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Abstract. Index tracking seeks to minimize the unsystematic risk component by imitating 
the movements of a reference index. Partial index tracking only considers a subset of the 
stocks in the index, enabling a substantial cost reduction in comparison with full track-
ing. Nevertheless, when heterogeneous investment profiles are to be satisfied, traditional 
index tracking techniques may need different stocks to build the different portfolios. The 
aim of this paper is to propose a methodology that enables a fund’s manager to satisfy 
different clients’ investment profiles but using in all cases the same subset of stocks, and 
considering not only one particular criterion but a compromise between several criteria. 
For this purpose we use a mathematical programming model that considers the tracking 
error variance, the excess return and the variance of the portfolio plus the curvature of 
the tracking frontier. The curvature is not defined for a particular portfolio, but for all the 
portfolios in the tracking frontier. This way funds’ managers can offer their clients a wide 
range of risk-return combinations just picking the appropriate portfolio in the frontier, all 
of these portfolios sharing the same shares but with different weights. An example of our 
proposal is applied on the S&P 100.

Keywords: index tracking, frontier curvature, tracking error variance, excess return, port-
folio variance, mean-variance model, portfolio selection.
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1. Introduction

The increasing popularity of passive portfolio techniques is probably due to the dif-
ficulty to model and predict the evolution of stock markets (Jarrett, Schilling 2008; 
Teresiene 2009; Aktan et al. 2010). Index tracking seeks to minimize the unsystematic 
risk component by imitating the movements of a reference benchmark – a stock index. 
Faced with active management techniques that endeavor to beat the underlying index, 
tracking portfolios in general and tracking indices in particular, are configured as a 
powerful passive strategy. 
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Index Tracking can be full or partial depending on the number of stocks that are con-
sidered. 
In the case of full tracking, the portfolio includes the same stocks as the index, and an 
exact tracking is produced if these stocks are weighted in the same proportion as the 
index. The disadvantages of full tracking include the high portfolio management and 
transaction costs, as well as the need to invest in all the stocks in the index despite 
they might have a minor weight in the index composition. Various other drawbacks are 
mentioned in the literature (Ruiz-Torrubiano, Suárez 2009). A restrictive view of the 
costs associated with tracking portfolios has also been discussed in numerous academic 
papers (Connor, Leland 1995; Canakgoz, Beasley 2003) and the drawbacks are usually 
addressed through mathematical programming models.
In partial tracking a manager builds a portfolio from a subset of stocks contained in the 
underlying index and this process removes some of the drawbacks listed above.
Three issues must be resolved when building a partial tracking. 
Firstly, the number of stocks in the tracking must be chosen. An evaluation can be made 
using sensitivity analysis on the results to contrast the desirability of increasing or de-
creasing the cardinality of the tracking portfolio (Tabata, Takeda 1995).
After setting the number of stocks, the second question involves selecting the stocks 
among the available ones. The simplest approach is to assess each potential stock, to 
measure the index tracking error, and then select those stocks that minimize this devia-
tion. Unfortunately this approach is computationally difficult because it represents an 
NP-hard problem (Ruiz-Torrubiano, Suárez 2009). 
Finally, the third question involves the precise weight to be given to each stock in the 
tracking portfolio, depending on the desired return and the tracking error the manager 
is willing to assume.
The second issue of stock selection has received special attention from researchers 
and many methods for finding the local problem optimum have been proposed. These 
methods can be grouped into two broad families: those that make use of mathematical 
programming, and those using multivariate analysis techniques.
Without being exhaustive, authors using mathematical programming models for optimal 
local searches include: Tabata and Takeda (1995), whose approach is employed in this 
paper and discussed in a later section; Beasley et al. (2003), whose approach uses a 
population heuristic in which the cardinality of the portfolio is made explicit through 

the restriction 
1

N

i
i

z n
=

=∑ , n being the number of stocks in the tracking portfolio, and zi 

a binary variable that indicates if the i-th stock is to be included in the portfolio or not; 
Derigs and Nickel (2004) use a procedure of Simulated Annealing; Ruiz-Torrubiano and 
Suárez (2009) combine a genetic algorithm with a model of quadratic programming in 
a more general formulation of the problem; Gaivoronoski et al. (2005) use different 
measures of risk in mathematical programming models, such as return variance, semi-
variance, tracking error variance, or value at risk (VAR).
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Works that make use of multivariate analysis techniques include: Focardi and Fabozzi 
(2004), Dose and Cincotti (2005), Corielli and Marcellino (2006).
All these papers are characterized by the search for a single portfolio, characterized 
up to three possible parameters: tracking error variance, excess return and volatility of 
returns, which represent reliability, profitability and risk (Rutkauskas, Stasytyte 2007). 
The stocks in the tracking portfolio are identified during this process and the given 
weighting complies with the constraints imposed on those parameters.
This paper proposes the addition of a new parameter: the curvature of the mean-variance 
frontier. This criterion is not defined for a given portfolio, but for the set of portfolios 
that define the tracking frontier. The main advantage is that a fund manager can satisfy 
different investment profiles using the same subset of stocks – with all the portfolios on 
the frontier containing the same stocks and so reducing transaction costs – and can also 
simultaneously consider different criteria in the tracking index problem.
Usually partial tracking portfolio models have attempted to obtain a single portfolio that 
will only satisfy those investors whose profile is perfectly aligned with the configuration 
chosen by the portfolio manager. If the investment profile changes, then the portfolio 
also changes the stocks employed and not only the weights.
The rest of the paper is structured as follows. The second section analytically presents 
the three key concepts for tracking indices: tracking error variance, excess return, and 
portfolio variance. The following section introduces a new criterion, the curvature of 
the tracking frontier, and discusses the benefits that arise from adding the concept of 
gradient to the previous ones. The fourth section presents a multiobjective programming 
model for generating tracking frontiers by simultaneously considering all these param-
eters. In addition, various other propositions regarding the curvature of the tracking 
frontier are discussed and demonstrated. In the fifth section, the above model is applied 
to the partial tracking of the S&P 100. A summary of the main conclusions is presented 
in the final section.

2. Parameters in the tracking portfolio problem: tracking error variance, 
excess return, and portfolio variance

Tracking error is defined as the absolute difference between tracking portfolio returns 
and the returns produced by the tracked index. Since the aim is for both portfolios to 
maintain a parallel evolution over time, the problem is posed as a minimization of the 
volatility in the tracking error. A reduction in the volatility of the tracking error means 
minimizing the variance in returns between the tracking portfolio and the stock index 
(Roll 1992). In this way, a clear parallel with the mean-variance model (Markowitz 
1952, 1959) is established. However, with the difference that instead of looking for the 
portfolio with the least volatility for a given return, managers try to obtain the portfo-
lio with the minimum tracking error variance for a given level of return in excess of 
the index. These are the foundations of the TEV (Tracking Error Variance) criterion:  
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(1) minimize the TEV; (2) assume a certain TE (Tracking Error1). Both objectives are 
inherently conflicting, so the manager should look for compromise solutions.
The TEV is given by the expression (1):

 tTEV = x Vx , (1)

where: x – vector of dimension N × 1, contains the weightings difference of the N stocks 
between the tracking portfolio and the index; that is, x = xp – xb, where xp is the vec-
tor of weightings in the tracking portfolio and xb is the weighting vector in the index 
(subscript b for benchmark). A full tracking is obtained if all elements of x are zero, 
while non-zero deviations can take risk-return positions that differ from the index. In 
the partial tracking, the vector xp will have the same number of non-zero elements as 
there are stocks included in the tracking, n and the remaining weights will be left with 
a value of zero. V – variance-covariance matrix for the stocks returns.
The excess return G on the index is obtained as the difference between the returns of 
the tracking portfolio and the index (2):

 t t t
p p bbG = x R = x R x R = R R− − , (2)

where: R – vector of returns of N stocks. ( )p bR R  – returns of the tracking portfolio 
(index).
Unlike other models, in the tracking portfolio the return in excess G is obtained by 
subtracting the index return, and not the return of the risk-free asset. The full tracking 
can be easily resolved by using a quadratic mathematical model (3):

 
Min ,

,
1 0,

= t

t

t

x Vx
s.t.      x = G

      x
R
=

 (3)

where: 1 – vector of dimension N × 1 with all the elements 1.
Note the need to explicitly include the constraint on G, since the profitability of the 
tracking portfolio and the index can differ by a constant, and the value of the TEV 
could paradoxically be zero. The second constraint ensures that the total investment in 
the tracking portfolio is the same as the index – and so the sum of positive and negative 
deviations is compensated.

3. An additional parameter: the curvature of the TEV frontier

Model (3) enables to obtain different portfolios depending of the value of excess return 
G. These different portfolios are obtained by varying the weights of the stocks, and/or 

1  Alternatively, Rudolf et al. (1999) suggest using linear measurements of tracking error, and propose 
the use of goal programming for solving optimization models. This technique has also been recently 
used by Wu et al. (2007).
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varying the stocks when the tracking is partial. Markowitz’s minimum variance frontier 
and TEV frontier appear in Fig. 1. For the case of the full tracking, Roll (1992) shows 
that the distance in the axis of the returns variance between the two frontiers is constant 
k for any value of return pR . Therefore, the TEV frontier is a simple shift of Markow-
itz’s frontier in the variance axis, and the inefficiency of the index b can be quantified 
as *

2 2
bb

k = σ − σ
 
being constant for any portfolio on the tracking frontier. 

The above property is not satisfied in the case of partial tracking. Fig. 1 shows two 
TEV frontiers, each generated by removing a single stock from the tracking. The TEV 
frontier TEV T V( )Ei j− −  results from the exclusion of the tracking of the i-th stock 
( j-th). Generally, the removal of one or more stocks from the tracking means a greater 
TEV without necessarily reducing the efficiency of the portfolios. In the example in the 
figure, the TEV i−  frontier and the TEV j−  frontier partially improve the efficiency of 
the original TEV in the mean-variance sense. Specifically, both frontiers generate better 
risk-returns in portfolios nearer to the bR  index than the TEV frontier in the full track-
ing. If the TEV i−  and TEV j−  frontiers are compared then different results will again 
be reached according to the considered return. However, it must always be remembered 
that Fig. 1 only reflects risk and return, and not TEV.
Fig. 1 shows the different curvature of the TEV i−  and TEV j−  frontiers. It is precisely 
this characteristic that can be very useful for the fund manager. The TEV j−  frontier 
provides a better risk-return combination than the TEV i−  frontier for portfolios with 

Fig. 1. The minimum variance frontier and various TEV frontiers

Key: ∙∙∙∙∙ Minimum variance frontier; — TEV frontier; — TEV frontier excluding the j-th stock; 
— TEV frontier excluding the i-th stock; b: position of the index in the mean-variance plane; b*: 
projection of the index on the minimum variance frontier; R1: return of portfolio 1 (see Roll 1992); R2: 
return of portfolio 2 (see Roll 1992); Rb: index return; 2σb index return variance; *

2σ
b

return variance 
of portfolio b*.
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a return of [ ]1 2,pR R R∈ However, for returns outside this range, the TEV i−  frontier 
generates returns that are clearly better than the portfolios on the TEV j−  frontier. In 
this situation, the manager must consider which of the two frontiers can best satisfy cli-
ent profiles. For conservative profiles that intend to simply mimic the index, the TEV-j 
frontier is the most suitable, and so the j-th stock is removed from the tracking. But 
if a return in excess G is required, then the TEV i−  frontier would be the best option. 
Therefore, not considering the curvature of the tracking portfolio frontier means that 
the proposed portfolios only satisfy specific values of risk, return and TEV, without 
considering the possibly varying risk profiles of the fund’s clients. When choosing 
between two tracking frontiers for a given value of G and with the same levels of risk-
return and TEV, the manager must select the frontier with less curvature – because this 
enables more efficient options to be offered to investors. Examining the curvature of 
the tracking portfolio enables the manager to make a more global analysis of the offer 
presented to his/her clients. To achieve this, we propose the entire TEV frontier to be 
necessarily examined and not just a specific point on it. 
We can conclude that the manager will have the following preferences when evaluating 
tracking portfolios for the criteria presented:
Assumption 1: Investment fund manager preferences:

a. Criteria concerning the tracking portfolio 
a. 1 Return: portfolios with higher returns are preferred, ceteris paribus.
a. 2 Returns variance: portfolios with less risk are preferred, ceteris paribus.
a. 3 TEV: portfolios with less TEV are preferred, ceteris paribus.

b. Criteria concerning the TEV frontier
b.1 Curvature of the TEV frontier: TEV frontiers with less curvature are preferred, 

ceteris paribus.
The following section presents a multiobjective mathematical programming model that 
enables the simultaneous consideration of all these preferences. This methodology has 
been widely published in the field of operations research (Zeleny 1982; Steuer 1986), 
and is currently used in many financial applications (Hallerbach, Spronk 2002).

4. A multiobjective approach to the problem of partially tracking portfolios 

It is possible to consider the TEV frontier curvature, along with other criteria already 
referred to in the literature (excess return, return variance, and TEV) into the utility 
function (4):

 2
0 1 2 3( ) TEVp p p fU p w R w w w= − σ − − κ , (4)

where: kf – represents the curvature of the TEV frontier, of which portfolio p forms a 
part; wi – weights of each criteria, with i = 0… 3.
Note that the curvature is defined on a frontier f, and not on a given portfolio p, since 
the curvature is the same for all portfolios on the frontier (the returns variance and the 
TEV are quadratic functions).
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Given that in the tracking portfolios the manager fixes a value for the parameter G, all 
of the portfolios evaluated with utility function (4) obtain the same return Rp = Rb + G. 
In this way, (4) can be simplified as (5):

 2
1 2 3( ) TEVp p fU p w w w= σ − − κ . (5)

For convenience, the proposed model will be presented as a minimization problem (6):

 2
1 2 3Max ( ) Min (– (p)) Min TEV≡ ≡ σ + + κp p fU p U w w w . (6)

The multiobjective mathematical programming model is (7):

 

1 2 3Min ,

. . ,
1 0,

,

+ + κ

=

=
= +

t t
p p f

t

t

p b

w x Vx w x Vx w

s t x R G
x
x x x

 (7)

where the only unknown element is the weightings vector x. Note that no restrictions 
are included on the cardinality of the tracking portfolio. For the application of model 
(7) it is necessary to address three issues. The first relates to how to find a good solu-
tion within the exponential number of portfolios that can be formed and limiting to n 
the number of stocks in the tracking portfolio. The objective of model (7) is to make 
a comparison between these portfolios using the utility function, and not to generate a 
frontier. The second question to address is how to calculate kf, the only parameter that 
has not yet been derived analytically. Finally, there remains the determination of the wi 
weights in the utility function. Each of these questions is discussed separately in the 
following subsections. 

4.1. Search for local optima

The greatest computational burden when solving an instance of model (7) is calculating 
the curvature of the TEV frontier, as shown in the following paragraph. In the exam-
ple developed in a later section for the tracking of the S&P 100 an adaptation of the 
algorithm proposed by Tabata and Takeda (1995) has been used. This algorithm was 
chosen because it is simple to implement and generates good local optima. The algo-
rithm ensures that the solution found cannot be improved unless two or more stocks are 
changed in the tracking portfolio. For a better understanding of the overall process, we 
present the adaptation of the algorithm2 to the multiobjective mathematical program-
ming model (7) (Algorithm 1).
Algorithm 1. Adaptation of the algorithm by Tabata and Takeda (1995)
Definitions:

 ( , )pVAR j i  – change in return variance in tracking portfolio p after substituting the i-th 
stock for the j-th stock.

2  The adaptation of the Tabata and Takeda (1995) algorithm has been programmed in R version 2.2.0. 
The authors will provide the code on request.
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( , )xTEV j i  – change in the TEV after substituting i-th stock for the j-th stock in the 
portfolio with x weighting vector differences. 

, )(f j iκ  – change in the curvature of the TEV frontier after substituting the i-th stock 
for the j-th stock. 

( )F ,j i  – function that evaluates the change in the objective function after substitut-
ing the i-th stock for the j-th stock in the tracking portfolio. Its value is calculated as 
( ) ( ) ( ) ( )1 2 3F ,  ,  , ,p fj i w VAR j i w TEV j i w j i= + + κx .
( ) ( )mS n  = set of stocks included in the tracking portfolio in the m-th iteration, where 

n represents the cardinality of the portfolio.
Pseudocode:
Step 0. s: = 0. Let ( ) ( )sS n be the initial set of stocks, n cardinality. 
Step 1. If an optimal solution has not been found for the *

nx  weighting vector differ-
ence of ( ) ( )sS n  and for the objective function *Fx it can be obtained using model (7) 
by considering only those stocks in the ( ) ( )sS n  set. Set : 1j n= + .

Step 2. ( )** : s
n n=x x . For ( ) ( ) ( )'

, , 1s
j iS n i n= …  calculate ( )*  ,F F j i−x x . 

If ( ) ( ){ }* * , , 0F F j q max F F j i− = − >x x x x , go to step 3. Otherwise, : 1j j= + . If j N>  
then : 1j n= + , : 1i = , go to step 4.
Step 3. : 1s s= + , ( ) ( ) ( ) ( )' 1

,: ss
j qS n S n−= . Return to step 1. 

Step 4. For ( ) ( )'
,
s

j iS n  calculate ( )'* s
nx  and its corresponding ( )'  ,F j ix . If ( )*

'  , 0F F j i− >x x  
, 

then set : 1s s= + , ( ) ( ) ( ) ( )' 1
,: ss

j iS n S n−=  and return to step 1. Otherwise, perform i:= i + 1. 
If i n≤ , then : 1j j= + . If j n≤ , set : 1i =  and repeat step 4. If j n> , the current solu-
tion ( ) ( )sS n  and *

nx  is the optimal local solution for building a tracking portfolio with 
n stocks: STOP.

4.2. The TEV frontier curvature

As Roll (1992) demonstrated, the full tracking TEV frontier is a shift of Markowitz’s 
minimum variance frontier, and the curvatures of both frontiers necessarily coincide 
(Fig. 1). This section sets out various propositions, including one that shows that the 
curvature of the TEV frontier generated from a subset of n stocks matches the curvature 
of the minimum variance frontier generated from the same n stocks.
The variance of a minimum variance portfolio p can be obtained by analytically solving 
Markowitz’s mean-variance model (8).

 

1Min x ,
2
x ,

x 1 1.

= t
p p

t
p p
t
p

Vx

s.a.      = R

      =

R  (8)

Using the Lagrangian (9) method on this model, we can derive expression (10).

.
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 1 2
1 ( ) ( 1 1)
2

= + λ − + λ −t t t
p p p p px Vx x R R x , (9)

 [ ]1 1
px 1 A

1
pR

V R− −  
=  

 
, (10)

where [ ] [ ]t –1= 1 1
a b

A R V R
b c
 

=  
 

, –1ta R V R= , 11tb R V −=  and 11 1tc V −= . We 

can express the variance of the p portfolio using (10) such as 2 t
p p pVσ = x x , and devel-

oping its expression to arrive at a result which depends on a, b and c (11):

 

[ ]2 1 1 1 1

2
1

2

1 1
1 1

2
1 .

1

− − − −

−

   = = =       
− + 

  =   − 

σ pt
p p p p

p p p
p

RR
V R A V VV R A

R a bR cR
R A

ac b

x x

 (11)

The kf curvature of the frontier of minimum variance is obtained as the second deriva-
tive of 2

pσ ith respect to Rp (12):

 

2 2

2
2∂

κ = =
∂ −

σ p
f

p

c
R ac b

. (12)

This curvature matches the curvature of the TEV frontier if the tracking is full. If the 
tracking is partial, the curvature cannot be calculated using the expression (12), as the 
values of a, b, and c are linked to the full set of stocks. Nevertheless, the following 
proposition shows how the computation is equivalent to the curvature of the minimum 
variance frontier generated using the same subset of stocks.
Proposition 1. The curvature of the TEV frontier generated from a subset of n stocks 
has the same curvature as the minimum variance frontier generated from the same 
subset of stocks3.
Proposition 1 characterizes the case of a partial tracking that Roll (1992) demonstrated 
for the full tracking. In this way, to calculate the curvature of the TEV frontier in the 
partial tracking we can use the expression (12) derived from Markowitz’s model. 
Proposition 2. The TEV frontier generated from a subset of n stocks (n < N) is a shift 
of the minimum variance frontier obtained from the same subset of stocks.
Proposition 2 presents an interesting difference between full and partial tracking. In 
full tracking, the TEV frontier is only a shift in the axis of variance of Markowitz’s 
frontier. Therefore, all the tracking portfolios share the same inefficiency k, which is 
identical to the inefficiency of the index that it replicates (Fig. 1). In addition to this 
shift, a deviation appears in the axis of returns in the partial tracking and this causes the 
inefficiency in the portfolios in the tracking frontier to vary according to the required 

3  The authors will provide the demonstration of the propositions on request.
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level of return. In other words, the partial tracking minimum variance frontier and the 
full tracking frontier are not parallel. This explains why dominance in the mean-variance 
sense sometimes alternates between the TEV frontier obtained with the partial tracking, 
and the frontier obtained with the full tracking. 
Proposition 3. The TEV frontier curvature generated from a set of n stocks is less than 
the curvature of the TEV frontier obtained when excluding one or more of those stocks.
Proposition 3 shows that the curvature increases when cardinality of the considered 
tracking decreases.

4.3. Criteria weighting in the multiobjective utility function

The solution of the multiobjective programming model (7) depends on the wi weights 
set for each of the three parameters considered in the objective function. This section 
proposes a solution for objectively quantifying these parameters:
Step 1. Apply Algorithm 1 with weights 1 1w =  and 2 3 0w w= = . Use the resulting 
vector *

nx  to calculate the weight of the variance criteria of the tracking portfolio: 
*

*
1 1 /

n
w VAR= x , being *

n
VARx he variance of the tracking portfolio defined by weight 

vector *
nx .

Step 2. Apply Algorithm 1 with weights 2 1w =  and 1 3 0w w= = . Use the resulting 
vector *

nx  to calculate the weights of the TEV criteria: *
*
2 1 /

n
w TEV= x . Step 3. Apply 

Algorithm 1 with weights 3 1w =  and 1 2 0w w= = . Use the *
nx  vector resulting to cal-

culate the weights of the curvature criteria: *
*
3 1 /

n
w = κx , with *

n
κx  being the curvature 

of the TEV frontier generated with the stocks in the tracking portfolio. 
The weight of each parameter is fixed in a way that is inversely proportional to the solu-
tion – the ideal value – that is obtained when applying Algorithm 1 to the corresponding 
monoobjective problem. The use of ideal values in the calculation of the wi weights is 
common in multiobjective programming (Ballestero, Romero 1991) and, more specifi-
cally, in compromise programming. However, a trade-off matrix is difficult to obtain, 
because anti-ideal values can arrive to infinity. For instance, it is easy to calculate the 
ideal value of the tracking portfolio variance: a positive and limited value. The anti-ideal 
value is positive but not limited, so the trade-off matrix cannot be calculated.
Even so if the multiobjective frontier does not satisfy the requirements of the investment 
fund manager, then the weights defined in Steps 1–3 can be changed until a solution is 
found that better fits the manager’s preferences.

5. Application of the multiobjective model to the partial tracking of the 
S&P100 Index

This section develops an application of the multiobjective model (7) for obtaining track-
ing frontiers of the S&P 100. The data set was obtained from the OR-Library (Beasley 
1990), which has been used by various researchers for comparing tracking portfolio 
algorithms (Beasley et al. 2003; Ruiz-Torrubiano, Suárez 2009). The data includes 
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the weekly returns of the index and 98 of its represented stocks during the period 
1992–1997. Although the data is not recent, it remains equally valid for illustrating our 
proposal.
Before obtaining the tracking frontiers, two issues must be resolved prior to the im-
plementation of the multiobjective model: first, the excess return required; and second, 
the number of stocks in the portfolio. For the first case, the possibility of allowing for 
negative returns on the underlying index (G < 0) was dismissed, as this would assume 
that the investor is willing to receive a return below the index. We have conservatively 
assumed that the investor is content with the same return as the index (G = 0). With 
respect to the cardinality of the portfolio, the results are presented considering 5, 7, 10, 
and 15 stocks.
The adapted Tabata and Takeda (1995) (Section 4.1) algorithm was used for the selec-
tion of the tracking portfolio stocks. The solution proposed in section 4.3 was used for 
the iw eights. However, the frontiers obtained were relatively close to the TEV frontier. 
Accordingly, the criterion of the return variance was over-weighted. Specifically, the 
weight was multiplied by n . The square root of n was used because it is a function 
with a negative second derivative.
Table 1 shows the composition of the portfolios for the multiobjective case and the three 
monoobjective possibilities: minimize the variance of the tracking portfolio – optimiza-
tion in the sense of Markowitz (w1 = 1, w2 = w3 = 0); minimize the TEV (w2 = 1, w1 = 
w3 = 0); and minimize the curvature of the tracking frontier (w3 = 1, w1 = w2 = 0). With 
the minimization of the variance, the portfolio with minimum variance and identical 
return to the index is obtained (G = 0). Using these stocks it is possible to generate a 
frontier of minimum variance by changing the required return – following Markow-
itz’s classic mean-variance model. With the minimization of TEV the model selects the 
stocks that also produce the minimum TEV for the case G = 0, and with these same 
stocks the corresponding TEV frontier is also generated. Finally, in the model for mini-
mizing the curvature, stocks are selected that minimize this expression and consider 
excessive returns to be null in the same way. In all cases, the number of stocks in the 
portfolio was limited to n.
Table 1 demonstrates how the composition of the portfolios varies as cardinality in-
creases. Together with the stocks, the ratio between two numbers appears in brackets. 
The first is the number of stocks that are repeated with respect to the portfolio with 
immediately inferior cardinality. The second number is the cardinality. For example, 
for the multiobjective model with n = 15, there are 7 stocks that are repeated in the 
multiobjective portfolio with n = 10. Specifically, these are stocks are 05, 13, 33, 53, 
57, 65 and 81. Therefore, the portfolio with n = 15 has inherited 7 of the 10 stocks that 
made up the portfolio with n = 10 and so the ratio is 7/10. This offers an idea of the 
persistence with which stocks are held when cardinality increases. 
The results show that the mean-variance monoobjective model is the most persistent 
in its stocks. The portfolio with n = 7 selects 4 out of 5 stocks from n = 5; and for n = 
10 it is 6 of the 7 possible stocks; while n = 15 inherits 10 of the possible stocks in the  
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n = 10 portfolio. Of the four models suggested, the model that generates the most vari-
able portfolios is the one that minimizes TEV.
Fig. 2 shows the frontiers obtained for each model on the mean-variance plane accord-
ing to the cardinalities considered in each case. The frontiers are generated from the 
stocks shown in Table 1 by simply varying the excess return required. For example, 
in the case n = 5, the frontier that minimizes the variance of the portfolio corresponds 
to Markowitz’s classical model when only considering the stocks 33, 38, 52, 57 and 
65. These stocks correspond to the minimum variance portfolio for G = 0 and so the 
portfolio at this point is less volatile than the other frontiers at the same G = 0 point. 
For nearly the entire spectrum of G values considered in the graph, the minimum vari-
ance frontier dominates the two frontiers generated with the monoobjective models: 
the TEV frontier and the frontier curvature. However, this does not happen with the 
multiobjective model frontier. For example, in the case n = 5 it can be seen how the 
minimum variance frontier dominates the multiobjective frontier for weekly returns of 
between 0.22% and 0.37% (annual returns of 12.1% and 21.2% respectively).
The greater curvature of the minimum variance frontier implies that the distance be-
tween it and the multiobjective frontier grows rapidly when G ncreases. For example, 
if an investor wants a weekly return of 0.45%, the risk of his position on the minimum 
variance frontier would be 0.00046 when measured as the variance of return. The in-
vestor who chooses the multiobjective frontier would assume a variance of 0.00031. 
In other words, the variance recorded at the minimum variance frontier would be 50% 
higher than the variance in the multiobjective frontier.
Similar comments can be made for the remaining cardinalities. Fig. 2 shows that as 
the cardinality of the portfolios increases, the frontier curvature decreases. This means 
the effect of including the curvature in the multiobjective model is dissipated, because 
the curvature of the minimum variance frontier is approaching the minimum curvature 
frontier. The range of returns in which the minimum variance frontier dominates the 
multiobjective frontier grows, albeit slowly. The difference between the two frontiers 
also decreases as cardinality increases. Therefore, the S&P100 can be efficiently tracked 
with 15 stocks with good results in the mean-variance plane. Adding more stocks to the 
tracking would not generate an improvement beyond that observed in Fig. 2.
Fig. 3 shows the frontiers in the mean-TEV plane when considering the same cardinali-
ties as in Fig. 2. It can be seen that the frontier that minimizes the TEV approaches the 
position of the index as cardinality in the portfolio increases. This frontier is preferred 
in the case of n = 15 as it dominates the remaining frontiers in all the considered return 
rates. Something similar occurs with n = 10. However, if the number of stocks in the 
portfolio is restricted to 5, then the excessive curvature means that the multiobjective 
frontier dominates when returns are below 0.26% or are greater than 0.37%. This rela-
tionship of dominance only becomes clear in the case n = 5  due to the already mentioned 
overweighting of the return variance in the multiobjective function (it has been multiplied 
by n . Similarly, the weight of the criteria can be varied so the multiobjective function 
tilts towards one in particular, depending on the strategy defined by the fund manager. 
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Fig. 2. Graphical representation of the return variance versus the weekly returns for the 
multiobjective model and the three monoobjective models. Cardinality: n = 5, 7, 10, 15
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Fig. 3. Graphical representation of the TEV versus the weekly returns for the multiobjective 
model and the three monoobjective models. Cardinality: n = 5, 7, 10, 15

F. García et al. A multiobjective model for passive portfolio management ...



773

6. Conclusions

Criticisms made about active investment fund management have boosted the success 
of passive strategies. 
Many authors have suggested that costs can be reduced by employing heuristics for 
the partial tracking of portfolios. Researchers have made use of a limited number of 
parameters in the selection of these stocks: Tracking error variance (TEV) and return 
variance. Both criteria are linked to the tracking portfolio, so the portfolio composition 
varies with the level of return required. Accordingly, different returns can mean that 
different stocks are considered in the tracking portfolio. In the case a funds’ manager 
wants to cover several risk profiles of his / her clients, he/she should include different 
stocks in the portfolios, and this represents an increase in transaction costs that reduces 
the advantages of passive management in comparison to active management.
This paper considers a new parameter for use with the above: Frontier curvature. This 
criterion is not defined for a given portfolio, but for the set of portfolios that define the 
tracking frontier. The main implication is that the manager can satisfy different invest-
ment profiles using the same subset of stocks, with all the portfolios containing the 
same stocks and so reducing transaction costs. To appropriately satisfy his / her clients’ 
profiles, only weights in the portfolios shall be properly changed, always working with 
the same stocks.
For the joint consideration of these criteria we propose the use of multiobjective math-
ematical programming. In this way the solution can generate a new frontier as a con-
sensus between the frontiers obtained by separately considering each criterion.
The proposed model has been used for tracking the S&P 100. The results show how the 
multiobjective frontier is balanced between monoobjective frontiers. From a theoreti-
cal viewpoint, the generation of multiobjective solutions is justified for partial tracking 
portfolios for several reasons.
First, if only the TEV criterion is considered then naive solutions could be obtained in 
many cases, meaning solutions dominated by stocks with the highest market capitaliza-
tions. In such situations, the application of heuristics for building tracking portfolios 
would not offer a significant advantage with respect to a naive strategy of selecting 
stocks on the basis of market capitalization.
Second, if only the variance of portfolio returns is considered, then portfolios would be 
obtained whose future behavior would not necessarily correspond with past behavior. 
This is one of the main problems with the mean-variance model in which returns and the 
covariance structure among stocks changes over time – negatively affecting the predic-
tive ability of models. This does not occur with TEV models, where the recent history 
of stocks satisfactorily explains the evolution of the index. Moreover, these models tend 
to retain their explanatory power in the future. The reason is simple: there are many 
stocks that maintain their influence and weight in the composition of the index because 
of their substantial market capitalizations.
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Third, the inclusion of the curvature of the tracking frontier as a new criterion enables 
us to contemplate a wider range of investment profiles. With this criterion, it is possible 
to go beyond the objective of building a single tracking portfolio and to aim for a more 
general goal: to obtain a tracking frontier that satisfies a larger number of investors by 
using the same subset of stocks.
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