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ON THE UNIPOTENCE OF AUTOEQUIVALENCES OF TORIC

COMPLETE INTERSECTION CALABI-YAU CATEGORIES

MANFRED HERBST AND JOHANNES WALCHER

Abstract. We identify a class of autoequivalences of triangulated categories
of singularities associated with Calabi-Yau complete intersections in toric va-
rieties. Elements of this class satisfy relations that are directly linked to the
toric data.

0. Introduction

LetX be a smooth projective variety over C, andD1, . . . , Dk with k ≤ dim(X)+1
effective divisor classes satisfying

(1) D1 ∩D2 ∩ · · · ∩Dk = 0.

For each i = 1, . . . , k, we consider the autoequivalence of the bounded derived
category of coherent sheaves,Db(X), given by tensoring with the line bundle O(Di),
i.e. for A ∈ Db(X),

Mi(A) = A⊗O(Di).

Choosing for each i a generic section si of O(Di), we let N (si) be the endofunctor
of Db(X) sending A to

N (si)(A) = Cone(si : A→ Mi(A)).

Since as a consequence of eq. (1), the complete intersection of (s1, . . . , sk) is empty,
the associated Koszul complex K(s1, . . . , sk) is exact. Therefore,

(2) N (s1) ◦ N (s2) ◦ · · · ◦ N (sk)(A) ∼= 0

for any object A in Db(X). When pushed to K-theory, and denoting the image of
Mi by Mi : K(Db(X)) → K(Db(X)), we obtain the relation

k
∏

i=1

(Mi − id) = 0.

In this paper we obtain generalizations of these formulas in a situation coming from
toric geometry and of interest in mirror symmetry. We now summarize the ideas
involved.

Let PΣ̂ be a toric Calabi–Yau variety with fan Σ̂. Toric varieties birationally

equivalent to PΣ̂ may be constructed by suitable modifcations of Σ̂. We here think

of modifications Φ̂ obtained by crossing a face in the secondary fan, giving rise
to blowdowns, blowups, or flops. Following physics terminology, we shall refer to
the various Φ̂ as different phases of the secondary fan. For each such modification
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of Σ̂, we have an equivalence of triangulated categories Db(PΣ̂) ∼= Db(PΦ̂). The
corresponding functors have been described explicitly by van den Bergh [1] and
Kawamata [2]. Clearly then, autoequivalences of Db(PΦ̂) induce autoequivalences

of Db(PΣ̂), and vice-versa. However, certain elements of Aut(Db(PΣ̂)) and relations
among them are easier to see in one description than in the other, which is going
to be the main theme of our paper.

The primary interest, however, is in studying compact Calabi–Yau manifolds X
that are complete intersection in PΣ when the latter is a smooth, toric Fano. (This
is not the most general case to which our methods apply, but one of much interest.)
So let P1, P2, . . . , Pℓ be ℓ anti-effective divisor classes of PΣ, with

∑

a Pa = KP
Σ̂
.

Choose generic sections Ga of OP
Σ̂
(−Pa) for a = 1, 2, . . . , ℓ, and consider

X := {G1 = 0, G2 = 0, . . . , Gℓ = 0} ⊂ PΣ.

We recall some preliminaries about the derived category Db(X) in section 1. In
section 2, we give a description of Db(X) in terms of a singularity category that
will be useful for later purposes. We replace PΣ with a larger combinatorial object

PΣ̂ that may be thought of as the total space of the bundle
⊕l

a=1 O(Pa) → PΣ,
with fibers equipped with an additional grading called R-grading, a terminology
from physics. Let pa be the fibre coordinate on O(Pa). Then the function, a.k.a
superpotential or Landau–Ginzburg potential,

W =

l
∑

a=1

paGa,

is the homological device that reduces Db(PΣ̂) to Db(X): The singularity category
of W (namely, the triangulated category of the singularity W : PΣ̂ → C, in the

sense of [3, 4]) is equivalent to Db(X) (see Theorem 2).

Then, for each modification Φ̂ of Σ̂ in the above sense, one may construct a
triangulated category, CΦ̂, as a quotient of singularity categories (Definition 4),

CΦ̂ =
Dsg(grŜ)

Dsg(torΦ̂Ŝ)
.

This is done in section 3: The categoryDsg(grŜ) depends on W , but is independent

of Φ̂, whereas the subcategory Dsg(torΦ̂Ŝ) of torsion modules depends additionally

on Φ̂. In fact, however, all CΦ̂ are equivalent as triangulated categories to the fixed

category CΣ̂
∼= Db(X) (Theorem 3).

Working now in a fixed phase Φ̂, we associate in section 4 to any toric divisor
class D ∈ Pic(PΣ̂) an automorphism MD

Φ̂
of CΦ̂ that can be thought of as tensoring

with a line bundle. We emphasize that the equivalences amongst the CΦ̂ will not

identify the MD

Φ̂
with each other as Φ̂ varies. (For a familiar example, see comments

below.)
To describe the relations analogous to (2) among the MD

Φ̂
, we recall that the

toric divisors D1, . . . , Dn of PΣ are in one-to-one correspondence with the set of
one-dimensional cones Σ(1) = (v1, . . . , vn) of Σ. We denote the canonical sections
of O(Di) by xi, i = 1, . . . n. For PΣ̂, this list is extended by (the pullbacks of)
the divisors Pa =: Dn+a, for a = 1, . . . , ℓ, with canonical section pa =: xn+a. This

extended list is in one-to-one correspondence with the set Σ̂(1) of one-dimensional
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cones (v̂i)1≤i≤n+ℓ of Σ̂, and contains Φ̂(1) for any Φ̂. We denote the R-grading of
xi by ri.

ri =

{

0 , 1 ≤ i ≤ n ,

2 , n+ 1 ≤ i ≤ n+ ℓ .

Our main result will follow straightforwardly from these definitions in section 4.

Theorem 1. For each toric divisor Di, with canonical section xi of O(Di), define
an endofunctor NΦ̂ of CΦ̂ by

NΦ̂(xi)(–) = Cone(xi : – → – ⊗O(Di)[ri]).

Then for each subset I ⊂ {1, . . . , n + ℓ} such that the corresponding set of edges

(v̂i)i∈I is not contained in any cone of Φ̂, we have the relation

©i∈INΦ̂(xi) ∼= 0.

A simple consequence is the following

Corollary 1. Let MD

Φ̂
be the automorphism induced by MD

Φ̂
on the K-theory

K(CΦ̂). Then for each I as above,
∏

i∈I

(

MDi

Φ̂
− id

)

= 0

Our original motivation for this work was to understand the generalization of
an old observation of Kontsevich. We let Y be the family of Calabi–Yau manifolds
that is mirror to X according to Batyrev’s construction. Let B be the base of the
family after removing the singular fibers (and possibly more). Monodromies around
loops in B induce symplectic transformations (generalized Dehn twists) that can be
lifted to autoequivalences of the symplectic category (the Fukaya category Fuk(Y ),
where Y is a generic fiber of Y). Via the homological mirror symmetry (HMS)
conjecture, Fuk(Y ) ∼= Db(X), one is led to expect the existence of a monodromy
representation

ρ : π1(B) → Aut(Db(X))

that has attracted some attention over the years.
When X is the quintic threefold, and Y its mirror family, we may model B as

P1\{0, 1,∞}. Note that the point at ∞ does not correspond to a singular threefold,
but to one with an additional automorphism of order 5. Somewhat surprisingly,
this symmetry is only realized projectively at the categorical level. Indeed, if γ∞
is a path around ∞, the categorical monodromy M∞ = ρ(γ∞) ∈ Aut(Db(X))
(modulo HMS conjecture) satisfies the relation

(3) (M∞)5 ∼= (–)[2]

To fully appreciate this remarkable relation, we rewrite this in more familiar terms
using γ−1

∞ = γ0 ◦ γ1. According to HMS for the quintic threefold, the monodromy
γ0 around 0 ∈ P1 corresponds to the autoequivalence M0 of tensoring with the
line bundle OX(1), whilst monodromy γ1 (around the conifold) is realized as twist
TOX

by the structure sheaf [5]. These transformations of Db(X) can be checked to
satisfy [6, Chapter 7.1.4]

(

M0 ◦ TOX

)5 ∼= (–)[2],

which is the way in which (3) is often quoted. (Some hypersurfaces in weighted
projective space are treated in [7].)
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Our results give a uniform treatment of such relations for the general class of
Calabi–Yau complete intersections in toric varieties. We elaborate on this point of
view, together with some other applications, in section 5.

Acknowledgements. We thank David Favero, Robert Karp, Ludmil Katzarkov,
Maximilian Kreuzer, Marc Nieper-Wißkirchen, and Dmytro Shklyarov for valuable
discussions and correspondence. M. H. was supported by the ERC Starting Inde-
pendent Researcher Grant StG No. 204757-TQFT.

1. Preliminaries

Consider PΣ, a complete, smooth toric variety defined by a fan Σ in the lattice
N ∼= Zn−k. Let vi for i = 1, . . . , n be the generators of the one-dimensional cones
of Σ. We briefly recall the construction of PΣ from Σ in terms of homogeneous
coordinates (xi)1≤i≤n associated to the vi [8]. First, if M = N∗ is the dual lattice
and Pic(PΣ) ∼= Zk the Picard lattice, the exact sequence

(4) M
v∗

→ Z
n w
→ Pic(PΣ)

induces a Zk-grading on the homogeneous coordinate ring through the (C×)k-action
(C×)k ∋ λ : (x1, . . . , xn) 7→ (λw1x1, . . . , λ

wnxn). Second, if by a (Batyrev) primitive
collection [9] we mean a collection of generators vi that generates none of the cones
in Σ, whereas any proper subset of it does, we define the exceptional set as the
union

ZΣ =
⋃

p

ZIp
,

where p indexes all primitive collections, and ZIp
= ∩i|vi∈Ip

{xi = 0}. Then, the
toric variety is the quotient

PΣ =
Cn − ZΣ

(C×)k
.

Given PΣ, we consider complete intersections X ⊂ PΣ defined by transversal
polynomials Ga of Zk-degree da for a = 1, . . . , ℓ. We require X to be a Calabi–Yau

variety, i.e.
∑n

i=1 wi =
∑ℓ

a=1 da.

Switching to the algebraic description, let R = C[x1, . . . , xn] be the Z
k-graded

coordinate ring associated with the toric data, and JΣ = 〈
∏

i|vi 6∈σ xi|σ ∈ Σ〉 the

Cox ideal [8], whose vanishing locus is ZΣ = V(JΣ) [9]. The complete intersection
ring is denoted by S = R/(G1, . . . , Gℓ)R, and the image of the Cox ideal along
R → S by the same symbol, JΣ. The following definitions involving JΣ can be
made over R or over S.

Let grS be the abelian category of graded S-modules. The morphisms of grS
are the module homomorphisms of degree 0. For a given S-module A, and q ∈ Zk,
a shift in degree is denoted by A(q). We call an S-module JΣ-torsion if it is
annihilated by (JΣ)m for some positive integer m.

Definition 1. Let Db(grS) be the bounded derived category of graded S-modules
and Db(torΣS) the full triangulated subcategory of graded JΣ-torsion S-modules,
i.e. any object is isomorphic to a complex of JΣ-torsion modules. The quotient
category,

(5) Db(qgrΣS) =
Db(grS)

Db(torΣS)
,
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is defined by localization along the multiplicative system of morphisms s that fit
into distinguished triangles

A
s

−→ B −→ C −→ A[1],

where A,B ∈ Db(grS) and C ∈ Db(torΣS).

A generalization of Serre’s correspondence identifies the abelian category of co-
herent sheaves on X ⊂ PΣ with the abelian category of graded S-modules modulo
JΣ-torsion modules. This correspondence extends to the derived categories,

Db(X) ∼= Db(qgrΣS).

When we subsequently consider the derived category of coherent sheaves on X , we
will stick to its algebraic description in terms of modules over rings, that is, to
Db(qgrΣS).

Since any graded S-module has a projective resolution (though possibly un-
bounded from below), the derived category Db(grS) can be defined to be the homo-
topy category of projective complexes K−(grS) with quasi-isomorphisms inverted.
Here, the minus index indicates that the complexes may be unbounded to the left,
but with bounded cohomology. Namely, in the homotopy category of graded S-
modules all quasi-isomorphisms are homotopy equivalences and therefore Db(grS)
is in fact K−(grS).

By taking the quotient (5), all objects of the full subcategory Db(torΣS) become
zero objects in Db(qgrΣS). Over R, an important class of zero objects is given by
the Koszul complexes associated with the primitive collections Ip,

Kp(R) := K({xi}i|vi∈Ip
;R) =

⊗

i|vi∈Ip

Cone(xi : R → R(wi)) .

Indeed, the Koszul complex Kp(R) is nothing but the resolution of a JΣ-torsion
R-module, hence Kp(R) ∼= 0 in Db(qgrΣR). Over the complete intersection ring S
an even shorter regular sequence SIp

⊂ {xi}i|vi∈Ip
may be the resolution of a JΣ-

torsion S-module. For G1, . . . , Gℓ generic, SIp
is just a subset of {xi}i|vi∈Ip

, with
corresponding set of divisor clases {Dj}j. In general, we can choose representatives
sj of that shorter list of divisor classes, such that

(

∩j{sj = 0}
)

∩
(

∩a{Ga = 0}
)

has support on ZIp
. Thus, we have

Lemma 1. Let S be the complete intersection ring associated with the regular
sequence (G1, . . . , Gℓ). For a primitive collection Ip of the smooth toric fan Σ, we
denote by SIp

a regular sequence as described above. We let wj be the degree of sj.
Then the Koszul complex

K(SIp
;S) =

⊗

j

Cone(sj : S → S(wj)) ,

is a zero object in Db(qgrΣS). �

The goal of this work is to understand autoequivalences of Db(qgrΣS) ∼= Db(X)
and relations among them that can be directly traced back to the toric data, and
more specifically to the secondary fan of X ⊂ PΣ. To this end, we need a realization
of Db(qgrΣS) that has a natural generalization to all other maximal cones in the
secondary fan. This alternative construction begins with realizing X as the critical
locus {dW = 0} of a holomorphic function W on the total space of a certain
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holomorphic vector bundle over PΣ. This then leads us to consider the singularity
category associated with W [3, 4].

2. The singularity category for complete intersections

We append the data of the ℓ polynomials Ga to the toric data of PΣ to obtain

an enhanced fan Σ̂ in N̂R, where N̂ = N ⊕ Z
ℓ, cf. [10, Chapter 5]. Explicitly, if vi

has coordinates (v1
i , . . . , v

n−k
i ) with respect to some basis of N , the generators v̂i of

the one-dimensional cones of Σ̂ are as follows. For i = 1, . . . , n the coordinates of v̂i

are (v1
i , . . . , v

n−k
i , u1

i , . . . , u
ℓ
i), where the ua

i ’s are chosen to satisfy
∑n

i=1 wiu
a
i = da.

For a = 1, . . . , ℓ, v̂n+a is given by a vector with 1 at the (n + a)-th position and
0 else. Let ŵ subsume the vectors (w1, . . . , wn,−d1, . . . ,−dℓ). We will sometimes
use wn+a := −da. Then the exact sequence (4) is extended to

M̂
v̂∗

→ Z
n+ℓ ŵ

→ Pic(PΣ̂) = Pic(PΣ) .

The (Calabi–Yau) toric variety of the enhanced fan Σ̂ is given by

PΣ̂ =
C

n+ℓ − ZΣ̂

(C×)k
∼= Tot

(

⊕ℓ
a=1O(−da) → PΣ

)

.

Note that the exceptional set ZΣ̂ is just the pull-back of ZΣ along Cn+ℓ → Cn.

We denote by pa the homogeneous coordinate associated with v̂n+a in Σ̂. Let R̂ =
C[x1, . . . , xn, p1, . . . , pℓ] be the Zk-graded homogeneous coordinate ring associated

with the fan Σ̂. Similarly, JΣ̂ be the Cox ideal for Σ̂. For what follows it is necessary

to introduce an additional 2Z-grading, called R-grading, on R̂. The R-grading of
the xi is 0, that of the pa is 2. For a given R̂-module A, a shift in R-grading by 2r
is denoted by A{2r}.

The holomorphic functionW on PΣ̂ is built from the regular sequence (G1, . . . , Gℓ)
and the auxiliary coordinates pa as

W =

ℓ
∑

a=1

paGa .

W is a polynomial of degree 0 and R-grading 2. Letting Ŝ = R̂/(W )R̂, we have

the isomorphism of graded rings, S ∼= Ŝ/(G1, p1, . . . , Gℓ, pℓ)Ŝ, which geometrically
corresponds to the embedding of the complete intersection X in the toric Calabi–
Yau variety PΣ̂ as the critical locus of W ,

X = {dW = 0} ⊂ PΣ̂.

This follows on account of the transversality of the polynomials G1, . . . , Gℓ, because
dW vanishes iff pa = 0 and Ga = 0 for a = 1, . . . , ℓ.

Following [3, 4], we now introduce the singularity category associated with the
polynomial W .

Definition 2. Let Db(grŜ) be the derived category of graded Ŝ-modules, and

Perf(grŜ) the full triangulated subcategory of perfect complexes, i.e. bounded
complexes of free modules. The singularity category is the quotient

Dsg(grŜ) :=
Db(grŜ)

Perf(grŜ)
.
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By a result due to Eisenbud [11], a (minimal) free resolution of any Ŝ-module
becomes two-periodic (up to a shift of R-grading) after a finite number of steps.

(The same is true for complexes of Ŝ-modules by induction on the length of the
complex.) Modding out by perfect complexes means that we can cut off and add

finite pieces from the infinite resolution. Therefore, any non-zero object in Dsg(grŜ)
can be represented by a half-infinite free complex,

(6) A· = . . .
fA
−→ A0{−2}

gA
−→ A1{−2}

fA
−→ A0

gA
−→ A1,

with rkA0 = rkA1. The underlined module is in homological degree 0.
Notice that

(7) A·{2} = A·[2],

for any A· ∈ Dsg(grŜ). The shift in R-grading by −2 in (6) is due to the R-grading

of W . In fact, the complex of free Ŝ-modules (6) can be lifted to a sequence of

free R̂-modules so that the homomorphisms compose as fÃ gÃ = W · idÃ0
and

gÃ fÃ = W · idÃ1
, where Aj = Ãj ⊗R̂

Ŝ for j = 0, 1. This also leads to Orlovs result

in [4] that Dsg(grŜ) can equivalently be described by the triangulated category of

matrix factorizations of W over the ring R̂.
The morphisms in the singularity category are given by chain maps modulo

homotopy and modulo chain maps that factor through perfect complexes. On the
two-periodic part the morphisms are also two-periodic, and since we mod out by
chain maps that factor through perfect complexes, the two-periodic part determines
the morphisms uniquely up to homotopy. On the representatives (6) a chain map
is a commutative diagram

(8)

. . . A0{−2}
gA
−→ A1{−2}

fA
−→ A0

gA
−→ A1

↓ ψ0 ↓ ψ1 ↓ ψ0 ↓ ψ1

. . . B0{−2}
gB
−→ B1{−2}

fB
−→ B0

gB
−→ B1

For the following purposes, a useful representative of the object A· ∈ Dsg(grŜ)

in Db(grŜ) is constructed by continuing the complex (6) periodically by 2r steps
to the right, so that the R-degrees of A0{2r} and A1{2r} are all positive, and then
cutting off the finite piece with positive R-degrees, in any homological degree. We
denote the corresponding functor by

σ≤0 : Dsg(grŜ) −→ Db(grŜ).

Let πsg : Db(grŜ) −→ Dsg(grŜ), then clearly we have A· ∼= πsgσ≤0A
· for any object

A· ∈ Dsg(grŜ). It follows from two-periodicity that a free resolution in the image
of σ≤0, say B·, satisfies the relation

(9) σ≤0πsg(B
·{2r}) = B·[2r], for r = 0, 1, 2, . . . .

In fact, the subcategory of such objects is a full triangulated subcategory ofDb(grŜ).

Lemma 2. Let D≤0 be the full triangulated subcategory of objects satisfying (9).
Then the adjoint pair of functors,

Dsg(grŜ)
σ≤0✲
πsg

✛ D≤0 ⊂ Db(grŜ),

is an equivalence of triangulated categories.
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Proof. We know already that A· ∼= πsgσ≤0A
· for any object A· ∈ Dsg(grŜ), and by

definiton B· ∼= σ≤0πsgB
· for any B· ∈ D≤0. It remains to check isomorphism of

morphisms: Because of two-periodicity a chain map between objects in D≤0 cannot
factor through a perfect complex, and hence

Hom sg(πsgA
·, πsgB

·) ∼= Hom D≤0
(A·, B·),

for A·, B· ∈ D≤0. �

Proposition 1. The triangulated categories Dsg(grŜ) and Db(grS) are equivalent.

Proof. Using Lemma 2 it remains to construct an adjoint pair of functors,

Db(grR) ⊃ Db(grS)
E✲
ω

✛ D≤0 ⊂ Db(grŜ)

that implements the equivalence.
The functor E is provided by Eisenbud’s work [11] and is constructed in two

steps. For the first step we include Db(grS) as full triangulated subcategory in
Db(grR) by considering S-modules as R-modules which are annihilated by the
regular sequence (G1, . . . , Gℓ). For an object A ∈ Db(grS) we take the (minimal)
R-free resolution P ·(A). Let P (A) be the free R-module in the complex P ·(A) and
d0 the differential.

The second step constructs from P ·(A) a half-infinite complex in D≤0. Theorem
7.1 of [11] allows us to introduce auxiliary endomorphisms dn : P (A)[2|n|] → P (A)

for n ∈ (Z≥0)
ℓ and |n| =

∑ℓ

a=1 na, which have homological degree 1 as well as
degree

∑

a nada and satisfy

(10)
d0dea

+ dea
d0 = Ga · idP (A)[−2],

∑

m,|m|≤|n| dmdn−m = 0, for |n| > 1.

Here ea = (0, . . . , 0, 1, 0, . . . , 0) with the 1 at the ath position, and we set d0 = d0.

Define the free Ŝ-module P̂ (A) = (C[p1, . . . , pℓ] ⊗C P (A))/(W ). Then E(A) ∈

D≤0 is the Ŝ-module

⊕∞
r=0 P̂ (A){−2r}[2r]

together with the differential d =
∑

n
pn ⊗ dn. Notice that the latter has degree

0 and preserves the R-grading. In view of (10), d2 = W · id[−2], which is zero

on Ŝ-modules. E(A) satisfies condition (9) and is therefore an object in D≤0. In
fact, the object is determined by d0 uniquely up to isomorphism, since finding
a solution to the recursive relations (10) admits the freedom, d → UdU−1 for
U = id +

∑

n>0 p
nun.

The functor ω is defined by

ω : D≤0 → Db(grS) ⊂ Db(grR),

A· 7→ (σ≥0A
·) ⊗ Ŝ/(p1, . . . , pℓ)Ŝ.

σ≥0 cuts off negative R-gradings of A· and therefore picks the R-grading 0 compo-
nent, whose differential does not contain the auxiliary coordinates pa. Tensoring
with Ŝ/(pa)Ŝ ∼= R then removes the auxiliary coordinates from the module as well,
i.e. the image of the functor ω is in Db(grR). Indeed, the image of ω is Db(grS):
Given an object A· ∈ D≤0 we write its differential as d =

∑

n
pndn. Then Theorem

7.2 of [11] constructs from the endomorphisms dn an infinite S-free resolution, that
is an object in Db(grS), which is isomorphic to ω(A·) in Db(grR).
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From the definitions of E and ω we have

ωE(A) = P ·(A) ∼= A,

for any A ∈ Db(grS) ⊂ Db(grR). Conversely, for B· ∈ D≤0, since ω(B·) is the
R-grading 0 component of B· and E reconstructs the auxiliary endomorphisms in
B·, we also have

Eω(B·) ∼= B·.

It remains to show that ω and E are adjoint functors, that is

Hom D≤0
(E(A), B·) = Hom grS(A,ω(B·)),

for A ∈ Db(grS) and B· ∈ D≤0. We use that Db(grS) is full in Db(grR) and
write the right-hand side as Hom grR(P ·(A), ω(B·)). For the left-hand side write a
morphism in Hom D≤0

(E(A), B·) as ψ =
∑

n∈Z≥0
pnψn. Just as the differential d,

the morphism ψ is determined (up to isomorphisms) by its R-grading 0 component
ψ0, hence the left-hand side is also isomorphic to Hom grR(P ·(A), ω(B·)). �

Definition 3. Let Db(torΣ̂Ŝ) be the full triangulated subcategory of Db(grŜ) con-

sisting of graded JΣ̂-torsion modules, and consider its image in Dsg(grŜ), that is

Dsg(torΣ̂Ŝ) := πsgD
b(torΣ̂Ŝ). This is a full triangulated subcategory of Dsg(grŜ).

We define the quotient category

Dsg(qgrΣ̂Ŝ) :=
Dsg(grŜ)

Dsg(torΣ̂Ŝ)
.

Theorem 2. The image of the torsion subcategory Dsg(torΣ̂Ŝ) under the equiva-

lence ω≤0 = ωσ≤0 : Dsg(grŜ) → Db(grS) is Db(torΣS), and, consequently,

Dsg(qgrΣ̂Ŝ) ∼= Db(qgrΣS).

Proof. Recalling that ZΣ̂ is the pull-back of ZΣ we find from the definition of ω that

it maps JΣ̂-torsion complexes to JΣ-torsion complexes, hence ω≤0(Dsg(torΣ̂Ŝ)) ⊆

Db(torΣS). Also, from the definition ofDsg(torΣ̂Ŝ), we know that πsg(D
b(torΣS)) ⊆

Dsg(torΣ̂Ŝ). Applying ω≤0, we obtain ω≤0 ◦ πsg(D
b(torΣS)) = Db(torΣS) ⊆

ω≤0(Dsg(torΣ̂Ŝ)), and therefore Db(torΣS) ∼= ω≤0(Dsg(torΣ̂Ŝ)). �

3. Phases of triangulated categories

The realization of the derived category Db(X) ∼= Db(qgrΣS) through the singu-

larity category Dsg(qgrΣ̂Ŝ) in Theorem 2 motivates us to define singularity cate-
gories for each maximal cone of the secondary fan of PΣ̂. We shall label the latter

by the toric fan Φ̂.
The corresponding toric variety is

(11) PΦ̂ =
C

n+ℓ − ZΦ̂

(C×)k
.

Note that in general Φ̂ contains fewer one-dimensional cones than Σ̂, i.e. fewer than
n+ ℓ. This is taken into account in (11) by the exceptional set being the union,

ZΦ̂ = Zprim

Φ̂
∪ ZΣ̂(1)\Φ̂(1).
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Here Zprim

Φ̂
is given in terms of Batyrev’s primitive collections for the fan Φ̂, and1

ZΣ̂(1)\Φ̂(1) =
⋃

v̂i∈Σ̂(1)\Φ̂(1)

{xi = 0}.

Note that

PΦ̂ =
(Cn+ℓ−r − Zprim

Φ̂
) × (C×)r

(C×)k
∼=

(Cn+ℓ−r − Zprim

Φ̂
)

(C×)k−r ×GΦ̂

where r is the number of one-dimensional cones in Σ̂(1)\Φ̂(1) and GΦ̂ is a finite
group.

To construct quotient singularity categories in every maximal cone Φ̂, it is con-

venient to start with the graded coordinate rings R̂ = C[x1, . . . , xn, p1, . . . , pℓ] and

Ŝ = R̂/(W )R̂, with the degree and R-grading as before. In a maximal cone Φ̂ of

the secondary fan consider the ideal JΦ̂ = 〈
∏

i|vi∈Σ̂(1),vi 6∈σ xi|σ ∈ Φ̂〉. Its vanishing

locus is the exceptional set ZΦ̂. We say that a graded Ŝ-module is JΦ̂-torsion if it

is annihilated by J⊗m

Φ̂
for some positive integer m.

Definition 4. Let Ŝ = R̂/(W )R̂, and Db(grŜ) as well as Dsg(grŜ) be as in Defini-

tion 2. Take any maximal cone Φ̂ in the secondary fan of PΣ̂. Let Db(torΦ̂Ŝ) be the

full triangulated subcategory of JΦ̂-torsion modules in Db(grŜ), and Dsg(torΦ̂Ŝ) its

image in Dsg(grŜ). Then we define the quotient

CΦ̂ = Dsg(qgrΦ̂Ŝ) :=
Dsg(grŜ)

Dsg(torΦ̂Ŝ)
.

Remark 1. For every irreducible component ZIp
of the exceptional set ZΦ̂, the

associated Koszul complex

Kp(Ŝ) := K({xi}vi∈Ip
; Ŝ) =

⊗

i∈Ip

Cone(xi : Ŝ → Ŝ(wi){ri}) .

is an object in Db(torΦ̂Ŝ). Here, ri is the R-degree of xi, i.e. ri = 0 for i = 1, . . . , n

and rn+a = 2 for a = 1, . . . , ℓ. Furthermore, for any object A· of Db(grŜ), the

tensor product A· ⊗
Ŝ
Kp is in Db(torΦ̂Ŝ) and via πsg in Dsg(torΦ̂Ŝ).

We have introduced the quotient singularity categories separately for each max-
imal cone. The following result relates them.

Theorem 3. For any pair of neighboring maximal cones, Φ̂1 and Φ̂2, in the sec-
ondary fan of PΣ̂, with Calabi–Yau complete intersecion X ⊂ PΣ̂, there is a family

{F Φ̂2Φ̂1
m }m∈Z of equivalences of the corresponding quotient singularity categories,

(12) F Φ̂2Φ̂1

m : Dsg(qgrΦ̂1
Ŝ)

∼=
−→ Dsg(qgrΦ̂2

Ŝ).

Proof. Let PΦ̂1
and PΦ̂2

be the (Calabi–Yau) toric varieties in the neighboring

maximal cones. We let T ∈ Pic(PΣ̂)∗ be the primitive dual vector characterizing
the face between the two adjacent maximal cones by the condition T (v) = 0 for all

1Note that the union may include some of the auxiliary coordinates xn+a = pa.
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v in the face. The exceptional sets Z1 and Z2 in the geometric construction of PΦ̂1

and PΦ̂2
are related by [12, Chapter 4.5]

Z1 = Z+ ∪ (Z1 ∩ Z2),
Z2 = Z− ∪ (Z1 ∩ Z2),

where Z± = ∩i|T (wi)≷0{xi = 0}. We let torΦ̂+
Ŝ, torΦ̂−

Ŝ, and torΦ̂12
Ŝ denote the

categories of torsion modules associated with Z+, Z−, and Z1 ∩ Z2, respectively.

By the Calabi–Yau condition,
∑n+ℓ

i=1 wi = 0, we may define

σ :=
∑

i|T (wi)>0

T (wi) = −
∑

i|T (wi)<0

T (wi).

For m ∈ Z let Km(grŜ) ⊂ K−(grŜ) be the homotopy category generated from

invertible modules Ŝ(q) satisfying (cf. [12, 1, 2])

(13) m ≤ T (q) < m+ σ.

Denote the associated singularity category by Dm
sg(grŜ) and consider

(14) Dsg(qgrΦ̂+
Ŝ)

ω+✲
π+

✛ Dm
sg(grŜ)

π−✲
ω−

✛ Dsg(qgrΦ̂−
Ŝ),

whereDsg(qgrΦ̂±
Ŝ) are the quotients ofDsg(grŜ) byDsg(torΦ̂±

Ŝ). The functors π±

are the projections ofDsg(grŜ) to the quotient categories applied to the subcategory

Dm
sg(grŜ). Comparing (13) with Z±, we find that the objects in Dm

sg(grŜ) can not

be torsion. Also, the objects of Dm
sg(grŜ) generate Dsg(qgrΦ̂±

Ŝ), so that π± are

bijective on the set of objects. Dm
sg(grŜ) containing no torsion objects also means

that there are no non-trivial extensions, and the functors π± are fully faithful, hence
equivalences. The inverses ω± take the unique (up to homotopy) representative of

an isomorphism class in Dsg(qgrΦ̂±
Ŝ) that satisfies the restriction (13).

Finally, taking at each step in (14) the quotient by Dsg(torΦ̂12
Ŝ) we find that

the functor in the theorem is given by the compositions,

Dsg(qgrΦ̂1
Ŝ)

ω+

−→ Dm
sg(qgrΦ̂12

Ŝ)
π−
−→ Dsg(qgrΦ̂2

Ŝ).

�

A combination of Theorems 2 and 3 was proved for the hypersurface case by
Orlov in [4]. Van den Bergh [1] and Kawamata [2] stated analogous results for
the derived categories Db(PΦ̂) of Calabi–Yau toric varieties using noncommutative
crepant resolutions. They build a tilting module, say P , out of a generating set of
invertible modules Ŝ(q) satisfying (13) and use the derived category of the noncom-
mutative endomorphism algebra, Db(End(P )), to show the equivalence of Db(PΦ̂1

)

and Db(PΦ̂2
).

Remark 2. In string theory the objects of the quotient singularity categories cor-
respond to boundary condition of certain two-dimensional supersymmetric field
theories. A physics derivation of the functor (12) was given in [12]. Therein it was
found that the choice of the integer m corresponds to a choice of a homotopy class
of paths connecting limit points corresponding to Φ̂1 and Φ̂2 in the moduli space
B of the mirror of X .
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4. Autoequivalences: The main formula

In this section we study elements of the group AutΦ̂ of autoequivalences of

Dsg(qgrΦ̂Ŝ). We begin in the phase Φ̂ = Σ̂.

Immediate elements of AutΣ̂, the group of automorphisms ofDb(X) ∼= Db(qgrΣS),
are given by the shift functors [n], for n ∈ Z, and the twists Mq by the modules
S(q) for any q ∈ Zk ∼= Pic(PΣ̂). For A ∈ Db(qgrΣS),

Mq : A 7→ A⊗S S(q).

Together with the automorphisms Aut(X) of X , that is, the graded ring automor-
phisms of S modulo (C×)k, these generate a subgroup A0(X) ∼= Aut(X)⋉Pic(PΣ̂)×
Z of Aut(Db(X)).

Because of Theorem 2 the group of automorphisms Aut(Db(X)), and in particu-

lar its subgroup A0(X), also acts on the quotient singularity category Dsg(qgrΣ̂Ŝ).

The latter category appears to have an additional functor of twisting by Ŝ{2r}.
Recall however from (7) that a shift in R-grading by {2r} is equal to the shift
functor [2r], hence does not introduce a new autoequivalence.

Let s be an element of S with degree w. Introduce onDb(qgrΣS) the endofunctor

N (s) : A 7→ Cone (s : A→ Mw(A)) .

Proposition 2. For every primitive collection Ip of Σ choose a regular sequence
SIp

of elements sj ∈ S, as in Lemma 1. Then,

(15) ©sj∈SIp
N (sj)(A) ∼= 0,

for any A ∈ Db(qgrΣS).

Proof. By Lemma 1 the Koszul complex K(SIp
;S) is isomorphic to the zero object

in Db(qgrΣS). The same is true for the tensor product A ⊗S K(SIp
;S) for any

object A. This is nothing but the left-hand side of (15) since N (s)(A) = A ⊗S

Cone (s : S → S(w)). �

For any other maximal cone Φ̂ of the secondary fan, there are twist autoequiva-
lences acting on Dsg(qgrΦ̂Ŝ) as well. We set

Mq

Φ̂
: A· 7→ A· ⊗

Ŝ
Ŝ(q) for A· ∈ Dsg(qgrΦ̂Ŝ).

For any element s ∈ Ŝ with degree w and R-grading 2r, let

NΦ̂(s) : A· 7→ Cone
(

s : A· → Mw

Φ̂
(A·)[2r]

)

.

Notice the shift in homological degree and recall that [2r] ∼= {2r} on Dsg(qgrΦ̂Ŝ).
Then, we have

Proposition 3. Let Φ̂ be the fan associated to a maximal cone in the secondary
fan of PΣ̂. Consider an arbitrary object A· in the quotient singularity category

Dsg(qgrΦ̂Ŝ). Then, for every primitive collection Ip of Φ̂,

©i|v̂i∈Ip
NΦ̂(xi)(A

·) ∼= 0,

and for every v̂i ∈ Σ̂(1)\Φ̂(1) associated with xi ∈ Ŝ,

NΦ̂(xi)(A
·) ∼= 0, or equivalently, Mwi

Φ̂
(A·) ∼= (A·)[−2ri].

Proof. Using Remark 1, the proof is similar to the proof of Proposition 2. �
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Remark 3. In the maximal cone Σ̂ we may write Mq = ωσ≤0M
q

Σ̂
πsgE. Using

this equivalence, the relations of Proposition 2 are in general stronger than those
of Proposition 3. One may sometimes obtain similarly strong relations also in
the other phases, namely whenever the exceptional set ZΦ̂ admits the solution of
dW = 0 to set pa = Ga = 0 for (at least) one a = 1, . . . , ℓ. Then, we may work

over the ring Ŝ/(pa, Ga)Ŝ. In fact, Proposition 2 applies because over PΣ̂, dW = 0
admits pa = Ga = 0 for all a = 1, . . . , ℓ.

Theorem 3 relates the singularity categories in neighbouring maximal cones Φ̂1

and Φ̂2. The associated twists are only partly independent autoequivalences. In

fact, condition (13), which defines the functor F Φ̂2Φ̂1
m : CΦ̂1

→ CΦ̂2
, implies that

(16) Mq

Φ̂2

◦ F Φ̂2Φ̂1

m
∼= F Φ̂2Φ̂1

m+T (q) ◦M
q

Φ̂1

.

In particular, the twists with T (q) = 0 commute with the functor F Φ̂2Φ̂1
m (for a

fixed integer m), which says that they correspond to the same autoequivalence,

Mq

Φ̂1

∼= Mq

F
Φ̂2Φ̂1
m

:= (F Φ̂2Φ̂1

m )−1Mq

Φ̂2

◦ F Φ̂2Φ̂1

m , for T (q) = 0.

On the other hand, if T (q) does not vanish the composition,

(17) (F Φ̂2Φ̂1

m )−1F Φ̂2Φ̂1

m+T (q)
∼= Mq

F
Φ̂2Φ̂1
m

M−q

Φ̂1

,

is a non-trivial autoequivalence of CΦ̂1
.

For any Φ̂ let FΦ̂ : CΣ̂ → CΦ̂ be a composition of functors of Theorem 3. Then

the twists in Φ̂ act on CΣ̂
∼= Db(X) via Mq

F
Φ̂

= F−1

Φ̂
◦ Mq

Φ̂
◦ FΦ̂. By combining

Proposition 3 with Theorem 3 we obtain

Theorem 4. Let X be a smooth Calabi–Yau complete intersection in a toric variety
PΣ, and Dsg(qgrΣ̂Ŝ) (∼= Db(qgrΣS)) its quotient singularity category. Then for

every maximal cone Φ̂ in the secondary fan of PΣ̂ the autoequivalences Mq
F

Φ̂
induce

an action of the Picard lattice Pic(PΣ̂) on Dsg(qgrΣ̂Ŝ), subject to the following

relations. For any object A· ∈ Dsg(qgrΣ̂Ŝ) and every primitive collection Ip of Φ̂,

(18) ©i|v̂i∈Ip
NF

Φ̂
(FΦ̂(xi))(A

·) ∼= 0,

and for every v̂i ∈ Σ̂(1)\Φ̂(1) and associated element xi ∈ Ŝ,

(19) NF
Φ̂
(FΦ̂(xi))(A

·) ∼= 0, or equivalently, Mwi

F
Φ̂
(A·) ∼= (A·)[−2ri].

Proof. Writing for any A· ∈ CΣ̂

NF
Φ̂
(FΦ̂(s))(A·) := Cone(FΦ̂(s) : A· −→ Mw

F
Φ̂
(A·)[2r]) =

= FΦ̂Cone(s : F−1

Φ̂
(A·) −→ Mw

Φ̂
F−1

Φ̂
(A·)) =

= FΦ̂NΦ̂(s)F−1

Φ̂
(A·),

the claim follows immediately from Proposition 3. �
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5. Applications

5.1. Monodromy representations — more about Aut(Db(X)).
According to Theorem 4, we have an action of the toric Picard lattice of the

complete intersection X on Db(X) for every phase Φ̂ in the secondary fan of PΣ̂,

generalizing the simple twisting by line bundles for Φ̂ = Σ̂. As is evident from the
relations (18) and (19), this action can be very different for each Φ̂ 6= Σ̂.

In terms of the monodromy representation π1(B) → Aut(Db(X)), mentioned in

the introduction, the action of Pic(PΣ̂) obtained from Φ̂ is a categorical lift of the
monodromies around the boundary divisor of B corresponding to the maximal cone
Φ̂ of the secondary fan. This point of view fits in nicely with the interpretation
of the equivalence between the various CΦ̂’s as depending on the homotopy class
of a path in B. According to Remark 2 the composition (17) for T (q) = 1 is
the monodromy along a path around the discriminant locus of B, and therefore
corresponds to a Seidel–Thomas twist [5], cf. also [13, 14] and [12, Chapter 10.5].

5.2. Proof of K-theory formula.

The projection to K-theory splits the cones in Proposition 3, which implies Corol-
lary 1.

When interpreted in terms of monodromy representations (see previous sub-
section), the relations in K-theory can also be obtained by studying the analytic
continuation of periods of the mirror variety, as in [15]. (See also [16] for a recent
study.) Our results provide the precise categorical lift of the monodromies and the
relations between them.

5.3. Some examples.

Consider the list of 14 Calabi–Yau complete intersectionsX(d1 . . . dℓ) in weighted
projective spaces P3+ℓ(w0 . . . w3+ℓ) with rank 1 Picard lattice, that is Pic(X) ∼= Z

(cf. [17, 18]):

X(5) ⊂ P4(11111) X(2, 4) ⊂ P5(111111) X(2, 12) ⊂ P5(111146)
X(6) ⊂ P

4(11112) X(3, 3) ⊂ P
5(111111) X(4, 6) ⊂ P

5(111223)
X(8) ⊂ P4(11114) X(3, 4) ⊂ P5(111112) X(6, 6) ⊂ P5(112233)
X(10) ⊂ P4(11125) X(2, 6) ⊂ P5(111113) X(2, 2, 3) ⊂ P6(1111111)

X(4, 4) ⊂ P5(111122) X(2, 2, 2, 2) ⊂ P7(11111111)

The polynomial ring associated to the toric data is R̂ = C[x0, . . . , x3+ℓ, p1, . . . , pℓ].

The secondary fan has two maximal cones, say Σ̂ and Ξ̂, where the first shall
correspond to the complete intersection itself. The respective (Cox) ideals are

JΣ̂ = 〈
3+ℓ
∏

i=0

xi〉, and JΞ̂ = 〈
ℓ

∏

a=1

pa〉.

For the following let M = M1
Σ̂

and L := M1
Ξ̂

abbreviate the autoequivalences of

twisting by Ŝ(1) in the two associated singularity categories.

In the category CΣ̂:

For (G1, . . . , Gℓ) generic, according to Proposition 2, a regular sequence SI of four
elements, say x = (xi0 , xi1 , xi2 , xi3), gives rise to a complex isomorphic to the zero
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object,

A[4]
x

−→
3

⊕

b=0

Mwib (A)[3]
x

−→ . . .
x

−→
3

⊕

b=0

Mw−wib (A)[1]
x

−→ Mw(A) ∼= 0,

where w =
∑3

b=0 wib
. In K-theory for each regular sequence SI the relation becomes

∏3
b=0(M

wib − id) = 0.
As an example, for X(10) ⊂ P4(11125) the K-theory relations are

(M − id)2(M2 − id)(M5 − id) = 0,

(M − id)3(M2 − id) = 0,

(M − id)3(M5 − id) = 0.

It is easy to verify that for each complete intersection in the above list, the relations
imply the well-known result that the autoequivalence M is maximally unipotent,
that is

(M − id)4 = 0.

In the category CΞ̂:

Proposition 3 tells us that for p = (p1, . . . , pℓ) the complex

(20) Ld(A·)
p

−→ ⊕aL
d−da(A·)[1]

p
−→ . . .

p
−→ ⊕aL

da(A·)[ℓ−1]
p

−→ A·[ℓ],

is isomorphic to the zero object. Here, d =
∑

a da. On the level of K-theory this
becomes

ℓ
∏

a=1

(Lda − id) = 0.

Back in CΣ̂:

Theorem 4 uses the functor FΞ̂ : CΣ̂ −→ CΞ̂ to map the relation (20) to a relation

for the autoequivalence LF
Ξ̂

= F−1

Ξ̂
LFΞ̂ on CΣ̂. Although the relation for LF

Ξ̂
is

a straight forward consequence of (20), we stress that it is highly non-trivial, even
more so, if we “forget” that LF

Ξ̂
in fact comes from an action of the Picard lattice

in another phase.
We illustrate this for the complete intersection X = X(3, 3) of two cubics in P5,

applying the autoequivalence LF
Ξ̂

on the structure sheaf O of X . Let Ω be the
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pull-back of the cotangent bundle of P5 to X . We obtain

LF
Ξ̂
(O) = Ω(1)[1] ,

(LF
Ξ̂
)2(O) = ∧2Ω(2)[2] ,

(LF
Ξ̂
)3(O) = O[2]⊕2

ϕ3✲ ∧3Ω(3)[3] ,

(LF
Ξ̂
)4(O) = Ω(1)[3]⊕2

ϕ4✲ ∧4Ω(4)[4] ,

(LF
Ξ̂
)5(O) = ∧2Ω(2)[4]⊕2

ϕ5✲ ∧5Ω(5)[5] ,

(LF
Ξ̂
)6(O) = O[4]⊕3

ϕ′
3✲ ∧3Ω(3)[5]⊕2,

where the arrows are canonical elements in Ext1(−,−). In fact, the object in the
last line is isomorphic to

(LF
Ξ̂
)6(O) = O[4]⊕4

ϕ3✲ ∧3Ω(3)[5]⊕2,
(1000)❅
❅

❅❘

⊕

O[3]

which confirms the relation for LF
Ξ̂
, when applied to O,

(LF
Ξ̂
)6(O) ∼= (LF

Ξ̂
)3(O)[2]⊕2

F
Ξ̂
(p)

−→ O[3].
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