Hadron Collider Physics Symposium Evian, France, November 2009

Photon Commissioning in ATLAS

Thomas Koffas CERN

(on behalf of the ATLAS Collaboration)

Photons at the LHC

- Main sources of high p_T isolated γ at the LHC: QCD processes.
- Main background: jets

The search for new phenomena with photons requires:

- efficient photon reconstruction
- accurate photon energy and direction measurement
- particle identification: jets rejection

Prompt photon statistics not a problem at the LHC:

- Hundreds of thousands of single prompt photons
- Thousands of di-photons

ATLAS sub-detectors used for photon reconstruction

Photon Reconstruction in ATLAS

Clustering algorithm for photons:

- slide a window $\Delta\eta x \Delta \phi = 5x5$ in a calorimeter tower (over 4 samplings); find local max
- track/vertex matching distinguishes electrons from unconverted and converted photons
- re-build the cluster: $\Delta \eta x \Delta \phi = 3x5$ cells for unconverted photons $\Delta \eta x \Delta \phi = 3x7$ cells for converted photons (wider phi to account for

B-field opening)

Energy and position reconstruction:

- cells in the clusters are summed
- position dependent energy corrections are applied.

Photon energy resolution

Photon Reconstruction in ATLAS II

Photon Identification in ATLAS

Photon/Jets discrimination based on their characteristics features:

Photons narrow objects, contained in the e.m. calorimeter.

Jets broader profile and have significant energy deposition in the hadronic calorimeter

• Shower shapes in the middle layer of the electromagnetic calorimeter:

Photon Identification in ATLAS II

Ratio of energy outside core of 3 strips but within 7 strips $F_{side} = (E_{\pm 3} - E_{\pm 1})/E_{\pm 1}$

Photon Reconstruction Performance

Example: photons $E_T > 25$ GeV from $H \rightarrow \gamma \gamma$

Main background from tight jets faking photon showers. A rejection factor of $\sim 10^3$ - 10^4 for quark/gluon jets respectively, is achieved.

After all cuts 70% of the remaining fake photons are high momentum π^0

Validation of Photon Identification with Cosmic Events

- Would like to validate as much as possible the γ identification before collision data using cosmic events:
 - Confirm robustness of γ initial selection by comparing shower shapes to MC expectations

Limitations of cosmics validation

- Average energy of EM objects in cosmics fairly low
- Most cosmic events are not projective!
- Shower shapes mostly not like what we will see in ATLAS due to cosmics direction
- In the barrel:
 - \$\phi^{>0}\$ (coming in through the top of the detector) have showers starting in the back of the calorimeter (or before)
 - $\phi < 0$ is more like what we expect to see in ATLAS
- Important to compare cosmics data with cosmics MC

Data Sets and Event Selection

EM shower-shape studies with photons

- Cosmic dataset:
 - Barrel: 3.5M events with high-level trigger (L2) track candidate reconstructed in barrel inner detector (IDCosmics trigger stream)
 - Endcap: 270k events, at least one sliding-window cluster in EM (L1CaloEM trigger stream)
- Cosmic simulation:
 - 11.7M cosmic-muons required to go through the ID geometrical volume
- Barrel event selection:
 - E_{cluster}>5GeV (sliding-window cluster)
 - Loose projectivity: at least one Si track $|d_0| < 220$ mm and $p_T > 5$ GeV
 - "collision-like" photon candidates: E_{strips} /E_{cluster} > 0.1
 - 1200 candidates for the data and 2161 for simulation

Work in progress for the endcaps

Middle layer

Front layer

Middle Layer Calorimeter Variables

At the heart of electron/photon identification!

- The lateral shower containment in the middle layer ($\Delta\eta x \Delta \phi \approx 0.025 \times 0.025$)
 - Along η : Ratio of energy in a ΔηxΔφ =3x7 cells cluster size with respect to a 7x7 cells cluster size
 - Along Φ : Ratio of energy in a ΔηxΔφ =3x3 cells cluster size with respect to a 3x7 cells cluster size
- Agreement between cosmics data and simulation gives confidence that these are reasonably robust variables to use with early data.

First Layer (strips) Calorimeter Variables

- The lateral shower containment in strip layer
 - Ratio of energy outside core of 3 strips but within 7 strips
 - $F_{side} = (E_{\pm 3} E_{\pm 1})/E_{\pm 1}$

- φ>0 (top): shower profile is wider
 - more likely to be initiated in middle or back calorimeter layers
- φ<0 (bottom): shower profile is narrower</p>
 - showers initiated in ID or cryostat wall

Calorimeter Strip Variable Dependence on Projectivity

- $\Delta \theta$ = shower direction direction from centre of detector to centre of cluster
- Plots of average lateral profiles in the strips

- Data, simulated cosmic-rays, simulated projective single photon showers (E_T=5GeV)
- projective (|Δθ| <0.10) and non-projective (0.10<|Δθ| <0.20) showers</p>
 - widening of the showers as they become less projective

Material Mapping with Converted Photons I

LHC trackers: heavier than any previous one (LEP, TeVatron): ATLAS Inner Detector ~ 4.5 ton

Large amount of material in front of the EM calorimeter means:

- large energy losses of electrons through bremsstrahlung
- high photon conversion probability
- a complex calibration procedure for the EM calorimeter

The conversion probability ranges from 40 % (η =0) up to 80% (η =1.8)

Knowing the exact amount and position of the upstream material is of paramount importance !

Use conversions as a tool to reconstruct the 3D material map of the detector Radial resolution (3mm) with low p_T photons.

Material Mapping with Converted Photons II

Precise 3D mapping of the material with low-energy conversions from minimum bias data Enough statistics for a 1% material map in a few months of data taking

Material Mapping with Converted Photons III

Converted photons already used to map the Inner Detector material in the 2004 Combined Test Beam (CTB)

- Events with two TRT track segments pointing back to the Si tracker are selected.
- Concentrate on conversion vertices reconstructed in the pixel tracker.
- Count reconstructed conversions within each pixel layer:
 - Use the simulation to correct for efficiency variations on each layer
- Use the well measured Cu foil in front of the pixel as a material reference.

Material Mapping with Converted Photons IV (Preliminary)

Estimated amount of material per pixel layer with respect to the Cu foil

	Copper	PixelB	Pixel1	Pixel2
X/X ₀ (%) with stat. error	0.21±0.02±0.04	1.68±0.19±0.35	1.95±0.23±0.40	1.98±0.24±0.41
Ratio	-	8.16±1.28±1.97	9.47±1.51±2.29	9.62±1.56±2.26
X/X ₀ (%) in MC	0.25	2.6	2.6	2.6
Ratio in MC	-	10.4	10.4	10.4

Good qualitative agreement between data and simulation.

Absolute value restricted by large systematic error on the incoming photon flux.

Summary

- Photons constitute an important tool for commissioning the ATLAS detector:
 - Plenty of signal already with early data
- Dedicated software for photon reconstruction already in place
 - Utilization of few simple variables to validate quantities for photon identification
 - Initial performance based on MC data well established
- Cosmics data of great importance for validating the photon reconstruction:
 - Significant amount of available statistics
 - Contain both the tracker and the EM calorimeter inputs
 - Comparison with the cosmics data MC confirms the robustness of the reconstruction
- Converted photons an important tool for accurate detector description
 - Conversions in minimum bias data can be used to determine the tracker material
 - Initial implementation in the Combined Test Beam gave consistent results.
 - Enough statistics within a few months to map the tracker material down to 1% accuracy
 - Initial source of clean electron sample for PID commissioning in the TRT.

Looking forward to see the first photons from collisions into the ATLAS detector!

Backup Slides

Photons at the LHC

Photon Identification in ATLAS II

Example of a variable built with the strips (first layer) of the electromagnetic calorimeter:

After shower shape cuts the remaining background is dominated by low track multiplicity jets containing a high pT π^0

Track Isolation = sum of the pT of all tracks with pT>1 GeV within Δ R<0.3 (tracks from conversions are excluded)

