Minimum bias and early QCD physics at LHC

Stefan Tapprogge

(on behalf of the ATLAS and CMS collaborations)

Institut für Physik

Federal Ministry of Education and Research

Helmholtz Alliance

SPONSORED BY THE

Hadron Collider Physics Symposium

Evian, France

16 – 20 November, 2009

Contents

- Motivation
- LHC & ATLAS and CMS
- Minimum bias physics

Jet physics

Motivation

- with the LHC we will enter soon a new kinematic regime
 - that is what it has been built for ...
 (search for new physics)
- perturbative QCD is the well tested theory of the strong interaction
 - non-perturbative effects mostly treated in phenomenological approaches
 - e.g. models tuned to existing data and extrapolated to higher energies
- need to perform 'basic' measurements on properties of pp collisions
 - validate our understanding of backgrounds for new physics measurements
 - o based today still on Monte Carlo models

The complexity of pp at LHC

• Pile-up included or not yet ?

HCP 2009, Evian, Nov. 15th to 20th, 2009

Schema of pp collision

LHC & ATLAS and CMS

LHC: expectation for 2009/2010

- initial collisions in 2009 at injection energy $\rightarrow Js = 900 \text{ GeV}$
 - \rightarrow instantaneous luminosity up to 2*10²⁸ cm⁻² s⁻¹
 - \rightarrow integrated luminosity up to 1 nb⁻¹/24 h

• high energy run starting with $\int s = 7$ TeV

- \rightarrow possible ramp-up during 2010 to $\int s = 8-10$ TeV
- \rightarrow instantaneous luminosity up to 1-2*10³² cm⁻² s⁻¹
 - Note: up to (on average) 2 inelastic interactions per bunch crossing possible ('pile-up')
- \rightarrow integrated luminosity up to 200-300 pb⁻¹
 - possibly shared between two c.m.s. energies

ATLAS and CMS

	ATLAS	CMS
Magnetic field	2 T solenoid + toroid (0.5 T barrel 1 T endcap)	4 T solenoid + return yoke
Tracker	Si pixels, strips + TRT σ/p _T ≈ 5x10 ⁻⁴ p _T + 0.01	Si pixels, strips σ/p _T ≈ 1.5x10 ⁻⁴ p _T + 0.005
EM calorimeter	Pb+LAr σ/E ≈ 10%/√E + 0.007	PbWO4 crystals σ/E ≈ 3%/√E + 0.003
Hadronic calorimeter	Fe+scint. / Cu+LAr (10λ) σ/E ≈ 50%/√E + 0.03 GeV	Brass+scintillator (7 λ + catcher) $\sigma/E \approx 100\%/\sqrt{E} + 0.05 \text{ GeV}$
Muon	σ/p _T ≈ 2% @ 50GeV to 10% @ 1TeV (ID +MS)	σ/p _T ≈ 1% @ 50GeV to 10% @ 1TeV (DT/CSC+Tracker)
Trigger	L1 + Rol-based HLT (L2+EF)	L1+HLT (L2 + L3)

The CMS Collaboration, S. Chatrchyan et al., The CMS Experiment at the CERN Large Hadron Collider, JINST 3 (2008) S08004.

Minimum bias

Minimum bias physics

motivation

 basic properties of inelastic events uncertain at LHC energies

• extrapolation from Tevatron and lower energy measurements

 need to understand precisely as these will be background due to pile-up at higher luminosity

definition of minimum bias events

- driven by trigger and experimental selection
 - o traditionally:

non-single diffractive inelastic events (NSD)

- o backgrounds due to
 - \rightarrow beam-gas and beam-halo events
 - → pile-up events

NSD

 $\sigma_{tot} = \sigma_{elas} + \sigma_{sd} + \sigma_{dd} + \sigma_{nd}$

Minimum bias measurements (historical)

Seite 11

ЯG

Public

CDF Collaboration,

LHC expectation

sizeable differences in the prediction

 \rightarrow absolute magnitude as well as shape

Minimum bias measurement techniques

trigger selection

- → random trigger (L1)
 - zero bias • inefficient for low L
- random trigger (L1) and track selection (HLT)

• enhance efficiency for low luminosity

 dedicated trigger scintillators (ATLAS)

o not zero bias

forward calorimeters
 (CMS)

observables

- based on charged particle reconstruction
- charged particle multiplicity
 h dependence
- → charge particle p_T spectrum
- → average charge particle p_T vs. η

 neutral particles to be studied with calorimetric measurements

o not discussed here

Minimum bias measurements

charged particle reconstruction

- o various possibilities with different systematics
- \rightarrow hit counting
 - estimate charged particle density via number of hits (clusters) in pixel detector layer(s)
 - \clubsuit pros: access to low p_{T} particles
 - cons: determine secondary contribution from MC, no momentum measurement
- → "tracklets"
 - correlate hits in two (three) detector layers to form track candidates
 - \rightarrow pros: access to lower p_T particles
 - → cons: no momentum measurement

→ tracks

- o reconstruct complete tracks
 - → pros: low fake rate, momentum measurement
 - → cons: challenge to access low p_T region

vertexing: important tool to remove fakes and background

 \rightarrow and identify if several interactions per bunch crossing

Minimum bias: hit counting

- method: count hits in pixel layer(s) → innermost pixel layer reached for p_T>30 MeV
- event selection
 - zero bias trigger \rightarrow

×

- reconstructed \rightarrow vertex (n calculation)
 - o otherwise assume nominal position
- hit selection
 - \rightarrow cut on energy deposition

Minimum bias: hit counting

HCP 2009, Evian, Nov. 15th to 20th, 2009

Minimum bias: tracklets

CMS-PAS-QCD-09-002

- tracklet: pair of hits in first two pixel layers
 - \rightarrow determine event vertex based on tracklets

- event selection
 - \rightarrow zero bias trigger
 - \rightarrow reconstructed vertex
- background subtraction
 - \rightarrow from data based on sidebands

Minimum bias: tracklets

• procedure

 \rightarrow correction factor α

o from MC

\rightarrow background fraction β

• from 'data'

→ event selection correction ξ o from MC: range 0.83 - 0.87

Source	Kelated correction factor	900GeV (%)	101ev (%)
Statistical error of α	α	1.0	1.0
Monte Carlo efficiency correction	α	0.5-2.0	0.5-2.5
Pixel hit reconstruction algorithm	α	0.1	0.1
Pixel hit reconstruction efficiency	α	5.0	5.5
Pixel hit splitting	α	1.5-3.5	1.0-2.0
Acceptance uncertainty	α	0.0-10.0	0.0-10.0
Background subtraction	β	0.5-1.5	0.5-2.0
Misalignment	α, β	1.0	2.0
Random hits from beam halo and loopers	α, β	0.1-1.5	0.1-1.0
GEANT Simulation	α, β	2.0	2.0
Effect of event pile-up	α, β	1.0	1.0
Correction on event selection	ξ	5.0	5.0
Total		7.5-13.5	8.5-13.5

√s=900 GeV (10 TeV)

η

101 17 (0/)

Trigger for minimum bias

Minimum bias: particle tracks

event selection

- → minimum bias trigger
- \rightarrow 21 reconstructed vertex
- → well reconstructed tracks with p_T> 150 MeV

necessary corrections

- → track to particle
- vertex reconstruction
 on event level
 - o on track level
- → trigger bias
 - o on event level o on track level

Minimum bias: particle tracks

• systematic uncertainties

- study assumed worse misalignment
 - than presently known due to alignment based on cosmic muon data

Name	Level	Estimated Uncertainty
Track selection cuts	Analysis	2%
Mis-estimate of secondaries	Analysis	1.5%
Vertex reconstruction bias	Reconstruction	0.1%
Misalignment	Reconstruction	6%
Beam-gas and pileup	Offline Trigger	1%
Particle composition	Generation/Simulation	2%
Diffractive cross sections (NSD sample)	Generation	4%
Total	8%	

Underlying event physics

definition

- everything except
 the hard scattering
 of interest
- phenomenology
 - multiple parton interactions
 - radiation
 - \rightarrow parton distribution functions
- broad program of measurements
 - → UE properties in variety of hard scattering processes

• jet production, Drell-Yan lepton pair production, W/Z+jet production, ...

Underlying event measurement

Underlying event structure

Jet physics

Cam/Aachen, R=1

need to define what a jet is

\rightarrow jet algorithm

o requirements: infra-red and collinear safe, ...

need to determine true jet energy

- → jet energy calibration and unfolding of energy smearing
 - o jet energy scale
 - o jet energy resolution

HCP 2009, Evian, Nov. 15th to 20th, 2009

Jet production: observables

- inclusive jet production
- di-jet production
 - azimuthal angular distribution
 - → di-jet invariant mass
 - triple differential cross-section
 - exclusive production,
 gap between jets, ...
- multi-jet production
- jet shape determination

Di-jet azimuthal decorrelation

Jet shape measurements

- global transverse thrust
 - $\rightarrow \frac{1}{2}$ for homogenous event
- $T_{\perp,g} \equiv \max_{\vec{n}_{\mathrm{T}}} \frac{\sum_{i} |\vec{p}_{\perp,i} \cdot \vec{n}_{\mathrm{T}}|}{\sum_{i} p_{\perp,i}}$

global thrust minor

deviation from thrust axis

$$T_{m,g} \equiv \frac{\sum_{i} |p_{x,i}|}{\sum_{i} p_{\perp,i}} = \frac{\sum_{i} |(\vec{p} \times \vec{n}_{B}) \times \vec{n}_{T}|}{\sum_{i} p_{\perp,i}}$$

- systematic uncertainties
 - > jet energy scale, jet energy resolution, reconstruction efficiency

sensitivity to modeling of multi-jet events

- → insensitive to jet algorithm (mid point Cone, SISCone, kt studied)
- \rightarrow input for MC tuning

Inclusive jet cross-section

event selection $d^2\sigma$ Njets C_{res} $\frac{1}{dp_{\rm T}dy} = \frac{1}{\mathcal{L} \cdot \varepsilon} \cdot \frac{1}{\Delta p_{\rm T} \cdot \Delta y}$ \rightarrow clean up (MET/ Σ ET < 0.3), jet trigger 10¹⁰ jet algorithm: SISCone 3^eσ/dp_⊤dy (fb/GeV) $0.00 \le |y| < 0.55 (\times 32)$ R=0.7, overlap threshold of 0.75 $1.10 < |y| < 1.70 (\times 16)$ $1.70 < |y| < 2.50 (\times 8)$ 10^{8} jet energy scale determination Theory relative: η intercalibration with dijets \rightarrow 10⁶ absolute: γ /Z-jet balance \rightarrow • in-situ possible up to 600 GeV (10 pb⁻¹) 10⁴ energy unsmearing via Ansatz function CMS preliminary SISCone R = 0.7 √s = 10 TeV 10^{2} Fractional Uncertainty Fractional Uncertainty CMS preliminary Total CMS preliminary Total $L dt = 10 \text{ pb}^{-1}$ Jet Energy Scale SISCone R = 0.7 SISCone R = 0.7 ----- Jet Energy Scale |y| < 0.55Luminosity 1.70 < |y| < 2.50---- Luminositv 100 200 300 1000 $\sqrt{s} = 10 \text{ TeV}$ Jet Energy Resolution Jet Energy Resolution √s = 10 TeV jet p_T (GeV) √s=10TeV systematic uncertainties jet energy scale: 10% flat in E_{T} jet energy resolution: 10% \rightarrow 100 200 300 1000 luminosity: 100 200 300 400 10% \rightarrow jet p_T (GeV) jet p₊ (GeV)

CMS-PAS-QCD-08-001

Inclusive jet cross-section

HCP 2009, Evian, Nov. 15th to 20th, 2009

Stefan Tapprogge, Johannes Gutenberg-Universität Mainz

Seite 32

Jets from cosmic muon events

Outlook

- first LHC physics run in 2010
 - \rightarrow entering a new kinematic regime (\sqrt{s} = 7 TeV up to 8-10 TeV)
- broad spectrum of QCD related measurements
 - from soft processes (e.g. minimum bias) to hard processes (e.g. jet production) and in between (e.g. underlying event)
- important early measurements (due to large cross-section)
 - need to establish precisely properties of 'standard' proton-proton interactions in this new kinematic regime
 further insight in phenomenology of strong interaction
 solid foundation for search of new physics processes

References

- > ATLAS: Expected Performance of the ATLAS Experiment
 - CERN-OPEN-2008-020 or arXiv 0901.0512
- > ATLAS: further public results
 - o <u>https://atlas-physco.web.cern.ch/atlas-physco/ATLASPubNotes.html</u>
 - o https://twiki.cern.ch/twiki/bin/view/Atlas/AtlasResults
- > CMS: "Physics TDR"
 - > CERN-LHCC-2006-001 or J.Phys. G 34 (2007) 995-1579
- > CMS: "Post Physics TDR" Results

><u>https://twiki.cern.ch/twiki/bin/view/CMS/PhysicsResults</u>

• most (simulation) studies done for $\sqrt{s} = 14$ TeV

 \rightarrow recently studies 'published' for $\sqrt{s} = 10$ TeV as well

LHC luminosity 900 GeV (scenario)

450 CoV colligiono	Energy	Safe	Very Safe
450 Gev consions	450	1 e12	1 e11
	1 TeV	2.5 e11	2.5 e10
Time limited: 5 shifts	3.5 TeV	3 e10	probe

- No squeeze
- Low intensity machine protection commissioning unlikely to be very advanced.
- ~2 weeks after first beam

Number of bunches per beam	2	4	4
Collision schedule	2-1-2-1	4-3-4-1 (?)	4-3-4-1 (?)
Particles per bunch	3 x 10 ¹⁰	4 x 10 ¹⁰	6 x 10 ¹⁰
Beam intensity*	6 x 10 ¹⁰	1.6 x 10 ¹¹	2.4 x 10 ¹¹
beta* [m]	10	10	10
Luminosity [cm ⁻² s ⁻¹]	1.1 x 10 ²⁷	5.9 x 10 ²⁷	1.3 x 10 ²⁸

LHC luminosity evolution (scenario)

Month	OP scenario	Max number bunch	Protons per bunch	Min beta*	Peak Lumi	Integrate d	% nominal	
1	Beam commissioning							
2	Pilot physics combined with commissioning	43	3 × 10 ¹⁰	4	8.6 x 10 ²⁹	~200 nb ⁻¹		
3		43	5 x 10 ¹⁰	4	2.4 x 10 ³⁰	~1 pb ⁻¹		
4		156	5 x 10 ¹⁰	2	1.7 × 10 ³¹	~9 pb ⁻¹	2.5	6
5a	No crossing angle	156	7 x 10 ¹⁰	2	3.4 × 10 ³¹	~18 pb⁻¹	3.4	200
5b	No crossing angle - pushing bunch intensity	156	1 × 10 ¹¹	2	6.9 × 10 ³¹	~36 pb ⁻¹	4.8	. Sep 14
6	Shift to higher energy: approx 4 weeks	Would a	aim for physic: with a g	s with entle	out crossing angl ramp back up in i	e in the first ins ntensity	stance	, meeting
7	4 - 5 TeV (5 TeV luminosity numbers quoted)	156	7 × 10 ¹⁰	2	4.9 × 10 ³¹	~26 pb ⁻¹	3.4	nont. LPC
8	50 ns - nominal Xing angle	144	7 x 10 ¹⁰	2	4.4 × 10 ³¹	~23 pb ⁻¹	3.1	M. Lan
9	50 ns	288	7 × 10 ¹⁰	2	8.8 x 10 ³¹	~46 pb ⁻¹	6.2	
10	50 ns	432	7 x 10 ¹⁰	2	1.3 x 10 ³²	~69 pb ⁻¹	9.4	
11	50 ns	432	9 x 10 ¹⁰	2	2.1 x 10 ³²	~110 pb ⁻¹	12	ite 38

M. Lamont, LPC meeting, Sep 14, 2009

900 GeV (pbarp) vs. 10 TeV (pp)

Perugia tuning: LHC prediction

Perugia tuning: LHC prediction

HCP 2009, Evian, Nov. 15th to 20th, 2009

Minimum bias predictions : 'Perugia' tunes

Parameter	Type	SOA-Pro	P-0	P-HARD	P-SOFT	P-3	P-NOCR	P-X	P-6
MSTP(51)	PDF	7	7	7	7	7	7	20650	10042
MSTP(52)	PDF	1	1	1	1	1	1	2.	2.
MSTP(64)	ISR	2	3	3	2	3	3	3	3
PARP(64)	ISR	1.0	1.0	0.25	2.0	1.0	1.0	2.0	1.0
MSTP(67)	ISR	2	2	2	2	2	2	2	2
PARP (67)	ISR	4 0	1.0	4 0	0.5	1.0	1.0	1.0	1.0
MSTP(70)	ISR.	2	2	0	1	0	2	2	2
PARP(62)	ISR	-	-	1.25	-	1.25	-	-	-
PARP(81)	ISR	-	-	-	1.5	-	-	-	-
MSTP(72)	ISR	0	1	1	0	2.	1	1	1
PARP(71)	FSR	4.0	2.0	4.0	1.0	2.0	2.0	2.0	2.0
PARJ (81)	FSR	0.257	0.257	0.3	0.2	0.257	0.257	0.257	0.257
PARJ(82)	FSR	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8
MSTP(81)	UE	21	21	21	21	21	21	21	21
PARP(82)	UE	1.85	2.0	2.3	1.9	2.2	1.95	2.2	1.95
PARP (89)	UE	1800	1800	1800	1800	1800	1800	1800	1800
PARP(90)	UE	0.25	0.26	0.30	0.24	0.32	0.24	0.23	0.22
MSTP(82)	UE	5	5	5	5	5	5	5	5
PARP(83)	UE	1.6	1.7	1.7	1.5	1.7	1.8	1.7	1.7
MSTP(88)	BR	0	0	0	0	0	0	0	0
PARP(79)	BR	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
PAK5 (80)	BR	0.01	0.05	0.01	0.05	0.03	0.01	0.05	0.05
MSTP(91)	BR	1	1	1	1	1	1	1	1
PARP(91)	BR	2.0	2.0	1.0	2.0	1.5	2.0	2.0	2.0
PARP(93)	BR	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
MSTP(95)	CR	б	6	б	6	6	6	6	6
PARP(78)	CR	0.2	0.33	0.37	0.15	0.35	0.0	0.33	0.33
PARP(77)	CR	0.0	0.9	0.4	0.5	0.6	0.0	0.9	0.9
MSTJ(11)	IIAD	5	5	5	5	5	5	5	5
PARJ (21)	HAD	0 31 3	0313	0 34	0.28	0313	0 313	0 313	0313
PARJ (41)	HAD	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49
PARJ(42)	HAD	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
PARJ(46)	HAD	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
PARJ (47)	HAD	1.0	10	1.0	1.0	1.0	1.0	1.0	1.0

HCP 2009, Evian, Nov. 15th to 20th, 2009

P. Skands, arXiv:0905.3418v1 [hep-ph]

MB: cross-section, efficiency, acceptance

example crosssection composition for two MC models

	Cross-see	Cross-section (mb)				
Process	PHOJET	PYTHIA				
non-diff.	69	55				
single diff.	11	14				
double diff.	4	10				
central diff.	1	-				
total inelast	ic 85	79				
elastic	35	23				
total	120	102				

efficiency of MB triggers

acceptance of MB triggers

 efficiency weighted by the fraction of the inelastic crosssection

efficiency	MBTS_1_1	MBTS_2	SP	SP & EF Tracks
Non-diffractive	99%	100%	100%	100%
Double-diffractive	54%	83%	66%	65%
Single-diffractive	45%	69%	57%	57%
Beam-gas	40%	54%	47%	40%

acceptance	MBTS_1_1	MBTS_2	SP	SP & EF Tracks
Non-diffractive	69%	70%	70%	70%
Double-diffractive	7%	10%	8%	8%
Single-diffractive	8%	12%	10%	10%

Minimum bias: track reconstruction

- track selection cuts for MB analysis
 - → p_T > 150 MeV
 - → |η| < 2.5</p>

	No. of b-layer hits ≥ 1
Quality cuts	No. of Silicon hits ≥ 5
	$ \sigma_{d_0} < 1.6 \text{ mm}$
	$ \sigma_{z_0} < 6.0 \text{ mm}$
Resolution cuts	$ \sigma_{\phi} < 0.03$
	$ \sigma_{ heta} < 0.015$
	$ \sigma_{q/p_T} < 0.0003 \; (\; { m GeV})^{-1}$
Track-to-vertex cut	$N_{\sigma} < 3$

Cut	% Cut All	% Cut Primary tracks	% Cut Secondary tracks	
b-layer hit	15.9	8.5	46.8	
cov_{d0}	11.5	6.0	34.2	
cov_{z0}	9.4	5.0	27.4	0ZU
COV_{ϕ}	8.9	5.1	24.3	202
cov_{θ}	4.9	4.2	8.2	7-20
COV_{q/p_T}	6.4	4.3	14.9	UFE
Quality	15.9	8.5	46.8	N Z
Resolution	16.7	10.9	40.4	Ľ
Q R	24.6	15.6	62.1	
Track-to-Vtx	30.7	16.9	87.8	
$\eta \mid\mid p_T$	1.2	1.3	0.9	
Total	38.6	24.6	96.5	

√s=14 TeV