 2.25 0.48 ± 0.01 0.22

Table 3.15: 2 34Th from Surveys NS2 (April 2000), DE-B (November 2000) and NS3

(December 2000), northern Mid-Atlantic Bight. 2 38U values are calculated by salinity.
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Chapter 4

Slope water, Gulf Stream and seasonal influences during the

fall-winter transition in the southern Mid-Atlantic Bight

4.1 Introduction

The southern portion of the Mid-Atlantic Bight between Delaware Bay and Chesapeake

Bay is complex because of the effects of the narrowing shelf, the proximity of the Gulf

Stream after it has detached from the margin, and the convergent Mid-Atlantic Bight and

South Atlantic Bight water masses. Gulf Stream effects in this area have been noted by

Churchill and Cornillon (1991) who observed fairly frequent intrusions of Gulf Stream water

on the upper slope (13-27% of observations) and occasional intrusions onto the outer shelf

(3-9% of the time). The influence of the Gulf Stream on shelfbreak currents has been

observed by Bane et al. (1988) who demonstrated a relationship between Gulf Stream

proximity and shelfbreak current velocity. Pycnocline salinity intrusions, more commonly

associated with slope water, have also been shown to have Gulf Stream origins in this

region (Gawarkiewicz et al. 1996a). Gulf Stream forcing and effects of Gulf Stream rings

and streamers are considered to be some of the possible influences on cross-shelf transport

in the Mid-Atlantic Bight, but the magnitude to which these and other porcesses contribute
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to cross-shelf exchange is "poorly known in general" (Loder et al. 1998).

The data presented here axe from a hydrographic survey taken along 4 closely spaced

shelfbreak transects between Delaware Bay and Chesapeake Bay in early November 2000,

a particularly under-represented season in Mid-Atlantic Bight studies. This time is charac-

terized by a transition between highly stratified summer conditions and the homogeneous

water column over the shelf in winter (Beardsley et al. 1985; Mooers et al. 1976; Wright and

Parker 1976). During the fall transition, summer stratification is destroyed by convection

as the surface cools, as well as by increased storm activity.

The cruise was designed to provide enough resolution to adequately resolve the structure

of the shelfbreak front and shelfbreak jet, as well as small scale features contributing to

cross-frontal exchange. Findings included strong interactions of both Gulf Stream and

slope water with the shelfbreak front, a very deep bottom intercept of the shelfbreak front,

and shelfbreak cold water masses likely unique to the fall-winter transition. A mid-shelf

salinity front was also present, which had sizeable transports.

Resolving these features allowed calculations of volume, heat and salt transport across

the region that include the contribution of the high-velocity shelfbreak jet, as well as a

significant mid-shelf jet. The shelfbreak jet, a relatively small scale feature, was found to

account for the majority of alongshelf flux. The resulting volume transport is considerably

higher than transport estimates that are typically cited for the Mid-Atlantic Bight (Biscaye

et al. 1994a; Beardsley et al. 1985; Ramp et al. 1988), although they are similar to some

of the larger estimates that are less frequently used in budget calculations (e.g., Burrage

and Garvine, 1988, and Voorhis et al., 1976). The large alongshelf transport was found

to be consistent with the unusual hydrographic structure, as predicted by the Yankovsky
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and Chapman model (1997). These results contribute to evidence suggesting that Gulf

Stream influence on the slope may play a significant role in Mid-Atlantic Bight circulation.

Transport estimates such as these also suggest that the "leaky current" model of alongshelf

transport in the Mid-Atlantic Bight may need revision.

4.2 Methods

Data were collected from the R/V Cape Hatteras in the Mid-Atlantic Bight between Delaware

Bay and Chesapeake Bay, approximately 300 km north of Cape Hatteras, on 3-5 November

2000. Four 60-80 km cross-shelf sections were occupied, centered on the shelfbreak, as well

as one alongshelf section (Figure 4.1). Conductivity, temperature and depth were measured

using a SeaBird CTD at station intervals of 5 km in the cross-shelf direction from approxi-

mately the 40 m isobath to the upper slope. Velocity was measured using an RDI 150 kHz

ADCP with 8 m bin size, 8 m vertical averaging and an ensemble length of 3 minutes. One

of the four ADCP beams was not working, so the entire data set uses 3-beam solutions. No

bottom tracking was available for calibration. In this region the M2 barotropic tide has the

greatest amplitude (2.4 cm/s at station WQ, 37.92 N, 74.93 W). This is small compared to

measured current velocities of over 60 cm/s, therefore ADCP data is not detided (Moody

et al. 1984). Wind measurements were taken from the nearest National Data Buoy Center

buoy, NDBC 44009, located 26 nmi SE of Cape May, NJ (approximately 30 km NNW of

the study area). Winds were steady and moderate from the northwest during the survey,

with a mean of 8.7 m/s at 3320, except for a 12 hour period on the second day during

which the wind shifted westerly to 2310 at 3.7 m/s. The 100 m isobath is used to reference

distance from the shelfbreak to facilitate comparison with climatological studies, although
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Figure 4.1: Cruise track and station locations for R/V Cape Hatteras cruise 2300, 2-6
November 2000.

the actual shelfbreak position varies from 100-140 meters along this region. Velocity is

referenced to a cross-shelf/alongshelf coordinate system, constructed by rotating the N-S

coordinate system to be perpendicular to the 100 m isobath. The mean deviation of the

N-S coordinate system from perpendicular with respect to the 100 m isobath was 50.160,

and varied approximately ±10 between transects. In the rotated coordinate system, u is

positive to the northeast and v positive to the northwest (shoreward). The convention for

characterizing shelf water will be defined as salinity < 34.5 PSU.
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4.3 Hydrographic Structure

Climatological studies of the Mid-Atlantic Bight have been compiled by Linder and Gawarkiewicz

(1998) and S. Lentz (unpublished). Both climatologies show the fall transition between a

strong summertime pycnocline in the upper 25-50 meters, and a strong wintertime density

front at the shelfbreak. Although the general structure of the climatological sections is

similar to sections in our study, they also deviate from mean conditions in significant ways,

including the position of the surface outcropping of the shelfbreak front, the depth of the

foot of the front, the depth and strength of the shelfbreak jet, and the characteristics of

the temperature minimum. Figure 4.2 shows climatological hydrographic sections for the

region of this study area during September-November. Mean salinity over the shelf ranges

from 31.5-33.5 PSU. Salinities under 34.5 PSU extend offshore beyond the 100 meter iso-

bath, with surface outcrop of the 34.5 PSU isohaline at approximately 50 km beyond the

shelfbreak. In the mean sections both the thermocline and halocline have begun to break

down over the shelf after summer stratification, although shelfwater is still warm (16-18*C).

Minimum temperatures occur over the bottom at the shelfbreak in an area approximately

60 km wide and 20-30 m deep. By late fall, climatological sections compiled for this area

from more limited data sets show a well mixed shelf with a mean temperature of 15*C and

a minimum temperature of 13*C, now confined to a 15 m pocket over the outer 20 km of

the shelfbreak (S. Lentz, unpublished). The Linder and Gawarkiewicz climatology of this

region between the New Jersey shelf and Chesapeake Bay (also based on a small number

of datasets) shows a moderate baroclinic jet present over the shelfbreak with maximum

alongshelf velocity of approximately 18 cm s- 1. The 34.5 PSU isohaline is shown to mi-

grate from a flat position in the summer halocline to a more vertical position with a surface



outcropping 40 km beyond the 100 m isobath in October-November, and then to a position

over the outer shelf during winter. The foot of the front also migrates shoreward during

this period, from near the 100 m isobath to the 75 m isobath.

The hydrographic sections in this study depart quite dramatically from the climatolog-

ical means. The most striking difference is the presence of well-defined intrusions of high

salinity water over the outer shelf in the surface mixed layer (Figure 4.3). These intrusions

differ considerably from those observed in summertime (Smax) which typically occur where

one layer of a deep slope water mass intrudes laterally into a weak layer of the pycnocline

over the shelf (Gordon and Aikman 1981; Gawarkiewicz et al. 1990). Although they exhibit

similar T-S properties to Smax features (salinity, temperature and density nearly uniform

with depth and having slope water characteristics) the intrusions observed here are confined

to the surface mixed layer and displace or overlay the normal frontal gradients. Above 50

m depth the 34.5 isohaline is much further inshore than in the climatology, outcropping

just 4-22 km offshore of the 100 m isobath. On transects A and B, the strongest salinity

gradients in the surface mixed layer are located 15-20 km shoreward of those at depths

of > 60m. The position of the surface front is displaced towards a more typical offshore

position as the transects covered progress southward and in sections C and D the isohalines

become nearly vertical in the upper 70-100 m. In addition to the front outcropping closer to

shore than in the climatology, the foot of the front is 50-75 m deeper than the climatological

average. While the lower half of the front in most sections has a slope of 3-6 x 10-3, similar

to those reported by Gawarkiewicz et al (1996a) and Flagg and Beardsley (1978), in the

upper 50-70 m of the water column the isohalines are nearly vertical. The horizontal gradi-

ents in salinity are particularly strong near the foot of the front directly over the shelfbreak
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Figure 4.2: Climatology of Mid-Atlantic Bight between Delaware and Chesapeake Bay. A)

Temperature, B) Salinity (S. Lentz, unpublished data)
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at approximately 60-120 m depth. In the surface mixed layer, strong horizontal salinity

gradients are compensated by equally strong temperature gradients and density gradients

are thus weak at the surface. Below 50-70 m however, strong horizontal density gradients

occur in the subsurface area due to the dominance of a cold, more uniform water mass over

the foot of the front. An interesting similarity between present observations and the Linder

(1996) climatology is that the mean October-November 34.5 isohaline exhibits a shoreward

trend at mid-depth also, raising the question of whether slopewater intrusions are common

late fall events.

The slopewater mass in the surface mixed layer extends along the entire alongshelf

distance sampled (Figure 4.4) as seen in horizontal maps of temperature, salinity and density

contours at 25 m. A sharp front can be seen near the 100 m isobath, and Gulf Stream water

in the southeast corner near the end of sections C and D is evident from the high salinities.

At the southern end of the survey, shelf water extends further offshore; the southern extent

of the shelf water extending onto the slope is not known.

A vertical alongshelf section through all transects at the 1000 m isobath (Figure 4.5,

oriented looking towards shore) shows the core of the high salinity water mass along sections

A, B, and C, with shelfwater present at section D. ADCP current measurements averaged

over the upper water column indicate that an offshore excursion of shelfwater is consistent

with surface velocities in the study area which take an offshore turn at the shelfbreak

in the south (Figure 4.6). The shift in flow direction could also account for the offshore

displacement of the front that is seen in the southern sections.

The Gulf Stream intrusion visible in the horizontal section occurs along the outer 20

km of transect C and the outer 10 km of transect D in a thin layer overlaying the deeper
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Figure 4.3: A) Salinity, B) Temperature, C) Density, D) Geostrophic Velocity, and E)
Barotropic Velocity for the four cross-shelf sections.
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Figure 4.4: Horizontal contours at 25 m depth for A) Salinity; B) Temperature, and C)
Density.

slopewater intrusion. The vertical structure and temperature-salinity properties of this layer

distinquish it from any of the other water masses in the survey. Vertical profiles alongshelf

between the end of transects C and D (including one station between transects) show this

water mass occupying a shallow layer in the upper 25 m, with salinity exceeding 36.0 PSU

and temperature over 23'C at the core (Figure 4.7).

This layer is visible in the T-S diagrams (Figure 4.10c,d) as the scattering of points

along a 24.5 isopycnal at the top of the image, far removed from any other mixing line.

The dashed line in the images indicates the normal range of Gulf Stream temperature and

salinity. Like the Gulf Stream water commonly found on the upper slope in the analysis

by Churchill and Cornillon (1991), this water also has significantly lower density than the
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Figure 4.5: Alongshelf section of salinity at 1000 m isobath. Orientation is looking shore-
ward, with transect D on the left, transect A on the right. Note presence of shelfwater in
upper 100 m between x = 0-8 km.

water mass that surrounds it. Temperature of > 23'C also distinguish it as water of recent

Gulf Stream origin (see AVHRR image, Figure 4.9) which is significant in the interpretation

of its geochemical properties which are discussed at length in Chapter 5.

Local winds may be partly responsible for the observed position and structure of the

front. For the two days prior to the cruise (1-2 November) mean wind speed was 11.9 m/s

from 3270 and decreased in magnitude over the course of the cruise, with a mean of 4.3

m/s from 259' over 5-6 November. The high wind speed with an onshore Ekman transport

could have driven surface slope water onto the shelf during the first few days of November.

Using the method of Fong (1998) which assumes a momentum equation dominated by the
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ADCP 70m Average, CH2300 Transect A

Figure 4.6: ADCP 70m average velocity for sections A and D.

Ekman balance, the distance of an onshore excursion of a surface mixed layer is given by

Le = dt (4.1)
fto phf

where h is the mixed layer thickness, -rx is the cross-shelf wind stress, p is the layer density,

and f is the Coriolis parameter. Figure 4.8 shows the onshore distance the surface mixed

layer would travel if exposed to wind stress as observed at the nearest NDBC buoy; three

different possible mixed layer depths are shown. By the midpoint of the cruise on 4 Novem-

ber a surface mixed layer 30 m deep, similar to that observed in the tongue of slopewater

in section B, would have travelled onshore approximately 25 km, while the 50 m surface

mixed layers on sections A, C, and D would have moved only about 15 km. In order for
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Figure 4.7: Vertical salinity (top) and temperature (bottom) contours for an alongshelf
section between transects C and D. Orientation is looking shoreward, with transect D on
the left.
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Figure 4.8: Onshore excursion of surface slope water over the front after local wind forcing

for mixed layers of 20 m, 30 m, and 50 m. Days start at 30 October 00:00.

this relationship to hold, the near surface water over the slope must be less dense than the

shelf water on the shoreward side of the shelfbreak front. A plume from the slope or Gulf

Stream, for example, would be expected to flow over the less saline outer shelf providing its

temperature were high enough. Given shelf conditions as observed in this survey of 15*C

and 34.0 PSU, a slope water mass with salinity < 35.0 would be less dense than shelf water

if the slope water temperature is at least 3.5*C higher. Gulf Stream water with salinity of

36.0 PSU would require a 6.7'C temperature difference. AVHRR sea surface temperature

imagery during this time period (Figure 4.9) shows Gulf Stream temperatures up to 27*C

midstream and 20-24 C in streamers expelled from meander crests, more than enough to

meet these conditions.

Sea surface temperature images during this time period suggest the influence of Gulf

Stream water on the outer shelf. The clearest image for this time period is from 25 Octo-

ber (Figure 4.9) in which there are numerous meanders with expelled Gulf Stream water
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extending toward the shelf as far as the outer stations of the survey transects. AVHRR

images from 6 November and the 2-7 November composite show these structures continuing

throughout the survey period. The major change in SST during this time was a signficant

cooling of shelf water from 17-18*C to 14-15*C. The position of the wall of the stream is

also anomalously far north. Between 71-73*W, the north wall of the Gulf Stream is ap-

proximately 0.25* north of its mean position for the year 2000, and the 2000 mean is itself

0.50 further north than the climatological average over the period 1973-1997 (the second

largest northward excursion since 1966)(Drinkwater et al. 1994; Page et al. 2001). The 6

November image and the 2-7 November composite show the Gulf Stream moving slightly

north during the two weeks after 25 October. Given the proximity and structure of the Gulf

Stream in this region, it is likely that features such as the observed saline intrusion and

overlying warm water mass are not isolated events and could have an important impact on

shelfbreak processes on timescales of weeks to months. In particular, years in which there

are significant northward excursions of the Gulf Stream could be crucial in affecting both

the mean state of the shelfbreak front and exchange between the shelf and slope.

In addition to the shelfbreak front, a mid-shelf front is present in all four transects. The

foot of this front is near the 50 m isobath, with surface outcrops 10-20 km further offshore,

near the 75 m isobath. Seaward of the front is outer shelf water with salinity > 34.0 PSU,

and shoreward is shelf water with salinities < 33.5 PSU. Ullman and Cornillon (1999) also

observe mid-shelf fronts throughout the Mid-Atlantic Bight in winter AVHRR sea surface

temperature imagery from 1985-1996. These fronts appear around early January, and have

surface outcropping at the 50 m isobath. Prior to January a separate temperature front

occurs in this region 40 km shoreward of the 50 m isobath and persists until early February;
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Figure 4.9: AVHRR sea surface temperature for Northern GS region, 25 October 2000.
Study area and transect lines indicated for reference only; image is from 1 week previous to
survey dates. (Johns Hopkins Applied Physics Laboratory, Ocean Sensing Group.)

the 50 m front appears to develop independently however, and no migration of frontal

features is apparent. Unlike these mid-shelf surface temperature fronts, the fronts observed

during this survey are slightly further offshore and do not have a corresponding temperature

gradient, and thus would not be detectable in AVHRR imagery.

Throughout the survey area minimum temperatures occur near the bottom at the shelf-

break. There appears to be an isolated shelfbreak water mass which is 40-70 m deep and

extends 15-20 km in the cross-shelf direction. Within the water mass, temperatures are

12-13'C and salinities are 33.8-34.2 PSU. Bottom temperatures are minimum for only 5-10

km at the outer edge of the shelfbreak, thus this shelfbreak water mass is nearly surrounded

by warmer, saltier water. As the sections progress southward from A to D the tempera-

ture minimum progresses offshore. A similar 12-13*C temperature minimum occurs in the
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September-November climatology, but with some important differences. The climatological

minimum occurs well over the shelf, with minimum bottom temperatures extending 50 km

over the outer shelf. Also, in the climatology this layer is only 20 m thick in the vertical. In

the October-November climatology (not shown) the minimum has shrunk to about 20 km

wide by 15 m thick. It appears from the climatological sections that these could be the final

stage of the summer "cold pool" as described by Houghton, et al. (1982), as the volume of

the cold pool water is diminishing as late fall mixing progresses over the shelf. Salinities in

cold pool observations are 33.0-34.0 PSU. Although the temperature, late fall position, and

upper limit of the salinity are similar to the shelfbreak water mass observed in the survey,

the area covered by the surveyed patches is considerably greater and extends well into the

overlying water column; they do not appear to be "shrinking" features. The summertime

cold pool observed by Houghton and Marra (1983) exhibits a similar extension across the

shelfbreak to the upper slope where it is detatched from the bottom over the outer 30 km

of the shelf by a slope water intrusion. The cold pool protrusions are 8-9*C , 33.5-34.0

PSU, covering an area 30-40 m deep by 20-30 km wide and are attached to the main cold

pool only tenuously if at all. It is possible that such protrusions become entirely sheared off

from the shelf and become cold shelfwater parcels on the slope. The most unusual feature

in the observed cold parcels in our survey is that they occur in regions of high alongshelf

velocity (see geostrophic velocity sections in Figure 4.3) making it improbable that they are

remnants of a local cold pool at all, and raising the question of whether they are instead

advective features from much further upstream. The fluctuating shape and cross-shelf po-

sition of these cold parcels progressing through the study area also lends support to the

conclusion that they do not originate from a local, previously static cold pool.
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The complex interrelationship of multiple water masses in this region can be seen most

clearly in the temperature-salinity diagrams (Figure 4.10) The shape of the T-S relationship

is quite different from the classic "inverted V" distribution of the Mid-Atlantic Bight, of

which only a vestige is visible here (traced in the section A diagram by the faint dotted line).

For comparison, typical Gulf Stream T-S properties are indicated by the dashed line. Shelf

water is quite uniform in temperature all the way from the most shoreward stations (red

squares) to the 100 m isobath (green circles), presumably having been recently mixed by

fall wind events. Along-isopycnal mixing between the surface water of the shelf and upper

slope is apparent (part of the classic "inverted V" signature) but with the sharp slopewater

intrusion boundary evident in a clustering of points midway along the mixing line. The cold

water mass at the shelfbreak forms the hook at the lower left. Above, it mixes across the

frontal boundary in the upper water column where the temperature-salinity gradients are

density compensating; below, it overlies mid-depth Gulf Stream water. The slope stations

at the offshore ends of the transects (blue diamonds) cluster into two distinct water masses,

warm slope water and underlying Gulf Stream water. The warm surface intrusion at the

outer station of transects C and D is clearly evident as the isolated group in the upper left

originating in warm Gulf Stream surface water with T>20, at < 24.5.

4.4 Velocity Structure

Mean flow along the Mid-Atlantic Bight shelf is to the southwest and is primarily barotropic,

with flow rates between 1-10 cm/s (Beardsley et al. 1983). However, density gradients nor-

mally present across the shelfbreak front result in a strong jet (Gawarkiewicz et al. 1996a)

in the same direction as the mean flow. In the climatology (Linder and Gawarkiewicz 1998)
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the highest jet velocity occurs in summer and fall in our study area, with an average maxiu-

mum velocity of approximately 18 cm/s in October-November. Mean cross-shelf position of

the jet at this time is 2.5 km offshore of the 100 m isobath, and mean jet width and depth

are 25 km by 50 meters (Linder 1996). It should be noted that differences between the

climatological and individual measurements are partly due to smoothing effects of clima-

tological averaging, which Linder (1996) estimates can alter dynamical results by a factor

of 2-3 (tending to decrease the magnitude of cross-shelf gradients and jet core velocity and

increase jet width, for example). The averaged jet is not wide, but shelfbreak jets as narrow

as 10 km have been observed in the southern half of the Mid-Atlantic Bight (Gawarkiewicz

et al. 1996a), and the width of the jet core is rarely wider than that. So although features

may appear to be moderately sized in climatological studies, actual observations underscore

the need for high resolution surveys to fully account for the impact of the jet on alongshelf

transport as well as other shelfbreak processes.

The effect of the strong horizontal density gradients at the shelfbreak in our survey can be

seen in the magnitude of the resulting shelfbreak jet. Velocities measured by the shipboard

ADCP are shown in Figure 4.6, averaged over the upper 70 m of the water column. A strong

jet is present in all sections, flowing alongshelf until the southern transect (D) where there is

a significant offshore component. Alongshelf flow was also computed using the thermal wind

equation with zero bottom velocity. It was then adjusted for more realistic non-zero bottom

velocities by subtracting out a bottom reference value, taken as the velocity at 250 m depth

from ADCP measurements. For water depths < 250 m, the depth averaged ADCP velocity

was used to reference the geostrophic velocity. The barotropic component of the flow was

included by adding in the difference between the vertically integrated alongshelf component
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of the ADCP velocity and the vertically integrated geostrophic velocity. Figure 4.3d shows

geostrophic velocity for the four cross-shelf sections. The average barotropic adjustment

from the ADCP velocity is 13 cm/s or approximately 20-25 % of the maximum jet velocity

(Figure 4.3 e). The maximum velocity computed in the core of the shelfbreak jet is over

60 cm/s in transect A, and ranges from 50-60 cm/s on the other transects, consistent with

that measured by ADCP. This velocity maximum is more than three times greater than

that of the climatological jet. The jet is also observed to be quite deep (up to 100 m) with

a cross-shelf width of 20-30 km. It is the high velocity region of the jet below 50 m in which

we find the shelfbreak temperature minima; in transect A the velocity in the temperature

minimum reaches 40-50 cm/s.

Despite the fact that the slope water intrusion in the surface mixed layer has moved the

surface frontal position well inshore of its average position, the jet cores from the 4 sections

are displaced 10-20 km offshore of the 100 m isobath. This is 7-17 km further offshore

than the climatological mean. This can be explained by noting that the maximum density

gradients are between 50-150 m depth, and as noted earlier the foot of the front in these

sections is unusually far offshore. It is interesting to note that the surface mixed layer has

little effect on creating the thermal wind shears driving the jet. This is consistent with

findings from the climatology, in which the strongest density gradients are at the foot of the

front and appear to dominate the jet velocity and position (Linder and Gawarkiewicz 1998).

One exception occurs in transect B. A related scenario can be found in the hydrographic

survey further south in the Mid-Atlantic Bight where Gawarkiewicz et al. (1996a) note

that a pycnocline salinity intrusion split the shelfbreak jet into two by creating two distinct

horizontal density gradients, one above and one below the pycnocline. A similar process
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appears to be at work in transect B where horizontal density gradients are present both

below the surface mixed layer, and within the surface mixed layer, and create two velocity

maxima. The resulting jet is double-lobed, with one velocity maximum at the surface above

the 100 m isobath and one 20 km past the 100 m isobath at 75 m depth.

Throughout the survey area significant flows also occur at the mid-shelf front with

velocities of 30-40 cm/s. Note that the mid-shelf front is almost entirely a salinity front,

and may be present for more of the year than the thermal fronts observed by Ullman and

Cornillon (1999; 2001). These fronts would not be detectable by thermal imagery, but are

in fact responsible for flow rates equal to a moderately strong shelfbreak jet.

Strong horizontal shears are present in the cross-shelf sections (Figure 4.11a). Alongshelf

velocity and Rossby number are shown for the surface mixed layer at 32 m. Near-surface

waters show pronounced double peaks in relative vorticity (Figure 4.11b) corresponding to

the multiple velocity maxima. Rossby numbers (normalized by f) are nearly -0.6f, indicat-

ing a strongly nonlinear flow regime. The largest anticyclonic shear occurs on the shoreward

side of the double-lobed shelfbreak jet in transect B (-0.58f) while the largest cyclonic shear

occurs on its offshore side (0.40f) . In the northern Mid-Atlantic Bight where mean clima-

tological jet velocities are about double that of the southern region, mean relative vorticity

in August-September is -0.22f (shoreward side of jet) to 0.16f (offshore side of jet) (Linder

and Gawarkiewicz 1998). High Rossby numbers such as this, combined with observed jet

velocities of 60 cm/s, are consistent with observations of the shelfbreak frontal structure

which showed considerable variability between sections 20 km apart. Models constructed

by Lozier et al. (Lozier et al. 2002) demonstrated that horizontal shear was an impor-

tant energy source for the growth of frontal instabilities, and growth rate of instabilities
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in a shelfbreak front was most dependent on jet velocity and Rossby number. The highest

growth rates occured as the jet velocity was increased from 30 to 60 cm/s and the Rossby

number was increased from 0.37 to 0.96 (Rossby number a function of jet narrowness in the

model). The high observed velocity of the jet in these sections, combined with its relatively

narrow width, creates conditions of large horizontal shear which are likely related to the

observed variability in the structure of the front.

4.5 Volume and Mass Transport

Volume and mass transport are controlled not only by the high jet velocity in the study

area, but also by the vertical extent of the jet which is large than previous observations.

The total alongshelf transport is given in Table 4.1. The volume transport is calculated

in a variety of ways: for the shelfbreak jet, for the barotropic component of the jet alone,

for the mid-shelf jet when present, and for the entire shelf section that was sampled. The

vertical boundary of the jet is defined by the depth of the central isopycnal at the foot of

the density front; this ranges from 120-134 m. Horizontal boundaries are defined by the

distance at which velocity drops below 20 cm/s, or by the local velocity minimum in cases

where the shelfbreak and mid-shelf jets overlap. Along with each "whole section" estimate

is the actual shelf width used in the calculation which varies depending on the cross-shelf

data set(s) used.
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Section Baroclinic Barotropic Jet Mid-shelf Whole Section
Jet Jet Width Jet Section Width

A 1.17 Sv 0.22 Sv 25 km - 1.51 Sv 70 kmi
B 0.69 Sv 0.15 Sv 20 km - 1.02 Sv 60 km
C 1.27 Sv 0.31 Sv 30 km 0.39 Sv 1.81 Sv 80 km
D 0.94 Sv 0.46 Sv 20 km 0.14 Sv 1.53 Sv 70 km

Mean 1.02 Sv 0.29 Sv 24 km

Voorhis 1 Sv
et al. '762

Beardsley 0.38 Sv 70 km
et al. '85 3 (M)

Ramp 0.22 120 km
et al '883 (M) ±0.4 Sv

Burrage & 1.0 Sv
Garvine '88

Biscaye 0.19 Sv
et al '94 (M)

Schlitz 0.83 70 km
et al. '01 (M) +0.2 Sv

Gawarkiewicz 0.38 Sv 20 km
et al. '96

Linder & 0.16 Sv 30 km
Gawarkiewicz '98

Table 4.1. Volume transport comparison for Mid-Atlantic Bight Shelf/Slope. 'Transport
is to depth of 100m or bottom. 2Voorhis et al. transport is calculated from geostrophic
velocity between 100m-1000m isobaths (0.7 Sv), plus Beardsley (1976) inner shelf transport.
3Beardsley et al. and Ramp et al. calculations are from same NSFE data set; the former
extends only to the shelfbreak, while the latter includes the upper slope and effects of warm
core rings reversing normal flow.) (M) indicates estimates based on moored current meter
observations; the remainder are based on geostrophic velocity from hydrographic sections.

For comparison, estimates of volume transport from other studies of the Mid-Atlantic

Bight are shown (Burrage and Garvine 1988; Biscaye et al. 1994a; Beardsley et al. 1985;

Ramp et al. 1988; Linder and Gawarkiewicz 1998; Gawarkiewicz et al. 1996a). The 0.7-1.3

Sv transport within the shelfbreak jet in these sections is comparable or far exceeds other

estimates for whole shelf transport. Transport within the shelfbreak jet accounts for 61-77%

of the total transport over each section. Volume transport within the mid-shelf jet is lower,
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but comparable to previous estimates of transport over the entire shelf.

The large differences in transport between the sections we observed are largely due to

methods of defining the boundaries. Some effect might also result from meandering of

the jet in the the along-shelf direction. To make the sections more comparable, Table 4.2

presents transport for similar shelf widths, integrated to a full depth of 250 m (or bottom

where the water column depth is less than 250 m). The total transport in each section over

the same width differs no more than 4-12% from the mean.

Section 80 km 70 km 60 km
A - 1.88 Sv 1.46 Sv

B - - 1.20 Sv

C 2.61 Sv 2.00 Sv 1.46 Sv
D - 1.92 Sv 1.30 Sv

Mean I 1 1.36 Sv

Table 4.2. Volume transport for shelf sections
of similar length, to full depth of 250 m or
bottom. Larger lengths extend further inshore.

Heat and mass transport within the jet are also high, as shown in Table 4.3. Heat and

salt transport are calculated as transport through a 2-D section with width spanning the

shelfbreak jet and a depth of 100 m. Reference temperature and salinity was set at 12*C

and 34.0 PSU.

Section Heat (x1013 W) Salt (x105 kg/s) Jet width (km)
A 1.29 5.30 25
B 0.73 1.80 20
C 1.45 5.02 30
D 1.45 4.41 20

Mean 1.23 4.13 24

Table 4.3: Heat and Salt transport within the shelfbreak jet.
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Estimates using 3-dimensional sections are considered more reliable, however the CTD

resolution in the alongshelf direction is not sufficient in these sections for that method to

be of use. Mass transport across the entire shelf-slope sections are shown in Table 4.4

for depths to 100m. For comparison with the Nantucket Shoals Flux Experiment (Ramp

et al. 1988), figures are also included for calculations relative to 0*C and 0 PSU. Cross-shelf

widths are shown for each case.

Section Heat (x 1013 W) Salt (x 105 kg/s) Shelf
12*C ref. 0*C ref. 34.0 ref. 0.0 PSU ref. width

A 2.02 9.46 5.48 534 70 km
B 1.23 6.24 5.13 358 60 km
C 2.43 11.38 6.73 636 80 km
D 1.29 6.70 2.14 382 70 km

NSFE 1.32 128 120 km

Table 4.4. Heat and Salt transport across whole shelf sections. All
sections begin near the 40 m isobath; the NSFE section extends only
to the shelfbreak while the southern sections A-D, on a narrower shelf,

extend onto the upper slope.

As with volume transport, alongshelf heat and salt transport are dominated by flow

within the shelfbreak jet. Thus, flux estimates from shelf sections that resolve the strong

shelfbreak jet are considerably higher than those based on more widely spaced moorings or

sampling stations.

4.6 Summary and Discussion

During a short survey in the late fall of 2000 in the southern Mid-Atlantic Bight shelfbreak

region, we observed hydrographic features that may be important in the seasonal transition

between fall and winter conditions. Gulf Stream and slope water interaction with the front
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strongly influenced the thermohaline and velocity structure at the shelfbreak. High volume

transport was also observed which appears to be closely tied to the thermohaline structure.

High resolution sampling during the survey was crucial in identifying the complex struc-

ture of water masses in this region, as well as for resolving hydrographic gradients that were

responsible for a complex velocity structure with multiple jets. Many of these features were

small-scale (5-10 km) and/or subsurface. Mid-shelf gradients could have been missed or

underestimated by coarser sampling, resulting in erroneous transport etimates. Resolving

strong subsurface lateral gradients, as deep as 120-140 m and as narrow as 5 km, was also

critical in calculating the baroclinic flow and for accurately estimating volume, heat and

mass transport. These observations are relevant not only to understanding the local cir-

culation, but also in understanding shelf circulation and transport along the length of the

Mid-Atlantic Bight.

4.6.1 Fall Transition Features

A cold shelfbreak water mass was observed in the area at the foot of the front with char-

acteristics different from the "cold pool" found under the pycnocline on the New England

shelf. The summertime cold pool has been understood to result from isolation of the winter

mixed layer after summer stratification sets in. The features are assumed to dissipate with

the onset of fall and winter wind-driven mixing. Houghton et al. (1982) found a positive

association between duration of cold pool isolation in a region and the magnitude of the

cross-sectional shelf area. They attribute this to the wide shelf area effectively insulating

the cold pool on both sides, thereby minimizing the impact of heat transfer from the ad-

jacent shallow shelf on one side and warm slope water on the other. Compared to the
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cross-sectional area of the rest of the Mid-Atlantic Bight, this survey area is in the lowest

25% of the range, with only the shelf to the south towards Cape Hatteras smaller; therefore

one would not expect the local cold pool to persist into the fall. Houghton et al. also saw

a southward migration of minimum bottom temperature on the shelf from the New York

Bight towards Delaware Bay over the course of May-October, with a minimum bottom

temperature of 9-10*C reaching the northern part of our study area by the end of October.

Given the observed migration of cold pool water from the north, as well as the possibility

of cold pool parcels becoming detached and transported into the upper slope (Houghton

and Marra 1983), it seems reasonable to speculate that the shelfbreak temperature minima

in our sections, with velocities of 30-50 cm/s, could be cold pool water originally from the

northern MAB that has been entrained into the shelfbreak jet further south. Travelling at

this rate from the New York Bight, total transit time would be 6-10 days. One interesting

result of having cold water masses located directly over the foot of the salinity front is that

the uniform temperature enables a strong density gradient to be present in the lower half

of the water column; it is this density gradient that is primarily responsible for the strong

baroclinic jet observed during the survey.

It is possible that the mid-shelf salinity fronts seen in this area are also a late fall seasonal

feature. The fronts are within 10-20 km of the surface temperature fronts observed by

Ullman and Cornillon (1999) that develop two months later, and may result from freshwater

input from nearby bays. Since freshwater input would persist into winter, while the inner

shelf cools, eventually the salinity fronts would develop a temperature gradient as well. It

would be interesting to see the evolution of both surface temperature and salinity fronts

simultaneously to determine if their development is related, or whether the salinity front
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remains isolated enough to maintain the density gradient associated with it. The density

gradients associated with late fall mid-shelf salinity fronts are responsible for transport rates

rivaling previous estimates of the entire shelf. If mid-shelf density fronts persist for long

periods of time, their transport would be a significant contribution to annual shelf totals.

4.6.2 Gulf Stream and Slope Influence on Thermohaline and Velocity

Structures

A high velocity baroclinic jet with maximum flow rates of up to 60 cm/s was observed at

the shelfbreak. Data for climatological averaging in this region and season are scarce, so

comparisons to mean shelfbreak jet velocity can be tenuous; additionally, smoothing effects

can make means of dynamical features difficult to interpret. Among the factors that could

influence seasonal or interannual changes in jet position and velocity is remote forcing from

the Gulf Stream, particularly in the southern Mid-Atlantic Bight where the Gulf Stream is

proximate enough to have local as well as remote influence. Bane et al. (1988) analysed the

potential effect of Gulf Stream position relative to the shelf on shelfbreak current velocity.

Average Gulf Stream position during 2000 was at its second most northerly position since

1966, and the location at the time of the survey was 50% further north from its long-

term mean than the annual average. Measuring from Bane et al.'s Station B reference,

approximately 100 km upstream from our transect A, the north wall of the Gulf Stream

was 100 km away during the survey period. Currents at Station B were observed to be at

their maximum velocity (30-40 cm/s) when the Gulf Stream position was within 150 km,

which would put our observations at the extreme of GS proximity and current velocity.

In their study of mean shelfbreak jet dynamics, Fratantoni et al. (2001) note that the
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Bane relationship does not hold further north in the Nantucket Shoals region. However, the

Gulf Stream is approximately twice as far from the shelf there, compared to the southern

Mid-Atlantic Bight. Further south, Savidge and Bane (2001) found no correlation between

Gulf Stream offshore position and current velocity, but they did see a strong correlation be-

tween Gulf Stream position and alongshelf velocity convegence, suggesting some relationship

between Gulf Stream forcing and cross-shelf transport.

Locally, AVHRR images from this time period show Gulf Stream meanders close to the

shelf, with water ejected from meander crests reaching the study area. A high salinity and

very warm water mass closely related to Gulf Stream surface water was observed in a thin

layer overlying the slopewater intrusion in the southern part of the survey. The local surface

salinity intrusions did not create density fronts that affected shelfbreak jet velocity, however,

which is consistent with findings by Churchill and Cornillon (1991) but the proximity of

the main wall of the Gulf Stream must be considered a factor in jet stregth.

Gulf Stream water such as that observed in the thin surface layers does have potential

significance for shelf-slope exchange, since the T-S properties would allow it to flow over

outer shelf water. Radiochemical properties that were also measured during this survey tie

this water mass closely to water from the north wall of the Gulf Stream at Cape Hatteras;

similar signatures have been seen as far north as Nantucket Shoals and bring to light a

potentially new pathway for exchange within the shelf-slope gyre.

4.6.3 Relationship between transport and thermohaline structure

The transport rates calculated for the survey area are high, particularly for the southern

Mid-Atlantic Bight where a portion of shelf flow is thought to be already detrained onto
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the slope. In particular, shelf transport rates are significantly higher than those calculated

from lower resolution data sets that do not adequately resolve the shelfbreak jet. Transport

within the jet in this survey accounts for 61-77% of the total alongshelf transport.

To test the validity of these transport numbers, one can look at the relationship between

transport and the bottom depth of the front. Yankovsky and Chapman (1997) developed

a theory for buoyant coastal discharges which includes a length scale for the bottom depth

of the plume attachment, hb, in which the depth of the foot of the front is proportional to

the transport and the density difference across the front:

hb = (2Lvihof /g')1/ 2  (4.2)

where Lviho is the transport within the plume, f is the Coriolis parameter, and g' = gAp/po.

We use this to predict the bottom depth of the front, given the jet transport and density

difference, Ap. Table 4.5 shows that this relationship holds very well, particularly for the

mean conditions seen during the survey.

Section Tjet Ap hb z (actual)
[Sv] [m] [m]

A 1.17 1.2 136 134
B 0.69 1.2 104 126
C 1.27 1.2 131 120
D 0.94 1.4 122 120

Mean 1.02 1.25 124 125

Table 4.5. Relationship between jet transport, Tet,
cross-frontal density difference, and depth of the bottom
intersection of the front. The bottom depth predicted by
the Yankovsky & Chapman relation, hb, is given as well as
the actual depth of the foot of the front.

Mean jet transport over the four sections was 1.02 Sv, with a mean density difference
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across the front of 1.2. This gives a predicted depth to the foot of the front of 130 meters,

compared to an observed mean depth of 125 meters. This is one of the first observational

verifications of the relationship between frontal position and jet transport. It should be

noted that because the position of the foot of the front can be defined in a number of

different ways and the choice of bounds for the density difference across the front is open

to interpretation, these results are not precise. The observed depth of the foot of the front

is accurate to within approximately ± 10 m. The front over which the density difference is

calculated could be defined more narrowly or broadly, resulting in Ap ranging from approx-

imately 0.8-1.4. Over these ranges the mean hb is 122-160 m, with larger Ap corresponding

to smaller values of hb. The actual mean depth of the foot of the front, with uncertainty, is

approximately 115-135 m.

Figure 4.12 shows the general relationship between density difference across the shelf-

break front and jet transport. This relationship also works well for the climatology of the

nearby New Jersey shelf, with mean transport of 0.16 Sv and a density difference of 0.5

(based on a very limited number of data sets). The mean depth to the foot of the front is

75 meters, compared to 82 meters predicted by the Yankovsky and Chapman theory.

The thermohaline structure at the front is theoretically consistent with the large volume

transport measured during the survey. It is unclear whether hydrographic conditions during

this survey are representative of this time period, or if they are anomalous. However, a

number of other studies in the Mid-Atlantic Bight have seen slope water intrusions during

the fall. During the Nantucket Shoals Flux Experiment (Beardsley et al. 1985) water over

the mid-shelf in November and December had higher than normal salinity and was the

warmest of the time series. The climatology for the northern Mid-Atlantic Bight also shows
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Figure 4.12: Contours of shelfbreak front bottom attach-
ment depth, as predicted by the Yankovsky & Chapman
model (1997). Points are plotted for each of the 4 sections
surveyed, plus their mean, as well as for the climatology
(Linder & Gawarkiewicz 1998). Actual bottom attachment
depths are given in Table 4.5.

that the salinity front is at its most shorward position during October-November, however

the foot of the front is also at its most shoreward and shallowest position.

Earlier studies have also seen transport on the order of 1 Sv in the Mid-Atlantic Bight

(Voorhis et al. 1976; Burrage and Garvine 1988; Schlitz et al. 2001), while others are in the

range of 0.2-0.4 Sv (Beardsley et al. 1985; Ramp et al. 1988; Biscaye et al. 1994a). It is

interesting to note that most of the former, including this study, are based on geostrophic

velocity calculated from hydrographic sections, while the latter are all based on moored

current observations. While moored time-series observations might appear more reliable in

some respects, in that they can give us more than a short-term snapshot, they are more

subject to transport errors from resolution problems. If moorings are not spaced closely
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enough to resolve the jet (which is itself often meandering) much of the high current activity

will be missed. For example, the Biscaye et al. transport is based on current measurements

from three SEEP II moorings spaced at 25-30 km intervals between the 60 m and 130

m isobaths. The more spatially resolved NSFE transport estimate is based on current

measurements from 5 moorings with approximately 20 km spacing between the 25 m and

200 m isobaths, and one with surface currents only at the 1000 m isobath. With mean

jet widths of 21 km (Linder and Gawarkiewicz 1998) and jet cores of < 10 km, a major

portion of the transport may not be resolved by current meters at 20-30 km intervals. The

moorings in the Schlitz et al. (2001) study were placed at the 60, 100, and 320 m isobaths

and had cross-shelf spacing of 40 and 20 km. However, the velocity data clearly shows the

presence of the shelfbreak jet at the 100 m mooring, with velocities of up to 50 cm/s, and

a mean surface velocity of 27 cm/s.

If higher transport estimates for the Mid-Atlantic Bight are accurate, this would signif-

icantly affect transport budget for the northeastern North American coast. Current esti-

mates (Loder et al. 1998) for large scale coastal transport are based on regional transport

estimates for seven zones from the Labrador Shelf to Cape Hatteras. Differences between up-

stream and downstream zones are balanced by cross-shelf export (a "leaky current" model).

The NSFE transport estimate (0.38 Sv) is used in this budget for the Mid-Atlantic Bight

zone. Substituting one of the higher estimates for MAB transport, 1-2 Sv, significantly

alters the balance between alongshore transport and cross-shelf export. It also calls into

question the upstream transport estimate of 0.6 Sv for the Halifax section. Loder et al.

note that the low implied salinity for export between Halifax and Nantucket shoals "prob-

ably reflects an inadequte estimate of along-shelf transport," and that an additional 0.5
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Figure 4.13: Box model for transport in the coastal ocean of northeastern North Amer-
ica. Inferred cross-shelf transport is given on the right boundary, with transport rates in
parentheses (in m2/s) and corresponding inferred salinity of exported shelfwater in brackets.
(From Loder et al., 1998).

Sv across the Halifax section into the Mid-Atlantic Bight would make the implied export

salinity more reasonable (32.9). This would bring the net transport into the MAB to over 1

Sv, and requires either greater transport inputs from upstream sources, or lower cross-shelf

export (a less leaky current).

Little concrete evidence exists for the inferred cross-shelf export of large quantities

of shelf water. In light of the lack of data suggesting direct cross-shelf transport, and

with increasing evidence of high alongshelf transport, it is possible that a model such as

Csanady and Hamilton's slope-sea gyre (1988), with limited direct cross-shelf exchange,

may be more applicable. In this model dominant circulation is southwestward along coastal

isobaths, and northeastward along the Gulf Stream, with MAB shelf water entering Gulf

Stream circulation near Cape Hatteras, and Gulf Stream water re-entering the slope in the
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northern Mid-Atlantic Bight, primarily through the effects of warm-core rings and streamers

ejected from Gulf Stream meanders. Radiochemical tracer evidence (see Chapter 5) so far

shows no signs of cross-shelf export of surface shelf water on timescales of weeks to months,

but does support the Gulf Stream recirculation pathway, as do several drifter studies (Hare

et al. 2002; Dragos et al. 1998). This area of inquiry, identified in the Loder et al. review as

being one of the "key research issues" in the region, still has many unanswered questions.
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Chapter 5

Boundary Current Influence on Shelf-Slope Exchange

in the Mid-Atlantic Bight: Radiochemical and Hydrographic

Evidence

The physical flow regime in the Mid-Atlantic Bight has important implications for the

exchange of material between the coastal shelf and open ocean. The processes affected

include the transfer of nutrients between deep nutrient-rich waters from the slope and the

continental shelf; the transport of anthropogenic materials from urban coastal areas into

the shelf sea and Atlantic ocean; and the movement of larval stages of fish, many of which

are commercially important, between spawning grounds and feeding grounds (Biscaye et al.

1994a; Houghton et al. 1994; Loder et al. 1998; Dragos et al. 1998; Hare et al. 2002). An

open question in this area is how much exchange occurs across the shelfbreak, particularly

how much the shelfbreak front is a barrier to exchange because of its strong horizontal

stratification and the resulting strong alongshelf flow in the shelfbreak jet. Other questions

include what pathways may be important for shelf-ocean exchange.

Studies frequently focus on direct exchange between shelf water and adjacent slope

water, through processes such as large scale eddy diffusion; flow of surface shelf water

onto the slope through interaction with warm core rings; lateral shearing of cold bottom
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water parcels from the shelf; and transport of the shelf bottom boundary layer which may

detach and flow up the pycnocline of the shelfbreak front (Joyce et al. 1992; Pickart 2000;

Houghton and Marra 1983; Moore 2000a). Compensating flow of slope water onto the

shelf is assumed in large-scale mass balance estimations (Nixon et al. 1996), however the

processes responsible for a return flow are not well understood. Observations have been

made of mid-depth saline intrusions into shelf water, either through interaction with warm

core rings or through penetration along isopycnals in the summer pycnocline (Gawarkiewicz

et al. 1996b; Gordon and Aikman 1981) but the extent of these processes is not known.

Results from this study suggest that Gulf Stream activity such as warm core rings and

large meanders may play an important role both in facilitating movement of open ocean

water onto the slope, and in transporting coastal material from the Cape Hatteras shelf

onto the northern slope. The physical features found most commonly during this study were

strong shelfbreak currents, small scale hydrographic and velocity structures, and frequent

influence of Gulf Stream water masses. After a brief description of the field and laboratory

methods used in the study, this chapter will present the hydrographic and radiochemical

results from the central and northern Mid-Atlantic Bight, radiochemical data from the Gulf

Stream near Cape Hatteras, and end with an analysis and discussion of different potential

pathways for physical and biogeochemical transport in the Mid-Atlantic Bight.

5.1 Methods

The data for the study were collected during five separate cruises in the Mid-Atlantic Bight

(Figure 5.1). Three of these were in the north at the shelfbreak near Nantucket Shoals

(which will be referred to as NS1, NS2 and NS3). One was a shelfbreak survey in the
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south-central MAB approximately 300 km north of Cape Hatteras, off the Delaware coast,

covering 4 cross-shelf transects (DE-A to DE-D). The final survey sampled the west wall of

the Gulf Stream 20 km north of Cape Hatteras (CH1). Measurements were made for the

four radium isotopes, salinity, and current velocity on all transects, and temperature and

hydrographic data were collected when possible.

5.1.1 Field Sampling

The Nantucket Shoals transect overlaps the TOPEX satellite sub-line used by Fratantoni

et al. (2001), and also includes stations from the PRIMER and Coastal Mixing and Optics

(CMO) experiments. The three cruises were in fall, early winter, and spring. NS1 data

were collected on the R/V Oceanus cruise OC349. Radioisotope and salinity samples were

collected on 21 September 1999 at 7 stations along a 140 km transect across the shelf and

upper slope, starting at the 75 m isobath. Distance from shore spanned approximately 120-

260 km. A second crossing was made on the return trip on 7 October 1999, sampling only

the inner 4 stations from the first crossing. Stations were spaced at approximately equal

20 km intervals. Shipboard acoustic doppler current profiling (ADCP) data were collected

along the transects in both directions from the 60 m isobath to 50 km offshore of the 1500

m isobath. NS2 data were collected along the same transect on the R/V Endeavor cruise

EN335. Radioisotope, nutrient, and salinity samples were collected on 1 April 2000 at 15

stations along a 170 km line starting near the 57 m isobath. Distance from shore spanned

approximately 80-250 km. Sampling stations were spaced with higher resolution over the

shelfbreak (6-10 km), and lower resolution over the outer shelf and upper slope (10-20 km).

Shipboard ADCP data were collected simultaneously, ending 5 km offshore of the 1500 m
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Figure 5.1: Location of sampling transects in Mid-Atlantic Bight.
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isobath. Expendable bathythermograph (XBT) temperature data were also collected along

the transect at approximately 5 km intervals. NS3 data were collected on 4-5 December

2000 over 100 km of the Nantucket Shoals transect, from 100-200 km offshore, during cruise

EN348 on the R/V Endeavor. Surface radiochemical and salinity data were collected with

resolution of 6-7 km, as well as mid-depth and bottom samples from three stations. Due

to time limitations, the transect ended near the edge of the shelf and the shelfbreak front

was not resolved. The salinity at the outer station was only 34.13, indicating that the ship

was still in shelf water. Nevertheless, bottom samples from this cruise provided valuable

information on radium activity and isotope ratios in bottom water directly overlying MAB

shelf sediments.

The survey in the southern Mid-Atlantic Bight off the Delaware coast was conducted

on 3-5 November 2000 aboard the R/V Cape Hatteras cruise CH2300 and covered 4 cross-

shelfbreak transects, spaced 20 km apart in the alongshelf direction. All transects were

sampled at 5 km intervals, with the exception of the most shoreward ends of 3 transects

where resolution was lowered to 10 km. Details of the survey track can be found in Chapter

4. Surface radioisotope, nutrient, and salinity data were collected along 3 of the 4 transects

(DE-A, DE-B and DE-D). Conductivity, temperature, depth (CTD) profiles were performed

at all stations, and ADCP data were collected over all transects. Mid-depth and bottom

samples for radioisotopes were also collected at two stations.

Data from the west wall of the Gulf Stream were collected on a return transit of the R/V

Knorr cruise KN164 on 24 October 2001. Three stations were sampled 40 km northwest

of Cape Hatteras across the Gulf Stream temperature front, between 75.04*W, 35.33*N

and 75.19"W, 35.440N. Surface, mid-depth and bottom radioisotope and salinity data were
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collected at these stations.

5.1.2 Radiochemical Methods

Surface samples for the four radium isotopes were collected from 2-3 m depth from the

ships' clean surface seawater line. Subsurface samples were collected by pumping through

a hose attached and lowered overboard with the CTD frame. 200-250 liters of seawater

were collected into plastic barrels through 10 pm and 1 pm prefilters to remove large

particles. The water was then pumped at approximately 1 L min- through filters made

of acrylic fiber coated with manganese oxide to quantitatively remove the radium and

preconcentrate it onto the filter column (Moore 1976). Extraction efficiencies measured by

placing Mn filters in series ranged from 98.2-99.8% (see Chapter 3). For measurement of

223Ra and 224Ra, the Mn fibers were rinsed in distilled water, partially dried, and placed

in delayed coincidence alpha counters according to the methods developed by Moore and

Arnold (1996). Second counts were performed at 3-4 weeks to correct for 224Ra generated

by 228Th in the water column. All reported 224Ra data is "excess" 224Ra from coastal or

sediment sources not supported by parent isotopes in the water column. Third counts at

2-3 months to similarly correct for 227Ac-supported 223Ra were conducted on some groups

of samples; these corrections are generally quite small ( 0.015 dpm/100L). Sample fibers

were then ashed at high temperature, pulverized, and sealed in vials for 226Pa and 228Ra

counting by well-type gamma spectrometers (Charette et al. 2001). The propagated error

on these samples is approximately 5-12% for 224Ra, and 15-30% for the lower count-rate

223Ra. For very low level samples where the short-lived isotopes are depleted the percent

counting error can be much higher, but the absolute error is still very small. Counting
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errors on the long-lived isotopes were maintained at approximately 2-5% for 226Ra, and

7-15% for 228Ra.

5.2 Mid-Atlantic Bight current and hydrographic observa-

tions

The hydrography of the southern study area is described in detail in Chapter 4. Super-

imposed on a mean southwesterly flow were a variety of features that do not appear in

climatological studies or in coarser resolution time series or mooring observations. Partic-

ularly relevant features that could influence cross-shelf transport of biogeochemical signals

included a strong, deep shelfbreak jet, as well as a smaller mid-shelf jet. The width of the

jet core, sometimes less than 10 km, illustrates the importance of high resolution hydrog-

raphy to accurately determine the magnitude of the jet. The transport in the mid-shelf jet

alone was comparable to previous estimates of whole-shelf transport (Burrage and Garvine

1988; Biscaye et al. 1994a; Beardsley et al. 1985) and transport in the shelfbreak jet was

approximately 3 times larger. Much of the transport occurred in depths greater than 50 m.

Subsurface features were important in quantifying jet velocity and transport; the density

gradient responsible for the geostrophic flow was the deep horizontal stratification at the

foot of the front, also less than 10 km wide in some transects.

At the surface, a strong saline intrusion of slope water was present in the upper mixed

layer near the shelfbreak, and Gulf Stream water (T> 22*C, salinity 36 psu) was observed

at the outer stations on the upper slope (Figure 5.2). The Gulf Stream water appears to

be the result of water expelled from meander crests that appear in the AVHRR sea surface



Figure 5.2: Survey DE: AVHRR sea surface temperature for 25 October 2000.
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temperature imagery. The Gulf Stream influence is particularly pronounced near the end

of transects C and D (Figure 5.3) as seen in a horizontal section of salinity and temperature

from the middle of the surface mixed layer at 25 m depth. It appears from the radiochemical

data that both the strong frontal-shelfbreak jet system and the Gulf Stream intrusion had

an effect on the distribution of radium (see Section 3).

A mean alongshelf, westerly flow was also observed in the northern study area, and

Gulf Stream influences were present over the slope during two of the three cruises. AVHRR

sea surface temperature images (Figure 5.4) are shown for dates nearest the 1999 crossing

dates. Throughout this period there was a large warm water mass present over most of the

transect. The mean velocity over the upper 50 meters from ADCP data is shown in Figure

5.5. Flow over the mid-shelf is dominated by winds at this time, with alongshelf winds of

3-8 knots from the east in the 24 hours prior to the September 21 crossing, and alongshelf

winds of 6-11 knots from the west-northwest in the 24 hours prior to the October 7 crossing

(NDBC station 44008, 54 nm southeast of Nantucket). The shift in winds is visible in the

50 m mean current velocity over the midshelf which has shifted directions from the normal

westward flow to an eastward flow on 7 October. The 21 September ADCP data shows

a relatively strong shelfbreak jet with maximum velocity 50 cm/s. In the 21 September

crossing there was a strong reversal of flow direction over the upper slope from southwest to

southeast. The anticyclonic flow is indicative of the presence of a warm core ring. Salinity

samples taken on the transect show salinity 35.0-35.5 PSU as far onshore as the 200 m

isobath. The ring and jet are readily distinguishable in the vertical ADCP section (Figure

5.6). The deep, barotropic eastward flow in the warm-core ring appears at the right (red),

while the shallow 50 m shelfbreak jet appears in blue beneath stations 4-5. A midshelf jet
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Figure 5.3: Horizontal contours of salinity (top) and temperature (bottom) at 25 m depth
for survey DE, southern Mid-Atlantic Bight, Nov.2000. Station 49 is location of high 224Ra.
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Figure 5.4: AVHRR sea surface temperature for a) 24 September 1999, and b) 3 October
1999. Actual crossing dates were 21 September and 7 October.

similar to that described in the southern Mid-Atlantic Bight (survey DE) in Chapter 4 is

also visible at stations 1-2. Station 6, at the edge of the warm-core ring, was the site of

unusually high 224Ra, which will be discussed in Section 3. During the return crossing on

7 October, the warm-core ring had moved further north and the currents were dominated

by the ring's deep, barotropic easterly and northeasterly flow over the entire upper slope.

Strong anticyclonic circulation with velocity up to 1 m/s is visible in the vertical ADCP

section, corresponding to the warm, circular water mass in the sea surface temperature

imagery. Salinity of > 35.3 PSU was measured as far inshore as the 95 m isobath.

A large warm core ring was also present over the outer quarter of the transect during

survey NS2 in April 2000, and is clearly visible in the AVHRR image from the same day

(Figure 5.7). A vertical temperature section taken by XBT shows an extremely strong
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Figure 5.5: NS1: ADCP mean current velocity for upper 50 m, Nantucket Shoals transect,
a) 21 September 1999, b) 7 October 1999.

temperature gradient of 6.50 G/10 km across the edge of the ring down to approximately 40

m depth (Figure 5.8). Shelf water appears to have overflown the surface edge of the ring (see

"N" shape of salinity front between 180-210 kin). Across this front the salinity dropped from

> 36 to 33.7 PSU (Figure 5.10). The flow across the outer shelf is disorganized, especially

in the area of maximum alongshelf velocity. In this area there is also a 90 degree shift in

flow direction (Figure 5.9). Over the upper slope there is a strong (> 50 cm/s) offshore flow

where the transect appears to cross the outer edge a warm core ring filament. Unfortunately

ADOP data is only avallable from Station 14 shoreward, so the vertical structure of this

ring is not available.

In both the fall and spring northern MAB surveys, anomalously elevated 22 4 Ra activity

was detected where the transect crossed the outer edge of the warm core rings. In the

southern survey, even more elevated 224PRa activity was seen where the transect crossed
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Figure 5.6: NS1: ADCP alongshelf velocity profiles. a) 21 September 1999, b) 7 October
1999. Warm core ring over shelf on 21 Sept has moved 30 km inshore by 7 October.
Shelfbreak jet in 21 Sept image is visible as the 40-50 cm/s westward flow beneath stations
4-5. By 7 October, the jet has been disrupted by eastward flow from the upper half of the
ring. Note also different velocity scales; eastward flow on 7 October is approximately double
that on 21 September.

the Gulf Stream intrusion. Warm core rings are seen on the MAB slope regularly, and

data from drifters analysed by Hare et al. (2002) indicated a 19% probability of drifters

from the southern MAB being entrained by warm core rings and transported onto the shelf

(see Discussion). Radium distributions across the shelfbreak suggest that this pathway for

exchange may be more important than direct cross-shelf transport to slope water.

5.3 Cross-shelf Radium Distribution

Cross-shelf radium measurements of the full quartet of radium isotopes have been made

previously only in the South Atlantic Bight (Moore 1997; Moore 2000a; Moore 2000b)

where the shelf is narrow (100 km) and flow is dominated by the close proximity of the Gulf

Stream at the shelfbreak. Estimates from short-lived radium distributions indicated rapid

165

I0'm

0.8

0.6

0.4

0.2

-02

-04 W



Figure 5.7: AVHRR sea surface temperature for 1 April 2000. Station 13, the site of high
224Ra activity, is indicated by the black circle. (Johns Hopkins Applied Physics Laboratory,
Ocean Sensing Group)

I -LW
'3

-200 =
100 120 140 160 10 200 220 240

Figure 5.8: Temperature profile, 1 April 2000, Nantucket Shoals transect.
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Figure 5.9: ADCP mean current velocity for upper 50 m, Nantucket Shoals transect, 1 April
2000.

NS2 Salinity April 2000

Figure 5.10: NS2 Surface salinity. Nantucket Shoals transect, 1 April 2000.
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mixing over the inner 50 km of the shelf, dominated by eddy diffusion. Water mass ages

determined from radium isotope ratios were approximately 2-4 weeks for outer shelf water,

approximately 80-100 km from shore. The wider Mid-Atlantic Bight shelf presents several

new challenges for using radium tracers. If cross-shelf transport is slow, the short-lived

isotopes, particularly 224Ra with its 3.7 day half life, could be of limited use because they

will have decayed in the very early stages of transport. An area of particular interest to us

is the effect of the shelfbreak front and jet on cross-shelf transport. If short-lived radium

has already decayed before reaching the shelfbreak, it will only be possible to put a lower

limit on transport time. On the other hand, since 223Ra and 224Ra occur naturally in the

open ocean only in minute concentrations (Rama and Moore 1996), they provide a unique

tool for detecting water masses very recently upwelled or transported from the coast.

A further challenge in the Mid-Atlantic Bight is that ideal conditions for using short-

lived radium tracers are where there is strong vertical stratification, isolating shallow coastal

water in the upper mixed layer as it is transported off-shelf. With the exception of mid-

summer, conditions in the MAB are generally less than ideal. At least some vertical mixing

will have occured in most areas, and where depths are shallow, 223Ra and 224Ra can be mixed

into the overlying water by diffusion from sediments, possibly giving an erroneously "young"

age. Further off-shelf, coastal radium can be diluted as it mixes into deeper waters, making

mixed water appear "older" than the mean of its component ages. The use of isotope ratios

can help correct for the latter problem (although see caveats in Chapter 2). Local input of

radium from shallow sediments on the shelf appears to be only a small problem. Samples of

bottom water taken from 50-120 m depths on one southern and one northern transect have

short-lived radium activities an order of magnitude or less smaller than nearshore sources
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(nearshore 224Ra -25 compared to bottom 224Ra ~1-2, and nearshore 223Ra ~2 compared

to bottom 223Ra ~0.05-0.15). In addition, samples from the bottom, mid-depth and surface

have shown that the highest activities are at the bottom and surface, indicating a lack of

complete vertical mixing. For reference, nearshore and open ocean end member activities

for all four isotopes are shown in Table 5.1.

Location 226Ra 228Ra 223Ra 224Ra

Nearshore SAB 10-20 10-40 0.5-3.0 5-25

Nearshore MAB:

Vineyard Sound 2 15.1 40.2 1.8 26.1

Waquoit Bay Outlet 4 6.6 20.8 1.5 18.4

Open Atlantic3  7.5-8.5 1.5-4.0 ~ 0 ~ 0

MAB Bottom Water 2 7.9-8.8 6.1-9.7 0.04-0.20 0.75-1.95

Table 5.1. End member activities of the 4 radium isotopes. 'Moore 2000a; 2Rasmussen
et al., this study; 3Kaufman et al., 1973 and Moore 1969; 4Charette, et al. (2001)

Samples of the long-lived isotopes 226Ra (half-life 1600 years) and 228
1Ra (half-life 5.7

years) are shown for a northern (NS2) and southern (DE-D) transect (Figure 5.11) for

comparison with the short-lived isotopes. The long-lived isotopes are well mixed in the

ocean on the time scales of their radioactive decay, so activities should never decrease to

zero. In the northern transect there is little overall trend in 226 Ra, which is consistent with

its long half-life; variability should be expected to reflect mixing and not radioactive decay.

228Ra similarly shows little trend until the end of the transect where the warm core ring

water mass begins. Within the ring, activity is significantly lower and more characteristic
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Figure 5.11: Cross-shelf measurements of the long-lived isotopes 22 6pa (half-life 1600 years)
and 228Ra (half-life 5.7 years) are shown for a northern and southern transect. A) Nantucket

Shoals transect NS2, April 2000; B) Southern MAB transect DE-D, November 2000. Arrows
indicate position of jet maximum velocity, and vertical dashed line is the position of the 100

m isobath. Errors on22R are <+t0.91 dpm/100 L and on22a are <+0.46 dpm/100
L.

of open ocean waters off the northeastern U.S. (2.9-3.5 dpm/100L) measured by Moore

(1969). This is consistent with a distinct water mass that has not yet mixed with the

adjacent slopewater. As in the north, 226pa across the southern transect exhibits no overall

trend, just spatial variability within a range that is characteristic for the outer shelf; many

of these values are within the range of the open ocean end member. 228Ra does show a

slight decrease with distance from shore. This may be due to mixing rather than decay,

since the shape is more or less linear and 228Ra decay (half-life = 5.7 years) occurs over a

long time scale.

Two cross-shelf transects of the short-lived isotopes are shown for the northern region

(Figure 5.12 a,b) and the southern region (Figure 5.13 a,b). Although activities of 224Ra at

the beginning of the transects are the equivalent of 3-4 half-lives (11-15 days) lower than

nearshore values, some interesting features can still be observed. Activities shoreward of
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the shelfbreak jet are variable, but decrease to zero at the jet core. This indicates that the

shelfbreak jet could be a barrier to transport on the timescale of 224Ia decay (3 mean-lives

or - 22 days). 223Ra activities start quite low at mid-shelf, so timescales of decay are

difficult to determine. In the southern surveys (see Chapter 4, Figures 3.7, 3.11) 223Ra

activity is very low, flat and noisy across the entire transect, suggesting that values << 0.1

dpm/100L are approaching the limits of this method; the noise in the data in this case is

exacerbated by the time elapsed between the crossing of the first transect (DE-A) and the

counting of the samples after the cruise, which resulted in low raw counts and large error

bars.

Another recurring feature is the presence of anomalously high 224Ra beyond the shelf-

break front on three of the transects, after decreasing to zero within the jet. High offshore

224Ra occurs on two northern transects in virtually the same location several months apart,

in both cases exceeding levels recorded over 100 km inshore on the mid-shelf. In the south-

ern region, the 224Ra measured at the offshore end of transect D was the highest level seen

in the entire survey. The sample location (Station 49) was at the edge of a high salinity,

high temperature plume with Gulf Stream origin (Figure 5.3). (No samples were taken on

transect C or between transect C and D). By comparing offshore sites with high 224 Ra and

potential sources of high 224Ra, it becomes clear that the offshore 224 Ra is related to an

entirely different water mass (Table 5.2):
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Figure 5.12: 224Ra (top) and 223Ra (bottom) in the northern Mid-Atlantic Bight from

surveys NS1 (September 1999) and NS2 (April 2000). Position of maximum jet velocity is

indicated by the arrows. Vertical dashed line indicates the position of the 100 m isobath.
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Figure 5.13: 224Ra in the south-central Mid-Atlantic Bight. a) Transect DE-A; b) transect
DE-D. Position of maximum jet velocity is indicated by the arrow. Dashed vertical line
indicates the position of the 100 m isobath.
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Table 5.2. Mean 224Ra:223R1a activity ratios and salinity for source waters, and ratios for
observed offshore 224Ra hot spots. Offshore distances for samples in transects DE-D, NS1,
and NS2 are 125 km, 234 km, and 232 km respectively. ' Charette et al., 2001; 2 Moore,
1997; a Rasmussen et al., this study.

Upwelling cannot account for the large offshore enrichment of 224Ra because the highest

224Ra levels measured in bottom water are 2.2 dpm/100L, with a higher proportion of 223Ra

than is seen in the offshore samples. 224 Ra:223Ra activity ratios are approximately half than

that seen in the northern offshore samples, and 223Ra activities are in the same range as

adjacent stations. Clearly another source must be involved, with a combination of high

224Ra, low 223Ra, and high salinity.

Although there was no prior record of high radium in Gulf Stream water, the strong

influence of Gulf Stream warm core rings and streamers on these stations raised the question

of whether radium could be transported via this pathway. A location was chosen just off

Cape Hatteras to test the hypothesis that the western edge of the rapidly moving current

could pick up a significant amount of radium near shore while in the shallow waters at the
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Source Waters 224:223 224:228 Salinity

MAB Nearshorel' 3  12-14 0.7-0.9 31.35

SAB Nearshore 2  4 0.5

MAB Bottom Water 3 23 0.1-0.3 33.53

Offshore 224Ra Peaks 224:223 224:228 Salinity

Southern MAB (DE-D) 49 0.4 35.07

Northern MAB (NS1) 66 0.4 35.08

Northern MAB (NS2) 40 0.2 36.21



Cape and begin to transport it northward. This pathway would be the one most likely to

have contact with sediments, transport water onto the MAB slope, and have salinities in

the correct range. Stations were selected along a 25 km section at the boundary of the west

wall just north of Cape Hatteras, in salinities ranging from 34.2 to 36.5 PSU, and depths

of 40-80 m.

The 224Ra activities measured here are unlike any others recorded on the eastern U.S.

continental shelf (Figure 5.14). 224Ra activity at the highest salinity station was nearly 18

dpm/100 L, a degree of enrichment normally seen only in very nearshore waters or estuaries.

Towards shore and fresher water, 224Ra drops rapidly to levels more representative of shelf

regions. 223Ra is slightly enriched over MAB shelf water to the north, but it is exactly the

same as SAB shelf water to the south that averages -0.3-0.6 at distances 40-60 km from

shore (Moore 2000a). No enrichment of223Ra at all is seen in the location with high 224Ra.

Table 5.3 summarizes the properties of the high 224Ra station surface water for comparison

to other source waters. Complete data from from the three stations on this survey are given

in Table 5.5 at the end of the chapter.

Location 226Ra 228Ra 223Ra 224Ra 224:226 224:228 Salinity

GS, sfc 8.27 ±0.15 6.44 ±0.33 0.32 ±0.05 17.9±0.76 2.2 2.8 36.32

GS, bot 9.66 ±0.12 7.97 ±0.27 0.27 ±0.06 12.0±0.70 1.2 1.5 36.36

Table 5.3. Radium isotope activities in Gulf Stream water from the west wall near Cape
Hatteras. Depth at this station was approximately 80m.

The long-lived isotopes are likewise unenriched. Other offshore 224Ra enrichments have
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Figure 5.14: Station locations, salinity and 224Ra:223Ra ratios at the Cape Hatteras transect
(top) and activities of the short-lived radium isotopes across the west wall of the Gulf Stream
(bottom).
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been seen on the eastern U.S. shelf, in bottom waters off South Carolina, 40-80 km from

shore at a depth of 30-50 m (Moore and Shaw 1998). However, all four isotopes were highly

enriched in this area, pointing to a groundwater source and a different type of water mass

than we have sampled at Cape Hatteras. It is probable that the sediments near Cape

Hatteras are the source of the high 224Ra. When collecting the sample, filters that normally

last for dozens of filtrations (typically through 5000 liters or more) became clogged with

particulates after the first station (approximately 400 liters pumped), where the high 224Ra

was found, and surface water at this station was just as turbid as the bottom water.

5.4 Transport of Radium-224 in GS water

In order to determine the likelihood of 224Ra from Cape Hatteras being transported via the

Gulf Stream onto the Mid-Atlantic Bight outer shelf/upper slope, we can utilize isotope

ratios. Of particular relevance for transport studies is the activity ratio of one short- and

one long-lived isotope which not only helps correct for mixing, but also enables calculation

of transport times based on the decay of the short-lived isotope. Because we are dealing

with a 224 Ra enrichment, a good choice of activity ratio is 224Ra:228Ra. Although 226Ra

is more robust in terms of decay stability than 228Ra, the difference between coastal levels

of 226Ra and its open ocean activity are often small so it is not as effective as a tracer of

coastal water. The very low open ocean activity of 228Ra makes it less prone to differencing

errors when calculating "excess" activity because its coastal signal is stronger.

The "age" of a particular water mass can be estimated using the equations for radioactive

decay for each isotope, expressed as a ratio:
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where A is the decay constant for each isotope and fem is the fraction of each end

member remaining in the sample after mixing. Because the isotopes are travelling together

in the same water mass fern is the same for both, so there is no need to estimate mixing

coefficients. (For caveats about mixed water masses, Chapter 2.)

In the sample at the west wall of the Gulf Stream at Cape Hatteras, 224Ra:228Rta = 2.8,

compared to 0.65 for nearshore Mid-Atlantic Bight water. By plotting the functions for

these two initial ratios, one can determine the time a parcel would have been removed from

its initial source given a specific observed end ratio. In Figure 5.15, these two ratios are

plotted, with horizontal dashed lines indicating the observed isotope ratios of the high 224Ra

stations in the northern and southern Mid-Atlantic Bight (ratios from NS1 station 6 and

NS2 station 13 in the north, and DE-D station 49 in the south). The travel time required

for nearshore water to reach an observed activity ratio equal to that seen in the high 224Ra

stations is 1.5-3 days, clearly improbable for water travelling 120-240 km offshore in a

cross-shelf direction. The time required for enriched Cape Hatteras water to reach the same

observed ratios is 9-11 days, a much more realistic travel time which is consistent with the

velocity and dynamics of Gulf Stream transport. It must be noted here that these transit

times are estimates based on tracer samples taken from different water masses at different

times, and do not follow the same water mass over time. They are therefore only probable

estimates for transport and decay, based on 224Ra measured in Gulf Stream-influenced
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Figure 5.15: Water mass transit time as a function of initial 224Ra:22 Ra activity ratios.
Dashed lines indicate ratios of observed 224Ra-enriched samples. Arrows indicate transit
times required for different source water to reach the observed ratio.

water masses, and in water from the most probable source. The results are consistent with

transport via the proposed pathway. Exact transit times may vary depending upon the

activity of the source water at any given time, which is likely a function of Gulf Stream

strength and position (see Discussion), and on the velocity of the Gulf Stream and presence

of slope intrusions.

5.5 Discussion

5.5.1 224 Ra enrichment in sediments and water of the Continental Shelf

If water along the west wall of the Gulf Stream is preferentially rich in 224Ra, this begs the

question of what the source could be. Levy and Moore (1985) present three alternatives
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for enrichment of 224Ra away from the usual sources in groundwater, salt marshes, and

estuaries. In these sources, freshwater in contact with stream bed or aquifer sediments

contains both particulate radium as well as radium parent isotopes. Upon mixing with

higher salinity water, particulate radium may be desorbed, thus accounting for inputs of

radium isotopes - in proportion to their content in soils and sediments - into coastal areas.

The nearshore signature is thus an enrichment in all four Ra isotopes. Away from nearshore

sources, 224Ra can enter the water column via dissolved or particulate 228Th in the water

column, advection by longshore currents, or by release from 228Th adsorbed onto bottom

or suspended sediments. 224Ra from dissolved 228Th is subtracted when calculating the

unsupported 224Ra, so does not contribute to the high "excess" activity we are concerned

with. Particulate 228Th in the water column (i.e., particulates from biogenic detritus, not

suspended sediments) is generally not high enough to support the high activity of 224Ra

seen at the edge of the Gulf Stream. Total 228Th activities measured in the NW Atlantic

and Pacific are no more than 2-3 dpm/100 L, of which only 7-25% is particulate (Nozaki

et al. 1987; Cochran et al. 1987). There are other mechanisms, however, that can result in

enrichment of 228Th, and its daughter 224Ra.

In their sampling areas in the South Atlantic Bight, Levy and Moore found significant

enrichment of 224Ra up to 70 km offshore, especially in bottom water when the water column

was stratified. There was no evidence of a large component of dissolved 228Th in the water

column, nor any evidence of longshore transport between the two transects over 200 km

apart. (One would expect to see lower activity levels in the downstream site, due to decay

in transit.) They conclude that the dominant source of 224Ra in these samples was shelf

sediments high in 228Th from biogenic particle settling. Furthermore, 228Th production in

180



Figure 5.16: Pathways for transport of 224Ra into shelf water.

the water column should be elevated over the shelf because of excess 228Ra from the usual

nearshore sources. This creates a situation over continental shelves where there is both high

production and high removal, resulting in enrichment of 228Th, the 224Ra parent isotope,

in shelf sediments, as illustrated in Figure 5.16. Levy and Moore consider this to provide

a "significant input of 224Ra in the mid shelf region." The same is not true for the other

isotopes because 224Ra is the only one with another Ra-Th isotope pair preceding it in the

radioactive decay chain (see Chapter 2, Figure 2.2). Because the radium from the other

series disintegrates by alpha decay, they do not produce thorium which in turn can produce

another radium isotope. In effect, it is the beta decay of 228Ra that makes this situation

possible.

Rapid removal of the 228Th that is produced by 228Ra decay in the water column was
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observed in the New York Bight by Li et al. (1979) who found that the removal rate of

228Th was approximately 4-6 times faster from surface waters of the shelf than from the

slope. Disequilibrium between 2 8 Th and its parent 228Ra was greater over the shelf, with

228Th:228Ra ratios of only 0.015-0.022, compared to ratios as high as 0.090-0.110 over the

slope. Because of the enhanced removal of 228Th from the water column, shelf sediments

are thus a potentially rich source of 224Pa.

Enrichment of 224Ra offshore in Long Island Sound was also observed by Torgersen et

al. (1996), who noted that 224Ra in surface and deep waters operated as separate systems.

They attributed the enrichment to one of three possible scenarios: high quantities of fine-

grained (i.e., non-sandy) sediments in the central Sound, enhanced bioturbation increasing

diffusion from sediments, or lack of a MnO2 scavenging layer in the sediment due to low

oxygen levels. The exact source was not determined in this study. MnO 2 layers can form

in organic-rich marine sediments by diffusion of reduced Mn from depth reaching the oxic-

anoxic boundary; if the upper layers of sediment are frequently disturbed by strong currents,

as is likely at the outer shelf near Cape Hatteras, it is possible this layer is absent there

as well. 224Ra enrichments observed in these other studies suggest a similar source as the

224Ra enrichment at Cape Hatteras, in both the magnitude of the activity and the activity

ratio. Average surface and deep 224 Rta activity and 224Ra:2261a ratios are shown in Table

5.4 for stations with anomalously high 224Ra activity from Levy and Moore (1985) and Li

et al. (1979), compared to the activities measured at the west wall of the Gulf Stream at

Cape Hatteras.
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Table 5.4. 224Ra and 226Ra activities at offshore stations with ahigh 224Ra. Figures for
So. Atlantic Bight and Long Island Sound are means (n=3 and n=9 respectively). Ra
activity is in dpm/100L. 'Levy and Moore (1985); 2Torgersen, et al. (1996) 3This study.

Samples from the South Atlantic Bight, which is in close proximity to the Gulf Stream

like Cape Hatteras, also had salinities close to or exceeding 36 PSU (mean of 36.03) like

that seen in the Cape Hatteras samples as well as the high 224Ra samples from the offshore

stations in the Mid-Atlantic Bight. In Long Island Sound, no relationship between 224Ra

activity and salinity was found despite its closer proximity to groundwater sources. 224Ra

vs. salinity did group into different clusters, however, with bottom samples and surface

samples appearing to occupy distinct regimes (Torgersen et al. 1996).

Conditions at the intersection of the Gulf Stream and Cape Hatteras are also conducive

to release of 224Ra because of turbulence and sediment load in the water column. At

the high 224Ra stations from the South Atlantic Bight and Long Island Sound, conditions

were vertically stratified and non-turbulent, and 224Ra activity, 224 Ra:226Ra ratios, and

salinity were often significantly higher at depth than at the surface. At the Cape Hatteras

station on the west wall of the Gulf Stream conditions were unstratified (surface salinity is

approximately equal to bottom salinity, see Table 5.5). The amount of suspended sediment
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Location 224 aa 224Ra 22Ra 224Ra: 224Ra:22 61a 22Ra
range 226Ra range 228Ra

So. Atlantic Bight'

(N=3) Surface mean 6.7 1.6 - 9.0 12.2 0.53 0.15 - 0.77 0.5
Deep mean 11.6 11.2 - 12.3 12.2 0.96 0.90 - 1.07 1.0

Long Island Sound 2

(N=11) Surface mean 14.9 8.2 - 23.2 16.6 0.81 0.46 - 1.42 n/a
Deep mean 19.2 8.1 - 27.7 14.1 1.36 0.88 - 1.98 n/a

Cape HatteraslI I
Surface 17.9 - 8.3 2.17 - 2.8

Deep 12.1 -9.7 1.24 -1.5



in the water column was observed visually and by filtration problems to be very high,

suggesting a large amount of turbulence as well. (By contrast, the other two stations

shoreward of the GS had salinity increases of 0.58 PSU and 2.28 PSU between the surface

and bottom, and comparatively little suspended sediment.)

In radium desorption experiments, Webster, et al. (1995) found that proportionately

more 224Ra is desorbed from fine grained sediments (such as those found in suspension)

than from coarse grained sediments (which would remain near the bottom under turbulent

conditions). Experiments were conducted on freshwater sediments (i.e., sediments with

fully adsorbed radium) which were exposed to water up to 100% seawater proportions. The

experiment was designed to model the behaviour of riverine sediments exposed to saline

esturary conditions, as well as the desorption behaviour in continental shelf sediments.

In shelf sediments, "this process continues, with the desorbed radium being continuously

replaced by the decay of the sediment-bound thorium parents." The desorbable proportion

was found to be similar for all 4 isotopes when only salinity varied, but differed when grain

size was changed. The desorbable proportion of 224Ra increases more than two-fold, from

24% to 59%, when grain size decreases from 125-500 pm to < 63pm. In addition, the

desorbable proportion of 224Ra exceeds that of the other radium isotopes by 14-33%.

Turbulent suspension of sediments is likely to be of greater magnitude at Cape Hatteras

than at other points on the Eastern U.S. coastline even without the effect of the Gulf Stream.

In models constructed by Harris and Wiberg (2002) of cross-shelf sediment transport and

deposition, sediment resuspension and transport was greater on narrow, steep shelves than

on wide, flat shelves, due to large gradients in bottom shear stress. Furthermore, wave

action in these regions created coarse, eroded areas over the inner shelf, while depositing
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fine-grained sediment on the mid-outer shelf. Thus the physical flow created by the topog-

raphy alone creates a distribution of sediment types that is conducive to both suspension

of sediment and desorption of 224Ra in regions like the Cape Hatteras shelf.

Another explanation for high 224Ra could be a situation where recent processes (such as

a spike in biological activity) have stripped out 228Th from the water column, such that the

measured dissolved 228Th is not actually representative of the amount that has contributed

to recent production of 224 1a. If this were the case, the 228Th activity that is subtracted

from the total 224Ra activity to determine "excess" (i.e., unsupported) 224Ra is actually too

low, and the 224Ra activity consequently appears too high. However, the 228Th correction

would have to be unrealistically high to support the 22 4Ra activity measured at the west

wall of the GS. The 18 dpm/100 L activity required is about an order of magnitude higher

than that measured in surface waters by Nozaki, et al. (1987) and Cochran, et al. (1987).

As it is, the measured dissolved 228Th may actually be too high due to contributions from

sub-micron particulates. Overall, our measured dissolved 228Th is in good agreement with

that measured by both Li, et al. (1979) and Levy and Moore (1985).

Lateral transport and deposition of sediment can also enhance 228Th concentrations on

the particulate matter itself, through the processes of boundary scavenging and repeated

sediment resuspension. Smoak et al. (2000) collected samples from sediment traps in the

Santa Barbara basin that demonstrated the effects of advection on particle-reactive elements

23Th, 228Th, and 210Pb. This area is different in many respects from the Mid-Atlantic

Bight, but has some interesting parallels to the region adjacent and just north of Cape

Hatteras. The Santa Barbara basin, like Cape Hatteras, is a meeting point of a warm, saline

current (Southern California Countercurrent) and colder water from the north (California
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Current) which converge near a topographic outcropping (Point Conception). Although

the California Current is mild compared to the Gulf Stream, the converging circulation in

this area is characterized by strong flow (20-50 cm/s) and it is an imporant transition zone

between northern and southern ecological zones. (Hickey 1993; Harms and Winant 1998).

Sediment deposited here had 228Th activities 1.5-22 times the values expected from direct

water column scavenging as estimated by the methods of Moore et al. (1981). Particles

advected in currents can continue adsorbing particle-reactive elements, such that the time

and the area over which they can potentially scavenge is increased. Regions with rapid

boundary currents are thus likely to have more 228Th attached to particles than would

be expected by measuring 228Th in the immediate water column. When these particles

ultimately settle, 228Th from a large area is left in the deposition area. A similar process

occurs when deposited sediment is repeatedly resuspended in the water column, where it

can continue to accumulate 22Th.

The conditions necessary to enrich 224Ra in Gulf Stream water regularly to the degree

observed during the Cape Hatteras cruise are a) enrichment of bottom sediments with 228Th

from local or remote sources; b) resuspension of bottom sediments into the water column;

c) a high enough sediment load in the water column to provide sufficient particulate 228Th

parent; and d) transit of the Gulf Stream through these conditions for a long enough

period of time to accumulate excess 224Ra activity of a magnitude 10-20 dpm/100L. The

following example illustrates a possible scenario under which these conditions are met, using

parameters that are conservative enough to be applicable to a range of actual circumstances.

As illustrated in Figure 5.17, Gulf Stream water entering the turbid zone has no initial

enrichment of 224Ra and picks up resuspended bottom sediment along Cape Hatteras, from
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Figure 5.17: Schematic for enrichment of Gulf Stream water by suspended sediment near
Cape Hatteras.

which 224Ra is enriched by decay of particulate 228Th while in transit. After the Gulf Stream

passes Cape Hatteras and detaches from the shelf, it is assumed that the particulate matter

would settle out of the water column and enrichment would cease.

228Th has been measured on marine sediments at activities of approximately 2-3 dpm/g

on continental shelves of the New York Bight, the Gulf of Thailand, and Taiwan (Li et al.

1979; Srisuksawad et al. 1997; Chung and Chang 1996) and as high as 30-100 dpm/g in

Bay of Bengal sediment trap material (Sarin et al. 2000; Smoak et al. 1999). Smoak et

al. measured activities of 228Th on sediment trap material of 1-9 dpm/g in the Guaymas

Basin, and particulate activities as high as 20-50 dpm/g that were associated with higher

than normal scavenging efficiency there during episodic El Nino events. Suspended sediment

concentration in shelf waters with bottom currents of 8-10 cm/s have been measured at 1.5-

2.5 g/L (Wright et al. 2001).

Taking conservative estimates of 2 dpm/g 228Th on sediments, and a suspended sedi-
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Figure 5.18: Example of a vertical 1-meter squaxe section of water column at west wall of

Gulf Stream with average resuspended sediment concentration for the 50-100 km transit

past Cape Hatteras. Depth h is the equivalent depth of bottom sediments to equal the

sediment load in the overlying water column.

ment concentration of 0.5 g/L, the particulate activity of 228Th would be 100 dpm/100L

seawater. When integrated over an 80 m water column (Figure 5.18) this suspended sed-

iment concentration is equivalent to resuspension of an 8 cm deep layer, assuming a low

surface sediment density of 0.5 g/cm3. The length of the shelf over which the west wall of

the Gulf Stream passes close inshore near Cape Hatteras may be estimated at 30-100 km.

At a Gulf Stream average velocity of 1 m/s, the time elapsed during this passage would be

approximately 8-24 hours. Figure 5.19 shows the ingrowth of 224 Ra from particulate 228Th

in the water column that would occur in transit under these conditions. Initial 224Ra in

Gulf Stream inflow water is assumed to be low (< 1 dpm/100L) and 228Ra activity is set

at 8 dpm/100L as measured in the Gulf Stream samples.

In this example, 8-24 hours of transit would result in an enrichment of 224Ra by approx-

imately 10-20 dpm/100L, enough to support the observed enrichment at Cape Hatteras.
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Figure 5.19: Example of ingrowth of 224Ra from particulate 228Th on resuspended sediments
in the water column. Particulate 228Th = 2 dpm/g, sediment load is 0.5 g/L, initial 224Ra
= 1 dpm/100L and 228Ra = 8 dpm/100L.

Under actual conditions, many of these parameters could vary. A higher particulate 228Th

activity or a higher sediment concentration, both of which are possible, would result in

greater enrichment of 224Ra during transit. This would then require less transit time (and

therefore a shorter distance in contact with sediments) to achieve the same 224Ra activity.

In summary, there are numerous ways that 224Ra can become enriched in Cape Hatteras

waters. Bottom and suspended sediments are likely rich in 228Th, and both currents and

topographic effects favor a large sediment load in the water column on the outer shelf. 228Ra

will be high on the shelf from nearshore inputs, and its particle reactive daughter 228Th

will be removed by high productivity such as that which occurs at strong fronts such as the

wall of the Gulf Stream. Finally, boundary scavenging plus lateral transport of particles

may occur in this region, which would make particles advected here, or deposited here and

resuspended in the water column, even more enriched in 228Th than the local seawater alone
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could support.

5.5.2 Transport of Radium via Gulf Stream water to the Mid-Atlantic

Bight

In the radium data from the Mid-Atlantic Bight and Cape Hatteras there is evidence of

224Ra enrichment offshore from several non-nearshore sources. In the transects sampled by

Levy and Moore (1985) in the South Atlantic Bight there was no indication of longshore

transport, the third major potential source of radium enrichment. However, data from

the Mid-Atlantic Bight does support the conclusion that longshore transport is responsible

for enrichment of northern waters over the upper slope. At Cape Hatteras, Gulf Stream

water that has been close to the shelf all along the South Atlantic Bight becomes detatched

from that potential radium source. Before it departs northeastward, its western wall passes

a shallow but steep region at the Cape that has a high probability of being a very rich

sedimentary source of 224Ra. As the Gulf Stream progresses northward, these sources are

absent, which creates a 224Ra "clock" in the water mass. 224Ra enriched water with high

salinity sampled at the outer stations of transects in the southern and northern Mid-Atlantic

Bight indicate that this water may originate near Cape Hatteras, with transit times on the

order of 10 days. Figure 5.20 illustrates the proposed path.

How often can we expect such enrichments to be detectable, particularly if the warm-

core rings that can bring Gulf Stream water to the slope and outer shelf are far removed

from the source and persist for long periods of time? In Joyce's review of Gulf Stream

warm-core rings (Joyce 1991), the combined data of Auer (1987) and Brown et al. (1986)

compiled over 10 years shows distinct groupings of long-lived and short-lived warm-core
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Figure 5.20: Pathways for transport of 224Ra in the Mid-Atlantic Bight via the Gulf Stream.
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rings with mean lifespans of 229 days and 54 days respectively. Water masses associated

with a ring that has existed for 1-7 months or more would be in the range of 7-50 half-

lives of 224 Ra (half-life 3.7 days). Thus any high 224Ra signal from Cape Hatteras would

have decayed beyond detection. More recent Gulf Stream water is frequently found along

the edges of warm-core rings however. Nof (1986; 1988) found in his non-linear model that

streamers form around the upstream side of a ring when there is even slight contact with the

Gulf Stream (e.g., when a GS meander touches a previously detatched ring). The streamer

propagates around the edge at approximately one-half the speed of the Gulf Stream where

the streamer originated. Given Gulf Stream velocities of 1-2 m/s, this rapid propagation

would propel Gulf Stream water half way around a 200 km ring in 3.6-7.2 days. This result

is independent of both the size of the ring and its azimuthal velocity, so is widely applicable,

and shows how the streamer flow is largely independent of the ring. Observational evidence

for GS streamers can be seen in moored observations near warm-core ring 82B in which

Ramp (1989) found a warm streamer of Gulf Stream water around the western edge of the

ring. A similar feature can be seen in ring 81D (Joyce 1984) where surface temperature is

highest (> 26*C) in a streamer extending around the western edge of the ring, and lowest

in the ring center (< 23C), indicating that water along the edge has been more recently

entrained into the ring system than the water at the core. Thus, advection of southern GS

water into the Mid-Atlantic Bight by way of warm-core rings depends only on the presence

of a ring that is interacting with the Gulf Stream, not on the presence of a "young" or new

ring.

In an unusual finding concurrent with other observations of warm-core ring 81D, Orr

et al. (1985) detected elevated activity of 222RM, the short-lived daughter of 226Ra. The
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half-life of 222Rn is 3.8 days, almost identical to 221Ra. The normal source of 2 2Rn away

from coastal or sedimentary inputs is production in the water column from 22 6Ra which

typically has a mean activity of 8.6 dpm/100 L in the western portion of the North Atlantic

gyre (Moore 1969; Kaufman et al. 1973) and is well mixed due to its long half-life (1600

yr). 2nRn in equilibrium with its parent would show the same activity. The other sources,

as with radium isotopes, are coastal inputs and diffusion from bottom or suspended marine

sediments. Activity of 2261a in vertical profiles in and near WCR 81D fall as expected

within a very narrow range between 8-9 dpm/100 L. Because 22 2Rn is an inert gas, profiles

are typically depleted near the surface due to atmospheric exchange; this is seen in 81D,

where surface activity is between 3-6 dpm/100 L. At the center of the ring, subsurface (z

> 20 m) activities are close to equilibrium with 226Ra. However two profiles at the ring edge

show activities of 2 22Rn elevated to approximately 10.5 dpm/100 L, up to 2 dpm/100 L or

more in excess of 22 6Ra. Slope water adjacent to the ring is depleted at the surface as far

down as 150 m, except for isolated pockets of elevated 222 Rn around 50-70 m depth. The

22 2Rn in these layers is 1-5 dpm/100L greater than the 22 6Ra activity, and 4-7 dpm/100

L in excess of the expected surface-depleted 2nRn profile at that depth. 2 Rn excesses

of this magnitude must come from recent contact with sedimentary sources, or have been

advected rapidly from an area with recent sedimentary inputs.

This ring was surveyed when the western edge was at approximately 66*W, or about

200 km east of the ring crossed by transect NS2 on 1 April 2000. Given similar transit times

as those calculated for 224Ra to reach the NS2 transect, and adding 200 km at a mean GS

velocity of 101 cm/s (Hare et al. 2002) one could estimate a transit time of approximately 13

days. Given the decay rate of 22 2Rn and an observed "excess" activity of 7 dpm/100 L, we
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can calculate an approximate starting activity of 75 dpm/100 L. 2 Rn has been measured

24 km offshore in Florida at activities of 100-400 dpm/100 L, but a considerable amount of

this is due to groundwater inputs (Cable et al. 1996). In marine sediment porewater from

the same area (equilibration studies not subject to groundwater inputs) 222Rn activity is

169 i 62 dpm per liter porewater (Cable et al. 1996), so areas subject to sediment stirring

and resuspension could have a very large input of 222Rn activity.

Although the reason for excess 222 Rn in warm-core rings was perplexing to Orr et al.

at the time, the observations are consistent with the new data acquired during this study.

High 222Rn and 224Ra, with nearly identical half lives, have now both been detected along

Gulf Stream features. Highest activity at the edge of warm-core rings is also consistent

with what we know of warm-core ring entrainment of new water from the edge of the Gulf

Stream. The distribution of 22 2Rn across the edge of ring 81D similar to that of 2 24Ra

across the outer edge of the NS2 ring.

A similar estimate using decay time scales in observations of Gulf Stream transport

made use of larval fish from the South Atlantic Bight that are frequently found on the

Mid-Atlantic Bight shelf. Hare et al. (2002) conducted a study analysing drifter tracks to

determine the probabilities of larval fish spawned south of Cape Hatteras reaching nursery

grounds on the northern shelf of the Mid-Atlantic Bight where they have been observed as

juveniles. The pathway is the same from Cape Hatteras northward as the proposed 224Ra

pathway, as shown in Figure 5.21. Average downstream velocities in the Gulf Stream were

101 cm/s after leaving Cape Hatteras, and drifters were observed to make the trip to the

area south of Nantucket Shoals in 5.4 days. When drifters were entrained into warm core

rings moving into the slope, their cross-slope velocity averaged 50.9 cm/s and a trip along
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Figure 5.21: Proposed transport route for larval fish (and 224 Ra). Hatched area on the
shoreward side of the Gulf Stream and warm-core ring is the proposed pathway. From Hare
et al. 2002.

the side of a ring to the edge of the shelf took about 8 days. The total travel time of ~13

days is of the same order of magnitude as the the -10 day travel time for 224Ra-enriched

Gulf Stream water to reach the northern Mid-Atlantic Bight. It is thus plausible that the

same transport pathways are involved.

Hare et al. then constructed a model to determine the probability of larval species

being transported by this pathway onto the MAB shelf, using a larval mortality function

identical to an exponential radioactive decay function, i.e., N(t) = Noe-zt, where z is the

larval mortality rate. The larval mortality rate was based on two species of interest; if

converted into a "half-life" for larvae, the rates correspond to half-lives of 5.8-6.3 days, and

mortality rates slightly higher (slightly shorter half-lives) were in closest agreement with the
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observed larval distributions. The model predicted that based on drifter transport data, the

observed age distributions of South Atlantic Bight larvae in the MAB were reasonable. The

distribution was highly dependent on the probability of entrainment into a warm-core ring,

just as one would expect with 224Ra tracer picked up in the northern wall of the stream.

Because of the similarities of decay rates, this model would apply equally well to 224Ra

enrichment in the Gulf Stream at Cape Hatteras as it travels northward. The agreement

between independently derived transit times from drifters, larval fish, and radium suggests

that conclusions about the "routes and rates" involved in this transport pathway are not

anomalies. It is also notable that the average transit times around the edge of a WCR

determined by drifters agrees exactly with that predicted theoretically by Nof (1988), i.e.,

the mean WCR streamer velocity as measured by drifters (50.9 cm/s) is one-half the adjacent

mean Gulf Stream velocity (101 cm/s). This could be a reliable rule-of-thumb to use in

future tracer or larval transport studies.

5.5.3 Summary

In their review article on the coastal ocean of northeastern North America, Loder et al.

(1998) point out that even after intensive study during the 1990's only "crude estimates" of

cross-shelf exchange rates exist, and those do not identify mechanisms of exchange, where

the exchange takes place, and how seasonal or longer variability affects the estimates. Gulf

Stream ring effects on the slope and outer shelf are considered to be possibly important,

but the magnitude of the contribution of each component in the system is described as

"poorly known in general." When direct cross-shelf flow does occur, it may be directly

related to Gulf Stream dynamics. Joyce et al. (1992) observed that Gulf Stream warm-core
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rings can entrain large amounts of shelf water onto the slope, and in the other direction

intrusions of Gulf Stream water have been observed to penetrate as far as the MAB shelf

(Gawarkiewicz et al. 1990; Gawrkiewicz et al. 1992) In a study of Gulf Stream influence

on cross-shelf export near Cape Hatteras, Savidge and Bane (2001) found that contrary to

some expectations, Gulf Stream position does not appear to impact along-shelf transport,

even in a region where it is in close proximity to the shelf; however it does correlate with

transport convergence which they hypothesize may be responsible for cross-shelf, seaward

flux of shelf water.

Drifter studies conducted by Dragos et al. (1998) south of Hudson Canyon in the Mid-

Atlantic Bight revealed that over a two-year period surface exchange across the shelf-slope

front was nil. The drifters were launced on the upper slope side, and all made their way down

to the north wall of the Gulf Stream just north of Cape Hatteras, all were entrained, and as

with the Hare et al. drifters, 20% became engaged in Gulf Stream rings and recirculated into

the Mid-Atlantic Bight. Transit times for these pathways were remarkably rapid; transit to

the north wall of the Gulf Stream occured in once case in as little as 4 days, with a mean of

only 27 days. Recirculation back to the launch region took as little as 28 days, with a mean

of 62 days. This pattern of circulation is consistent with results from radium tracers, which

show evidence of transport up the Gulf Stream and onto the slope, but not of cross-shelf

transport of shelf water.

Together, observations such as those by Dragos et al. and Hare et al., earlier radiochem-

ical evidence from 2nRn, and 224Ra from this study, combine to present some compelling

evidence that circulation in the Mid-Atlantic Bight may be dominated by Gulf Stream in-

fluence, whether direct or remote. The observations in this study indicate that Gulf Stream
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warm-core rings and streamers from the edges of meander crests can directly deposit Gulf

Stream water onto the upper slope and outer shelf of the MAB and may do so at a rate

and frequency that is higher than was previously believed. Time series data are not avail-

able, but 3 of 4 cruises resulted in measurements of high offshore 224Ra associated with Gulf

Stream or slope water, suggesting that this phenomenon is not unusual. On the other hand,

the lack of a coastal 224Ra signal beyond the shelfbreak indicates that the direct cross-shelf

pathway is not common. Steady and rapid transit of drifters along the shelf-slope front, and

entrainment/recirculation of a large percentage of these via the Gulf Stream may be indi-

cations that the traditional "leaky current" model of Mid-Atlantic Bight transport (Loder

et al. 1998) needs revisiting. In this conceptual model, alongshore transport on the eastern

North American coast decreases southward as cross-shelf export removes water from the

coastal current. Early alongshore transport estimates were used to construct this model

such that lower transport in southern segments is balanced by offshore removal in northern

segments. However, there is little direct evidence of "leakage" in the form of cross-shelf

transport, and transport may be higher in the southern segments than the estimates this

model is based on. At least two other transport measurements have resulted in estimates of

larger volumes (1-2 Sv) that would significantly alter the balance of offshore export (Burrage

and Garvine 1988; Voorhis et al. 1976). High shelf transport rates measured during this

study in the southern Mid-Atlantic Bight (Chapter 4), if they are not anomalous, support

this view. It is apparent at least that transport volumes vary tremendously, and until this is

resolved the uncertainty in calculations of cross-shelf export by differencing must be large.

That there can be inputs of an isolated radium isotope into high salinity water also

introduces an important new facet to our understanding of the radium quartet tracer sys-
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Distance 2 2 4 Ra (dpm/
(denih) excess 100L)

2 23 Ra (dpmt
exces 100L)

(dpni/ (dpm/
2 28 Ra IOL) 226Ra iOL)

(dpml 224Ra Salinity
22Th 100L) 2 2 6 Ra (PSU)

Table 5.5 Radium
from shore.

and salinity data for Cape Hatteras stations. Distances are in km

tem. Currents and topography, even hundreds of kilometers remote, must be considered

in analysis of cross-shelf radium distributions and estimates of horizontal mixing taken

from cross-shelf radium measurements must be carefully examined for alongshore advective

effects. As with the physical model, in some environments it may be necessary to pay

more attention to circuitous alongshore transport pathways instead of focusing primarily

on export directly across the shelfbreak.
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60km
(sfc) 6.02 t 0.49 0.49 * 0.08 13.07 * 0.42 6.14 * 0.13 0.41 * 0.11 0.98 34.09

(15 m) 2.53 ± 0.28 0.31 ± 0.07 2.25 ± 0.13 7.07 ± 0.16 0.26 ± 0.08 0.36 36.06
(25 m) 2.60 ± 0.27 0.25 ± 0.07 6.82 ± 0.40 7.19 * 0.16 0.07 ± 0.03 0.36 36.37
69 km
(sfc) 5.97 ± 0.50 0.28 ± 0.06 6.75 ± 0.34 5.86 ± 0.13 0.36 ± 0.10 1.02 35.76

(13 m) 6.68 * 0.59 0.52 * 0.10 6.50 * 0.42 7.52 * 0.17 0.58 * 0.17 0.89 36.31
(23 m) 1.63 ± 0.31 0.19 ± 0.07 4.76 ± 0.34 5.76 * 0.14 0.38 ± 0.13 0.28 36.34
78 km
(sfc) 17.91 ± 0.76 0.32 ± 0.05 6.44 * 0.33 8.27 * 0.15 1.93 ± 0.25 2.17 36.32

(53 m) 12.01 ± 0.70 0.27 ± 0.06 7.97 ± 0.27 9.66 ± 0.12 0.82 ± 0.19 1.24 36.36



Chapter 6

Conclusions

The purpose of this study was to examine circulation in the Mid-Atlantic Bight, and

particularly the process of cross-shelf exchange, with the aid of the naturally occuring ra-

diotracers 2  2  24 Ra, 22 Ra,and 228Ra. These isotopes have coastal sources and a range

of half-lives that make them especially suitable for tracing nearshore shelf water as it is

mixed or advected onto the outer shelf and slope. In addition, they are non-reactive in

seawater, and conservative with respect to biological processes. Concurrent hydrographic

measurements were included to put the radium distributions in the most understandable

context. Previous studies of this type had little information available on the physical flow

at the time of collection; most work had focused on the shelf alone, and neglected advec-

tive processes that could influence radium distribution. Correctly determining cross-shelf

exchange is considered crucial for understanding fluxes of heat, salt and nutrients between

the continental margins and the open ocean.

6.1 Summary of field study and expected results

Data were collected from 5 cruises with 8 cross shelf transects in both the northern and

southern Mid-Atlantic Bight, as well as at the west wall of the Gulf Stream at Cape Hat-
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teras. Cross-shelf radium activities, surface nutrient concentrations, salinity, XBT temper-

ature profiles, and ADCP current velocities were measured with 10 km resolution along

the northern transect. Detailed hydrography was also included over the southern MAB

transects, with 5 km resolution. In the laboratory, tests were conducted to determine repli-

cability and extraction efficiencies for the radium measurements.

We expected to find evidence of cross-shelf advection by small-scale or episodic processes,

if they were occuring, or evidence of cross-shelf exchange by large-scale eddy mixing. The

short-lived radium isotopes, 223Ra and 224Ra, are ideal for such measurements because of

their mean lives on the order of days to weeks.

6.2 Major findings and significance for Mid-Atlantic Bight

circulation and shelf-slope exchange

Contrary to expectations, we found little evidence of direct cross-shelf transport of shelf wa-

ter, but did see evidence for strong influence from the Gulf Stream and adjacent slopewater

on Mid-Atlantic Bight circulation. The most important findings include:

e Advection is an important consideration in radiotracer estimates of horizontal mixing,

even with extremely low flow rates on the order of a centimeter per second. Determi-

nations of n from cross-shelf radium distributions using an advection-diffusion-decay

model were highly dependent on precise estimates of the cross-shelf velocity w. Even

in cases with Pe << 1 (diffusion dominant) flux calculations vary significantly de-

pending on the choice of n which can only be accurately determined if w is known

precisely.
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" The only evidence for cross-shelf transport of shelf water was in surveys NS2 and NS3

in which 223Ra activities were high enough to employ 223Ra:228Ra ratios for water

mass age estimates. 'Transport of nearshore water to the shelf edge was estimated

to be about 20 days in both cases. From survey NS2, an additional 23 days was

estimated for shelf water to cross the shelf-break jet, giving a cross-shelf transport

time of approximately 43 days. The water on the seaward side of the jet is not

expected to be from the same locale as the adjacent shelf water however, as it would

have been advected down and through the shelfbreak jet. At an average jet velocity

of 30 cm/s shelf water would travel approximately 1000 km alongshelf while making

the cross-frontal transit.

" Cross-shelf nutrient flux calculations as they currently exist are subject to large errors.

In addition to the difficulty of defining an accurate mixing coefficient K, flux calcula-

tions are subject to large uncertainties from the lack of reliable long-term means for

cross-shelf velocity and nutrient gradients, both of which can vary on time-scales as

short as days. In our surveys during 1999-2000, nutrient gradients were of the same

order of magnitude as previous studies such as SEEP I, but in the opposite direction.

This presents an interesting situation for determining the magnitude and direction of

nutrient flux across the shelf-slope boundary.

" Large volume transport of 1-2 Sv was measured across the southern Mid-Atlantic

Bight shelf and shelfbreak. In this region there was a strong influence from the Gulf

Stream and slope water. The resulting hydrographic structure, in particular the deep

shelfbreak front, were consistent with large transport calculated across the shelf and

shelfbreak. Transport numbers such as this have been found in other hydrographic
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surveys where geostrophic velocity was calculated, but are significantly larger than

estimates based on more broadly space moored time-series observations. Jet transport

is a major component of the total that may be missed by moorings. If the larger

transport numbers are accurate for the Mid-Atlantic Bight, inferred cross-shelf export

of slopewater may be less than previously estimated in shelf transport budgets.

e Gulf Stream rings or meanders were present on 3 of 4 surveys and in all 3 cases

anomalously high 224Ra was found in high salinity water at the seaward end of the

transect over the upper slope. These features complicate the traditional picture of

exponential decrease of coastal radium with distance from shore, and introduce a

potentially new source of 224Ra from the vicinity of Cape Hatteras. Transport times

based on 224Ra:228Ra ratios are similar to those recently published which are based

on drifter data and South Atlantic Bight larval fish age distributions in the Mid-

Atlantic Bight. Earlier findings of 222Rn at the edge of a Gulf Stream ring in 1981 are

also consistent with this transport scenario. Evidence suggesting a frequent transport

route from Cape Hatteras onto the Mid-Atlantic Bight upper slope, combined with

other data indicating direct cross-shelf exchange is perhaps smaller than previously

estimated, points to the possibility that the dominant circulation in the Mid-Atlantic

Bight is more similar to a "slope sea gyre" model than a "leaky current" model.

6.3 Recommendations for future work

Some of the most pressing needs during analysis of radiotracer, nutrient and hydrographic

data during this study were for reliable long-term means that could be used to calculate

volume fluxes and transport of heat, salt, and nutrients. Up to this point, the common

203



trade-off has been between spatial resolution and temporal resolution. The detailed time-

series data that are available only describe physical properties (e.g. current velocity) and are

limited by spatial resolution that may not capture essential features such as the shelfbreak

jet. Even poorly resolved long-term means for cross-shelf nutrient gradients do not exist.

Highly resolved hydrographic surveys are more common, but present only snapshots of

water column structure, and most do not include chemical data for nutrients or tracers.

With circulation and chemical gradients varying on timescales as short as days to weeks, it

is difficult to determine how representative these snapshots are of either short-term (weeks

to years) or long-term (decadal) means. Real progress in estimating overall budgets for the

region may only be possible if high resolution time series data is obtainable for both physical

and chemical properties. To achieve this, efforts of individual researchers may best be served

by strategic long-term planning and both intra- and interdisciplinary collaboration, and may

well require a type of early involvement and coordination with funding agencies that is not

currently common.
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