Semileptonic D^0 and D^+ decays as a probe of the $a_0(980)$ **nature**

Nikolay N. Ahasov^{1,∗} and *Alexey V.* Kiselev^{1,2,∗∗}

¹Sobolev Institute for Mathematics, Novosibirsk, 630090 ²Novosibirsk State University, Novosibirsk, 630090

> **Abstract.** The $D^+ \to d\bar{d}e^+\nu \to a_0^0(980) e^+\nu \to \pi^0 \eta e^+\nu$ and $D^0 \to d\bar{u}e^+\nu \to a_0(980) e^+\nu \to \pi^- n e^+\nu$ decays (with the charge conjugated ones) are the direct $a_0^-(980) e^+ v \to \pi^- \eta e^+ v$ decays (with the charge conjugated ones) are the direct
probe of the constituent two-quark components in the $a^{\pm}(980)$ and $a_0^0(980)$ wave probe of the constituent two-quark components in the $a_0^{\pm}(980)$ and $a_0^0(980)$ wave functions. Recent BESIII experiment is the first step in experimental study of these decays. We suggest adequate formulas for the data analysis and present a variant of $\eta \pi$ invariant mass distribution when $a_0(980)$ has no constituent twoquark component at all.

1 Introduction

The $a_0(980)$ and $f_0(980)$ mesons are well-established parts of the assumed light scalar meson nonet [1]. From the beginning, the $a₀(980)$ and $f₀(980)$ mesons became one of the central problems of nonperturbative QCD, as they are important for understanding the way chiral symmetry is realized in the low-energy region and, consequently, for understanding confinement. Many experimental and theoretical papers have been devoted to this subject.

There is much evidence that supports the four-quark model of light scalar mesons [2, 3]. Recently BES Collaboration measured the decays $D^0 \to d\bar{u} e^+ \nu \to a_0^- e^+ \nu \to \pi^- \eta e^+ \nu$ and
 $\to d\bar{d} e^+ \nu \to a_0^0 e^+ \nu \to \pi^0 n e^+ \nu$ for the first time $D^+ \to d\bar{d} e^+ \nu \to a_0^0 e^+ \nu \to \pi^0 \eta e^+ \nu$ for the first time.
It will be shown that in the scenario, based on

It will be shown that in the scenario, based on the four-quark model, it is possible to describe the data on different reactions in agreement with the BESIII data [4], while $a_0(980)$ has no constituent two-quark component at all, that is, $g_{d\bar{u}a_0^-} = g_{d\bar{d}a_0^0} = 0$, $g_{a_0\gamma\gamma}^{(0)} = 0$. More precise data would allow to check this variant better.

2 The model

The amplitude of the $D^0 \to S$ (scalar) $e^+ \nu$ decay reads [5]

$$
M[D^{0}(p) \to S(p_{1})W^{+}(q) \to S(p_{1})e^{+}\nu] = \frac{G_{F}}{\sqrt{2}}V_{cd}A_{\alpha}L^{\alpha}, \qquad (1)
$$

$$
A_{\alpha} = f_{+}^{S}(q^{2})(p + p_{1})_{\alpha},
$$

$$
L_{\alpha} = \bar{\nu}\gamma_{\alpha}(1 + \gamma_{5})e, \qquad q = (p - p_{1}).
$$
 (2)

∗∗e-mail: kiselev@math.nsc.ru

[∗] e-mail: achasov@math.nsc.ru

Figure 1. Model of the $D^0 \to (a_0^-, a_0'^-) e^+ \nu$ and $D^+ \to (a_0^0, a_0'^0) e^+ \nu$ decays.

$$
f_{+}^{S}(q^{2}) = f_{+}^{S}(0)\frac{m_{A}^{2}}{m_{A}^{2} - q^{2}} = f_{+}^{S}(0)f_{A}(q^{2}) = g_{D^{0}c\bar{u}}F_{S}g_{d\bar{u}S}f_{A}(q^{2}),
$$
\n(3)

where $A = D_1(2420)^{\pm}$, F_S - loop integral, assumed to be constant in the region of interest.

The decay rate into the stable *S* state is

$$
\frac{d\Gamma(D^0 \to S \ e^+ \nu)}{dq^2} = \frac{G_F^2 |V_{cd}|^2}{24\pi^3} p_1^3 (q^2) |f_+^S (q^2)|^2,\tag{4}
$$

$$
p_1(q^2) = \frac{\sqrt{m_{D^0}^4 - 2m_{D^0}^2(q^2 + m_S^2) + (q^2 - m_S^2)^2}}{2m_{D^0}}.
$$
\n(5)

The amplitude of the $D^0 \to d\bar{u} e^+ \nu \to [a_0^-(980) + a_0'^{-}] e^+ \nu \to \eta \pi^- e^+ \nu$ decay is

$$
M(D^{0} \to d\bar{u} e^{+}\nu \to \eta \pi^{-} e^{+}\nu) = \frac{G_{F}}{\sqrt{2}} V_{cd} L^{\alpha} (p + p_{1})_{\alpha} g_{D^{0}c\bar{u}} f_{A}(q^{2})
$$

$$
\times \frac{1}{\Delta(m)} \Big(F_{a_{0}^{-}} g_{d\bar{u}a_{0}^{-}} D_{a_{0}^{\prime -}} (m) g_{a_{0}\eta\pi} + F_{a_{0}^{-}} g_{d\bar{u}a_{0}^{-}} \Pi_{a_{0}^{-}a_{0}^{\prime -}} (m) g_{a_{0}^{\prime}\eta\pi}
$$

+ $F_{a_{0}^{\prime -}} g_{d\bar{u}a_{0}^{\prime -}} \Pi_{a_{0}^{\prime -}a_{0}^{-}} (m) g_{a_{0}\eta\pi} + F_{a_{0}^{\prime -}} g_{d\bar{u}a_{0}^{\prime -}} D_{a_{0}^{-}} (m) g_{a_{0}^{\prime}\eta\pi} \Big),$ (6)

where *m* is the invariant mass of the $n\pi^-$ system, $\Delta(m) = D_{a'_0}(m)D_{a_0}(m) - \Pi_{a'_0}(m)\Pi_{a_0}(m)$ ⁻ $\Pi_{a'_0}(m)$ ⁻ $D_{a'_0}(m)$, $D_{a'_0}(m)$ and $D_{a'_0}(m)$ are the inverted propagators of the a^- and a'_0 ⁻ mesons and $\Pi_{$ $D_{a_0^-}(m)$ and $D_{a_0^-}(m)$ are the inverted propagators of the a_0^- and $a_0'^{-}$ mesons, and $\Pi_{a_0^-a_0^+}(m) =$ $\Pi_{a_0^2 a_0^2}(m)$ is the nondiagonal element of the polarization operator, which mixes the a_0^2 and a_0^2 mesons [5].

$m_{a_0^0}$, MeV	988.3	$m_{a'_{0}}$, MeV	1423.9	R , fm	
$g_{a_0^0 K^+ K^-}$, GeV	4.06	$g_{a_0^{\prime 0} K^+ K^-}$, GeV	4.19		
$g_{a_0\eta\pi}$, GeV	3.99	$g_{a_0'\eta\pi}$, GeV	0.80	36 points	13.8
$g_{a_0\eta'\pi}$, GeV	-4.24	$g_{a'_0\eta'\pi}$, GeV	1.27	49 points	65.5
$a^{(0)}$ $\mathcal{Y}_{a_0^0 \gamma \gamma}$		$g_{a_0^{\prime 0}\gamma\gamma}^{(0)}$, 10^{-3} GeV ⁻¹	-12.90	χ^2_{corr} / 29 points	28.4
$m_{a_0^+}$, MeV	997.6	$C_{a_0a'_0}$, GeV ²	-0.163	$(\chi^2_{\gamma\gamma}+\chi^2_{sp}+\chi^2_{corr})/n.d.f.$	107.8/99

Table 1. Properties of the resonances and the description quality

The double differential rate of the $D^0 \to d\bar{u} e^+ \nu \to [a_0^-(980) + a_0'^-] e^+ \nu \to \eta \pi^- e^+ \nu$ decay is

$$
\frac{d^2\Gamma(D^0 \to \eta \pi^- e^+ \nu)}{dq^2 dm} =
$$
\n
$$
= \frac{G_F^2 |V_{cd}|^2}{192 \pi^5} g_{D^0 c\bar{u}}^2 |f_A(q^2)|^2 p_1^3(q^2, m) \rho_{\eta \pi^-}(m) m \Big| \frac{1}{\Delta(m)} \Big|^2
$$
\n
$$
\times \Big| F_{a_0^-} g_{d\bar{u}a_0^-} D_{a_0'}(m) g_{a_0 \eta \pi} + F_{a_0^-} g_{d\bar{u}a_0^-} \Pi_{a_0^- a_0'}(m) g_{a_0' \eta \pi}
$$
\n
$$
+ F_{a_0^{\prime -}} g_{d\bar{u}a_0^{\prime -}} \Pi_{a_0^{\prime -} a_0^-}(m) g_{a_0 \eta \pi} + F_{a_0^{\prime -}} g_{d\bar{u}a_0^{\prime -}} D_{a_0^-}(m) g_{a_0' \eta \pi} \Big|^2,
$$
\n(7)

where $\rho_{\eta\pi^-}(m) = \sqrt{(1 - (m_\eta + m_{\pi^-})^2/m^2)(1 - (m_\eta - m_{\pi^-})^2/m^2)}$.
If a_0 does not contain two-quark state then If a_0 does not contain two-quark state, then

$$
\frac{d^2\Gamma(D^0 \to \eta \pi^- e^+ \nu)}{dq^2 dm} = \frac{G_F^2 |V_{cd}|^2}{192 \pi^5} g_{D^0 c\bar{u}}^2 |f_A(q^2)|^2 p_1^3(q^2, m) \rho_{\eta \pi^-}(m) m \left| \frac{1}{\Delta(m)} \right|^2
$$

$$
\times |F_{a_0'} - g_{d\bar{u}a_0'}|^2 \left| \Pi_{a_0' - a_0^-}(m) g_{a_0 \eta \pi} + D_{a_0^-}(m) g_{a_0' \eta \pi} \right|^2,
$$
 (8)

The $D^+ \to d\bar{d}e^+ \nu \to S e^+ \nu$ and $D^+ \to \eta \pi^0 e^+ \nu$ decays are described in the same way. It
is enough to substitute $D^0 \to D^+$, $d\bar{u} \to d\bar{d}$, $a_0^- \to a_0^0$, $a_0'^- \to a_0'^0$, and $\pi^- \to \pi^0$. The coupling $g_{d\bar{d}a_0^{\prime 0}} = g_{d\bar{u}a_0^{\prime -}}/\sqrt{2}.$

3 Results and perspectives

The results are shown in table 1 and figures 2, 3, 4, and 5. The data is described well, the $a₀(980)$ coupling constants agree with the four-quark model scenario, see [5].

In [10, 11] the program of studying light scalars in semileptonic *D* and *B* decays was suggested. Processes of interest are:

$$
D_s^+ \to s\bar{s}e^+\nu \to [\sigma(600) + f_0(980)]e^+\nu \to \pi^+\pi^-e^+\nu
$$

\n
$$
D^+ \to d\bar{d}e^+\nu \to [\sigma(600) + f_0(980)]e^+\nu \to \pi^+\pi^-e^+\nu
$$

\n
$$
D^0 \to d\bar{u}e^+\nu \to a_0^-e^+\nu \to \pi^-\eta e^+\nu
$$

\n
$$
D^+ \to d\bar{d}e^+\nu \to a_0^0e^+\nu \to \pi^0\eta e^+\nu
$$

\n
$$
B^0 \to d\bar{u}e^+\nu \to a_0^-e^+\nu \to \pi^-\eta e^+\nu
$$

\n
$$
B^+ \to u\bar{u}e^+\nu \to a_0^0e^+\nu \to \pi^0\eta e^+\nu
$$

\n
$$
B^+ \to u\bar{u}e^+\nu \to [\sigma(600) + f_0(980)]e^+\nu \to \pi^+\pi^-e^+\nu
$$

Figure 2. Results of our fit, see Tables I and II, on a) the Belle data on $\gamma\gamma \to \eta \pi^0$ cross-section [6], and b) the KLOE data on the $\phi \to \eta \pi^0 \gamma$ decay [7] m is the invariant $n\pi^0$ mass b) the KLOE data on the $\phi \to \eta \pi^0 \gamma$ decay [7], *m* is the invariant $\eta \pi^0$ mass.

Figure 3. The $K_S^0 K^+$ correlation $C(k^*)$, see Ref. [8] and references therein. Solid line represents our fit, points are experimental data [9].

References

- [1] M. Tanabashi *et al.* (Particle Data Group), Phys. Rev. D **98**, 030001 (2018).
- [2] R.L. Jaffe, Phys. Rev. D 15, 267 (1977); Phys. Rev. D 15, 281 (1977).
- [3] S. Weinberg, Phys. Rev. Lett. **110**, 261601 (2013).
- [4] M. Ablikim *et al.* (BESIII Collaboration), Phys. Rev. Lett. **121**, 081802 (2018), arXiv:1803.02166.
- [5] N.N. Achasov and A.V. Kiselev, Phys. Rev. D 98, 096009 (2018).
- [6] S. Uehara *et al.* (Belle Collaboration), Phys. Rev. D **80**, 032001 (2009).
- [7] F. Ambrosino *et al.* (KLOE Collaboration) Phys. Lett. B **681**, 5 (2009).
- [8] N.N. Achasov and A.V. Kiselev, Phys. Rev. D 97, 036015 (2018).
- [9] S. Acharya *et al.* (ALICE Collaboration), Phys. Lett. B 774, 64 (2017).
- [10] N.N. Achasov and A.V. Kiselev, Phys. Rev. D 86, 114010 (2012).
- [11] N.N. Achasov and A.V. Kiselev, Int. J. Mod. Phys. Conf. Ser. 35, 1460447 (2014), http://www.worldscientific.com/doi/pdf/10.1142/S2010194514604475.

Figure 4. (a) The plot of $D^0 \to (a_0^-, a_0'^-)e^+\nu \to \eta \pi^-e^+\nu$ spectrum with parameters of our fit. The solid
line is the total contribution, the dotted line is the term $\sim F_{a_0'^-}g_{d\bar{u}a_0'^-}\Pi_{a_0'^-a_0}(m)g_{a_0\eta\pi}$ co dashed line is the term ∼ $F_{a_0'}g_{\text{diag}}-D_{a_0}(m)g_{a_0'\eta\pi}$ contribution. (b) The data on the $D^0 \to (a_0^-, a_0^+)e^+\nu \to$
*p*π^{-e+}ν decay and our fit. The solid histogram is the total contribution, and the dashed histogram *ηπ*[−]e⁺ν decay and our fit. The solid histogram is the total contribution, and the dashed histogram represents the sum of backgrounds represents the sum of backgrounds.

Figure 5. (a) The spectrum of the $D^+ \to (a_0^0, a_0'^0) e^+ \nu \to \eta \pi^0 e^+ \nu$ decay with parameters of our fit. (b)
The spectrum of the $D^+ \to (a_0^0, a_0'^0) e^+ \nu \to \eta \pi^0 e^+ \nu$ decay. The solid histogram is the total contribut and the dashed histogram represents the sum of backgrounds.