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A NURBS-based isogeometric finite element formulation is 

developed and adopted to the free vibration analysis of finite square 

and skew laminated plates. Variable stiffness plies are assumed due 

to implementation of curvilinear fiber reinforcements. It is assumed 

due to employment of tow placement technology, in each ply of 

variable stiffness composite laminated plate the fiber reinforcement 

orientation angle is changed linearly with respect to longitudinal 

geometry coordinate. The classic plate theory is utilized for 

structural model description. The cubic NURBS basis functions are 

employed to approximate the geometry of the plate while 

simultaneously serve as the shape functions for solution field 

approximation in the analysis. To show the effectiveness and 

accuracy of the developed formulation, some representative results 

are extracted and compared to similar items available in the 

literature. The effects of curvilinear fiber angles, different 

geometries and various end constraints are evaluated on the variable 

stiffness composite laminated skew panel behavior. 
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1. Introduction 

The isogeometric analysis (IGA) that was firstly proposed by Hughes et al.[1]. aimed to unify 

the processes within geometrical computer aided design (CAD) and the finite element (FEM) 

model. The main sense of the IGA is to implement the base functions of CAD approximations 

(e.g., the NURBS) into elemental shape functions of the FEM in approximating the field 
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variables while at the same time describe the geometry of engineering components used in 

analytical process.  

Preserving the exact geometry at the coarsest discretization level and performing of re-meshing 

process at this level without any further communication with CAD geometry are among the great 

advantageous features of the IGA formulation. These achievements could be gained while 

utilizing the B-spline, NURBS or T-spline functions in both CAD geometry outfitting and in 

representation of the FEM unknown approximation fields. The NURBS basis functions 

especially is noticeable in meeting the expected requirements. The use of IGA formulation is 

nowadays outspread to various mechanics and physics fields of study among them fluid-structure 

interaction and structural analysis [2-4]. The free vibration behavior of variable stiffness 

composite laminates (VSCL) skew plates with curvilinear fiber reinforcements by using the 

isogeometric finite element method associated with the NURBS shape functions is the main 

subject of the present paper. In terms of the finite element methodology based on the Kirchhoff 

theory, at least C
1
 inter-elemental continuity is mandatory. Many complexities may emerge in 

case of the free-form geometries and boundaries while using the standard Lagrangian 

polynomials as FEM basis functions. The high order NURBS basis functions (functions of order 

3 and higher) could be easily obtained with an increased inter-elemental continuity. Thus the 

NURBS function is well suited for the Kirchhoff elements through the IGA formulation. Shojaee 

et al.[5] performed isogeometric finite element analysis of free vibration of isotropic thin plates 

based on the classical plate theory. Non-Uniform Rational B-Splines (NURBS) basis functions 

were utilized as the approximating functions of the thin plate displacement field while are also 

describing the exact geometry. Several numerical simulations of thin plates with various shapes 

including square, circular, skew, and L-shape plate with complicated cutouts were examined. It 

was shown that the developed formulation is able to yield highly accurate predictions. They [6] 

also utilized the classical isogeometric finite element method in order to investigate the natural 

frequencies and buckling behavior of laminated plates. Lagrange multiplier method besides an 

orthogonal transformation technique were applied to meet the essential boundary conditions. 

Some numerical problems of laminated plates with different boundary conditions, fiber 

orientations, and lay-ups were also presented. The static deflection and the free vibration 

behavior of curvilinear stiffened plates was investigated by Qin et al.[7]. NURBS based 

isogeometric approach was utilized. The large deformation and the large amplitude vibration of 

the curvilinear stiffened plates were also taken into account by using of the von Karman’s large 

deformation theory. The free vibration behavior of functionally graded plates considering in-

plane material inhomogeneity was studied by Xue et al. [8] by using a NURBS-based IGA 

formulation based on a refined plate theory. The analysis of skew and elliptical plates were 

reported while the effects of geometry, boundary condition and material inhomogeneity were 

studied on the dynamic characteristics of the plate. 

The conventional composite laminates are composed of a number of plies with unchanged 

directional mechanical properties throughout the whole geometry. This is achieved by using of 

either unidirectional (prepreg) or woven fiber reinforcements. The laminate then could be 

produced either with simple hand layup or a more complicated layup machines. If the fiber 

orientation or other fiber placement properties could be changed, the locally variable mechanical 

properties could be gained. With the automated fiber placement technology [9], it is possible to 

fabricate composite plies with variable fiber orientations within their geometrical domain. As a 
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result of changed fiber orientation (curvilinear fibers), the ply gains variable stiffness through the 

laminate geometry that is called as variable stiffness composite laminate.  

Hyer et al.[10] and Gurdal and Olmedo [11, 12] reported their very first studies on curvilinear 

fiber VSCL plates. Akhavan and Ribeiro[13] investigated the free vibration of curvilinear fibers 

VSCL plates based on the third-order shear deformation theory (TSDT). A new p-version finite 

element formulation was developed to find the natural vibration modes. The changes in the 

laminate natural frequencies with the variation of the tow-orientation fiber angles were 

discussed. It was noted that the curvilinear fiber reinforcements could provide a higher flexibility 

in adjusting frequencies and mode shapes in comparison with the conventional straight fiber 

ones. Honda and Narita[14, 15] studied the natural frequencies of VSCL plates based on the 

classical plate theory. The significant effect of the curvilinear fiber reinforcements on the natural 

mode shapes and frequencies was shown. Fazilati[16] utilized enhanced spline-FSM to 

investigate the stability analysis of VSCL plates with delamination, adopting both the classical 

thin plate theory and the Reddy type higher order shear deformation theory. He [17] also utilized 

enhanced spline-FSM to investigate the supersonic linear flutter of rectangular VSCL panels 

containing square delamination zone. 

Skew plates are widely used in many modern structural applications such as aircraft wings and 

marine vehicles. A useful and extensive survey has been provided by Liew and Wang [18] on the 

vibration of isotropic and orthotropic skew plates. Kapania and Singhvi [19] investigated free 

vibration analysis of generally laminated tapered skew plates used Rayleigh–Ritz method. 

Chebyshev’s polynomials were utilized as trial functions in order to express three displacement 

components on a given point. The boundary constraints are exerted by using number of 

appropriate springs with large stiffness’s at edges. Results were extracted for cases of isotropic, 

especially orthotropic, symmetric and asymmetric flat laminates. The free vibration of 

symmetrically laminated clamped skew plate was studied by Hosokawa et al [20]. The Green’s 

function approach was implemented and the effects of the plate skewness and fiber orientation 

angles on its natural frequencies and mode shapes were discussed. Wang et al.[21] investigated 

the free vibration of skew sandwich plates assuming an orthotropic core and laminated facings 

by using a p-Ritz method. The effects of variation of aspect ratios, boundary conditions, layup of 

facings, core and facings material on the vibration behavior was investigated. Malekzadeh [22] 

analyzed the natural frequencies of laminated composite thin skew plates by using a differential 

quadrature (DQ) approach based on classical plate theory. Green's strain in conjunction with von 

Karman assumptions were implemented in order to take in to account the geometrical 

nonlinearity effects. Houmat [23] proposed a p-element and studied the nonlinear free vibration 

of variable stiffness symmetric skew laminates based on thin plate theory and Von Karman 

strains. Assuming different fiber layup configurations, the effects of skewness on the frequency, 

normal mode, and degree of hardening have been studied. 

According to the aforementioned literature reviews, while many researches are reported on the 

mechanical behavior of VSCL panels, to the best of the authors’ knowledge, the free vibration 

analysis of VSCL skew panels is not completely addressed. Therefore, in the present paper, a 

NURBS based isogeometric formulation is developed to investigate the free vibration analysis of 

composite laminated skew plate subjected to various sets of boundary conditions. Variable 

stiffness properties due to curvilinear fiber orientation in the laminate plies is assumed. An 

enhanced isogeometric formulation is developed based on the classical plate theory (CLT). The 
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NURBS basis functions of cubic order are employed in order to build the plate’s geometry while 

simultaneously serve as the shape functions for solution field approximation in finite element 

analysis. To show the effectiveness and accuracy of the developed CLT IGA formulation, typical 

free vibration problems are conducted and the extracted results are compared to referenced ones. 

The effects of curvilinear fiber angles, different geometries and various end constraints are 

evaluated on the VSCL skew panel behavior. 

2. Isogeometric functions 

Defining the NURBS basis functions and their directional derivatives are fundamentals of IGA 

formulation development. The NURBS function is a generalization of B-spline curve. A B-spline 

one dimensional curve could be defined over parametric space [0,1] by using of a set of non-

decreasing numbers called knot vector Ξ(ζ) = {ζ1=0,…, ζi ,…, ζn+p+1 =1}
T
 (ζi ≤ ζi+1),  together 

with a set of control points Pi (i=1,...,n). n and p are the number of spline basis functions and the 

order of spline basis functions, respectively. The non-zeros knot span [ζi ≤ ζi+1), behaviors as an 

element in isogeometric methodology. A knot vector Ξ(ζ) may called an open knot vector if the 

two end knots are repeated p+1 times. 

With a given knot vector Ξ(ζ), the B-spline basis function, written as Ni,p(ζ), is defined 

recursively as follows[24]: 
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The one dimensional NURBS basis function, Ri,p(ζ), is constructed using weighted average of 

some B-spline basis functions [24] as, 
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where wi is the i
th

 weight coefficient; the NURBS basis function is degenerated into a B-spline 

basis function for wi =1. 

In a similar manner, the bivariate NURBS basis function (for case of NURBS surface) is defines 

as 
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(4) 

where wi,j represents the 2D weight coefficients; Nj,q(η) is the B-spline basis of order q defined on 

the knot vector Ξ (η), followed by the recursive formula shown in equations (1) and (2). The 

NURBS basis functions has the same properties as B-splines. By using the NURBS basis 

functions, a NURBS surface of order p in the ζ direction and order q in the η direction may be 

constructed as follows: 
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where Pi,j represents the coordinates of control points in two dimensions. The first derivatives of 

the NURBS basis function 
,

, ( , )p q

i jR    with respect to each parametric variable are derived by 

applying the quotient rule to the equation (4) as 
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(6b) 

The first derivatives of the weighting function, ( , )W   , with respect to each parametric 

variable are given by 
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Higher-order derivatives of the NURBS basis function and the weighting function can be 

obtained via a similar process. 

3. Governing equations and discretization 

A typical symmetric laminated skew plate with length a, width b, and a Cartesian coordinate 

system is assumed with x and y rectangular coordinate axes located on the mid-plane of the 

undeformed laminated plate. (u,v,w) are displacements of the plate in the (x,y,z) direction (Figure 

1). Based on the classical laminate plate theory, the displacement field of the plate is: 

 

 

Fig 1. Reference fiber path in typical VSCL skew plate with curvilinear fibres. 
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It is to be notified that in-plane displacements are overlooked and therefore the assumed 

approximating displacement field are limited to the case of bending and twisting behavior of 

laminated plate. In this study, the NURBS basis function is employed for both the 

parameterization of the geometry and the approximation of the deflection field w(x) as follows, 
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in the above equations,  ζ ,   are parametric coordinate sets,  x= ,x y  are physical 

coordinate sets, x I denotes a control mesh consisting of n×m control points, Iw  signify the 

displacement field at each control point (i.e control variables),  ζI  are the bivariate NURBS 

basis functions of order p and q along ζ and η directions, respectively. The strains and stresses 

sets on the geometry are given as [6], 
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Mx, My and Mxy are moments corresponding to the bending and twisting. The relationship 

between strains and stresses could be expressed as, 
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where D is the bending stiffness and is given as follows: 
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In the above equations E1 and E2 are the Young’s moduli parallel to and perpendicular to the 

fiber local direction, G12 is the shear modulus, ν12 and ν21 are the Poisson’s ratios and ϴ(x) is the 

fiber orientation angle with respect to and along the x-axis of the plate. As suggested by Gürdal 

and Olmedo [11], the orientation of the reference fiber path in layer k of the VSCL plate is given 

by 

 
1 0

0

2( )
(x)

k k

k kT T
x T

a



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where 0

kT  and 1

kT  gives the angle between the fiber and the x-axis at the plate center (x = 0), and 

at the plate ends (x=±a/2), respectively. The fiber path that corresponds to equation (17) is 

represented by 0 1,k kT T   where 0 1

k kT T may represents a straight fiber case. 

Based on an energy approach, the governing equations of the free vibration problem of the 

composite laminated plate could be expressed as [6]: 
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Here ρ and Ω are mass density of the constructing material and the geometry total volume, 

respectively. By substituting the deflection function, w, from equation (9) into equation (18), and 

applying some further manipulations, an eigenvalue governing equation of the free vibration 

could be obtained as, 

 2(K M)Q 0   
(19) 

ω is the structural natural frequency, Q is the eigenvector of the form {w1, w2, ..., wncp}              

including the deflections of all control points in the geometry domain, and M and K are called the 

global mass and stiffness matrices where are given by 
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4. Results and discussion 

For all calculation case studies presented in the remainder of the present paper, the cubic order 

NURBS basis functions and a 15x15 NURBS elements (18x18 control points) are employed and 

a 4x4 Gauss quadrature is utilized in numerical integration over each element. Different 

boundary conditions including simply supported (S), clamped (C), and free (F) are also 

considered. The clamped boundary conditions could be applied through limiting the rotations by 

imposing constraint on two adjacent rows of control points on the boundary [5]. The following 

material properties and geometrical parameters of laminated plates are used [13]: 
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(24) 

Some representative comparisons are made to show the accuracy and effectiveness of the present 

formulation. 

The first five natural frequencies of fully simply supported (SSSS) three-ply curvilinear square 

panel with variable fiber angle layup [<30,0>,<45,90>,<30,0>] is investigated. For models with 

the similar degrees of freedom (dof), the problem of free vibration is solved using the CLT 

Rayleigh-Ritz method (RRM). The results of CLT IGA, CLT RRM besides the prediction of the 

enhanced p-version higher order (HLT) FEM of Akhavan and Ribeiro [13] are presented in 

Table 1. The results signify the fast convergency of the IGA formulation in comparison with 

RRM. The results also authenticate the good accuracy of the IGA calculation with respect to 

HLT pFEM results despite using lower plate theory assumptions.  

Table 1. Natural frequencies (Hz) of SSSS VSCL square plate  

[<30,0>,<45,90>,<30,0>] 

Model dof Method Natural frequency (Hz) 

  
1 2 3 

100 
RRM [25]  310.046 506.183 849.467 

CLT IGA 309.602 505.302 851.873 

400 
RRM [25] 309.673 505.505 848.655 

CLT IGA 309.332 504.787 847.791 

900 
RRM [25] 309.563 505.306 848.459 

CLT IGA 309.319 504.785 847.744 

1600 
RRM [25] 309.508 505.207 848.368 

CLT IGA 309.314 504.786 847.742 

2025 
RRM [25] 309.487 505.178 848.338 

CLT IGA 309.315 504.791 847.748 

- 
HLT pFEM 

[13] 
308.799 503.799 845.509 

 

The first six natural frequencies of a three-layer square VSCL plate, under fully free (FFFF), 

simply supported (SSSS), and clamped (CCCC) edge constraints is investigated. The variable 

fiber angle layup of [<0,45>,<-45,-60>,<0,45>] is assumed. According to Table 2, the present 

results have good satisfactory agreement with p-version HLT FEM results calculated by 

Akhavan and Ribeiro [13]. 

The first eight natural frequencies are calculated in case of fully simply supported (SSSS) and 

fully clamped (CCCC) laminated skew plates of layup [(45/-45)2/45]. The geometrical 

parameters of a = b = 1, a/h = 100, with skew angles Φ = 0, 30, 45 are considered. According to 

the presented results in Table 3, the IGA calculations are in satisfactory agreement with classical 

plate theory Rayleigh–Ritz method predictions of Wang [26]. 
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Table 2. Natural frequencies (Hz) of VSCL plate [<0,45>,<-45,-60>,<0,45>] 

 FFFF SSSS CCCC 

Mode 
HLT pFEM 

[13] 
CLT IGA 

HLT pFEM 

[13] 
CLT IGA 

HLT pFEM 

[13] 
CLT IGA 

1 140.946 141.282 358.488 358.431 579.398 582.189 

2 170.210 170.319 589.900 590.576 821.532 826.232 

3 344.570 345.607 960.361 962.924 1225.79 1233.797 

4 477.563 478.834 1075.21 1081.577 1493.76 1515.583 

5 592.531 594.585 1327.88 1334.155 1726.96 1754.643 

6 715.990 719.894 1474.67 1471.940 1775.16 1789.947 

Table 3. Fundamental natural frequency parameters of fully simply supported and clamped laminated skew panels 

[(45/-45)2/45] ( 2 2

2/ /a h E    ) 

B.Cs Φ Method frequency parameter Ω 

   

1 2 3 4 5 6 7 8 

SSSS 0 IGA 2.4337 4.9855 6.1806 8.4841 10.2497 11.6422 12.8194 15.2089 

  

RRM 

[26] 2.4339 4.9865 6.1818 8.4870 10.2536 11.6464 12.8260 15.2173 

 

30 IGA 2.6115 5.6889 6.8295 9.4740 11.8836 13.2284 14.2738 17.3268 

  

RRM 

[26] 2.6119 5.6902 6.8316 9.4773 11.8900 13.2355 14.2809 17.3382 

 

45 IGA 3.3164 6.8981 9.6835 10.7160 15.5244 16.1343 19.3271 21.2834 

  

RRM 

[26] 3.3182 6.9002 9.6908 10.7206 15.5318 16.1447 19.3481 21.3005 

CCCC 0 IGA 3.9006 7.1451 8.4574 11.2081 13.3175 14.7396 16.1205 18.8062 

  

RRM 

[26] 3.9009 7.1464 8.4585 11.2112 13.3216 14.7425 16.1271 18.8145 

 

30 IGA 4.5426 8.3801 9.8783 12.8492 15.6839 17.4798 18.3314 21.9224 

  

RRM 

[26] 4.5431 8.3819 9.8810 12.8533 15.6906 17.4889 18.3396 21.9364 

 

45 IGA 6.3037 10.8165 14.4884 15.4646 21.052 22.0584 25.8634 27.6336 

  

RRM 

[26] 6.3048 10.8193 14.4949 15.4692 21.062 22.0759 25.8849 27.6869 

 

The fundamental natural frequency parameter (
2a E   ) are extracted in case of fully clamped 

(CCCC) variable stiffness skew plates of 3, 5, and 8 variable stiffness layers. Three variable fiber 

orientation layups of I: [+<T0,T1>,-<T0,T1>,+<T0,T1>], II: [+<T0,T1>,(-<T0,T1>,+<T0,T1>)2] and 

III: [(+<T0,T1>,-<T0,T1>)2]S are taken into account. The geometric parameters are a = b = 0.5 m, 

h = 0.005 m, and Φ = 30, 45. The fiber placement parameters are T0 = 45 and T1 = 40, 65, 90. 

The middle plate fiber orientation (T0) is kept unchanged while the fiber orientations at the panel 



V. Khalafi et al. / Journal of Theoretical and Applied Vibration and Acoustics 4(2) 171-188(2018) 

180 

 

longitudinal ends (T1) are altered. According to Table 4, the CLT IGA results are in satisfactory 

agreement with CLT FEM predictions presented by Houmat [23]. The IGA method provides 

more conservative frequencies (lower ones) in case of layups I and II. The layups with lower T1 

exhibits the best design with higher frequencies. It also could be notifying that the layup I shows 

more sensitivity to the panel skewness. 

Table 4. Natural frequencies (Hz) of 3, 5 and 8-layer symmetric VSCL skew plate 

 
(T0=45) 

T1 

Φ=30 Φ=45 

FEM [23] IGA FEM [23] IGA 

layup I 

40 0.4496 0.4477 0.6913 0.6837 

65 0.3337 0.4325 0.6344 0.6316 

90 0.4128 0.4126 0.5677 0.5667 

layup II 

40 0.4517 0.4511 0.6694 0.6668 

65 0.4214 0.4210 0.6014 0.5998 

90 0.3951 0.3951 0.5343 0.5340 

layup 

III 

40 0.4447 0.4448 0.6484 0.6491 

65 0.4093 0.4093 0.5762 0.5764 

90 0.3820 0.3821 0.5116 0.5116 

 

The natural frequency parameters ( 2 /a h D   ) are calculated in case of cantilevered (CFFF) 

skew laminate of layup [(ϴ/- ϴ)2/ ϴ]. The geometrical parameters of a = b = 1, a/h = 100, and Φ = 

0, 60 are considered. According to Table 5, the IGA calculations are in good agreement with 

CLT Rayleigh–Ritz predictions presented by Han and Dickinson [27]. The results show the 

effectiveness of the developed formulation in analyzing versatile boundary constraint sets. 

Table 5. Dimension-less natural frequencies of CFFF laminated skew panel [(ϴ /- ϴ)2/ ϴ] 

ϴ Φ Method Mode 

   

1 2 3 4 5 

0 0 IGA 3.511567 4.734656 9.106148 18.3375 22.00242 

  

RRM [27] 3.5143 4.7373 9.1101 18.347 22.021 

 

60 IGA 4.231318 7.905243 18.51047 26.91552 34.36292 

  

RRM [27] 4.2328 7.8953 18.521 26.911 34.401 

30 0 IGA 2.544406 5.948861 12.62251 16.41291 21.5345 

  

RRM [27] 2.5443 5.9493 12.634 16.416 21.539 

 

60 IGA 3.243181 9.252418 20.1666 27.31974 40.2716 

  

RRM [27] 3.2417 9.2568 20.139 27.293 40.281 
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The natural frequencies are calculated for CCCC, SSSS and FFFF symmetric three-layer VSCL 

plate. Two variable fiber orientation 3-layer layups of I: [<30,0>,<45,90>,<30,0>] and II: 

[<90,45>,<60,30>,<90,45>] are considered. The results for the first five natural frequencies for 

three skewness angle values, Φ=0, 15 and 30 are presented in Table 6. According to the results, the 

layup design I for three skewness angle values is a more efficient design with 6 to 10 percent 

higher frequencies dependent to the boundary conditions. It also indicates the significance of the 

boundary constraints on the frequencies where a clamped constraint could boost the fundamental 

frequency by a factor of 2 with regard to simply supported one. It also shows that with increase 

in the skew angle, a decreasing-increasing manner in case of layup I exists while a fully 

decreasing behavior could be observed in case of layup II. 

 

Table 6. Natural frequencies (Hz) for all BCs three-ply VSCL Skew (Φ=0) plate 

  CCCC SSSS FFFF 

layu

p 
Mode Φ=0 Φ=15 Φ=30 Φ=0 Φ=15 Φ=30 Φ=0 Φ=15 Φ=30 

I 1 665.46 656.58 664.35 309.33 296.95 313.34 110.48 116.56 97.77 

 2 863.71 827.74 861.57 504.78 467.94 514.03 177.32 176.02 
204.7

0 

 3 1239.92 
1179.1

1 

1236.9

5 
847.81 808.56 855.48 266.62 304.08 

254.7

8 

 4 1714.44 
1709.9

9 

1708.8

3 
1139.50 1135.65 

1145.7

0 
459.92 482.39 

482.1

3 

 5 1790.21 
1745.6

7 

1783.5

5 
1283.51 1261.71 

1289.8

6 
469.20 551.14 

520.8

4 

II 1 710.00 671.45 647.46 329.68 316.46 310.97 123.11 137.80 
128.1

6 

 2 914.58 887.19 875.01 538.35 529.91 530.91 151.31 151.53 
177.6

7 

 3 1340.50 
1360.8

2 

1388.2

9 
884.32 917.67 967.24 277.92 336.83 

386.7

4 

 4 1703.47 
1609.3

2 

1525.4

1 
1092.88 1029.30 976.95 389.80 396.16 

394.7

9 

 5 1857.71 
1710.3

8 

1607.8

1 
1277.74 1179.70 

1102.5

6 
404.74 406.36 

403.0

1 
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(a) (b) 

  
(c) (d) 

 
(e) 

Fig 2. Fundamental natural frequency for skew plate under skewness angle values a) T0=15, b) T0=30, c) T0=45, d)  

T0=60, e) T0=75. 

A symmetric variable fiber-orientation panel is considered with six different boundary condition 

sets, namely CCCC, CSCS, SSSS, CFCF, SFSF and FFFF. The variations of fundamental natural 

frequency with skewness angle (Φ) as well as boundary condition set for five lay-up [+<15,45>]s 
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, [+<30,45>]s , [+<45,45>]s , [+<60,45>]s and [+<75,45>]s are extracted and depicted in Figures 2(a) to 

2(e), respectively. According to the presented results, the fundamental natural frequency in case 

of CCCC, CCSS and SSSS boundary condition sets grows with skewness angle. For cases with 

at least one free edge, the fundamental frequency is higher for smaller skew angles. According to 

Figure 2(a) the SFSF plate shows higher frequencies than FFFF curve for [+<15,45>]s. As T0 

increases, the difference of the two curves reduces (see Figure 2(b)). With increasing of T0 fiber 

angle, according to Figure 2(c), the FFFF frequencies dominates the SFSF ones for skew angles 

between Φ=0 and Φ=20. For T0=60, Figure 2(d) shows higher frequencies for FFFF than SFSF 

in the skew interval of Φ=0 to Φ=55. This dominance could be observed in more extended skew 

angle interval for T0=75 as in Figure 2(e). 

Symmetric four-layer rectangular VSCL plate whit layup [+<T0,45>]s is considered where the 

middle-length fiber angle (T0) is varied from 0 to 90 degrees. Fundamental natural frequency for 

skew plate (Φ=45) for six different boundary condition sets is calculated and depicted in Figure 

3. According to the results, the fundamental natural frequency for boundary conditions CCCC, 

SSSS and CSCS with increase the middle-length fiber angle (T0), initially decreases and then 

increases as the skew angle raises. For boundary condition sets with two opposite edges free, the 

fundamental natural frequency follows an increasing-decreasing route. Also, the fundamental 

natural frequency for FFFF boundary condition advances the SFSF for T0 angles higher than 55 

degrees. 

 

 
Fig 3. Fundamental natural frequency for skew plate under T0 (Φ=45). 
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Fig 4. Fundamental mode shapes of VSCL Skew plate with layup [+<30,45>]s 

 

The fundamental natural mode shapes of CCCC, CSCS, SSSS, CFCF, SFSF and FFFF 

symmetric four-layer skew plate [+<30,45>]s for four skewness angle values, (i.e. Φ=0, Φ=15, 

Φ=30,and Φ=45) are depicted in Figure 4. 

 

 

 



V. Khalafi et al. / Journal of Theoretical and Applied Vibration and Acoustics 4(2) 171-188(2018) 

185 

 

Table 6. Fundamental natural frequencies (Hz) of four-layer VSCL skew plate (Φ=10) with different boundary 

constraint sets 

 

 Layup 

boundary constraint [±<30,45>]s [±<60,45>]s 

 

34.6961 55.6987 

 

59.2507 40.0253 

 

106.7196 109.8459 

 

121.9922 130.1349 

 

235.0657 360.0266 

 

409.1717 278.5512 

 

300.2391 396.6129 

 

439.0274 337.6396 

 

In order to study the effects of different end constraints on the dynamic characteristics of the 

VSCL skew plates, a laminated four-layer skew panel subjected to clamped and free constraints 

on its edges is considered. Two layups with similar T1=45 and different T0 of 30 and 60 degrees 

are taken into account. The IGA results are given in Table 6. According to the results, the 

behavior of the panel and its sensitivity to the end constraint is a function of middle length fiber 

orientation. The results imply that in case of T0=60, the panels with more clamped constraints on 
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the inclined side edges show higher dynamic stability (higher natural frequencies) while in the 

layup with T0=30, an opposite rule could be observed. In other words, the [±<60,45>]s skew 

panel with boundary condition sets of FCFC, FFFC and CCFC offer higher panel frequencies 

than CFCF, CFFF and CFCC sets, respectively. For the case of adjacent double clamped edges 

(CCFF and CFFC), the two layups have the same behavior such that acute angle between the 

clamped edges defines the more stable panel. The layup with T0=30, is observed to be more 

sensitive to the variation of the clamped edge position as more changes in the fundamental 

natural frequency could be occurred. The best dynamic characteristics could be found for CFCC 

and FCFC end constraint sets in cases of 30 and 60 degrees T0, respectively. 

5. Conclusions 

An enhanced isogeometric analysis formulation based on classical plate theory is developed and 

applied to the problem of free vibration of variable stiffness composite laminated skew plates. 

The cubic NURBS basis functions are employed in order to approximate the geometry while 

simultaneously serving as the shape functions for solution field approximation in the analysis. 

The laminate’s plies stiffness is assumed to vary linearly throughout the geometry due to angle 

variation of fiber reinforcements. The representative results showed the good accuracy and 

effectiveness of the formulation in the handling of free vibration problem of VSCL skew panels 

with versatile end constraints. The effects of variable fiber-orientation, lay-up, boundary 

conditions and the panel skew angle on the dynamic characteristics are addressed. According to 

the presented calculations, the following hint may be declared: 

 

 It is found that the convergence rate of the IGA calculations are higher than that of RRM. 

 Clamped constraint could boost the fundamental frequency by a factor of 2 with regard to 

simply supported one. 

 Higher skew angles increase the fundamental natural frequency under CCCC, CCSS and 

SSSS boundary conditions while reduce fundamental natural frequency in boundary 

condition sets with at least one free edge. 

 For boundary condition sets with two opposite edges free, when T0 increased, the 

fundamental natural frequency follows an increasing-decreasing route. 

 The skew panel with layup I is highly sensitive to the skewness angle. 

 The layups with lower T1 fiber angle offer higher natural frequencies.  

 The dynamic behavior of the VSCL skew panels while the end constraints are varying are 

dependent on T0. 

 Adjacent double clamped edges with amongst acute angle provide a more stable panel.  
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