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Analytical solutions are attractive for parametric studies and consideration 
of the problems physics. In addition, analytical solutions can be employed 
as a reference framework for verification of numerical results. In this paper 
Homotopy analysis method and Homotopy Pade technique which are 
approximate analytical methods, are used to obtain nonlinear forced 
vibration response of Euler-Bernoulli clamped-clamped buckled beam 
subjected to an axial force and transverse harmonic load for the first time. 
Analytical solutions for nonlinear frequency are derived via Homotopy 
analysis method, Homotopy Pade technique and Runge Kutta method and 
the results are compared with experimental results of literature. Also the 
time response of the beam is obtained for free and forced vibration via 
analytical and numerical methods. In addition, the frequency response is 
drawn. Comparison of analytical results with numerical results and 
literature results reveals that Homotopy analysis method and Homotopy 
Pade technique have excellent accuracy for wide range of nonlinear 
parameters and predict system behavior precisely. 
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1.  Introduction 
Beams construct variety of micro/nano and macro dimensions structures such as micro 
oscillators, micro/nano resonators, airplane wings, flexible satellites, helicopter rotor blades, 
spacecraft antennae and long span bridges. Increase of oscillation amplitude leads to nonlinear 
behavior which cause fatigue phenomenon and structural breakdown. Increase of oscillation 
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amplitude is large around the natural frequencies of structures [1]. Therefore, an accurate 
nonlinear vibration study of structures is substantial. 

The nonlinear vibration of beams is formulated by nonlinear partial-differential equation in time 
and space with various boundary conditions. Researchers have been focused on approximate 
analytical techniques[2-10] and numerical methods [11-13] to solve nonlinear equations.  

Although numerical methods such as finite element and boundary element methods have some 
advantages, analytical solutions appear more attractive for parametric studies and considering the 
problems physics. Also, analytical solutions are employed as a reference framework for 
verification and validation of numerical results. 

On the whole, analytic methods have some restrictions. For example, perturbation methods are 
limited to weak nonlinear problems and related to a small parameter variation in the equation. 
Most of nonlinear problems, especially those with strong nonlinearity, don’t have a small 
parameter variation. In order to prevail this problem, Homotopy analysis method (HAM) was 
proposed which requires no small parameter variation in the equation at all [14-17]. Also, 
Homotopy Pade method which is a combination of Pade approximation, the best approximation 
of fractional functions, and HAM was introduced [18, 19]. The effectiveness of HAM and 
Homotopy Pade method have been investigated in the analysis of different nonlinear problems. 
Kargarnovin et al. [20] have used HAM to get analytical solution for nonlinear free vibration of 
Euler-Bernoulli, Rayleigh, Shear and Timoshenko beams with pinned-pinned ends. Solutions for 
natural frequencies, beam deflection, critical buckling load and post-buckling load-deflection 
relation have been obtained. The verification of results by literature demonstrated good 
agreement between them. Pirbodaghi et al. [21] have employed HAM to study nonlinear free 
vibration analysis of Euler-Bernoulli beams subjected to axial loads. The effect of vibration 
amplitude on the buckling load and nonlinear frequency has been presented. The results follow 
available results in the literature precisely. Pirbodaghi et al. [22] have used HAM and Homotopy 
Pade technigue for solving Duffing equation with cubic and quantic nonlinearities. Comparison 
of obtained results with numerical results demonstrated very good agreement. Fooladi et al. [23] 
have applied HAM to solve the problem of  Kirchhoff simplified model for beam. Comparison of 
the obtained results with the numerical solutions such as shooting method and fourth order 
Runge Kutta method have revealed that this method is efficient for the solution of this problem. 
Hoseini et al. [24] have employed HAM and Homotopy Pade technique to investigate analytic 
solution of fundamental nonlinear natural frequency and its corresponding displacement for 
tapered beams. The results have been verified against numerical solutions. Motallebi et al.[25] 
have used HAM and Homotopy Pade technique to analyze free nonlinear vibration of a simply 
supported Euler-Bernoulli beam under axial force. The effects of axial force and slenderness 
ratio on natural frequency and also the effects of nonlinear factors on the time response of beam 
have been investigated. The results have been verified using forth order Runge-Kutta method 
results. Jafari-Talookaei et al.[26] have investigated the nonlinear free vibration of the Euler-
Bernoulli, Rayleigh, Shear and Timoshenko beams with simply supported boundary conditions 
using HAM. Expressions have been presented for the natural frequencies, the transverse 
deflection, critical buckling load and postbuckling load-deflection.  An excellent agreement has 
been shown among the results of nonlinear analysis and the published results in literature. 
Fereidoon et al. [27] have investigated nonlinear vibration response of buckled beam subjected 
to axial load via homotopy perturbation method. Lacarbonara et al.[28] have analyzed nonlinear 
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planar vibrations of a clamped-clamped buckled beam about its first post-buckling shape by 
multiple scales method. Also frequency-response curves are contrasted with experimental results.  
Abou-Rayan et al.  [29]. have done nonlinear analysis of a simply supported buckled beam 
subjected to a harmonic axial load via multiple scales method.  Afandeh et al. [30] have obtained 
nonlinear solution of an initially buckled beam via analytical, numerical and experimental 
methods. The method of multiple time scales has been applied to derive the equations. Ramu et 
al. [31] have studied the bifurcation behavior of a pre-buckled beam.  Kreider et al. [32] have 
studied single-mode responses of a fixed-fixed buckled beam which is under a uniform, 
harmonic, transverse excitation.   Nayfeh et al. [33] have obtained linear modes of buckled 
beams vibration through analytical and experimental methods. Ji  et al. [34] have studied the 
nonlinear response of a clamped-sliding post-buckled beam subjected to a harmonic axial load 
experimentally. Lestari et al. [35] have obtained precise solution of the nonlinear dynamics for 
buckled beams with various boundary conditions.  Min et al. [36] have studied the stability and 
steady state response of free and forced vibration of axially restrained, simply supported buckled 
beam. Tseng  et al. [37] have studied a fixed-fixed buckled beam excited by the harmonic motion 
of its supporting base by analytical and experimental methods. Lacarbonara  et al. [38] has 
investigated nonlinear planar vibration of a buckled beam around its first buckling mode 
configuration. He has compared obtained results with experimental data.  Eisley [39] has studied 
vibration about the static buckled position for buckled beam or plate for a case of forced motion. 
Smelova-Reynolds et al. [40] have combined chaotic motion study with analytic technique in 
nonlinear dynamics for buckled beam. The have calculated the first component of the Melnikov 
vector. Smelova-Reynolds et al. [41] have found components of the Melnikov vector to 
demonstrate the change of critical condition for the whole Melnikov vector.       Tang et al. [42] 
have investigated chaotic oscillations of a buckled beam subjected to forced external excitation. 
The results of numerical simulations have been compared with experimental data. 

In this paper, for the first time HAM and Homotopy Pade method are used to analyze forced 
nonlinear vibration of a clamped-clamped buckled beam subjected to axial force and transverse 
harmonic load. To do this, first partial differential equation of beam is reduced to a typical 
nonlinear differential equation via Galerkin decomposition technique. The responses of HAM 
and Homotopy Pade method are compared with that of the Runge-Kutta numerical method and 
also related results of the literature. Also, the frequency response of HAM is drawn. 

 

 

Fig.1.  A schematic of clamped-clamped beam under  transverse load and axial force. 
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2. Problem formulation 
Fig. 1 shows a clamped-clamped beam of length l, cross sectional area A, moment of inertia I and 
young modulus  E subjected to a constant axial force P and distributed transverse load F =
݂ cos݇ݐ  where ݂ and ݇ are respectively amplitude and frequency of the distributed load. Euler 
Bernoulli beam theory has been used to obtain differential equation of motion. The beam cross-
sectional area is considered to be uniform and its material is homogeneous. 

 
The partial differential equation of motion for the transverse vibration of the beam is as follows 
[35], 

 22 4 2 2

2 4 2 2
0

w w w w w d cos
2

lEAEI P x f kt
t x x l x x

                (1) 

where ߤ, w, ݔ  and ݐ  are respectively the mass per unit length of the uniformed beam, the 
transverse displacement, the longitudinal coordinate and the time. The first mode shape of the 
beam is [35]: 

 x x sin( ) sinh( ) x x(x) cos( ) cosh( ) (sin( ) sinh( ))
cos( ) cosh( )l l l l


   


     

   
(2) 

For a beam with clamped-clamped boundary conditions ߙ is considered to be 4.730. Assuming 
w(ݔ, (ݐ = ොܽ(ݔ)߶(ݐ)ݍ  where q(ݐ) and  ොܽ  are respectively time response of the beam and 
arbitrary constant for the amplitude of deflection and then applying the Galerkin method leads to 
the equation of motion of. [35]: 

 2 3q q q cosf kt       (3) 

 
   max

0
dqq 0 ,    0 0

ˆ (0.5l) d
wa

a t
 


 (4) 

where ܽ଴is initial displacement which is dependent to the beam maximum deflection (ݓ௠௔௫). 
Also ߱ and ߛ are respectively linear frequency and beam nonlinear parameter which are obtained 
in the following form[35]: 
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0

d
l ff x

m
    (7) 

where ݎ = ඥܫ ⁄ܣ  demonstrates the gyration radius for the beam cross-section. 

3. Homotopy analysis method 
One of the precise approximate analytical methods for nonlinear differential equations solution is 
Homotopy Analysis Method (HAM). The HAM embeds an auxiliary parameter ݌ to transform a 
nonlinear differential equation into unlimited number of linear differential equations. Typical 
range of ݌ is from zero to one. As ݌ increases from zero to one, solution of the problem moves 
from the initial guess to the precise answer. The Homotopy function is defined as [15]: 

             0H , , ,H 1 ψ , q H N ψ ,p h t p t p t p t t p            (8) 

where N is a general nonlinear operator; and q(ݐ) is generally an unknown function of variable ݐ 
which is time response of beam in this paper as mentioned in the previous section. Also ℎ, H(ݐ), 
ψ and ℒ are non-zero auxiliary parameter, non-zero auxiliary function, a function of ݐ and ݌ and 
auxiliary linear operator respectively. As ݌ increases from zero to one, ψ(ݐ,  varies from the (݌
initial guess (ݍ଴(ݐ)) to the precise solution. It should be mentioned that there is not rigorous 
theory for choosing auxiliary linear operators [20].  Setting Hഥ(ψ,݌, ℎ, H(ݐ)) = 0  where ݌ 
considered to be zero, leads to: 

    0ψ ,0 qt t  (9) 

The following initial conditions are considered: 

 
   0

0 0

dq 0
q 0 , 0

d
a

t
   (10) 

The functions q(ݐ) and Ω which are respectively time response and frequency of the beam, could 
be extracted as power series of ݌ by using Taylor theory as follows:  

 
           0

1 10  

ψ ,1q , ψ ,0 q q
!

m
m m

mm
m mp

t p
t t p t p t t p

m p



 


    

 


 (11) 

   

0 0
1 10

Ω1Ω Ω   Ω Ω  
!

m
m m

mm
m mp

p
p p

m p

  

 


   

   (12) 

where q௠(ݐ) and Ω௠ are called m-order transformations. The m-order approximation of q(ݐ) is 
calculated as follows[15] : 

        1 1 1q q H R q ,Ωm m m m m mt x t h t       (13) 

where ݔ௠,  q௠ିଵ, Ω௠ିଵ . Also R௠(q௠ିଵ, Ω௠ିଵ) are expressed as: 
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 0           1
1            1m

m
x

m


  
 (14) 

 

   
   1

1 1 1
0

d N ψ , ,Ω1R q ,Ω
1 ! d

m

m m m m
p

t p p
m p



  


  


 (15) 

  1 1 2 3 1q q ,q ,q , ,q
  

m m  
 

(16) 

  1 0 1 2 1Ω Ω ,Ω ,Ω , ,Ωm m    (17) 

where N[ψ(ݐ, ,(݌ Ω(݌)] is nonlinear operator. Initial conditions are considered in the following 
form: 

    dqq 0 0, 0 0
d

m
m t

   (18) 

4. Homotopy Pade technique 
The Pade approximant expands a function by a rational function of a given order precisely[18, 
19]. The Pade technique accelerates convergence of given series. The Homotopy Pade method 
combines HAM with Pade technique. The Homotopy Pade method reduces the number of order 
of approximation required to get a precise answer. The [1,1] Homotopy Pade approximation for 
frequency and deflection is written as follows [25]: 

 
 

2
1 0 1 2 0

pade
1 2

Ω Ω Ω Ω ΩΩ 1,1
Ω Ω
 




 (19) 

 
 

2
1 0 1 2 0

pade
1 2

q q q q qq 1,1
q q
 




 (20) 

5. Application of  HAM  
In this paper, nonlinear forced vibration of a clamped-clamped buckled beam under axial force 
and transverse harmonic load is presented using equation (3).  This equation is nonhomogeneous; 
therefore its general solution (q(ݐ)) is obtained by the summation of the homogeneous solution 
(q௛(ݐ)) and the particular solution (q௣(ݐ)): 

      q q qh pt t t   (21) 

5.1.Homogeneous solution  

Under the transformation ߬ = Ωݐ the homogeneous solution of   equation (3) becomes as 
follows: 
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 2
2 2 3

2

d qΩ q q 0
d

   


 (22) 

In order to obtain the answer of the above equation, the first guess of q(ݐ)  which satisfies initial 
conditions is chosen as follows: 
  0 0q cosh a   (23) 

To create the Homotopy function, the linear operator could be expressed as: 

 
 

2
2

0 2

( , )( , ) Ω ( , )( )pp p 
   




 


  (24) 

The nonlinear operator could be written as: 

 
         

2
2 2 3

2

,
N , Ω , ,

p
p p p p


     

 
      


 (25) 

Since the solution of equation must comply with the general form of the base functions, the 
auxiliary function (H(߬)) must be assumed as: 

  H 1   (26) 

Therefore, with regard to equations (13) to (15), first order transformation equation could be 
written as: 

 2
2 2 2 3 31

0 1 0 0 0 02

qΩ q ( Ω cos cos c( )( ( )) )o )(sh
h h a a a

    



     


 (27) 

Solving above equation, ߱଴ and ݍଵ௛ are obtained as: 

 
2

2 0
0

3Ω
4
a

 



 

(28) 

 
1 1 2 2q cos sin cos3h b b D      (29) 

Coefficients ܾଵ, ܾଶ		and	ܦଶ are given in appendix A. The higher-order approximations is obtained 
similarly. Assuming ݉ = 2 in equations (13) to (15) leads to the following result for second 
order approximation (qଶ௛): 

 
32 4 53 4q cos sin cos3 sin3 cos5h b b D D D          (30) 

Coefficients ܾଷ , 	ܾସ , ଷܦ , ସܦ 	 and ܦହ are given in appendix A. Consequently, From the coefficient 
of cos ߬ in Rଶ൫qଵ௛, Ωሬሬ⃗ ଵ൯ , Ωଵ is derived as: 

  2 2 2 2
1 1 0 1 2 0 1 0 0 0

3 9Ω ( Ω ) / 2Ω
4 4

b b D a b a a        (31) 
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Also, from the coefficient of cos ߬ in  Rଷ൫qଶ௛ , Ωሬሬ⃗ ଶ൯ , Ωଶ could be derived as: 

 2 2 2 2
2 0 1 0 1 1 0 3 3 0 1

2
2

2 2 2
0 2 0 0 1 3 0 0 03 02

9Ω Ω 2Ω Ω Ω
4

3 3 3 9 3 2 Ω

(

) / ( )
4 2 2 4 4

a b b b a b

a b a D a b D b a D a a

    

    

  

    
 (32) 

5.2. Particular solution  

Assuming  Г =  :in equation (3), the problem equation is rewritten as follows ݐ݇

 2
2 2 3

2

d q q q cos
d

k f Г
Г

      (33) 

According to the type of transverse harmonic load (	 ሚ݂ cos Г), initial guess of problem particular 
solution could be written in the following form: 

  0 0q cosp b Г  (34) 

Linear operator (ℒ ) for particular solution can be defined as: 

 
      

2
2

2

,
, ,

p
p k p

Г


 



 
  

 
     (35) 

Also, nonlinear operator could be written as: 
 

       
2

2 2 3
2

,
N , , , cos

p
p k p p f Г

Г


      
 

        (36) 

Substituting equations (34), (35) and (36) in equation (13) while ܪ  and m are assumed to be 
one, leads to: 

 2
12 2 2 3 3

1 0 0 02

( )
( )

q
q ( cos co ( )s cos cos )p

pk h b k Г b Г b Г f Г
Г

 
      

  


    
(37) 

After some mathematical manipulations, the following solution is obtained for qଵ௣: 

 
1 6q cos3p D Г  (38) 

Coefficients ܦ଺ is given in appendix A. Also from the coefficient of cosГ, ܾ଴ is obtained from  
the following equation: 

 
 

2
3 2 2 2

0 0
3
4

b k b f     
 

   (39) 

which is the equation of frequency response for HAM as mention in [43]. The higher-order 
approximations for private solution could be obtained in the same way. Substituting m=2 in 
equations (13) to (15) leads to: 
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 2 2 3
2 12 2 2 2 2

2 1 02 2 2( ) (
q q

q q ( 3 sin ))p p
p p pk k hH k f Г

Г Г p p p 

    
      

     
     (40) 

Solving equation (40) leads to the following solution for  qଶ௣: 

 
2 7 8q cos3 cos5p D Г D Г   (41) 

where ܦ଻ and ଼ܦ are given in appendix A. The frequency response for second order HAM is as 
follows [43]. 

 
 

22 5
3 2 2 20 0

0 0 2

33
4 128

c bb k b f
 

    
 


 


 

(42) 

where ܿ଴ = −0.8 is considered for softening behavior and ܿ଴ = 1 is valid for hardening behavior 
[43]. According to equation (11), total solution for q(߬) is derived as follows: 

        1 2
0 1 2q τ q q qp p      (43) 

where 

      q q q , 0,1,2,i hi pi i      (44) 

Equation (12) yields to following result for natural frequency (Ω(݌)): 
 1 2

0 1 2Ω Ω Ω Ωp p    (45) 

where 

 Ω Ω Ω , 0,1,2,i hi pi i    (46) 

6. Results and discussions 
In order to show the accuracy and effectiveness of HAM and Homotopy Pade technique, in this 
section some results are obtained for nonlinear vibration of the clamped-clamped buckled beam 
subjected to axial force and  transverse harmonic load. The values of beam characteristics are 
given in Table 1 (unless mentioned otherwise). 

Table 1. The values of beam parameters 
Width(mm) Thickness(mm) Length(mm) E(GPa) ߩ(݇݃/݉ଷ) ොܽ 

3.9 6.4 485 190 7880 1 

Fig. 2 shows analytic response of first and second orders HAM for different values of the 
auxiliary parameter ℎ in a given point where ݐ = 1, P = 0 and ݓ௠௔௫ = 0.5mm. Substituting P =
0  and the values of Table 1 in equations (5) and (6) leads to ߱ = 782.0385 and ߙଷ = 3.2974 ×
10ଵ଴. Then analytical results are compared with Runge Kutta method solution obtained for the 
same values of the parameters. It is observed that analytic solution for ℎ = −1 confirms to 
Runge Kutta method solution. Also some researchers have used  h=-1[9, 25].  
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Fig.2. Curve of q	 versus ℎ	obtained with HAM and  Runge Kutta  solution. 

Table 2. Comparison of nonlinear frequencies obtained from first order HAM, second order HAM, homotopy pade 
and Runge Kutta method solution  with experimental results [44] for different values of ݈ and ݓ୫ୟ୶. 

݈ 

(݉݉) 

୫ୟ୶ݓ  

(݉݉) 

second order 
HAM(Hz) 

First order 
HAM (Hz) 

[1,1]homotopy 
pade 

(Hz) 

Runge Kutta 

(Hz) 

Experimental[44]  

(Hz) 

485 4 151.01 151.01 151.01 155.42 150 

485 3 145.21 145.21 145.21 145.84 142.8 

485 2 140.89 140.89 140.89 139.75 140 

485 1 138.23 138.23 138.23 138.46 137.5 

416 3.5 201.08 201.08 201.08 201.60 199.9 

416 3 197.37 197.37 197.37 194.37 197.1 

416 2 191.51 191.51 191.51 193.09 191.9 

416 1 187.89 187.89 187.89 187.48 188.6 

326 2.5 316.18 316.18 316.18 316.51 316.6 

326 1.5 308.42 308.42 308.42 306.96 308.3 

326 1 305.95 305.95 305.95 305.62 306.6 

326 0.5 304.46 304.46 304.46 304.44 304.6 

 

Table 2 compares the obtained results for nonlinear frequency via first order HAM, second order 
HAM, [1,1]  Homotopy Pade method and  Runge Kutta method with experimental results Rezaee 
et al. [44] for ܲ = 0ܰ and different values of ݈ and ݓ୫ୟ୶. It is shown in Table 2 that there are 
good agreement between the results of HAM , [1,1] Homotopy pade method and experimental 
results. It is concluded that the convergence acceleration of the HAM solution is impressive and 
the first order approximation of HAM is accurate. In addition, it is concluded that the Runge 
Kutta method accuracy is less than mentioned approximate analytical methods. Also, Table 3 
compares the results of frequency tatio (ߗ/߱) of first order HAM, second order HAM, [1,1] 
Homotopy Pade technique and Runge Kutta method with the results obtained by [2, 8] for ܲ =
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0ܰ and different values of ୵ౣ౗౮
୰

 . Similar to the results of Table 2, it is obvious from Table 3 that 
the HAM convergence is fast and first order HAM is very accurate. Table 3 demonstrates an 
excellent agreement between the results of  HAM ,[1,1] Homotopy Pade and  the results obtained 
by[2, 8]. The Runge Kutta method results difference from literature results is greater than HAM 
and [1,1] homotopy pade method results difference from literature. As verified in this case study, 
HAM and Homotopy Pade method provide precise answers which are valid for a wide range of 
initial deflection and beam characteristic. 

 

Table 3. Comparison of frequency ratio (ߗ/߱) obtained from first order HAM, second order HAM, homotopy pade 
and Runge Kutta method solution with results obtained by[2, 8] for different values of ௪ౣ౗౮

௥
. 

௠௔௫ݓ

ݎ  Second order  
HAM 

First order 
HAM 

[1,1]Homotopy 
Pade 

Runge Kutta Azrar et al. 
(1999) 

Quasi, 

1993 

1 1.02219 1.02219 1.02219 1.01496 1.02219 1.0628 

1.5 1.04917 1.04917 1.04917 1.04478 1.04917 1.1322 

2 1.08566 1.08566 1.08567 1.07122 1.08567 1.2140 

2.5 1.13065 1.13066 1.13066 1.17072 1.13066 1.3017 

3 1.18309 1.183096 1.18310 1.21229 1.18310 1.3904 

3.5 1.24198 1.24198 1.24199 1.28145 1.24199 1.4786 

4 1.30640 1.30641 1.30640 1.21637 1.30640 1.5635 

4.5 1.37557 1.37559 1.37556 1.27895 1.37556 1.6418 

5 1.44880 1.44882 1.44876 1.323843 1.44876 - 
 

Fig. 3a shows time response of beam nonlinear free vibration via first order HAM, second order 
HAM, [1,1] Homotopy Pade method and  Runge Kutta  method for ݓ୫ୟ୶ = 5mm,݂ = 0 and 
ܲ = 0. Fig. 3b depicts the error of first and second orders HAM response from Homotopy Pade 
method response. It can be seen that although the error of both first and second orders HAM is 
small, second order HAM error is smaller. Fig. 3c demonstrates the error of Runge Kutta method 
response from Homotopy Pade method response. Comparison of Figs. 3b and c demonstrates 
that the error of Runge Kutta method response is greater than the error of first and second orders 
HAM.  

Fig. 4a illustrates time response of beam nonlinear forced vibration via first order HAM, second 
order HAM, Homotopy Pade method and Runge Kutta method for ݓ௠௔௫ = 5݉݉,ܲ = 500, ݂ =
1000	ܽ݊݀	݇ = 700rad/s. Fig. 4b shows the error of first and second orders HAM response 
from Homotopy Pade method response. It can be observed from Fig. 4b that the error of response 
obtained by second order HAM is smaller than the error of first order HAM. Fig. 4c depicts the 
error of Runge Kutta method response from Homotopy Pade method response. Figs. 4a and c 
demonstrate that the Runge Kutta method response error is great.  
 

 



S. Mohammadrezazadeh et al. / Journal of Theoretical and Applied Vibration and Acoustics 3(2) 127-144 (2017) 

138 
 

a. 

  
b. 

 
c. 

 
Fig.3. Time response (q) for free vibration of the beam where ݓ୫ୟ୶ = 5mm, ݂ = 0 and ܲ = 0. 
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b. 

 
c. 

 
Fig.4. Time response (q) for forced vibration of the beam where ݓ௠௔௫ = 5݉݉,ܲ = 500,݂ = 1000	ܽ݊݀	݇ =

700rad/s. 
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The results show that HAM method is better than Runge Kutta method in obtaining nonlinear 
response of the system. Now, in the next step, we depict Fig. 5 to obtain frequency response by 
first and second orders HAM for ߱ = 1, ሚ݂ = 0.2 and different positive values of nonlinear 
parameter ( ߛ). As seen from Fig. 5 the increase of nonlinear parameter (ߛ) leads to increase in 
the hardening behavior of the system. Also, increasing of nonlinear parameter (ߛ), leads to 
increase in the difference of first order HAM response from second order HAM response. Fig. 6 
shows frequency response by first and second orders HAM for ߱ = 1, ሚ݂ = 0.2 and different 
negative values of nonlinear parameter (ߛ). It is concluded from Fig. 6 that the increase of 
absolute value of nonlinear parameter (ߛ) leads to increase in the system softening behavior. 
Also as the absolute value of ߛ increases, the difference of first order HAM response from 
second order HAM response increases. 
 
a. 

 

b. 

 
c. 

 
Fig.5. Frequency response for ߱ = 1, ሚ݂ = 0.2  and different positive values of nonlinear parameter (ߛ). 
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c. 

 
Fig.6. Frequency response for ߱ = 1, ሚ݂ = 0.2  and different negative values of nonlinear parameter (ߛ). 

7. Conclusion  
Analytical solutions are used as a reference frame for the validation and verification of the 
numerical approaches. Also, the analytical solutions present an insight and thought 
comprehension of the effect of the system parameters and initial conditions. Consequently, in 
this paper, for the first time the HAM and Homotopy Pade method have been employed to study 
nonlinear forced vibration of Euler-Bernoulli clamped-clamped buckled beam subjected to axial 
force and transverse harmonic load. Analytical and numerical solutions for the nonlinear 
frequency for different values of initial deflection and beam length are obtained and compared 
with experimental results of literature. In addition, frequency ratio is obtained for different 
values of beam initial deflection and compared with literature. Also time response of free and 
forced vibration of beam through HAM, Homotopy pade method and Runge Kutta method has 
been obtained. In addition, frequency response of beam through HAM has been drawn. It can be 
concluded that HAM method answers converge quickly and its components are simply 
computed. Also, the HAM and Homotopy Pade method have excellent accuracy for wide range 
of initial deflection and beam characteristic. It is concluded that HAM and Homotopy Pade 
method results require small computational effort and only the second order approximation of 
HAM or [1,1] Homotopy Pade method leads to precise answers. However, further study is 
required to better discover the effect of different parameters on the accuracy of HAM and 
Homotopy Pade method. 

b 0
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Appendix A 
By applying initial conditions to equation (43) the coefficients have been obtained as follows: 
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