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Abstract. We present a numerical procedure for recovering of photon 

statistics of few-photon pulsed laser sources. It provides controlled level of 

mean error for both of photon and photocounting statistics. It is shown that 

procedure is correct for model data with average error level of 10−4 and 

fidelity 0.9998. 

The task of characterizing pulsed few-photon laser sources is now relevant for many areas of 

quantum technology: quantum cryptography [1], production of nanolasers [2], etc. Such 

devices are necessary both for fundamental science and for the development of technology, 

which means that they should be strictly characterized. In this work, we pay attention to the 

technique of measuring the energy characteristics of few-photon pulsed laser sources through 

the statistics of photocounts obtained by MPPC [3]. We propose an algorithm that allows us 

to estimate the energy spectrum — the photon-number statistics of the source under study. 

As is known, the statistics of the number of photons in the pulses of an ideal pulsed laser 

𝑃𝑠𝑖𝑔 obeys the Poisson statistics [4]. Due to internal noise, instability of parameters and 

spontaneous luminescence of the active medium, statistics may be distorted. It is reasonable 

to adopt a model of independent additive noise, in which the distribution of light 𝑃(𝑛) with 

fixed mean 𝑛̅ is described by the convolution of the partial distributions of the signal 𝑃𝑠𝑖𝑔 and 

noise 𝑃𝑛𝑠𝑒: 

𝑃 = 𝑃𝑠𝑖𝑔 ∗ 𝑃𝑛𝑠𝑒    (1) 

In the case of finite quantum efficiency 𝜂, the photon statistics in the general case differs 

from the statistics of photocounts 𝑞, however, it is connected with it as [5]: 

𝑞(𝑚) = 𝑇𝑚𝑛𝑃(𝑛)    (2a) 

𝑃(𝑛) = 𝑇𝑚𝑛
−1𝑞(𝑚)    (2b) 

where 𝑇𝑚𝑛 = 𝐶𝑛
𝑚𝜂𝑛(1 − 𝜂)𝑛−𝑚 is an upper triangular matrix. However, the task of restoring 

𝑃(𝑛) according to formula (2b) is ill-posed [6], that leads to uncontrolled errors when it is 

used to restore 𝑃(𝑛) from experimentally measured values of 𝑞(𝑚). Because of that we 

suggest finding an estimation to 𝑃 iteratively via optimizing a direct problem (2a) in a bilevel 
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approach. 𝑃 can be described as a variable with length N that maximizes the fidelity: 

𝐹(𝑃) = ∑ √𝑇𝑚𝑛𝑃(𝑛)√𝑞(𝑚)𝑚     (3) 

Here photocounting probability 𝑞(𝑚) has length M; matrix T has dimensions (N, M). The 

lower-level optimization problem can be described as follows: 

{
 
 

 
 

                                   
maximize: 𝐹(𝑃)                                      
subject to: 𝑏𝑙 ≤ 𝑃 ≤ 𝑏𝑢,                        

      ‖𝑃‖ = 1, ‖𝑇𝑚𝑛𝑃‖ = 1,                

           〈𝑚(𝑟)|𝑞〉 = 𝜂𝑟〈𝑛(𝑟)|𝑃〉, 𝑟 = 1…𝑁𝑟

   (4) 

We assume that excess noise is thermal with mean  𝑛̅𝑡ℎ. Because of uncertainty of 

measurement we know 𝑛̅𝑡ℎ with finite precision, so we must set lower 𝑛̅𝑡ℎ
(𝑙)

 and upper 𝑛̅𝑡ℎ
(𝑢)

 

bounds for 𝑛̅𝑡ℎ. Then bounds 𝑏𝑙 , 𝑏𝑢 can be determined as 𝑏𝑙 = min(𝑝𝑙 , 𝑝𝑢) , 𝑏𝑢 =

max(𝑝𝑙 , 𝑝𝑢), where 𝑝𝑙 = 𝑃𝑠𝑖𝑔[𝑛̅ − 𝑛̅𝑡ℎ
(𝑙)
] ∗ 𝑃𝑛𝑠𝑒[𝑛̅𝑡ℎ

(𝑙)
], 𝑝𝑢 = 𝑃𝑠𝑖𝑔[𝑛̅ − 𝑛̅𝑡ℎ

(𝑢)
] ∗ 𝑃𝑛𝑠𝑒[𝑛̅𝑡ℎ

(𝑢)
].  

Hence the problem (4) has a conditional fitness function 𝐹(𝑃|𝑛̅𝑡ℎ
(𝑙), 𝑛̅𝑡ℎ

(𝑢)
 ) and its optimal 

value depends from 𝑛̅𝑡ℎ
(𝑙)

 and 𝑛̅𝑡ℎ
(𝑢)

:  max𝑃 𝐹(𝑃|𝑛̅𝑡ℎ
(𝑙), 𝑛̅𝑡ℎ

(𝑢)
 ) = 𝑉(𝑛̅𝑡ℎ

(𝑙), 𝑛̅𝑡ℎ
(𝑢)
 ). Therefore, we can 

write the upper-level optimization problem: 

{
maximize: 𝑉 (𝑛̅𝑡ℎ

(𝑙)
, 𝑛̅𝑡ℎ
(𝑢)
 )                               

subject to: 𝑛̅𝑡ℎ
(𝑢)

∈ [0, 𝑛̅ ], 𝑛̅𝑡ℎ
(𝑙)
∈ [0, 𝑛̅𝑡ℎ

(𝑢)
]  

   (5) 

The problem (5) is optimized with particle swarm method [7].  

The algorithm was implemented in Python 3 using the pyomo optimization framework 

[8] and the software library for nonlinear optimization IPOPT [9] with the HSL MA97 solver 

[10]. To check the correctness of the algorithm, we used model statistics of photons – a 

convolution of the Poisson (⟨𝑛⟩ = 5) and thermal (⟨𝑛⟩ = 1) distributions. To simulate the 

experimental situation when solving the inverse problem, all the values of 𝑃(𝑒)(𝑚 ≥ 10) 
which were obtained in the direct calculation were cut off, and additionally the noise with 

amplitude of 5 × 10−5 and with zero mean was added to 𝑃(𝑒)(𝑚). For comparison, the same 

calculation was performed according to formula (2b). The average error for the proposed 

algorithm was turned to be 10−4 with fidelity 𝐹 = 0.9998, while for the analytical formula 

(2b) an error of order of 66.6 or approximately 3 ⋅ 104% was obtained.  
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