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Abstract

This paper proposesMarket-based Iterative Risk Allo-
cation (MIRA), a new market-based distributed plan-
ning algorithm for multi-agent systems under uncer-
tainty. In large coordination problems, from power grid
management to multi-vehicle missions, multiple agents
act collectively in order to optimize the performance of
the system, while satisfying mission constraints. These
optimal plans are particularly susceptible to risk when
uncertainty is introduced. We present a distributed plan-
ning algorithm that minimizes the system cost while
ensuring that the probability of violating mission con-
straints is below a user-specified level.
We build upon the paradigm ofrisk allocation (Ono
& Williams 2008), in which the planner optimizes not
only the sequence of actions, but also its allocation of
risk among each constraint at each time step. We ex-
tend the concept of risk allocation to multi-agent sys-
tems by highlighting risk as a commodity that is traded
in a computational market. The equilibrium price of
risk that balances the supply and demand is found by
an iterative price adjustment process calledtâtonnement
(also known asWalrasian auction). Our work is distinct
from the classical t̂atonnement approach in that we use
Brent’s method to provide fast guaranteed convergence
to the equilibrium price. The simulation results demon-
strate the efficiency of the proposed distributed planner.

Introduction
Motivation
There is an increasing need for multi-agent systems that per-
form optimal planning under uncertainty. An example is
planning and control of power grid systems. A power grid
consists of a numbers of generators and electric transformers
whose control should be carefully planned in order to max-
imize efficiency. A significant issue in power grid planning
is the uncertainty in demand for energy by consumers. As
the use of renewable energy, such as solar and wind power,
become more popular, uncertainty in supply increases due
to weather conditions. Another example is the Autonomous
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Ocean Sampling Network (AOSN), which consists of mul-
tiple automated underwater vehicles (AUVs), robotic buoys,
and aerial vehicles. AOSN should maximize science gain
while being exposed to external disturbances, such as tides
and currents.

In order to deploy AI planning algorithms on such sys-
tems, we need a robust plan execution capability. Robust
execution often involves 1) handling continuous system dy-
namics, 2) handling uncertainty in the environment, 3) oper-
ating the system at a risk level that the user find acceptable,
and 4) scaling to multi-agent system.

To address the four problems, we developedMarket-
based Iterative Risk Allocation(MIRA), a multi-agent op-
timal planning algorithm that operates within user-specified
risk bounds. MIRA optimally allocates risk among agents,
and computes optimal control sequence for each agent in a
distributed manner.

Approach
Planning under uncertainty, and risk allocation When
planning actions under uncertainty, there is always a risk of
failure that should be avoided. However, in many cases, per-
formance can be improved only by taking extra risk. For
example, we can reach a destination faster by driving a car
at a faster speed and accepting a higher risk of an accident.

Without taking any risk, nothing can be done; however, no
one dares to take unlimited risk. In many cases, people want
to maximize performance, but with an upper-bound on the
risk they take (chance constraint). For example, a race car
driver would like to drive as fast as possible while limiting
the probability of a crash to 0.1%. Therefore, we formulate
the stochastic planning problem as an optimization problem
with a chance constraint. With this formulation, (Ono &
Williams 2008) showed that the planner should plan not only
the sequence of actions but also therisk allocationin order
to maximize the performance under a risk bound.

The example shown in Figure 1 illustrates the concept of
risk allocation. A race car driver wants to plan a path to
get to the goal as fast as possible. However, crashing into
the wall leads to a fatal accident, so he wants to limit the
probability of a crash to 0.1%. An intelligent driver would
plan a path as shown in Figure 1, which runs mostly in the
middle of the straightaway, but gets close to the wall at the
corner. This is because taking a risk (i.e. approaching the
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Figure 1: Risk allocation in a race car path planning sce-
nario.
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Figure 2: Multi-UAV fire-fighting scenario.

wall) at the corner results in a greater time saving than tak-
ing the same risk along the straightaway; in other words, the
utility of taking risk is greater at the corner than the straight-
away. Therefore the optimal plan allocates a large portion of
risk to the corner, while allocating little to the straightaway.
As illustrated by this example,risk allocationneeds to be
optimized across the constraints, in order to maximize the
performance.

Distributed risk allocation for multi-agent system The
concept of risk allocation can be naturally extended to multi-
agent systems. Figure 2 shows an example of a multi-agent
system with two unmanned air vehicles (UAVs), whose mis-
sion is to extinguish a forest fire. A water tanker drops wa-
ter while a reconnaissance vehicle monitors the fire with its
sensors. The loss of either vehicle results in a failure of the
mission. Two vehicles are required to extinguish the fire
as efficiently as possible, while limiting the probability of
mission failure to a given risk bound, say, 0.1%. The water
tanker can improve efficiency by flying at a lower altitude,
but it involves risk. The reconnaissance vehicle can also im-
prove the data resolution by flying low, but the improvement
of efficiency is not as great as the water tanker. In such a
case the optimal risk allocation is to allow the water tanker
to take a large portion of risk by flying low, while keeping
the reconnaissance vehicle at a high altitude to avoid risk.
This is because the utility of taking risk (i.e. flying low)
is greater for the water vehicle than for the reconnaissance
vehicle.

Then, the question is how to find the optimal risk alloca-
tion between multiple vehicles in a distributed manner.
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Figure 3: Demand and supply curves of the risk market with
two agents. Note that we followed the economics conven-
tion of placing the price (independent variable) on the verti-
cal axis.

Tâtonnement: market-based risk allocation Our ap-
proach is to use the market-based mechanism to optimize
the risk allocation between agents. In a computational com-
petitive market, each agent demands risk in order to improve
its own performance. However, it cannot take risk for free;
it has to purchase it from the market at a given price.

Agents are price takers. Therefore the demand is a func-
tion of the price of risk (demand curve). The higher the price
is, the less each agent demands. Each agent has a different
demand curve according to its sensitivity to risk. On the
other hand, the supply of risk is constant, since the upper-
bound of total risk is given.

Figure 3 gives the graphical interpretation of the market-
based risk allocation in a system with two agents, who have
different demand curves. The aggregate demand curve is ob-
tained by adding the two demand curves horizontally. The
supply curve is a vertical line since it is constant. The equi-
librium pricep? lies at the intersection of the aggregate de-
mand curve and the supply curve. It can be proven that the
optimal risk allocation for the two agents are their demands
for the risk at the equilibrium price (∆??

1 and∆??
2 in Figure

3).
However, in practice, the demand curve is not available as

a function. Therefore it is not easy to find the intersection of
the demand curve and supply curve. Instead, the equilibrium
price is found by the following intuitive iterative process,
calledtâtonnementor Walrasian auction(Tuinstra 2000):
• Increase the price if aggregate demand exceeds supply,
• Decrease the price if supply exceeds aggregate demand,
• Repeat until supply and demand are balanced.

Related Work
Market-based approach has recently been recognized as an
effective tool for decentralized multi-agent systems in AI
community (Wellman 1993)(MacKie-Masonet al. 2004).
Although t̂atonnement has drawn less attention than auc-
tions, it has been successfully applied to various problems
such as the distribution of heating energy in an office build-
ing (Voos 2006), and resource allocation in communication
networks (Kelly, Maulloo, & Tan 1998). The convergence of



tâtonnement has been an issue in economics for a long time;
with a simple linear price update rule, it can only be guar-
anteed under a quite restrictive condition (Tuinstra 2000).
We solved this problem by applying a root-finding method
called Brent’s method(Atkinson 1989).

Derivation
Risk Allocation The concept of risk allocation is derived
from Boole’s inequality:

Pr

[∪
i

Fi

]
≤
∑

i

Pr [Fi] (1)

Assume thatFi in the above inequality represents the
event that theith agent fails. Then the left hand side means
the probability that at least one agent in the system fails (i.e.
system failure). It is upper-bounded by the right hand side,
which is the sum of the individual probabilities that each
agent fails.

The user of the system limits the probability of system
failure toS. This constraint is calledjoint chance constraint.

Pr

[∪
i

Fi

]
≤ S (2)

Using Boole’s inequality Eq.(1), it can be easily shown that
the following condition is the sufficient condition of the orig-
inal joint chance constraint Eq.(2).

∀i Pr [Fi] ≤ ∆i (3)

∧
∑

i

∆i ≤ S (4)

Eq.(3) constrains the probability that each individual
agent fails (individual chance constraints). Eq.(4) states that
the sum of the risk bounds of all individual chance con-
straints must not exceed the risk bound of the original joint
chance constraintS. Here, the analogue to the resource allo-
cation is found;S is the total amount of resource (i.e. risk),
which is distributed to agents in the system;∆i is the amount
of resource allocated to theith agent.

Once the risk is allocated to each agent, a joint chance
constraint over multiple agent Eq.(2) is decomposed into in-
dividual chance constraints over individual agents Eq.(3).

Distributed Optimization of Risk Allocation The objec-
tive of our problem is to minimize the system cost, which is
the total of the cost of all agents in the system, while limiting
the probability of system failure (joint chance constraint).
As explained above, the joint chance constraint Eq.(2) is
implied by the individual chance constraints Eq.(3) and the
total risk inequality Eq.(4). Therefore, our optimization is
formulated as follows:

min
∆1:N

N∑
i=1

Ji(∆i) (5)

s.t. (3)(4)

whereJi is the cost ofith agent, andN is the number of
agents in the system. We assume that there is no coupling
between agents through constraints. This formulation de-
scribes a centralized algorithm since the risk allocations of
all agents are planned in one optimization problem. We omit
the plant model (as linear constraints) and control limit con-
straints to keep the equations simple. See (Ono & Williams
2009) for the formulation with all constraints.

Solving the centralized optimization problem Eq.(5)(3)(4)
is equivalent to solving the followingN unconstrained op-
timization problems, since two formulations have the same
Karush-Kuhn-Tucker (KKT) conditions for optimality.

min
∆i

Ji(∆i) + p∆i (for i = 1 · · ·N) (6)

wherep ≥ 0 is the Lagrange multiplier. In order to be opti-
mal,p and∆i must satisfy the following condition:

p

(∑
i

∆i − S

)
= 0 (7)

Since the optimization problems Eq.(6) contains only the
variables related to theith agent, it can be solved by each
agent in a distributed manner.

Economic Interpretation The interpretation of these
mathematical manipulations becomes clear by regarding the
Lagrange multiplierp as theprice of risk. Each agent can
improve the performance by taking risk∆i, but not for free.
Note that a new termp∆i is added to the cost function
Eq.(6). This is what the agent has to pay to take the amount
of risk ∆i. Given the pricep, each agent computes the op-
timal demand for risk∆?

i (p) by solving the optimization
problem Eq.(6). The total amount of riskS can be inter-
preted as thesupply of risk, which is given by the user.

In order to minimize the system cost, the pricep must
satisfy the condition Eq.(7). Such a pricep? is called the
equilibrium price. The demand for risk of each agent at the
equilibrium price∆?

i (p
?) is the optimal risk allocation for

the agent.
Eq.(7) illustrates the relation between the equilibrium

pricep?, optimal demand∆?
i (p

?), and supplyS; in the usual
case where the equilibrium price is positivep? > 0, the ag-
gregate demand

∑
i ∆?

i (p
?) must be equal to the supplyS,

as illustrated in Figure 3; in a special case where the supply
always exceeds the demand for allp ≥ 0, the optimal price
is zerop? = 0. If the aggregate demand always exceeds the
supply for allp ≥ 0, there is no solution that satisfies the
constraint Eq.(4), and hence the problem is infeasible.

Finding Equilibrium Price According to Eq.(7), the
equilibrium price is the root of the following equation:∑

i

∆?
i (p) − S = 0 (8)

The classical approach in economics is to iteratively ad-
just the price with the increment that is proportional to the
excess demand

∑
i ∆?

i (p) − S, until the price converges.



However, the convergence is guaranteed only under a strong
condition called gross substitutability(Tuinstra 2000). The
slow convergence is also an issue.

Our breakthrough is to use a root-finding algorithm called
Brent’s method. It is guaranteed to convergence at a super-
liner convergence rate, by combining three methods: the bi-
section method, the secant method, and the inverse quadratic
interpolation (Atkinson 1989). The only conditions for con-
vergence is the continuity of the aggregate demand curve,
which typically holds. As far as we know, the use of Brent’s
method for t̂atonnement has not been discussed before. This
is probably because adjusting price with such a complex
method is not a natural model of the real-world economy.
Nonetheless, this limitation is not relevant to our computa-
tional economy, since our objective is to obtain the optimal
plan, not to model the real-world economy.

The Algorithm
The entire algorithm is summarized below. We call this al-
gorithm as Market-based Iterative Risk Allocation (MIRA).

1. Sets the initial pricep and announce it to all agents.
2. Each agent computes its optimal demand at the price

∆?
i (p) by solving Eq.(6), and bids it.

3. Terminate the algorithm if the aggregate demand is equal
to the supply; otherwise, adjust the pricep by computing
one step of Brent’s method, and announce it.

4. Go to Step 2.
The price converges to the equilibrium pricep? in this itera-
tive process. The optimal risk allocation for each agent is its
demand at the equilibrium price∆?

i (p
?).

Simulation
Simulations were conducted on a machine with Intel(R)
Core(TM) i7 CPU clocked at 2.67 GHz and 8GB RAM. See
(Ono & Williams 2009) for the used parameters.

To evaluate the efficiency of MIRA algorithm, the compu-
tation time of the following three methods were compared:

1. Centralized optimization,
2. Distributed optimization (tâtonnement) with a linear price

increment, and
3. MIRA: distributed optimization (t̂atonnement) with

Brent’s method.
Table 1 shows the results. The three algorithms were tested
with different problem sizes - two, four, and eight agents.
Each algorithm was run 10 times for each problem size with
randomly generated constraints. The average running time
is shown in the table. The computation of the distributed
algorithms was conducted parallelly. Communication delay
is not included in the result.

The computation time of the centralized optimization al-
gorithm quickly grows as the problem size increases. Dis-
tributed optimization with a linear price increment is even
slower than the centralized algorithm.

MIRA, the proposed algorithm, outperforms the other two
for all problem sizes. The advantage of MIRA becomes
clearer as the problem size increases. More simulation re-
sult is presented in (Ono & Williams 2009).

Table 1: Comparison of the computation time of three opti-
mization algorithms.

Computation time [sec]
Number of

agents Centralized
Distributed

(linear increment) MIRA
2 13.9 80.6 6.4
4 63.8 540.5 18.1
8 318.5 797.8 37.5

Conclusion
We have developed Market-based Iterative Risk Allocation
(MIRA), a multi-agent optimal planning algorithm that op-
erates within user-specified risk bounds. The three key in-
novations that enabled MIRA were:
1. Extension of the concept of risk allocation to multi-agent

system.
2. Derivation of distributed optimization method for multi-

agent risk allocation using KKT conditions.
3. Introduction of Brent’s method to tâtonnement as a price

update rule.
The simulation result showed that MIRA achieved sub-
stantial speed-up compared to centralized optimization ap-
proach, particularly in a large problem.
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