

Jet and E_T^{miss} Commissioning in ATLAS

HCP2009 Evian November 2009

ATL-PHYS-SLIDE-2009-358 20 November میں

> Silvia Resconi INFN Milano (on behalf of the ATLAS Collaboration)

> > brought to you by

Outline

- Atlas calorimeter:
 - main features for jets and E_T^{miss}
- Jet and EtMiss reconstruction:
 - input calorimeter signals
- Commissioning Jets and E_T^{miss} :
 - with Cosmic Rays: noise studies, cleaning cuts
 - the challenge: understand the sources of "fake" E_T^{miss}
- Strategy for Jet calibration:
 - Global and Local calibration
 - "in-situ" Jet Energy Scale
- Strategy for E_T^{miss} reconstruction and calibration:
 - from Basic to Refined E_T^{miss}
 - "in-situ" E_T^{miss} commissioning: the road-map
- Summary

ATLAS calorimeters

Main features for jet and E_T^{Miss} reconstruction and calibration:

- Non compensating (e/h >1) :
 - Response to hadrons is lower than that to electrons and photons
 - Developed specific calibrations
- Dead material:
 - Energy loss before EM calorimeter and between EM and HAD barrel calorimeters:
 - · dead material corrections
- Different technologies and many transition regions:
 - "Crack" regions: η ≈ 1.4, 3.2
- Magnetic field bending

ATLAS Fiducial Regions

- Hadronic Calorimeter:
 - Barrel: |η| < 1.7
 - Endcap: 1.5 < |η| < 3.2
- Electromagnetic Calorimeters
 - Barrel: |η| < 1.4
 - Endcap: 1.375 < |η| < 3.2
- oni Forward: $3.2 < |\eta| < 4.9$

 $\eta = -\log(\tan(\theta/2))$

HCP2009

Silvia Resconi •

Input signals to Jets and ETmiss

- Topo-Clusters: group of calorimeter cells topologically connected
 - Noise suppression via noise-driven clustering thresholds:
 - Seed, Neighbour, Perimeter cells (S,N,P) = (4,2,0)
 - seed cells with $|E_{cell}| > S\sigma_{noise}$ (S = 4)
 - expand in 3D; add neighbours with $|E_{cell}| > N\sigma_{noise}$ (N = 2)
 - » merge clusters with common neighbours (N < S)</p>
 - add perimeter cells with $|E_{cell}| > P_{\sigma_{noise}}$ (P = 0)
 - Attempt to reconstruct single particles in calorimeter
- Towers: thin radial slice of calorimeters of fixed size
- Topo-Tower: selecting only the cells in the tower with a significant signal

Jet Reconstruction

Sequential process:

- Input signal selection:
 - TopoClusters, Towers, TopoTowers
- Jet finding:
 - The jet finding algorithm groups the collection of clusters(towers) according to geometrical and/or kinematic criteria.
 - Many algorithms studied in ATLAS:
 ⇒ recently concentrated on
 AntiKt algorithm
- Jet calibration:
 - depending on detector input signal definition, jet finder choices...
- Jet selection:
 - apply cuts on kinematics to select jets of interest

E_T^{miss} **Reconstruction**

Transverse Missing Energy:

 E_T miss = E_X miss²+ E_Y miss²

 E_x miss = - ΣEx

 E_v miss = - ΣEy

 $SumE_T = \Sigma E_T$

Sum of energy of all particles seen in the detector

E_T^{miss} is a complex event quantity:

- It is calculated adding all significant signals from all detectors:
 - Calorimeter input signals (Cells, TopoClusters):
 - in physics objects
 - not used in physics objects
 - Muons
 - Tracks in regions where Calorimeter/Muon Spectrometer are inefficient
 - Correction for energy lost in dead material

Noise studies on E_T^{miss}

- Basic E_T^{miss} studied in Random Trigger events from cosmics ray runs
- Resulting E_T^{miss} is summed from all calorimeter cells applying two different methods for noise suppressions:
 - from all Cells with $|E| > 2\sigma$ noise $\Rightarrow MET_Base$
 - from all Cells inside TopoClusters \Rightarrow MET_Topo, better noise suppression

- Distributions are consistent with Gaussian noise
- High noisy channels masked at calorimeter cell level but possibility to mask also at E_T^{miss} reconstruction level

HCP2009

Silvia Resconi

Commissioning Jet and E_T^{miss} with Cosmic Rays

- Jets and large E_T^{miss} can originate from high energy cosmic muons passing through the ATLAS calorimeter and undergoing hard bremsstrahlung
- Good agreement with MonteCarlo aside from a slight discrepancy in tails due to MC statistics and from cosmic ray air showers (not modelled in MC)

Cleaning Cuts against cosmics

- Jets from cosmics can be a background for many physics channels
- set of cleaning cuts that can almost completely eliminate it:
 - Jet EM fraction
 - typically 0 or 1 for muons undergoing bremstrahlung in (TileCal or LAr)
 - Number of clusters:
 - fewer clusters in cosmics
 - Also tracking (not shown)

Silvia Resconi

Jet Transverse Energy (GeV)

E_T^{miss} challenge with first data

Fake E_T^{miss} from fake or missing Muons

 Fake muons can be caused by jet punch-through detected as excess activity in Muon Chambers.

 Cleaning criteria: count of muon hits and of muon segments within a cone around jet axes.

Missing muons due to detector features:

- n=0: holes in Muon Spectrometer for cables, services to Inner Detector & Calorimeter.
- $|\eta| \sim 1.2$: middle muon station missing for initial data taking
- |n|>2.7: no muon coverage

 use calorimeter and track information to recover missing muons used in E_{τ}^{miss} calculation

 E_{τ}^{miss} Fake in ttbar events in the electron and muon channel: \Rightarrow large tails due to missed or fake muons

HCP2009

11

Fake E_T^{miss} from Jet Leakage

Fake E_T^{miss} in calorimeter can also be produced by mis-measurements of jets due to cracks, gaps, transition regions used for services. Crack' regions: $\eta \approx 1.4, 3.2$

- Leakage of jets entering 'crack' region $1.3 < |\eta| < 1.6$ can be detected:
 - looking for large deposits in the outermost layers of the calorimeter
 - checking the E_T^{miss} calculated from tracks found in the Inner Detector that can provide a complementary information
 - checking if E_T^{miss} is closely associated with one of the leading jets in the transverse (φ) plane
- Cleaning cuts based on those criteria could be applied⇒ analysis dependent

Strategy for Jet Calibration

Factorized multi-step approach

- Flexibility to understand corrections individually and use different techniques as they become validated with data within a same framework
- Combination of "in-situ" and Monte Carlo (MC) methods

Hadronic Calibration:

- correct for calorimeter effects: non-compensation, dead material
- ATLAS developped two different strategies: Global and Local calibration

Jet Energy Scale

Offset correction for pile-up:

subtract the average contribution to the jet energy not originating from the primary interaction

Response correction:

- Eta intercalibration: equalization of the jet response as a function of η
- Absolute energy scale: in-situ correction from gamma/Z-jet balance

Other optional corrections to improve resolution (scale unchanged):

- Layer Fraction: EM-scale jets + layer fraction, exploit longitudinal shower development
- Tracking corrections: fraction of jet momentum carried by charged tracks associated with the jet

HCP2009

Hadronic Calibration

Global approach (jet level):

Calorimeter cell energy density method:

- Use cell energy density as an estimator of the electromagnetic and hadronic component of jet showers:
 - EM showers are characterized by high energy density depositions
 - HAD showers are broader and less dense
- Cells weights depending on the cell energy density are calculated optimizing the difference between reconstructed and truth jets found using the same algorithm:
 - The weights have been determined considering QCD di-jets events

Local approach (calorimeter level):

Based on Topo-Clusters as jet constituents:

- TopoCluster classification as EM/HAD based on cluster shape variables: energy density and depth
- Hadronic weighting of calorimeter cells derived from detailed GEANT4 simulations of charged pions
- Dead material (DM) and out of cluster corrections (OOC) applied

Both methods present comparable performances in the simulation

Silvia Resconi

Global Jet Calibration Performance

Jet energy response linearity

- Global Cell weights within 2%
- largest non linearity coming from low energies

Jet energy resolution

Global Cell weights ~ 4% at high energy

"In-situ" Jet Energy Scale

- Correct and validate the energy scale of the calorimeter jet to the particle level energy scale.
- In-situ processes to define the entire jet energy scale:
 - Equalization of the jet response in η with QCD Di-jet events
 - Di-jet p_T balance uses reference jet in well calibrated (central) region to correct probe jet further away
 - Control uniformity of response on the percent level with ~ 10 pb $^{-1}$

Set the absolute energy scale with γ/Z -jet events:

 Well measured electromagnetic system balances jet res
 p_T balance used to connect the two scales:

$$B = \frac{\vec{p}_{T_{T}}^{jet_{t}}}{\vec{p}_{T}^{\gamma_{t}}} - 1$$

- Negative bias mainly due "out-of cone" losses related to the jet algorithm
- The imbalance becomes ~ 1% at 100-200 GeV
- Statistical precision of ~ 1-2% with ~ 100 pb ⁻¹
- Same method using Z-jets events but less statistics
- Precision dominated by the systematic uncertainty

HCP2009

Strategy for E_T^{miss} reconstruction and calibration

From Basic to Refined Calibrated E_T^{miss}

Basic E_T^{miss} from all calorimeter cells applying two possible noise suppression approaches:

- from all Cells with $|E|>2\sigma$ noise
- from all Cells inside TopoClusters

 \Rightarrow NO calibration, usable since day 1

Final E_T^{miss} obtained adding:

- Calibration step: two different calibrations approaches (coherent with jets):
 - Global cell energy density calibration and local hadron calibration applied
- Correction for energy lost in cryostat between EM and Had calorimeters from jets: $E_{jet}^{cryo} = w^{cryo} \sqrt{E_{EM3} \times E_{HAD}}$

Refined E_T^{miss} original approach by ATLAS based on event signal ambiguity resolution:

- sequential decomposition of reconstructed objects: electrons, photons, taus, jet, muons into basic constituents (calorimeter cells or TopoClusters) and veto of multiple contribution to guarantee no double counting in E_T^{miss} calculation
- Calibration weights applied to basic constituents depend on the type of reconstructed object
- Also TopoClusters not associated with any reconstructed objects taken into account

 \Rightarrow Most complex schema, usable after validation of reconstructed objects

Refined E_T^{miss} **Performance**

E_T^{miss} Refined Calibration provides best performances in terms of Linearity and Resolution (resolution less sensitive to calibration):

- E_T^{miss} Linearity within ~ 3% over wide E_T^{miss} range for different processes
- E_T miss Resolution: mainly depend on Σ ET in calorimeters,

well described by: Resolution = $k * \sqrt{\Sigma E_T}$ (k ~ 0.5)

Silvia Resconi

"In-situ" E_T^{miss} validation with Minimum Bias and QCD di-jets events

"In-situ" E_T^{miss} validation with $Z \rightarrow II$

- Test calibration and scale of E_T^{miss} "in-situ": expected ~ 350 evts/ pb⁻¹ Z \rightarrow ee
- Transverse momentum of the two leptons from Z balanced by hadronic recoil:

 ⇒ diagnostic plot of E_T^{miss} vs dilepton p_T projected along longitudinal axis is powerful to discover potential E_T^{miss} problems: negative offset due to miscalibration of low energy deposits in calorimeter:
 - \Rightarrow partially improved thanks to new calibration weights
 - \Rightarrow work in progress for a specific calibration for low energy deposits

The longitudinal axis defined by the vectorial sum of the 2 leptons momenta.

The perpendicular axis is placed at $\pi/2$ to the longitudinal axis.

 $\Rightarrow \mbox{With integrated luminosity 10-100pb^{-1} possibility to determine the} $``in-situ" E_T^{miss} scale with: W \rightarrow e_V transverse mass $Z \rightarrow \tau \tau \rightarrow lepton-hadron invariant m_{\tau \tau}$$

Silvia Resconi

Summary

A reliable reconstruction and calibration of jets and E_T^{miss} in ATLAS is crucial to understand Standard Model physics measurements and to discover new phenomena

The most challenging task with first data are:

- for jets \Rightarrow the establishment of the energy scale "in-situ"
- for $E_T^{miss} \Rightarrow$ the understanding of the main sources of fake E_T^{miss} and the "in-situ" validation.

Both jets and E_T^{miss} foresee to apply a step by step approach for calibration to guarantee flexibility and robustness:

- for jets \Rightarrow a factorized set of corrections has been prepared
- for E_T^{miss} ⇒ an approach of increasing complexity is ready: from Basic E_T^{miss} to Refined E_T^{miss}

Measuring jets and E_T^{miss} is challenging but ATLAS has developed techniques and strategies to be ready for commissioning with real collisions

Silvia Resconi

Back up

Jet Algorithms

"Cone" algorithms:

Geometrically motivated jet finders:

- Seeded fixed cones (R=0.4,0.7)
 - Collect particles or detector
 - signals into fixed sized cone of chosen radius R

 $R = \sqrt{\Delta \eta^2 + \Delta \varphi^2}$

- Basic parameters are seed p_T threshold and cone size
- Seedless fixed cones (R=0.4,0.7)
 - No seeds
 - Collect particles around any other particle into a fixed cone of chosen radius

All Cone algorithms require a split-merge procedure to define non overlapping exclusive jets.

<u>"Cluster" algorithms:</u>

Start from particles or detector signals and perform an iterative pair-wise clustering to build larger objects. Attempt to undo QCD parton fragmentation:

- kT: with clustering sequence using p_T and distance parameter (start from the softer components)
- Anti-kT using p_T and distance parameter with inverted sequence (start from the harder components)
- ATLAS recently has decided to adopt the AntiKt algorithm as default (D=0.4)

From Basic to Final Calibrated E_T^{miss}

- ⇒ Basic E_T^{miss} from all Calorimeter cells with two possible noise suppression approaches (MET_Base, MET_Topo)
- \Rightarrow Final E_T^{miss} adding calibration step plus contribution from muons and for dead material (MET_Final):
 - Different calibrations approaches (coherent with jets):
 - Global cell energy density calibration and local hadron calibration applied
 - Correction for energy lost in cryostat between EM and Had calorimeters (MET_Cryo) from jets: $E_{jet}^{cryo} = w^{cryo} \sqrt{E_{EM3} \times E_{HAD}}$
 - Contribution from muons (MET_Muon)

Refined Calibrated E_T^{miss}

- Based on all reconstructed physics objects (e/ γ , τ , b-jet, jet, μ , ...)
- Most complex schema to apply after validation of reconstructed objects:
 - After particle identification, decomposition of each object into constituent Calorimeter Cells
 - Overlap removal done at cell level
 - Cell calibration weights depend on the type of the reconstructed object (e/ γ , τ , b-jet, jet, μ ...) they belong to
 - Also TopoClusters not in reconstructed objects are taken into account

"In-situ" E_T^{miss} scale with $Z \rightarrow \tau \tau \rightarrow$ lep-had

- \Rightarrow Determination of the E_{T}^{miss} scale with invariant $m_{_{\tau\tau}}$:
 - Estimate background "in-situ" using same sign (SS) events:
 - signal events have opposite sign (OS) lepton and $\tau\text{-jet}$
 - in 100 pb⁻¹ invariant $m_{\tau\tau}$ mass reconstructed with an error of less then 1 GeV
 - taking into account only statistical error \Rightarrow ${\sf E}_{T}^{miss}$ scale with a precision of ~3 %
 - taking into account systematic effects \Rightarrow due to subtraction of the same sign (SS) events and the stability of the fit, E_T^{miss} scale with a precision of ~ 8 %

• An other possibility to determine the EtMiss scale from $W \rightarrow e_V$ transverse mass HCP2009 Silvia Resconi

