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1 Introduction

According to large N dualities, the 1/N expansion of different observables in U(N) gauge
theories can be reinterpreted as a genus expansion in an appropriate string theory. For
example, the gauge theory free energy at finite volume has an expansion of the form

F (gs, N) ∼
∞∑
g=0

g2g−2
s Fg(t), (1.1)

where gs is the gauge theory coupling constant and t = gsN is the ’t Hooft parameter. In
large N dualities, gs is identified with the string coupling constant, the ’t Hooft parameter
becomes a geometric modulus of the string target space, and the amplitudes Fg(t) are
identified with free energies at genus g of a string theory.
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The 1/N expansion in gauge theory is an asymptotic expansion, and it is expected to
have corrections of the form

F (gs, N) ∼
∞∑
g=0

g2g−2
s Fg(t) +O(e−A(t)/gs). (1.2)

These corrections are invisible in the traditional 1/N asymptotics,1 and they are associ-
ated to large N instantons. Although large N instantons are typically built upon classical
gauge theory instantons, they should not be confused with them. A classical instanton is
a saddle point of the classical action, while a large N instanton is a saddle point of the
large N effective action; see [1, 40] and [23] for explicit examples in the CPN model and in
two-dimensional Yang-Mills theory, respectively. In particular, the action A(t) of a large N
instanton is a non-trivial function of the ’t Hooft parameter which includes quantum correc-
tions at all loops. In some cases, large N instantons can be interpreted in terms of D-branes
of the string theory dual, as it happens for example in matrix models of non-critical strings.

One could think that the instanton corrections in (1.2) are unimportant since they
are exponentially suppressed at large N , but this is not always the case. As we move in
parameter space they might become of order one and start contributing to the large N
asymptotics. This scenario was advocated long ago by Neuberger [41] in order to explain
the occurrence of critical points in Hermitian matrix models and the third-order large N
phase transitions of unitary matrix models [24, 48]. The same mechanism explains as well
the Douglas-Kazakov transition in two-dimensional Yang-Mills on the sphere [16, 23]. In
these instanton-driven phase transitions, as we change the ’t Hooft parameter at fixed gs,
the action of the instanton A(t) vanish at some finite value t = tc. This leads in general to
different 1/N expansions for the regions t > tc and t < tc.

On the other hand, if we regard gs as a complex variable, we should expect that the
1/N asymptotics changes discontinuously as we change the argument of gs (and keep |t|
fixed). In classical asymptotic analysis, this discontinuous change is the well-known Stokes
phenomenon. The reason for this phenomenon is in fact the same one that underlies
instanton-induced phase transitions: an exponentially small quantity, due to a sub-leading
saddle point, becomes less and less suppressed as we change the argument of the expansion
variable. Along the so-called anti-Stokes line, the contribution of this saddle is of order
one and has to be included in the asymptotics.

In general, a large N gauge theory with instanton sectors, should display a complex
pattern of large N phase transitions, combining the instanton-driven phase transitions at
fixed gs with the Stokes-like transitions as we vary the argument of gs. If the gauge theory
that we are studying has a string dual in at least one of the phases, it is certainly interesting
to understand what are the implications of these transitions in the string picture.

In this paper we will analyze these issues in a family of models which have well-
understood large N duals, namely Chern-Simons theory on the lens space L(p, 1). This

1By traditional or classical asymptotics, we mean asymptotic expansions in which non-analytic terms

are not taken into account. There are refinements of traditional asymptotics, which go sometimes under the

name of “hyperasymptotics,” where these terms are included in a systematic way, see [7] for an overview.
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gauge theory is described by topological string theory on a Calabi-Yau space given by an Ap
fibration over a two-sphere [3, 22, 26, 27]. However, this large N string dual is intrinsically
semiclassical, since it describes a generic but fixed saddle-point of the gauge theory. A
full non-perturbative study of this duality, where we sum over all saddle-points, reveals a
surprisingly rich phase structure as we move in the complex plane of the ’t Hooft coupling.
The main results of our analysis are the following:

1. For each complex value of t, the large N asymptotics of the non-perturbative free
energy is dominated by a fixed string target geometry, i.e. by a point in the Calabi-
Yau moduli space. However, this “saddle geometry” might change as we vary t.

2. For some values of t, the 1/N asymptotics is given by a conventional genus expansion.
There are non-perturbative effects due to the contributions of neighbouring geome-
tries, but they are exponentially suppressed. For other values of t, the asymptotics
has an oscillatory behavior due to large N instantons. This type of behavior was first
observed in the context of matrix models in [10], and further studied in [17, 18]. In
particular, the large N asymptotics is no longer given by a genus expansion around
a fixed geometry, and corrections due to neighboring geometries are crucial, already
at the next-to-leading order.

3. The change of saddle geometry as we change the complex ’t Hooft parameter can
be regarded as a generalized or “deformed” Stokes phenomenon. In the limit of
vanishing ’t Hooft coupling, the asymptotics changes discontinuously as we change
the argument of the string coupling constant, and we recover the classical Stokes
phenomenon. For finite t the phenomenon is smoothed out, and the asymptotics
changes continuously.

In practice we have focused on the simplest, nontrivial model in the family, namely
L(2, 1) = RP3. The gauge theory saddle points are characterized by a symmetry breaking
pattern U(N) → U(N1) × U(N2). The dual Calabi-Yau manifold is the so-called local F0

geometry, where F0 = P1 × P1 is a Hirzebruch surface. It has two Kähler parameters,
corresponding at large radius to the sizes of the two P1s in F0. The partial ’t Hooft
couplings t1, t2, where ti = gsNi, parametrize the Kähler moduli space near the orbifold
point described in [3], and their sum t1 + t2 is fixed to be the total ’t Hooft parameter of
the gauge theory. Each saddle geometry is characterized by an “equilibrium value” for t2.
The phase diagram in the region |t| > 0, 0 ≤ Arg(gs) ≤ π/2 is shown in figure 7.

Our analysis shows very clearly that the large N instantons analyzed
in [10, 17, 18, 34–36, 43] are crucial in order to understand large N dualities. To be precise,
for generic values of the ‘t Hooft parameter, the correct large N asymptotics of the exact
gauge theory partition function involves these instanton effects already at next-to-leading
order. In order to dispel any doubt about this, we study in detail the partition function
of Chern-Simons theory on RP3, for imaginary values of the coupling constant. These are
precisely the the “physical” or “on-shell” values of the coupling constant in Chern-Simons
theory. Our analysis shows that these values correspond to an anti-Stokes line with os-
cillatory asymptotics, in which the traditional genus expansion has to be supplemented
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with instanton corrections. We test numerically our predictions for the instanton corrected
asymptotics against the exact non-perturbative Chern-Simons partition function, and we
obtain an impressive agreement.

Our analysis also clarifies the issue of background dependence in topological string
theory. Let us focus again on the example of Chern-Simons theory on RP3. Perturbative
topological string theory depends on a choice of background (t1, t2). The gauge theory
partition function is background independent, in the sense that it only depends on the total
’t Hooft parameter t = t1 + t2 (which is, as needed for consistency, a modular invariant in
the dual topological string). However, the large N asymptotics of the partition function
is “peaked” around a particular value of (t1, t2) which depends on t and corresponds to a
particular saddle geometry. This fixed background emerges as an equilibrium value as a
consequence of the large N limit, but it has no meaning at finite N . In fact, in the full
theory, the value of the background (specified by, say, the value of t2) is not fixed, since
t2 is rather an internal or fluctuating variable which we have to sum over. But as usual
in statistical mechanics, in the thermodynamic limit N → ∞ this fluctuating variable is
peaked around an equilibrium value.

We would like to point out that the role of instanton effects in the 1/N expansion
and their string theory interpretation has been addressed before in different contexts. For
example, the instanton-induced Douglas-Kazakov phase transition has been interpreted
as a breakdown of the large N string dual [16]. In AdS/CFT at finite temperature, an
incarnation of the Gross-Witten-Wadia phase transition has been argued to correspond
to a breakdown of the geometric description of the string target [4].2 The importance of
exponentially small effects, and their effects on the string target space, has been emphasized
in [37], which studies as well the Stokes phenomenon in the open string moduli space.
In [42], a large N phase transition in N = 4 super Yang-Mills theory on K3 was found,
separating a phase dominated by the zero-instanton sector from a phase dominated by an
instanton sector with large instanton number. In the context of matrix models, general
techniques to analyze large N phase transitions have been developed along the years,
culminating in the formulation in terms of Boutroux spectral curves in [9]. Of course, the
fact that the genus expansion can not capture the large N asymptotics was discovered in
the context of matrix models and explained in detail in [10].

This paper is organized as follows: In section 2 we review the structure of instantons
corrections in matrix models and topological strings. In section 3 we present our model,
the Chern-Simons theory on the lens space L(p, 1), and its matrix model realization. We
then specialize to the p = 2 case and review the large N duality between the perturbative
expansion of the matrix model in a fixed filling fraction (N1, N2) configuration and the
topological string on the local P1 × P1 geometry, in a fixed background t1, t2. In section 4
we study the large N phase diagram. We start by considering two particular cases: real
and imaginary gs, which correspond to two phases of the gauge theory with two distinct
dominant saddle configurations, each dual to a fixed background geometry. By following

2The Hawking-Page transition in AdS/CFT is a large N phase transition leading to a change of topology,

but it involves effects of order exp(−N2) and it is not driven by instantons.
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the analysis of section 2, we explain the structure of the large N asymptotic of the two
phases and provide very precise numerical checks of our predictions. We then complete
the study of the phase diagram for generic complex gs and interpret the large N phase
transitions between the various phases as due to the Stokes phenomen. We end this section
by commenting on the issue of the background independence. In section 5 we discuss the
phase diagram of the cubic matrix model. Thanks to its close relation with the Airy
function, the prototypical example of the Stokes phenomenon, this example clarifies the
nature of the large N phase transitions between dominant saddles/backgrounds which we
found in Chern-Simons theory. Section 6 contains conclusions and a list of open issues.
Finally in the appendix we collect some details of the model for different submanifolds of
moduli space.

2 Instanton corrections in matrix models and topological strings

In this section we review instanton corrections in matrix models/topological strings, fol-
lowing mainly [10, 18, 36].

Multi-cut matrix models and topological strings are characterized, at the perturbative
level, by genus g amplitudes of the form

Fg(t) = Fg(t1, · · · , ts), (2.1)

where, in the case of matrix models, ti are partial ’t Hooft couplings

ti = gsNi, i = 1, · · · , s, (2.2)

Ni is the number of eigenvalues in the i-th cut and s is the number of cuts. The perturbative
partition function is given, as usual, by

Zp(N1, · · · , Ns) = exp
{ ∞∑
g=0

Fg(t)g2g−2
s

}
. (2.3)

A choice of moduli or ’t Hooft parameters t = (t1, · · · , tn) in this partition function is
called a choice of background. In matrix models and in gauge theory, the quantity

t =
n∑
i=1

ti = gsN (2.4)

where N is the rank of the U(N) gauge group, is fixed. Background-independent quantities
should only depend on gs and N , while the perturbative partition function Zp depends on
a choice of ti and is therefore a background dependent quantity.

The non-perturbative partition function ZCnp was introduced in the context of matrix
models with a polynomial potential V (z) in [10, 13, 17], and it depends on a choice of
contour C in the complex plane. This contour is the integration path for the eigenvalues of
the matrix integral. We then have

ZCnp(N, gs) =
1
N !

∫
C

N∏
i=1

dλi
2π

∆2(λ)e−
1
gs

PN
i=1 V (λi) (2.5)

– 5 –



J
H
E
P
0
7
(
2
0
1
0
)
0
7
4

where ∆(λ) is the Vandermonde determinant. Of course, the contour C is chosen in such
a way that this integral converges. By standard saddle-point techniques, we can always
deform the path C into a sum of paths Ck which go through the critical points of V (z) and
are paths of steepest descent [20],

C =
s∑

k=1

ζkCk, (2.6)

where we have assumed that V (z) has s critical points. Therefore

ZCnp(N, gs) =
∑

N1+···+Ns=N
ζN1

1 · · · ζNss Zp(N1, . . . , Ns). (2.7)

where

Zp(N1, . . . , Ns) =
1

N1! · · ·Ns!

∫
λ
(1)
k1
∈C1
· · ·
∫
λ
(s)
ks
∈Cs

N∏
i=1

dλi
2π

∆2(λ) e−
1
gs

PN
i=1 V (λi). (2.8)

To write this equation, we have split the N eigenvalues into s sets of NI eigenvalues,
I = 1, . . . , s, which are denoted by

{λ(I)
kI
}kI=1,...,NI , I = 1, . . . , s. (2.9)

Each of the integrals (2.8) has a small gs asymptotic expansion given by (2.3).
Equation (2.7) expresses a background-independent quantity ZCnp as a sum of

background-dependent quantities Zp(t). This sum can be in turn regarded as a sum over
matrix model instantons, which have been identified long ago in terms of eigenvalue tun-
neling [13, 47]. Formally, we can write the sum (2.7) as the perturbative partition function
coming from a fixed background Ni = N∗i , plus an infinite sums of corrections for the
remaining values of Ni. These corrections are non-perturbative in gs. We write (2.7),
schematically, as

ZCnp(N, gs) = Zp(N∗1 , · · · , N∗p ) +O(e−1/gs) (2.10)

In order to be more concrete, we will restrict ourselves to models where s = 2, or
equivalently, models with two moduli t1, t2. Up to an overall normalization, we can set
ζ1 = 1, ζ2 = ζ. The detailed form of (2.10) depends on the choice of background. If the
background is on the boundary, we have (N∗1 , N

∗
2 ) = (N, 0) or (0, N). Otherwise, we say

that the background is an interior point. The expression for (2.10) when the background
is on the boundary was worked out in [36]. Assuming for concreteness that the boundary
is at (N, 0), we have

ZCnp(N, gs) =Zp(N)
(

1 +
∑
`≥1

g
`2/2
s

(2π)`/2
G2(`+ 1) ζ` q̂

`2

2 exp
(
−`A
gs

)

·
∑
k

∑
mi>0

∑
gi>1−mi

2

g
P
i(2gi+mi−2)

s

k!m1! . . . mk!
F̂ (m1)
g1 . . . F̂ (mk)

gk
(−`)

P
i li

)
.

(2.11)
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In this equation we have introduced the following notations. Zp(N) is the partition function
for the one-cut model where all eigenvalues sit in the first critical point. The functions
F̂g(t1, t2) are defined by

Fg(t1, t2) = FG
g (t2) + F̂g(t1, t2), (2.12)

where FG
g (t) are the genus g free energies of the gauged Gaussian matrix model with

’t Hooft parameter t. F̂ (m)
g denotes the m-th derivative of Fg w.r.t. s, which is defined as

s =
1
2

(t1 − t2). (2.13)

All derivatives are evaluated at t1 = t and t2 = 0. G2(`+ 1) is the Barnes function

G2(`+ 1) =
`−1∏
n=0

n!. (2.14)

Finally,
A(t) = ∂sF0 and q̂ = exp

(
∂2
s F̂0

)
. (2.15)

At leading order in gs, we have

∑
k

∑
mi>0

∑
gi>1−mi

2

g
P
i(2gi+mi−2)

s

k!m1! . . . mk!
F̂ (m1)
g1 . . . F̂ (mk)

gk
(−`)

P
i li

= 1− gs
(
` ∂sF̂1(t) +

`3

6
∂3
s F̂0(t)

)
+O(g2

s).

(2.16)

The expansion around an interior point was studied in [10, 17, 18]. It is given by

ZCnp(N, gs) =Zp(N∗1 , N
∗
2 )
∑
k

∑
mi>0

∑
gi>1−mi

2

g
P
i(2gi+mi−2)

s

k!m1! . . .mk!
F (m1)
g1 . . . F (mk)

gk
Θ(

P
i li)

µ,ν (F ′0/gs, τ)

= Zp(N∗1 , N
∗
2 )
{

Θµ,ν + gs

(
Θ′µ,νF

′
1 +

1
6

Θ′′′µ,ν F
′′′
0

)
+O(g2

s)
}
. (2.17)

The derivatives of the free energies Fg are again w.r.t. s defined in (2.13). The theta
function Θµ,ν with characteristics (µ, ν) is defined by

Θµ,ν(u, τ) =
∑
n∈Z

e(n+µ−Nε)u eπi(n+µ−Nε)τ(n+µ−Nε) e2iπ(n+µ)ν (2.18)

and it is evaluated at

u =
F ′0(N∗i )
gs

, τ =
1

2πi
F ′′0 . (2.19)

In the above equation, we have denoted

ε =
N∗2
N
, ζ = e2iπν (2.20)

in order to make contact with the notations of [18]. In (2.17), the derivatives of the theta
function (2.18) are w.r.t. u, therefore each derivative introduces a factor of n+ µ−Nε in

– 7 –
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the sum (2.18). Notice that, as emphasized in [10], the expression (2.17) gives a large N
asymptotics which goes beyond the genus expansion. In particular, the leading terms in
the free energy are of the form,

F = g−2
s F0(N∗i ) + F1(N∗i ) + log Θµ,ν + · · · , (2.21)

and the theta function leads typically to an oscillatory large N asymptotics.
The above expressions, (2.11) and (2.17), are for the moment being merely formal. In

particular, it is not clear if they provide reasonable asymptotic expansions of the original,
non-perturbative partition function. There are again two different cases, applying to (2.11)
and (2.17):

1. The expression (2.11) gives an admissible asymptotic expansion if

Re
(A(t)
gs

)
> 0. (2.22)

In this case, the classical, small gs asymptotic expansion is given by the genus ex-
pansion of Zp(N). The terms with ` > 1 give exponentially suppressed corrections
to the asymptotics.

2. The expansion around a generic point N∗i in (2.17) is admissible if the filling fractions,
as determined from the spectral curve, are real, i.e.

εi =
N∗i
N
∈ R, (2.23)

and if

Re
(F ′0(N∗i )

gs

)
= 0. (2.24)

The conditions (2.23), (2.24) were first spelled out in detail in [13, 14]. As noticed
in [14], they can be written as

Im
{

1
t

∮
γ

dx
2πi

y(x)
}

= 0, (2.25)

where y(x) is the spectral curve of the matrix model, and γ is any cycle on it. In writing
these equations, we have followed the conventions of [32], so that

y2(x) = V ′(x)2 + · · · . (2.26)

A curve with the property (2.25) is called a Boutroux curve. The condition (2.24) makes
sure that the term involving u in the theta function (2.18) is oscillatory. This in turn
guarantees that the sum over n will be peaked around

n+ µ−Nε ≈ 0 (2.27)

so that the derivatives of the theta function involved in (2.17) are of order one, see [19] for a
related discussion. The condition that the curve is Boutroux gives a nice geometrization of
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the search for good asymptotic expansions in matrix model theory, and it has been recently
developed in much detail in [9].

The above conditions imply that, in order to have a well-defined large N asymptotics,
the backgroud can not be arbitrary. As we change the parameters of the theory, this
“dominant background” will change. In particular, it can change from a boundary point
to an interior point. We will see examples of this in the Chern-Simons model discussed in
this paper.

The search for a dominant background is however subtle, since as it is well-known,
the perturbative amplitudes Fg(ti) have a finite radius of convergence. The full space of
’t Hooft parameters has a nontrivial global structure. As we reach the boundary of the
convegence region, we have to perform a duality transformation to a different frame. In
particular, the condition (2.24) is attached to a particular frame and region, in which F0 is
well-defined. One could worry that the search for dominant backgrounds is not a well-posed
problem, globally. However, we will now argue that this is not the case for two reasons.
The first one is that the condition on the curve being Boutroux is invariant under duality
transformations. Second, as shown in [18], each term in the 1/N expansion of (2.17) is
invariant under duality transformations, up to a phase. This means, in particular, that∣∣∣eg−2

s F0+F1Θµ,ν

∣∣∣ (2.28)

is invariant and it is therefore a well-defined quantity in the global moduli space. Looking
for the maxima of this function on the subspace of Boutroux curves in moduli space is
therefore a well-posed global problem, i.e. independent of the duality frame. In each region
of moduli space in which F0, F1,Θµ,ν are not singular, the maxima at large N satisfy the
condition (2.24). Therefore, the problem of solving (2.23), (2.24) can be lifted globally in
a consistent way.

The structure of instanton corrections that we have reviewed here was originally derived
in the context of matrix models. However, it was proposed in [18, 34, 35] that, since it only
depends formally on the data of the spectral curve, these corrections should be present in
topological strings on local geometries, including toric geometries. In this sense, a suitable
example is provided by topological string theory on Ap fibrations on P1. These models
have a non-perturbative definition in terms of U(N) Chern-Simons gauge theory on a lens
space [3], and they can be explicitly reformulated as a multi-cut matrix integral. They
constitute a privileged arena for constructing the large N asymptotics presented above and
for studying the role of instanton corrections. In the next section we present what is known
about these models from the point of view of Chern-Simons theory, matrix models, and
topological string theory.

3 Large N duality for Chern-Simons theory

In this paper we will study Chern-Simons theory on the lens space L(p, 1). This model
has an open string description as an A-type topological string defined on a Calabi-Yau
threefold given by the cotangent bundle over the lens space T ∗L(p, 1). This is just a

– 9 –
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particular example of the more general realization, due to Witten [50], of Chern-Simons
theory on a three-manifold M as a type A topological string on T ∗M .

For M = S3, which corresponds to the lens space with p = 1, the Gopakumar and Vafa
large N duality [22] provides a description of U(N) Chern-Simons gauge theory in terms
of closed topological string theory on the resolved conifold O(−1) + O(−1) → P1. This
duality can be generalized [3] by performing a Zp quotient on both sides of the Gopakumar-
Vafa duality. This leads to a duality between Chern-Simons theory on S3/Zp ≡ L(p, 1)
and the closed topological A-model string on an Ap fibration over P1. This target space,
unlike the resolved conifold, has a non trivial Kähler moduli space and besides the large
radius phase it has non-geometric phases. In particular, the large N duality relates the
perturbative regime of the Cherns-Simons gauge theory — small ’t Hooft couplings — to
the orbifold regime of the string theory. This duality has been tested in [3] by comparing
the perturbative expansion of Chern-Simons theory around a fixed flat connection, to the
orbifold topological strings amplitudes computed by mirror symmetry. Further tests of the
duality have been done in [26, 27]. In the following we will review some of these results.
We will however go beyond the perturbative side of the duality and we will study the exact,
non-perturbative gauge theory partition function. As we will see, in the full theory, the
choice of filling fractions is not arbitrary, but it is dictated by the only parameters of the
theory, the Chern-Simons level k and the rank of the gauge group N .

3.1 Chern-Simons theory on lens spaces

The lens space L(p, 1) is a three-manifold that can be obtained by gluing two solid 2-tori
along their boundaries after performing the SL(2,Z) transformation,

Up =

(
1 0
p 1

)
. (3.1)

This description makes it possible to calculate the partition function of Chern-Simons
theory on these spaces [49]. SL(2,Z) transformations lift to operators acting on H(T2),
the Hilbert space obtained by canonical quantization of the Chern-Simons theory on the
two-torus. This space is the space of integrable representations of a Wess-Zumino-Witten
(WZW) model with gauge group G at level k, where G and k are respectively the Chern-
Simons gauge group and the quantized coupling constant. In particular the partition
function of the U(N) Chern-Simons theory on the lens space L(p, 1) is given by:

Z(L(p, 1)) = 〈0|Up|0〉, (3.2)

where Up is the lift of (3.1) to an operator on H(T2) and |0〉 is the vacuum state, corre-
sponding to the trivial representation. This partition function has the following explicit
form (up to an overall constant) [44, 45]:

Z=
(−1)|∆+|e−

2πi

k̂p
ρ2

(−ipk̂)N/2
∑

n∈ZN/pZN

∑
w∈W

ε(w) exp
{

iπ

k̂p
(ρ2−2ρ · (k̂n+w(ρ))+(k̂n+w(ρ))2)

}
. (3.3)
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In this expression, k̂ = k+y, where y denotes the dual Coxter number, |∆+| is the number
of positive roots of G, and ρ is the Weyl vector. Using Weyl’s formula∑

w∈W
ε(w)ew(ρ) =

∏
α>0

2 sinh
α

2
(3.4)

we can also write the partition function as:

Z =
i|∆+|

(−ipk̂)N/2
∑

n∈ZN/pZN
e
πik̂n2

p
− 2πi

p
ρ·n ∏

1≤i<j≤N
2 sin

(
π

k̂p
(k̂(ni − nj) + j − i)

)
. (3.5)

This expression for the partition function can be understood as a sum over saddle-points.
For U(N) Chern-Simons theory on L(p, 1) = S3/Zp, these are flat connections, which
can be obtained by considering embeddings of the first fundamental group into U(N),
modulo gauge transformations. Since π1 (L(p, 1)) = Zp these embeddings are given by
N -component vectors n, whose entries take values in Zp. However, since the residual Weyl
symmetry SN of the U(N) gauge group permutes the different components of n, the flat
connections are rather labeled by partitions Nj , where Nj is the number of entries in n

which is equal to j − 1. The Nj label the choice of vacuum

U(N)→ U(N1)× · · · ×U(Np). (3.6)

It is then possible [3] to rewrite the partition function as a sum of contributions of flat
connections:

Z =
∑
{Nj}

Z(Nj) (3.7)

where

Z(Nj)=
(−1)|∆+|

(−ipk̂)N/2
1∏
j Nj !

∑
w,w′∈W

ε(w) exp
{

iπ

k̂p
(ρ2−2ρ·(k̂w′(n)+w(ρ))+(k̂w′(n)+w(ρ))2)

}
.

(3.8)
In this expression, the vector n is any vector with Nj entries equal to j − 1. The sum over
Weyl permutations w′ ∈ W guarantees that the resulting object is gauge-invariant. As
shown in [31] it is possible to rewrite (3.8) as a matrix integral

Z(Nk) =
e−

2iπ

k̂p
ρ2−Sinst(Nj)/gs∏

j Nj !

∫ N∏
i=1

dxi
2π

e−
1

2gs

P
k(xk−2πink/p)

2 ∏
i<j

(
2 sinh

xi − xj
2

)2
, (3.9)

where
gs =

2πi

pk̂
(3.10)

and the pre-factor involves the gauge-theory action of each flat connection:

Sinst(Nj)
gs

=
2π2

p2gs

p∑
j=1

(j − 1)2Nj . (3.11)

– 11 –



J
H
E
P
0
7
(
2
0
1
0
)
0
7
4

It can be easily checked that, although the expression (3.9) involves a choice of vector n,
any two choices related by a Weyl permutation lead to the same matrix integral. The
expression (3.9) can be regarded as a p-cut matrix model, where Nk eigenvalues sit around
the point 2πi(k − 1)/p, i.e. it is a matrix model with fixed filling fractions. It has in
particular an asymptotic large N expansion of the form

FNk = logZNk =
∞∑
g=0

Fg(ti)g2g−2
s (3.12)

where
ti = gsNi (3.13)

are the partial ’t Hooft parameters. In the case p = 2, calculations around the Gaussian
point of the matrix model give the genus zero free energy

F0(t1, t2) = −π
2

2
t2 + log(−4)t1t2 + FG

0 (t1) + FG
0 (t2) + F p

0 (t1, t2). (3.14)

In this equation, the first term comes from the instanton action, the second term comes
from the overall measure of the matrix integral, and FG

0 (t) is the Gaussian matrix model
genus zero amplitude,

FG
0 (t) =

1
2
t2
(

log t− 3
4

)
. (3.15)

Finally, F p
0 (t1, t2) comes from fatgraphs of genus zero, and it is given by

F p
0 (t1, t2) =

1
288

(t41 + 6t31t2 + 18t21t
2
2 + 6t1t32 + t42) (3.16)

− 1
345600

(4t61 + 45t51t2 + 225t41t
2
2 + 1500t31t

3
2 + 225t21t

4
2 + 45t1t52 + 4t62) + · · ·

For the genus one term one has:

F1(t1, t2) = FG
1 (N1) + FG

1 (N2) + F p
1 (t1, t2) (3.17)

where
FG

1 (N) = ζ ′(−1) +
1
12

log(N) (3.18)

is the Gaussian matrix model contribution, and

F p
1 (t1, t2) = − 1

288
(t21 − 6t1t2 + t22) + · · · (3.19)

comes from fatgraphs of genus one. Higher genus free energies can be computed analogously.

3.2 The dual topological string

We will now restrict ourselves to p = 2. The large N dual model of Chern-Simons theory
on L(2, 1) is the topological string on the anti-canonical bundle of the Hirzebruch surface
F0. This geometry has two P1’s in H2(Y ) and a compact four cycle in H4(Y ). We denote
their associated classes by A1, A2 and B respectively. The class C = A2 − A1 does not
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have a dual cycle in H4(Y ) and thus it will correspond to a non-normalizable modulus of
the theory; one can then take A = A2 as the normalizable modulus.

The mirror geometry is encoded in a family of elliptic curves Σ, which can be written
as

y =
z1x

2 + x+ 1−√(1 + x+ z1x2)2 − 4z2x2

2
. (3.20)

The periods of the one form λ = log ydx/x are given by the solutions of the associated
Picard-Fuchs system:

L1 = z2(1− 4z2)ξ2
2 − 4z2

1ξ
2
1 − 8z1z2ξ1ξ2 − 6z1ξ1 + (1− 6z2)ξ2,

L2 = z1(1− 4z1)ξ2
1 − 4z2

2ξ
2
2 − 8z1z2ξ1ξ2 − 6z2ξ2 + (1− 6z1)ξ1,

(3.21)

where

ξi =
∂

∂zi
. (3.22)

At the large radius point z1 = z2 = 0, the Picard-Fuchs system has two single logarithmic
solutions, which give the mirror maps at large radius

T1 = − log z1 − 2z1 − 2z2 − 3z2
1 − 12z1z2 − 3z2

2 + · · · ,
T2 = − log z2 − 2z1 − 2z2 − 3z2

1 − 12z1z2 − 3z2
2 + · · · . (3.23)

As expected, the quantity

T1 − T2 = log
z2

z1
, (3.24)

corresponding to the class C, does not receive any instanton corrections. It only depends
on the “bare parameters” of the model z1, z2 and has to be regarded as a parameter. As
we will see in a moment, it has a very natural meaning in the dual Chern-Simons theory.

In the moduli space of this model there is another point, discovered in [3], which makes
contact with Chern-Simons perturbation theory. This point is called the orbifold point, and
it is defined as the point x1 = x2 = 0 in terms of the variables:

x1 = 1− z1

z2
, x2 =

1
√
z2

(
1− z1

z2

) . (3.25)

The periods near the orbifold point can be obtained again as solutions to the Picard-Fuchs
system. They have the structure,

σ1 = − log(1− x1) =
∑
m

cm,0x
m
1 ,

σ2 =
∑
m,n

cm,nx
m
1 x

n
2 ,

Fσ2 = σ2 log(x1) +
∑
m,n

dm,nx
m
1 x

n
2 ,

(3.26)
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where the coefficients cm,n and dm,n are determined by the following recursions relations [3]

cm,n =cm−1,n
(n+ 2− 2m)2

4(m− n)(m− 1)
,

cm,n =
1

n(n− 1)
(cm,n−2(n−m− 1)(n−m− 2)− cm−1,n−2(n−m− 1)2),

dm,n =
dm−1,n(n+ 2− 2m)2 + 4(n+ 1− 2m)cm,n + 4(2m− n− 2)cm−1,n

4(m− n)(m− 1)
,

dm,n =
1

n(n− 1)
(dm,n−2(n−m− 1)(n−m− 2)− dm−1,n−2(n−m− 1)2

+ (2n− 2− 2m)cm−1,n−2 + (2m+ 3− 2n)cm,n−2).

(3.27)

The orbifold point gives the large N solution of Chern-Simons theory on L(2, 1), around a
fixed, arbitray flat connection, in the sense that the perturbative topological string ampli-
tudes in this frame, Fg(σ1, σ2), correspond to the amplitudes in the 1/N expansion (3.12).
The dictionary relating the variables is

t1 =
1
4

(σ1 + σ2), t2 =
1
4

(σ1 − σ2). (3.28)

Notice that the parameter of the theory

log
z2

z1
= σ1 = 2(t1 + t2), (3.29)

is proportional to the total ’t Hooft parameter of Chern-Simons theory gsN . This is in
fact required by the large N duality: although t1,2, the partial ’t Hooft parameters, change
in a natural way under the action of the symplectic group, the total ’t Hooft parameter t
must be a symplectic invariant, since it is a parameter of the gauge theory. The derivative
of the genus zero free energy of Chern-Simons theory w.r.t. the variable s defined in (2.13)
is given by the following combination of the periods:

∂F0

∂s
=
π2

2
+

1
2

(Fσ2 − log(−4)σ2) . (3.30)

By integrating w.r.t. σ2 and expressing the result in terms of t1, t2 one recovers the genus
zero free energy of the matrix model expansion.

In the following it will be useful to express some quantities in terms of modular forms.
It turns out that [2, 25]

τ =
1

2πi
∂2F0

∂s2
(3.31)

is indeed a modular parameter for the curve (3.20), and in particular Im τ > 0. The
modulus

u = − 1
8
√

1− x1
x2

1x
2
2 +

1
2

(√
1− x1 +

1√
1− x1

)
, (3.32)

is closely related to the modulus of a Seiberg-Witten curve [46] with

τSW = 2τ + 1, (3.33)
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and it can be expressed in terms of elliptic theta functions:

u =
ϑ4

4 − ϑ4
2

ϑ4
3

(2τ) = 1− 32q + 256q2 + · · · (3.34)

where q = e2πiτ . Notice that the orbifold point in the moduli space of local F0 corresponds
to u = 1, i.e. to the monopole point of the Seiberg-Witten curve.

Finally one can check that the genus one free energy is given, in terms of modular
forms, by

F1 = − log η(τSW) + 2ζ ′(−1) +
1
6

log
gs
4
, (3.35)

In particular, we find

F p
1 (t1, t2) = − log η(τSW) +

1
12

log
(
t1t2
16

)
. (3.36)

The partition function of Chern-Simons theory on L(2, 1) can be written in terms of
a two-cut matrix model [3, 31]. The cuts are centered around x = 0, x = πi, and they are
precisely the cuts which appear in the mirror curve (3.20). If we write them as

(−a, a), (πi− b, πi + b), (3.37)

in terms of the endpoints a, b, it is easy to see that they are determined by the equations
(see also [27])

cosh a =
1

2
√
z1

+
√
z2

z1
= 1 + 2t1 + t1(t1 + t2) + · · · ,

cosh b = − 1
2
√
z1

+
√
z2

z1
= 1 + 2t2 + t2(t1 + t2) + · · · .

(3.38)

3.3 Two special slices

The above results simplify considerably along particular submanifolds in moduli space,
which will be relevant in the analysis of the phase structure in the next section.

The slice t2 = 0 corresponds, from the point of view of the gauge theory, to an expan-
sion around the trivial flat connection. Up to a trivial rescaling of the coupling constant
gs, the theory reduces to Chern-Simons theory on the three-sphere S3. From the point of
view of topological string theory, the theory is equivalent to the resolved conifold. The
genus zero and genus one free energies are given by,

F S3

0 (t) =
t3

12
− π2t

6
− Li3(e−t) + ζ(3),

F S3

1 (t) = − t

24
− 1

12
log(1− e−t) +

1
12

log t+ ζ ′(−1)− 1
12

logN.
(3.39)

The instanton action (2.15) on t1 = t, t2 = 0 can be evaluated in closed form (see the
appendix) and it is given by

A(t) = 2 Li2(e−t/2)− 2 Li2(−e−t/2). (3.40)
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The other relevant slice, for us, corresponds to the symmetric slice t1 = t2. In terms
of the orbifold coordinates, this slice is parametrized by

x2 = σ2 = 0, x1 = 1− e−σ1 . (3.41)

On this slice we have the following exact expressions for the prepotential and for the
modular parameter in terms of the flat coordinate σ1:

F0(σ1) = −1
8

Li3(e−σ1) +
σ3

1

96
+
πi
16
σ2

1 −
7π2

48
σ1 +

ζ(3)
8
, (3.42)

τ = i
K ′(k)
K(k)

− 1, k2 = 1− e−σ1 , (3.43)

where K(k) is the standard elliptic integral. The proof of the above identities is given
in the appendix.

4 Large N phase diagram

So far we have just recalled the perturbative large N duality between Chern-Simons theory
on L(2, 1) expanded around a particular flat connection (corresponding to a choice of filling
fractions N1, N2), and topological string theory on local F0 with Kähler parameters t1, t2.

However, as we explained in the introduction, when studying the large N expansion
of the non-perturbative partition function, the choice of filling fractions (dominant saddle)
is not arbitrary but it is dictated by the value of the total ’t Hooft coupling t. We will
now study the large N phase diagram for the Chern-Simons theory on L(2, 1), i.e. we
will determine the saddle which gives the dominant contribution to the non-perturbative
partition function as we move on the complex plane of t = gsN (equivalently, on the
complex plane of gs).

We first notice two exact symmetries of the non-perturbative partition function. If we
conjugate gs, we find

Z(N, g∗s) = (−1)c(N)Z∗(N, gs), (4.1)

where c(N) is a half-integer that only depends on N . This symmetry is valid for all p. The
second symmetry is related to changing gs → −gs. If we write

Z(N, gs) =
N∑

N2=0

Z(N,N2, gs) (4.2)

we have that

Z(N,N2,−gs) = (−1)c
′(N)e−

π2N2

2t (−1)(N−1)N2Z(N,N −N2, gs), (4.3)

where c′(N) is again a half-integer that only depends on N .
In determining the phase structure, we are interested in knowing which is the N2

which contributes the most to the non-perturbative partition function (in absolute value).
As we will see, for N large, the sum in (4.2) will be very peaked around a particular saddle
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value (N∗1 , N
∗
2 ). We see, from (4.1), that conjugating gs does not change this saddle, while

from (4.3) we see that the phase diagram is invariant under the simultaneous change

gs ↔ −gs, (N∗1 , N
∗
2 )↔ (N∗2 , N

∗
1 ). (4.4)

In practice, this means that in order to determine the phase diagram, we can restrict
ourselves to the first quadrant of the complex gs plane

0 ≤ Arg(gs) ≤ π

2
. (4.5)

In order to proceed, we first study the limiting cases of real, positive gs and purely imagi-
nary gs.

4.1 Real gs: the boundary expansion

The classical action of the flat connection (3.11) has the value

Sinst(N2) =
π2

2
N2. (4.6)

When gs is real and positive, it gives an exponential suppression for all the non-trivial flat
connections N2 > 0. Therefore, at least when the ’t Hooft coupling is sufficiently small,
the dominant saddle point is expected to be at the boundary (N∗1 , N

∗
2 ) = (N, 0). In fact,

it is easy to see that for any real, positive t, this boundary point is the dominant saddle.
To prove it, it suffices to show that the condition (2.22) holds on this slice, where A(t) is
the large N instanton action corresponding to the first non-trivial instanton sector with
N2 = 1. This action is given in (3.40), and it resums quantum fluctuations around the
classical instanton solution. At small t it should have the general structure [23]

exp
(
−A(t)

gs

)
∼
(
c2

gs

)c3N
e−c1/gs (4.7)

where the prefactor is the one-loop fluctuation around the classical instanton with action
c1 = π2/2, c3N is the number of zero modes at large N , and c2 is a numerical constant.
Therefore, the expansion of A(t) around t = 0 should be of the form

A(t) = c1 − c3t log
(c2

t

)
+O(t). (4.8)

Indeed, we find from the exact expression (3.40) that

A(t) =
π2

2
− t log

(
4
t

)
− t+O(t3). (4.9)

This large N instanton action is real for t ∈ [0,∞) and it decreases monotonically from

A(0) =
π2

2
to lim

t→∞
A(t) = 0. (4.10)

In particular it does not vanish for any finite t. This can be seen in figure 2, where the
continuous line represents A(t)/t as a function of t/π. As we explain in the appendix,
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Figure 1. In this figure we plot log |Z(N,N2, gs)| as a function of N2 = 0, · · · , N , for N = 12
and for gs = ±π/24 respectively on the left and on the right. The dominant configurations are
(N∗

1 , N
∗
2 ) = (N, 0) and (0, N), respectively, in agreement with the symmetry (4.3).

this is equivalent to the absence of phase transition for q-deformed 2d Yang-Mills with
p = 2 [5, 12, 28]. We conclude that, for real gs, the large N asymptotics of the partition
function of Chern-Simons theory on L(2, 1) is simply given by the 1/N expansion of Chern-
Simons theory on S3,

logZL(2,1)(N, gs) =
∞∑
g=0

g2g−2
s F S3

g (t). (4.11)

In other words, the relevant saddle geometry along this direction in moduli space is just
the resolved conifold geometry.

Of course, the result (4.11) has an infinite number of exponentially suppressed instan-
ton corrections of the form (2.11). From the point of view of classical asymptotic analysis,
these subleading saddles are not taken into account, but of course they are important
thanks, among other things, to the Stokes phenomenon that we will now uncover.

The above analysis can be confirmed numerically for small values of N . In general,
a simple way to estimate the leading saddle (N∗1 , N

∗
2 ) for finite N is to calculate the

partition functions Z(N,N2, gs) for fixed values of N2, and see which one is the largest
in absolute value, and therefore gives the dominant contribution in (4.2). In figure 1 we
plot log |Z(N,N2, gs)|, for gs real and positive. As expected, the dominant configuration
is (N∗1 , N

∗
2 ) = (N, 0) ((N∗1 , N

∗
2 ) = (0, N) for gs real and negative).

We can also confirm numerically the value of the instanton action (3.40). From (2.11)
we find the large N asymptotics

− 1
N

log
(
Z(N,N2 = 1, gs)
Z(N,N2 = 0, gs)

)
=
A(t)
t

+O
(

1
N

)
. (4.12)

In figure 2 we plot the values of the r.h.s. for N = 24 and different values of t = Ngs, and
we compare them to the value of A(t)/t given by (3.40). As we can see, the agreement
is excellent, and it can be further improved by extracting the subdominant tails in (4.12)
through the technique of Richardson transforms.
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Figure 2. In this figure, the crosses represent the right hand side of (4.12), for N = 24 and different
values of t, while the continuous line represents the value of A(t)/t obtained from (3.40).

4.2 Imaginary gs: the interior expansion

Let us analyze now the large N asymptotics along the direction Arg(gs) = π/2. The
boundary point (N, 0) can not be a solution any longer, since (2.22) is no longer verified (at
least for small t). This is easy to understand: for imaginary gs, (3.11) is purely imaginary
and the non-trivial instanton sectors are not suppressed anymore. We then have to look
for saddles satisfying the condition (2.24), which in this case reads:

Re
[

1
gs

(
∂F0

∂t1
− ∂F0

∂t2

)]
= 0. (4.13)

It is easy to see that the real part of F0(t1, t2) is symmetric under the exchange of t1 and
t2, therefore the configuration

t1 = t2 =
t

2
, (4.14)

which is an interior point, is a saddle. We claim that this gives in fact the dominant saddle
when gs is imaginary. Of course, there could be other saddles which actually dominate the
asymptotics. A first indication that this is not the case, and that (4.14) is the relevant
saddle, comes from the numerical analysis of Z(N,N2, gs) for small N . As we see in figure 3,
for N even the largest contribution comes from N2 = N/2, while for N odd the dominant
contributions have N2 = (N ± 1)/2.

According to the general discussion in section 2, since the saddle (4.14) is an interior
point, the large N asymptotics of the partition function should be given by (2.17). In our
case, we have

ε =
1
2
, µ = ν = 0,

u

gs
=

π2

2gs
= −πik̂

2
. (4.15)
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Figure 3. In this figure we plot log |Z(N,N2, gs)| as a function of N2 = 0, · · · , N , on the left for
N = 12 and gs = πi/48, on the right for N = 13 and gs = πi/52. The largest value is obtained
when N2 = N/2 for N even and when N = (N ± 1)/2 for N odd.

The resulting theta function depends on the value of N modulo two. If N is even, Nε is an
integer which can be reabsorbed in a shift of n ∈ Z, which is summed over. Therefore, (2.18)
is given by

ϑe =
∑
n∈Z

exp

(
πiτn2 + i

k̂π

2
n

)
. (4.16)

Notice that, since gs is imaginary, k is real, and the second term leads to an oscillatory
behavior. If N is odd, Nε is a half-integer. We can absorb its integer part by a shift of n
and we obtain for (2.18)

ϑo =
∑

n∈Z+ 1
2

exp

(
πiτn2 + i

k̂π

2
n

)
. (4.17)

We then claim that, when gs is imaginary, the asymptotic behavior of F (N, gs) =
logZ(N, gs), the free energy of Chern-Simons theory on L(2, 1), at large N and fixed ’t
Hooft coupling, is given by the logarithm of (2.17). At leading order we have

F (N, gs) = g2
sF0

(
t

2
,
t

2

)
+ F1

(
t

2
,
t

2

)
+ log Θ0,0(u, τ) + · · · (4.18)

where t = Ngs. Notice that

1. The perturbative free energies Fg(t/2, t/2) are the genus g free energies of topological
string theory on F0 on the slice t1 = t2 = t/2. For genus zero, it is given by the explicit
expression (3.42). The higher genus amplitudes are essentially quasi-modular forms
of the modular parameter τ [2, 25] which is given in (3.43) by an explicit function of

σ1 =
2πiN
k +N

, (4.19)

where we used the original Chern-Simons parameters. In particular, F1 is given
in (3.35).

2. The asymptotics depends on the parity of N through the theta function, which is
given by (4.16), (4.17) for N even and odd, respectively.
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In the quantum Chern-Simons gauge theory, k̂ = k+N is an integer, and gs is purely
imaginary. Therefore, the above asymptotics is in principle the relevant one to understand
the large N ’t Hooft limit of the quantum Chern-Simons invariant of L(2, 1).

Our claim about the asymptotics follows from the identification of (4.14) as the rele-
vant saddle point, and from the general theory reviewed in section 2 concerning instanton
corrections. We now provide detailed numerical evidence for our claim. Instead of working
with N and gs we will use N and z, which is defined by

z =
N

k̂
. (4.20)

Let us now define the sequences of complex numbers obtained from the non-perturbative
partition function with N = 2`, 2`+ 1 respectively:

fe(`, z) =
1

(2`)2
logZ(2`, z), fo(`, z) =

1
(2`+ 1)2

logZ(2`+ 1, z). (4.21)

According to our claim, these sequences have the large ` asymptotics

fe(`, z) = −F0(z)
(πz)2

+
1

(2`)2
(F1(z) + log ϑe(z)) +O(`−4),

fo(`, z) = −F0(z)
(πz)2

+
1

(2`+ 1)2
(F1(z) + log ϑo(z)) +O(`−4)

(4.22)

where F0,1(z) are the genus 0, 1 free energies evaluated on the slice (4.14). Notice that the
theta functions have in general oscillatory behavior as a function of `, but this can be fixed
by choosing special values of k̂. For example, if k̂ = 0 mod 4 we have:

ϑe(z) = ϑ3(τ), ϑo(z) = ±ϑ2(τ), (4.23)

where the sign depends on the value of k̂ mod 8. In this way, the resulting large ` asymp-
totics is simply a series in inverse powers of `, and we can use standard techniques of
accelerated convergence to compare the actual values of fe,o(`, z), computed from the ex-
act partition function of Chern-Simons theory for low `, to the predicted asymptotics.

In practice, the computation of (3.5) involves generating a large number of configura-
tions for the vectors n, and we obtained their numerical values for N = 1, · · · , 30 and for
different values of z. This means that we obtained the values of the sequences fe,o(`, z) up
to ` = 14. Once these sequences are computed, we obtain their Richardson transforms (see
for example [6])

f (r)
e,o (`, z) =

∑
k≥0

fe,o(`+ k, z)(`+ k)r(−1)k+r

k!(r − k)!
(4.24)

in order to accelerate the convergence. In figure 4 we plot the sequences Re fe,o(`, z) as well
as their Richardson transforms Re f (k)

e,o (`, z) for k = 1, 2, 3 for different values of z together
with their expected value −ReF0(z)/(πz)2. As we can see, the agreement is excellent.
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Figure 4. On the left column we plot the sequence Re fe(`, z) as well as its Richardson transforms
Re f (k)

e (`, z) for k = 1, 2, 3, and for ` = 2 · · · 14. On the right column we plot the sequence Re fo(`, z)
as well as its Richardson transforms Re f (k)

o (`, z) for k = 1, 2, 3 for ` = 2 · · · 14. The plots on the
top are for z = 1/4, and the plots of the bottom are for z = 1/8. The dashed lines in the plots
show the expected value −ReF0(z)/(πz)2.

2 4 6 8 10 12 14

0.080

0.085

0.090

0.095

0.100

0.105

2 4 6 8 10 12 14

-0.070

-0.065

-0.060

-0.055

-0.050

Figure 5. The sequence Re Θeo(z) for z = 1/4, 1/8, together with its Richardson transforms
Re Θ(k)

eo (z) for k = 1, 2, 3. The dashed lines in both plots show the expected value Re(log ϑe(z) −
log ϑo(z)).

In order to test the subleading behavior, we define the following sequences:

Θeo(`, z) = (2`)2(fe(`, z)− fo(`, z)),

fe,1(`, z) = (2`)2

(
fe(`, z) +

F0(z)
(πz)2

)
,

fo,1(`, z) = (2`+ 1)2

(
fo(`, z) +

F0(z)
(πz)2

)
,

(4.25)
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Figure 6. On the left column we plot the sequence Re fe,1(`, z) as well as its Richardson trans-
forms Re f (k)

e,1 (`, z) for k = 1, 2, 3, and for ` = 2 · · · 14. On the right column we plot the se-

quence Re fo,1(`, z) as well as its Richardson transforms Re f (k)
o,1 (`, z), again for k = 1, 2, 3 and for

` = 2 · · · 14. The plots on the top are for z = 1/4, and the plots of the bottom are for z = 1/8. The
dashed line shows the expected value Re (F1(z) + log ϑe,o(z)).

with the expected asymptotic behavior:

lim
`→∞

Θeo(`, z) = log ϑe(z)− log ϑo(z)

lim
`→∞

fe,1(`, z) = F1(z) + log ϑe(z),

lim
`→∞

fo,1(`, z) = F1(z) + log ϑo(z).

(4.26)

As we can see in figure 6, the agreement between the analytic prediction and the actual
asymptotic behavior is again extremely good. This confirms our identification of the saddle
point (4.14), as well as the formalism of [10, 17, 18] to incorporate instanton corrections
in the oscillatory case. Although these corrections are subleading in the case of the free
energy, they can appear at leading order when studying expectation values of operators
like Wilson loops, as noticed in [10] in the context of matrix models.

4.3 The phase diagram for complex gs

The qualitative features of the phase diagram for 0 < Arg(gs) < π/2 can be understood
by looking at the function (3.40). Let us denote

θ = Arg(gs) (4.27)

so that
t = |t|eiθ. (4.28)

If Re(A(t)/gs) > 0, when t, gs are now complex, the dominant saddle will be t1 = t, t2 = 0,
as for θ = 0. For π/2 > θ > 0, the function

fθ(|t|) = Re
(

e−iθA
(

eiθ|t|
))

(4.29)
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Figure 7. The phase diagram describing the large N limit of Chern-Simons theory on L(2, 1) for
0 ≤ θ ≤ π/2, where θ = Arg(gs). There are two phases distinguished by the equilibrium value of t2
and separated by the critical curve (4.30). In the region t2 = 0, the 1/N asympotics is given by a
genus expansion, and corrections due to neighbouring geometries are exponentially suppressed. In
the region where t2 6= 0, neighboring geometries correct the genus expansion with oscillatory terms.
Notice that, in this region, the equilibrium value of t2 changes as we change t. The line θ = π/2,
where t2 = t/2, can be regarded as an anti-Stokes line.

vanishes for a certain critical value

|t| = |t|c(θ), (4.30)

which can be easily determined numerically. The curve (4.30) separates two different
regions in the complex t plane, as shown in figure 7. In the region under this curve, where

0 ≤ |t| < |t|c(θ), (4.31)

the dominant saddle is t1 = t, t2 = 0. In the region above this curve, we expect the
dominant saddle to have t2 6= 0.

In order to verify this, as well as the location of the phase boundary, we have computed
numerically the average filling fraction at finite N〈

N2

N

〉
θ

=
1

|Z(N, gs)|
N∑

N2=0

N2

N
|Z(N,N2, gs)| (4.32)

for fixed θ, as a function of |t|. This gives a finite N approximation to the value of |t2/t|
at the dominant saddle. In figure 8 we plot the value of (4.32) and the real part of the
instanton action (4.29), for three different values of θ, and as a function of |t|/π. Within
the limits of the numerical approximation, we clearly see that N2/N starts developing an
expectation value precisely when we reach (4.30). As shown in figure 9, the limiting value
of |t2/t| as |t| increases seems to be 1/2.
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Figure 8. Plot of (4.32) (blue), calculated for N = 22, and the real part of the instanton ac-
tion (4.29) (red), as a function of |t|/π, for θ = 9π/20, 7π/20 and π/4, from left to right. The
function (4.29) decreases monotonically until it becomes zero at |t|c(θ). At this point, the aver-
age (4.32) gets triggered and it increases with |t|.

Figure 9. Plot of (4.32) as a function of |t|/π, for N = 22 and θ = 7π/20.

4.4 Stokes phenomenon and target geometries

We can now summarize the most important qualitative results of the analysis of the
phase diagram.

First of all, for each complex value of t, the large N asymptotics of the non-perturbative
free energy is dominated by a fixed filling fraction or background (t∗1, t

∗
2). Such a background

corresponds to a fixed target geometry, i.e. to a point in the Calabi-Yau moduli space.
However, the dominant background changes as we vary t.

The second important point is that the structure of the large N asymptotics depend on
the nature of the dominant saddle point. If the dominant saddle point is on the boundary,
i.e. one of the filling fractions vanishes, the 1/N asymptotics is given by a conventional
genus expansion. There are non-perturbative effects due to the contributions of neighbour-
ing geometries, as shown in (2.11), but they are exponentially suppressed. However, if the
dominant saddle point is an interior point, the asymptotics has an oscillatory behavior and
it involves theta functions, as detailed in (2.17). In particular, the large N asymptotics is no
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Z(N, gs) =

Z(N, gs) =

+ +

+ +

t

T1

T2

arg(gs) = π/2

arg(gs) = 0

+ · · ·

+ · · ·

Figure 10. The Stokes phenomenon for the large N duality of L(2, 1). When gs is real and posi-
tive, the saddle geometry giving the dominating contribution to the non-perturbative perturbative
function is simply the resolved conifold. The corrections, which are exponentially suppressed, can
be interpreted as background geometries in which t2 = `gs is quantized in units of gs. When gs is
purely imaginary, the saddle geometry is a local P1 × P1 with t1 = t2. Corrections to the genus
expansion contribute to the large N asymptotics. They can be regarded as a sum of infinite ge-
ometries where t2 = ngs is quantized, and their contribution adds up to a theta function. In terms
of the large radius Kähler parameters, these geometries have fixed T1 − T2 = t.

longer given by a genus expansion around a fixed geometry, and corrections due to neighbor-
ing geometries are crucial already at the next-to-leading order. We hope that our detailed
numerical analysis in the case θ = π/2 has convinced the reader that these effects are crucial
in order to obtain the correct large N asymptotics of the gauge theory partition function.

It is interesting to notice that the non-perturbative corrections are due to fluctuating
target geometries whose size is quantized in units of gs, see figure 10. In the case of the
boundary expansion, an `-instanton correction corresponds to a geometry with t2 = `gs,
` = 1, 2, · · · . In the interior case, the theta function is a discrete sum over an infinite
number of geometries with t2 = (n−N/2)gs, n ∈ Z. Notice that the saddle geometries for
arg(gs) = π/2 correspond to the region in moduli space where z1, z2 →∞ with z1/z2 fixed
and finite, therefore they are not in the large radius phase z1, z2 → 0.

Finally, we point out that the change of saddle geometry as we change the complex ’t
Hooft parameter can be regarded as a generalized Stokes phenomenon. In fact, in the limit
of vanishing ’t Hooft coupling, the asymptotics changes discontinuously as we change the
argument of the string coupling constant: we have a sudden jump from a dominant saddle
at t2 = 0 to a dominant saddle at t2/t = 1/2. The jump in the asymptotics has the same
origin as in the Stokes phenomenon: saddles which were subleading due to Re(A/gs) > 0
are no longer suppressed exponentially, and they lead to an oscillatory asymptotics in the
θ = π/2 direction. In fact, the line θ = π/2 plays the role of an anti-Stokes line. These
analogies can be made more precise by studying a model where the connection to the
standard Stokes phenomenon is manifest and can be followed in detail, namely the cubic
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matrix model. We will show in the next section that the phase diagram for this model is
very similar to the one we have just found, and we will able to confirm all the analogies
that we have stated.

It is important to notice that the connection to the standard Stokes phenomenon is
only strictly true when t → 0. For finite |t| the Stokes phenomenon is smoothed out, in
the sense that for fixed |t|, as we increase θ from θ = 0, the asymptotics changes smoothly
from a phase with t2 = 0 to a phase with t2 6= 0. The phase boundary (4.30) corresponds
then to a second-order phase transition with t2 as its order parameter.

4.5 Background independence

Our results on the phase structure of this model shed some light on the issue of background
independence in topological string theory. As it is well-known, the genus g free energies in
topological string theory, Fg(ti), are quasi-modular forms under the action of the symplectic
group [2]. This can be regarded as a consequence of the holomorphic anomaly of [8], and
it means in particular that the Fg(ti) are not well-defined functions on the moduli space.

In the models we are studying, thanks to the largeN duality, there is a quantity which is
well-defined non-perturbatively, namely the Chern-Simons theory partition function, which
depends on gs and the rank N of the gauge group. Notice that, as needed for consistency,
the total ’t Hooft parameter t is a symplectic invariant in the dual topological string. An
important question is how this non-perturbative quantity is related to the perturbative,
background dependent topological string free energies. In this paper we have provided a
detailed answer to this question in the particular example of L(2, 1) and its string dual.

First of all, at finite N the non-perturbative partition function (2.7) is a sum over all
possible backgrounds N1 + N2 = N . In the gauge theory description, these backgrounds
correspond to saddle points or flat connections. In the matrix model description, they
correspond to different filling fractions. In the language of statistical mechanics, we can say
that the background-independent, non-perturbative partition function has to be calculated
in a grand-canonical ensemble where N2 is a fluctuating variable. This is manifest in (2.7),
where the parameters ζi play the role of fugacities. On the other hand, the background-
dependent topological string partition function is computed in a canonical ensemble where
N2 is fixed.

In the thermodynamic limit (i.e. at large N), as it is well-known in statistical me-
chanics, the sum over backgrounds is strongly peaked around a particular one, and both
ensembles are equivalent. This particular background is the dominant saddle which we
have determined in various situations. It depends on the gauge theory parameters N and
gs, and it changes as we move on the complex t plane, displaying the rich phase structure
that we have analyzed. At finite N , however, the results of the two ensembles are different,
and they differ precisely in the terms which go beyond the genus expansion, i.e. in the
contributions of large N multi-instantons.

The resulting non-perturbative picture is very different from the picture that one ob-
tains in perturbative topological string theory: the background-dependent quantities are
emergent quantities and they only make sense in the large N limit, since they are defined
through an asymptotic expansion.
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5 Stokes phenomenon and matrix models

In order to have a better understanding of the nature of the line Arg(gs) = π/2 in the
phase diagram of Chern-Simons theory, we will make a detailed analysis of the Stokes
phenomenon in a simple matrix model. We will focus on the quintessential example of
Stokes phenomenon, namely the Airy function, and we will study its fate as we promote
the Airy integral to a matrix integral. Of course, the study of matrix models in the double-
scaling limit produces differential equations which display the so-called non-linear Stokes
phenomenon [21, 39]. Here we are rather interested in recovering the standard, linear
Stokes phenomenon in the context of matrix integrals.

5.1 Review of the Stokes phenomenon for the Airy function

Let us consider the potential

V (x) = −eiκx+
x3

3
(5.1)

where κ ∈ [0, 2π]. The one-dimensional integral

Z1(gs) =
∫
C

dx
2π

e−
1
gs
V (x) (5.2)

where C is the path shown in figure 11, and gs is real and positive, is essentially the Airy
function Ai(w), where

w = g−2/3
s eiκ. (5.3)

The small gs asymptotics of this integral is given by the large w asymptotics of the Airy
function. The standard analysis of this asymptotics is as follows (see [38] for a very nice
discussion). There are two saddle points

xL,R = ∓ζ1/2 (5.4)

where we have introduced the variable

ζ = eiκ. (5.5)

These saddles have actions
− 1
gs
V (xL,R) = ∓ 2

3gs
ζ3/2. (5.6)

For
− 2π

3
< κ <

2π
3

(5.7)

the path C can be deformed into a path of steepest descent through the saddle point at xL.
When κ = 2π/3, the steepest descent path coming from the saddle at xL runs right into
the other saddle point. At this angle we have

Im(V (xL)) = Im(V (xR)) (5.8)
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and the corresponding direction is called a Stokes line. This is the place where the second
saddle xR might start contributing to the integral. In fact, for

2π
3
< |κ| < π (5.9)

the contour C gets deformed into a steepest descent path passing through xL together with
a steepest descent path passing through xR. However, in this range the latter gives an
exponentially suppressed contribution, and the classical asymptotics is just given by the
contribution from xL. This leads to

Z1 ∼ e−2w3/2/3 (5.10)

where w is the variable introduced in (5.3). When κ = π the asymptotics is different, since
both saddles have the same real part

Re(V (xL)) = Re(V (xR)). (5.11)

A line where this occurs is called an anti-Stokes line. Along this line both saddles contribute
to the asymptotics, and we have

Z1 ∼ cos
(

2
3
|w|3/2 − π

4

)
. (5.12)

The fact that different asymptotic formulae hold on different directions for the same an-
alytic function is called the Stokes phenomenon. From the point of saddle-point analy-
sis, what is happening is that the saddle point which appeared on the Stokes lines, at
κ = ±2π/3, is no longer subdominant at κ = π, and it has to be included in the asymp-
totics. The saddle-point analysis is summarized in figure 12. We should mention that
it is important sometimes to take into account the subleading exponentials, even in the
region κ 6= π. This is very clearly shown in the analysis of Berry in [7], and it has led
to the development of non-classical asymptotic theories. The most sophisticated of these,
resurgent analysis, is applied to the Airy function in for example [15].

5.2 The Stokes phenomenon and the cubic matrix model

Let us now promote (5.2) to a full matrix integral,

ZCnp(N, gs, κ) =
∫
C

N∏
i=1

dxi
2π

∆2(x) e−
1
gs

PN
i=1 V (xi), (5.13)

where all the eigenvalues are integrated along the contour C. We can now study its small gs
asymptotics for t = gsN fixed. Of course, this is nothing but the ’t Hooft expansion of this
matrix model. The general saddle point is a two-cut configuration, labelled by (N1, N2),
where N1, N2 are the number of eigenvalues near the critical points xL,R, respectively.
Before starting the analysis, let us notice that for small t the saddle point structure should
be the same as for the Airy function. The reason is that, for small t, the Vandermonde
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Figure 11. The integration contour C for (5.2), which leads to a convergent integral.

0

π

3
2π

3

−π

3

Stokes
St

ok
es

−2π

3

two saddles
contribute

Figure 12. Saddle-point analysis of the asymptotics of the function (5.2), closely related to the
Airy function Ai(ζ). Full lines (in red) are Stokes lines, while dashed lines (in blue) are anti-Stokes
lines. On the Stokes lines κ = ±2π/3, a second saddle appears in the integration contour. This
saddle is subdominant when 2π/3 ≤ |κ| < π and does not contribute to classical asymptotics.
However, at κ = π, the saddle is not subdominant anymore and leads to an oscillatory asymptotics.

repulsion among eigenvalues is suppressed w.r.t. the potential, and the model becomes just
N copies of the one-dimensional integral.

Therefore, at least for small t, we expect the following phase structure. For |κ| < 2π/3,
the dominant saddle is a one-cut configuration where all the eigenvalues sit near xL = −ζ1/2.
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This is the boundary saddle point (N, 0). It is a one-cut configuration which can be
analyzed with standard techniques. The endpoints of the cut (a, b) are determined by the
equations

x0(x2
0 − ζ) = t, δ2 = 2(ζ − x2

0) (5.14)

where
a = −x0 + δ, b = −x0 − δ (5.15)

and we choose the root x0 = ζ1/2 + · · · . The spectral curve is

y(x) = (x− x0)
√
x2 + 2xx0 + 3x2

0 − 2ζ (5.16)

and the effective potential reads

Veff(x) =
1
3

(x(x− x0)− 2ζ)
√
x2 + 2xx0 + 3x2

0 − 2ζ

− 2x0

(
x2

0 − ζ
)

log
(
x0 + x+

√
x2 + 2xx0 + 3x2

0 − 2ζ
)
.

(5.17)

For 2π/3 ≤ |κ| < π, the second saddle should start contributing, but at least at small
t it should be exponentially suppressed. In other words, the saddle configuration for the
matrix integral in this region should still be the boundary saddle (N, 0), but there will be
corrections of the form (2.11). The instanton action is given by

A = Veff(x0)− Veff(b) . (5.18)

The small t expansion of this action is

A = −4
3
ζ3/2 − t+ t log t− 3t log(2ζ1/2)− 7

8ζ3/2
t2 +

41
64ζ3

t3 + · · · (5.19)

Notice that, as t→ 0, we find
x0 → xR, (5.20)

which is the other saddle, and

A→ −4
3
ζ3/2 (5.21)

which is the difference between the actions of the two saddles (5.6). This is in agreement
with the expectation that for small t the saddle-point structure of the matrix model is just
the one coming from the Airy function. The real part of the instanton action vanishes at
a critical value of tc(κ), which depends on the value of κ. For example, for κ = 2π/3, we
have

tc =
2

3
√

3
. (5.22)

This is precisely the critical point leading to pure 2d gravity. For t > tc(κ), a phase
transition occurs to a new phase, in which we expect generically N∗2 6= 0.

When κ = π, i.e. on the anti-Stokes line, we expect that the standard Stokes phe-
nomenon controls the behaviour of the matrix integral for small t. Indeed, this is the case.
The real part of the action A(t) vanishes at t = 0, and it is actually negative for small t.
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We then have to look for a new saddle point by analyzing the behavior of F ′0. The genus
zero free energy of the cubic matrix model has been analyzed in many places [11, 30]. It
has the structure

F0(t1, t2) = F np
0 (t1, t2) + F p

0 (t1, t2), (5.23)

where

F np
0 (t1, t2) =

1
2
t21

(
ln t1 − 3

2

)
+

1
2
t22

(
ln t2 − 3

2

)
− 1

2
(t21 + t22) log(2ζ1/2), (5.24)

and

F p
0 (t1, t2) = −2

3
ζ3/2(t1 − t2) + 2t1t2 log(2ζ1/2) +

1
8ζ3/2

(
− 2

3
t31 − 5t22t1 + 5t2t21 +

2
3
t32

)
+

1
64ζ3

(
8
3
t41 −

91
3
t31t2 + 59t21t

2
2 −

91
3
t1t

3
2 +

8
3
t42

)
+ · · · (5.25)

On the anti-Stokes line arg(κ) = π, ζ1/2 is purely imaginary, and it is easy to see from the
structure of the genus zero free energy that its real part is symmetric in t1, t2. Therefore,

t1 = t2 (5.26)

solves the saddle-point equation

Re
∂F0

∂s
= 0 (5.27)

at least for small t (more precisely, (5.26) provides a solution in the domain of analiticity
of the convergent expansion (5.25)). Therefore, on the anti-Stokes line and for t small
enough, the partition function of the cubic matrix model (5.13) is given by an expansion
of the form (2.17). This type of expansion is then the natural generalization to matrix
models of the oscillatory behavior along an anti-Stokes line.

The phase diagram of the cubic matrix model, again at small t, is represented in
figure 13. We see that it is very similar to the phase diagram of the large N Chern-Simons
theory on a lens space that we analyzed in the previous section. This confirms that the line
θ = π/2, where the vacuum occurs at t1 = t2 = t/2, plays the role of an anti-Stokes line.
Strictly speaking, however, the discontinuous jump in the asymptotics typical of the Stokes
phenomenon occurs only at t = 0. For t 6= 0, as we change the angle we encounter the
region where t2 goes from a zero value to a nonzero value in a smooth way. We conclude
that turning on the ’t Hooft parameter smooths out the Stokes discontinuity, and we pass
from a first-order phase transition at t = 0 to a second-order phase transition for t > 0,
where t2 plays the role of an order parameter.

As t increases along the different directions, further phase transitions can occur which
we have not explored. For example, along the κ = π direction, it follows from the results
of [9] that there is a transition at t > 0 in which the two cuts merge into a trivalent
graph. Interestingly, such transitions along the anti-Stokes line are absent in the lens space
partition function.
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Figure 13. The phase diagram of the cubic matrix model (5.13) as a function of 2π/3 ≤ κ ≤ π and
t = gsN (which is taken to be real), for small t. The Stokes and anti-Stokes lines of the N = 1 case,
which occur for κ = 2π/3 and κ = π, respectively, determine to a large extent the phase diagram
for small t. On the anti-Stokes line, the saddle value of t2 is t/2, and the classical 1/N asymptotics
requires corrections beyond the genus expansion.

6 Conclusions

In this paper we have analyzed non-perturbative aspects of the large N expansion in a
theory with a rich structure of instanton sectors and with a large N dual. There are vari-
ous important conclusions that emerge from our analysis. First of all, we have seen that,
for each choice of gauge theory parameters gs, N , the large N asymptotics is dominated
by a single instanton sector. This sector corresponds to a fixed geometry in the moduli
space of the dual Calabi-Yau geometry, which can be characterized by the Boutroux condi-
tion (2.25). Second, there are large N phase transitions as we move in the complex t plane,
and different instanton sectors dominate the asymptotics for different values of t. These
transitions can be regarded as deformations of the standard Stokes phenomenon. Third,
the correct large N asymptotics goes beyond the genus expansion, and subleading saddles
must be incorporated.

We conclude with a list of issues left open by our work:

1. The genus g topological string free energies appear in the large N asymptotics of
the “canonical” partition function Z(N,N2, gs) with N2 fixed. They are known to
transform as quasi-modular forms when moving from one patch of the moduli space
to another [2]. At the level of the gauge theory, these transformations should cor-
respond to phase transitions within the same instanton sector, which we have not
studied in detail in this paper, since we have focused on phase transitions among
different instanton sectors. On the other hand, the matrix integral (3.8) gives a non-
perturbative definition of this “canonical” partition function which is valid for any

– 33 –



J
H
E
P
0
7
(
2
0
1
0
)
0
7
4

Nk and any complex gs. It would be important to understand the precise connection
between the modular properties of the topological string amplitudes and the large
N asympotics of the quantity (3.8), which is background independent and clearly
well-defined in all the moduli space. The results obtained in this paper seem to indi-
cate that modularity can be understood in terms of phase transitions or generalized
Stokes phenomena, and that background dependence in these models is ultimately
an artifact of the asymptotic large N expansion.

2. Non-perturbative effects of the form e−A/gs in gauge theories and matrix models
have been identified in terms of D-branes in their string duals. In particular, the
source of these effects has been shown to be Liouville branes in minimal strings, and
more recently toric branes in topological strings [33, 35, 43]. It seems clear that
the subleading saddles appearing in the oscillatory asymptotics (2.17) can be also
interpreted in terms of D-branes, and in the example of local F0 these are also toric
D-branes in this geometry. It would be very interesting to make more precise the
D-brane interpretation of the non-perturbative corrections appearing in (2.17).

3. Even though in this paper we focused on a simple toy model of gauge/string duality,
we believe that some of the effects we studied in this work are likely to play a role in
other large N dualities. The underlying reason for the phenomena explored in this
paper is the existence of nontrivial instanton sectors which compete among them at
large N . In some cases we have a single sector dominating the large N asymptotics,
but in other cases, along generalized anti-Stokes lines, the standard large N asymp-
totics needs to be corrected, as first pointed out in [10]. This scenario seems to be
quite general and it is likely to appear in other models, in particular in AdS/CFT
dualities. For example, the recent work [29] indicates that matrix integrals closely
related to (3.9) are relevant in the study of large N dualities for ABJM theories.
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A Some aspects of topological string theory on the local P1×P1 geometry

In this appendix we give some further information on topological string theory on the local
P1 × P1 geometry, and in particular we justify some of the statements made in the bulk
of the text.
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The Yukawa couplings of this Calabi-Yau, when written in terms of the “bare” coor-
dinates z1, z2 appearing in (3.20), are [3, 25]

C111 =
(1− 4z2)2 − 16z1(1 + z1)

4z3
1∆

,

C112 =
16z2

1 − (1− 4z2)2

4z2
1z2∆

,

C122 =
16z2

2 − (1− 4z1)2

4z1z2
2∆

,

C222 =
(1− 4z1)2 − 16z2(1 + z2)

4z3
2∆

,

(A.1)

where
∆ = 1− 8(z1 + z2) + 16(z1 − z2)2. (A.2)

Using the Yukawa couplings (A.1), it is possible to find a closed form for the prepo-
tential when x2 = 0. The triple derivative w.r.t x1 is given by

Cx1x1x1

∣∣∣
x2=0

=
(
C111J

3
1 + 3C112J

2
1J2 + 3C122J1J

2
2 + C222J

3
2

)
x2=0

=
2− x1

4x1(x1 − 1)3
, (A.3)

where

J1 =
∂z1

∂x1
=
x1 − 2
x3

1x
2
2

, J2 =
∂z2

∂x1
= − 2

x3
1x

2
2

. (A.4)

Since
∂x1σ1 =

1
1− x1

, (A.5)

we obtain a closed form for the triple derivative w.r.t. the flat coordinate σ1:

Cσ1σ1σ1

∣∣∣
x2=0

=
1 + e−σ1

4(1− e−σ1)
, (A.6)

which can be integrated to give:

F0(σ1, 0) = −1
2

Li3(e−σ1) + · · · (A.7)

The dots indicate a degree three polynomial. This polynomial can be fixed by comparing
to the perturbative results, and one finally obtains (3.42).

It is also possible to derive closed expressions for ∂σ2Fσ2 on the slice x2 = 0. To do
this, one first writes the Picard-Fuchs system (3.21) in terms of the coordinates x1,2,

L1 =
1
4
(
8− 8x1 + x2

1

)
x2∂x2 +

1
4
(−4 + (−2 + x1) 2x2

2

)
∂2
x2

+ (−1 + x1)x2
1∂x1 − x1

(
2− 3x1 + x2

1

)
x2∂x1∂x2 + (−1 + x1) 2x2

1∂
2
x1
,

L2 = (2− x1)x2∂x2 +
(−1 + (1− x1)x2

2

)
∂2
x2
− x2

1∂x1

+ 2 (−1 + x1)x1x2∂x1∂x2 + (1− x1)x2
1∂

2
x1
,

(A.8)
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and looks for a solution L1,2f = 0 in the form

f(x1, x2) = x2G(x1) +O(x3
2). (A.9)

The PF system leads to the following equation for G(x):

1
4

(x− 4)G(x) + xG′(x)− (1− x)x2G′′(x) = 0, (A.10)

whose general solution is a linear combination of xK(x) and xK(1− x). By comparing to
the first terms in (3.26) and using (3.30), one immediately obtains

∂σ2

∂x2

∣∣∣∣
x2=0

=
2
π
x1K(x1),

∂

∂x2

(
∂F0

∂s

)
x2=0

= −x1K(1− x1), (A.11)

therefore

∂2F0

∂s2

∣∣∣∣
x2=0

= 4

(
∂σ2

∂x2

∣∣∣∣
x2=0

)−1
∂

∂x2

(
∂F0

∂s

)
x2=0

= −2π
K(1− x1)
K(x1)

, (A.12)

and (3.43) follows. Equivalently, one can derive (A.11), (A.12) by solving the recur-
sion (3.27) for cm,1 and dm,1,

cm,1 =
Γ(m− 1/2)2

πΓ(m)2
, m ≥ 1,

dm,1 = −2(ψm − ψm−1/2)cm,1,
(A.13)

and using the series expansions

K(x) =
π

2

∞∑
k=0

(
1
2

)2

k

xk

(k!)2
,

K(1− x) = − 1
π

log(x)K(x) +
∞∑
k=0

(
1
2

)2

k

xk

(k!)2
(ψn+1 − ψn+1/2).

(A.14)

Finally, we calculate the instanton action (3.40) in the slice t2 = 0. This can be in
principle derived from the above geometry, but in fact we can use a computation already
done in [5]. As in [35, 36], the one-instanton free energy is given by the ratio of the one
instanton partition function Z

(1)
N ≡ Z(N,N2 = 1, gs) and the zero instanton partition

function Z
(0)
N ≡ Z(N,N2 = 0, gs),

F (1) =
Z

(1)
N

Z
(0)
N

∼ e−A(t)/gs , (A.15)

We can evaluate Z(1)
N by taking (N1, N2) = (N−1, 1) in the matrix integral (3.9), as in [35],

and we find

Z
(1)
N = e−

π2

2gs
−gs(ρ2N−ρ

2
N−1)

Z
(0)
N−1

∫
ds
2π

e−
1

2gs
s2

〈
N∏
j=2

(
2 sinh

s+ πi− xj
2

)2
〉
N−1

, (A.16)
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where ρN is the Weyl vector in the U(N) theory, and the vev is calculated in the matrix
model defined by Z

(0)
N . At small gs, the integral over s can be calculated at the saddle

s = 0, and the v.e.v. can be calculated in the planar limit. Taking into account that

e−gs(ρ
2
N−ρ

2
N−1)Z

(0)
N−1

Z
(0)
N

∼ exp
{
− 1
gs
∂t

(
F S3

0 (t)− t3

12

)}
(A.17)

we find,

A(t) =
π2

2
+ ∂t

(
F S3

0 (t)− t3

12

)
− t
∫

du ρ(u) log
(

4 cosh2 u

2

)
, (A.18)

where

ρ(u) =
1
πt

tan−1


√

et − cosh2
(
u
2

)
cosh

(
u
2

)
 (A.19)

is the density of eigenvalues of the S3 Chern-Simons matrix model.
Fortunately we do not have to evaluate the integral in (A.18), since the result is already

available in the literature. A closely related integral has been studied in [5, 12, 28] in the
context of the q-deformed two-dimensional Yang-Mills theory on the two-sphere, and it
calculates the large N instanton action γ(A, p). Its explicit expression can be found in
equation (4.22) of [5]. In particular, for p = 2 and A = −4t, (A.18) equals γ(A, p)/4, and
using the result of [5] one finds

A(t) =
π2

3
− 2Li2(1− e−t/2) + 2Li2(e−t/2) + t log(1− e−t/2)− Li2(e−t)

= 2
(

Li2(e−t/2)− Li2(−e−t/2)
)
.

(A.20)

For p = 2, the q-deformed Yang-Mills theory does not undergo a large N phase transition,
as shown in [5, 12, 28]. In our context this means that there are no large N phase transitions
when t is real.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution Noncommercial License which permits any noncommercial use, distribution,
and reproduction in any medium, provided the original author(s) and source are credited.
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