
Elastic and Diffractive Scattering after AdS/CFT

Richard Brower1, Marko Djurić 2, Chung-I Tan2∗
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At high energies, elastic hadronic cross sections are believed to be dominated by vacuum
exchange. In leading order of the 1/Nc expansion, this exchange process has been identified
as the BFKL Pomeron or its strong AdS dual, the closed string graviton [1]. However, the
difference of particle anti-particle cross sections is given by a so-called Odderon carrying
C = -1 quantum numbers identified in weak coupling with odd numbers of exchanged
gluons. Here we show that the dual description associates this with the Neveu-Schwartz
(Bµν) sector of closed string theory. We also discuss the extension of the strong coupling
treatment to central diffractive Higgs production at LHC.

1 Introduction

The subject of near-forward high energy scattering for hadrons has a long history. The tradi-
tional description of high-energy small-angle scattering in QCD has two components — a soft
Pomeron Regge pole associated with exchanging tensor glueballs, and a hard BFKL Pomeron at
weak coupling. On the basis of gauge/string duality, a coherent treatment of the Pomeron was
provided [1]. These results agree with expectations for the BFKL Pomeron at negative t, and
with the expected glueball spectrum at positive t, but provide a framework in which they are
unified [2]. Therefore, a firm theoretical foundation for Pomeron in QCD has been established.
It is now possible to identify a dual Pomeron as a well-defined feature of the curved-space string
theory [1].

We focus here on the recent developments based on Maldacena’s weak/strong duality,
(AdS/CFT), relating Yang-Mills theories to string theories in (deformed) Anti-de-Sitter space [1,
3, 4, 5]. The application of this duality to diffractive scattering and the Pomeron physics rep-
resent an important area where a connection with the string-theory-based techniques can be
made. Furthermore, it is now possible to extend this treatment to central diffractive production
of Higgs at LHC.

In the large ’t Hooft coupling limit, Pomeron can be considered as a Reggeized Massive
Graviton, propagating in a 5-dimensional curved space, the so-called AdS5, where both the IR
(soft) Pomeron and the UV (BFKL) Pomeron are dealt in a unified single step. The connec-
tion with the stringy aspects in a five-dimensional description is indeed very direct. In gauge
theories with string-theoretical dual descriptions, the Pomeron emerges unambiguously. In-
deed, Pomeron is directly related to the graviton and its higher spin partners on the leading
(five-dimensional) Regge trajectory. In AdS/CFT, confinement is associated with a deformed
AdS5 geometry having an effective horizon, e.g., that for a black hole. The solution to this is
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unknown and represents the major theoretical challenge in model-building. Each model leads
to certain unique signature. LHC data can provide guide and direction in this endeavor.

2 Pomeron and QCD Parameter-Space

It is useful to take a step back in examining high energy scattering in QCD. From a theoretical
stand point it is useful to consider a 3-parameter space varying the number of colors (Nc), the
’t Hooft coupling (λ = g2Nc), and the virtuality of an external probe 1/Q, e.g., that of a virtual
photon.

QCD
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1 / 3

1 /N c  =  0

Q  ~  1/z

Low−Nuissinov
BFKL BPST AdS Graviton

2  N c

Figure 1: (a) The Pomeron in QCD viewed as a function of colors (Nc), the ’t Hooft coupling
(λ = g2Nc), and the resolution (virtuality: Q ∼ 1/z) of the probe. (b) Two-gluon exchange as
Low-Nussinov Pomeron.

Thus diffractive scattering (or Pomeron exchange) in QCD can now be considered in two
steps. First one may consider the leading contribution in the 1/Nc expansion holding fixed the ’t
Hooft coupling λ = g2Nc. For example, instead of Nc = 3, the leading term for the Regge limit
of 2-to-2 scattering in the this limit is the exchange of a network of gluons with the topology of
a cylinder in the ’t Hooft topological expansion or, in string language, the exchange of a closed
string. This gives rise to what we call the “bare Pomeron” exchange. Taking into account high
order terms in the 1/Nc leads to two effects: (1) The cylinder diagrams includes closed quark
loops, leading to qq pairs or multi-hadron production via the optical theorem dominated by
low mass pions, kaon etc. (2) The multiple exchange of the bare Pomeron which includes the
eikonal corrections (or survival probability) and triple-Pomeron and higher order corrections
in a Reggeon calculus. We will focus primarily on the “bare Pomeron” sector and will discuss
only briefly higher order effect due to eikonalization.

In weak coupling coupling summations where λ � 1 and Nc large, the leading singularity
(prior to full unitarization) is at j0 = 1 + (ln 2/π2) λ where λ = g2Nc is the ’t Hooft coupling.
Indeed, in the limit λ → 0, this so-called BFKL Pomeron reduces to the Low-Nussinov Pomeron,
i.e., two-gluon exchange, as depicted in Fig. 1b. When this description is adequate, hadronic
cross sections are expected to rise as a small power sj0−1 until unitarity forces compliance with
the Froissart bound. However there is an additional probe of the “Pomeron” as a function of
virtuality Q2 in off-shell photon scattering.

It is generally acknowledged that diffractive scattering is intrinsically a non-perturbative
phenomenon. In the limit where the ’t Hooft coupling is large, weak coupling calculations
become unreliable. In Ref. [1], it has been shown that the leading singularity in strong coupling
in the conformal limit approached j = 2. In the language of the AdS/CFT, Pomeron is the
graviton pole in the 5-dim AdS space where the AdS radius r serves the 5th dimension. (In
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what follows, this will be referred to as the strong coupling BPST Pomeron, or simply the
BPST Pomeron.)

One of the more interesting developments of the BPST Pomeron is the recognition that
the virtuality of an external probe, 1/Q, can be identified with the AdS radius, z = 1/r.
Conformal invariance, which allows a simultaneous scale transformations in the transverse size
and the probe scale, can now be encoded as the isometry of the transverse Euclidean AdS3.

3 Forward Scattering, Gauge/String Duality, and

Confinement

For conformally invariant gauge theories, the metric of the dual string theory is a product,

AdS5 × W , ds2 =
(

r2

R2

)
ηµνdxµdxν +

(
R2

r2

)
dr2 + ds2

W , where 0 < r < ∞. For the dual to

N = 4 super-symmetric Yang-Mills theory the AdS radius R is R2 ≡
√

λα′ = (g2
YMN)1/2α′ ,

and W is a 5-sphere of this same radius. We will ignore fluctuations over W and also assume
that λ � 1, so that the space-time curvature is small on the string scale, and g2

Y M � 1 so that
we can use string perturbation theory. (See [1, 3, 4] for more references.)

The fact that 5-dim description enters in high energy collision can be understood as follows.
In addition to the usual LC momenta, p± = p0 ± pz (2d), and transverse impact variables,
~b (2d), there is one more “dimension”: a “resolution” scale specified by a probe, e.g., 1/Q2

of virtual photon in DIS, (see Fig. 2a.) Because of conformal symmetry, these 5 coordinates
transform into each others, leaving the system invariant. In the strong coupling limit, conformal
symmetry is realized as the SL(2, C) isometries of Euclidean AdS3 subspace of AdS5, where r
can be identified with Q2.

**(Q
2
)
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b
'

Figure 2: (a) Intuitive picture for AdS5 kinematics. (b) Schematic representation of J-plane
singularity structure. (c) Schematic form of ∆-j relation for λ � 1 and λ � 1.

One important step in formulating the dual Pomeron involves the demonstration [6] that
in exclusive hadron scattering, the dual string theory amplitudes at wide angle, due to the
red-shifted local-momenta, s → s̃ = (R/r)2s and t → t̃ = (R/r)2t, give the power laws that are
expected in a gauge theory. It was also noted that at large s and small t that the classic Regge
form of the scattering amplitude should be present in certain kinematic regimes [6]. Equally
important is the fact that, with confinement, transverse fluctuations of the metric tensor GMN

in AdS acquire a mass and can be identified with a tensor glueball [7, 8]. It was suggested in [8]
that, at finite λ, this will lead to a Pomeron with an intercept below 2. That is, Pomeron can
be considered as a Reggeized Massive Graviton.

For a conformal theory in the large Nc limit, a dual Pomeron can always be identified with
the leading eigenvalue of a Lorentz boost generator M+− of the conformal group [3]. The
problem reduces to finding the spectrum of a single J-plane Schrödinger operator. One finds
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that, in the strong coupling limit, conformal symmetry requires that the leading C = +1 Regge

singularity is a fixed J-plane cut, j
(+)
0 = 2 − 2/

√
λ For ultraviolet-conformal theories with

confinement deformation, the spectrum exhibits a set of Regge trajectories at positive t, and a
leading J-plane cut for negative t, the cross-over point being model-dependent. (See Fig. 2b.)
For theories with logarithmically-running couplings, one finds a discrete spectrum of poles at
all t, with a set of slowly-varying and closely-spaced poles at negative t.

4 Conformal Pomeron, Odderon and Analyticity

At high-energy, analyticity and crossing lead to C = ±1 vacuum exchanges, the Pomeron
and the Odderon. The qualitative picture for Pomeron exchange in weak coupling [9] has
been understood for a long time, in leading order expansion in g2

Y M and all order sum in
g2

Y M log(s/s0). In the conformal limit, both the weak-coupling BFKL Pomeron and Odderons

correspond to J-plane branch points, e.g., the BFKL Pomeoron is a cut at j
(+)
0 , above j = 1.

Two leading Odderons have been identified. (See [4, 10] for more references.) Both are branch
cuts in the J-plane. One has an intercept slightly below 1 [11], and the second has an intercept
precisely at 1 [12]. These are summarized in Table 1.

In the strong coupling limit, as we have already mentioned above, conformal symmetry

dictates that the leading C = +1 Regge singularity is a fixed J-plane cut at j
(+)
0 = 2− 2/

√
λ +

O(1/λ). As λ increases, the “conformal Pomeron” moves to j = 2 from below, approaching the
AdS graviton. We have recently shown [4] that the strong coupling conformal odderons are again
fixed cuts in the J-plane, with intercepts specified by the AdS mass squared, m2

AdS, for Kalb-

Ramond fields [13], j
(−)
0 = 1−m2

AdS/2
√

λ + O(1/λ) . Interestingly, two leading dual odderons
can be identified, parallel the weak-coupling situation. One solution has m2

AdS,(1) = 16. There

is also a second solution where m2
AdS,(2) = 0. We outline below how these features emerge in

Gauge/String duality.

Weak Coupling Strong Coupling

C = +1: Pomeron j
(+)
0 = 1 + (ln 2) λ/π2 + O(λ2) j

(+)
0 = 2 − 2/

√
λ + O(1/λ)

C = −1: Odderon j
(−)
0,(1) ' 1 − 0.24717 λ/π + O(λ2) j

(−)
0,(1) = 1 − 8/

√
λ + O(1/λ)

j
(−)
0,(2) = 1 + O(λ3) j

(−)
0,(2) = 1 + O(1/λ)

Table 1: Pomeron and Odderon intercepts at weak and strong coupling.

4.1 Flat-Space Expectation for C = ±1 Sectors

String scattering in 10-d flat-space at high energy leads to a crossing-even and crossing-odd

amplitudes, T (±)
10 (s, t) → f (±)(α′t)(α′s)α±(t) , where α+(t) = 2 + α′t/2 and α−(t) = 1 + α′t/2

respectively. That is, at t = 0, a massless state with integral spin is being exchanged, e.g., for
C = +1, one is exchanging a massless spin-2 particle, the ubiquitous graviton. Of course, the
coefficient functions, f (±)(α′t), are process-dependent.

Massless modes of a closed string theory can be identified with transverse fluctuations coming
from a left-moving and a right-moving level-one oscillators, e.g., states created by applying
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a†
1,I ã

†
1,J to the vacuum, i.e., a†

1,I ã
†
1,J |0; k+, k⊥〉, with k2 = 0. Since a 10-dim closed string

theory in the low-energy limit becomes 10-dim gravity; these modes can be identified with
fluctuations of the metric GMN , the anti-symmetric Kalb-Ramond background BMN [13], and
the dilaton, φ, respectively. It is important to note that we will soon focus on AdS5, i.e., one
is effectively working at D = 5. With D = 5, the independent components for GMN and BMN

are 5 and 3 respectively, precisely that necessary for having (massive) states with spin 2 and
1 [8]. For oriented strings, it can be shown that the symmetric tensor contributes to C = +1
and the anti-symmetric tensor contributes to C = −1.

4.2 Diffusion in AdS and DGLAP Connection

Let us next introduce diffusion in AdS. We will restrict ourselves to the conformal limit.
Regge behavior is intrinsically non-local in the transverse space. For flat-space scattering in
4-dimension, the transverse space is the 2-dimensional impact parameter space, ~b. In the Regge
limit of s large and t < 0, the momentum transfer is transverse. Going to the ~b-space, t → ∇2

b ,
and the flat-space Regge propagator, for both C = ±1 sectors, is nothing but a diffusion kernel,
〈 ~b | (α′s)α±(0)+α′t∇2

b/2 | ~b′ 〉, with α+(0) = 2 and α−(0) = 1 respectively. In moving to a ten-
dimensional momentum transfer t̃, we must keep a term coming from the momentum transfer
in the six transverse directions. This extra term leads to diffusion in extra-directions, i.e., for
C = +1,

α′ t̃ → α′∆P ≡ α′R2

r2
∇2

b + α′∆⊥P .

The transverse Laplacian is proportional to R−2, so that the added term is indeed of order
α′/R2 = 1/

√
λ. To obtain the C = +1 Regge exponents we will have to diagonalize the

differential operator ∆P . Using a Mellin transform,
∫ ∞
0

ds̃ s̃−j−1, the Regge propagator can be
expressed as

s̃2+α′ t̃/2 =

∫
dj

2πi
s̃j G(+)(j) =

∫
dj

2πi

s̃j

j − 2 − α′∆P /2

where ∆P ' ∆j , the tensorial Laplacian. Using a spectral analysis, it leads to a J-plane cut at

j
(+)
0 .

A similar analysis can next be carried out for the C = −1 sector. We simply replace the
Regge kernel by

s̃1+α′ t̃/2 =

∫
dj

2πi
s̃j G(−)(j) =

∫
dj

2πi
s̃j(j − 1 − α′∆O/2)−1 .

The operator ∆O(j) can be fixed by examining the EOM at j = 1 for the associated super-
gravity fluctuations responsible for this exchange, i.e., the anti-symmetric Kalb-Ramond fields,
BMN . One finds two solutions,

G(−)(j) =
1

[j − 1− (α′/2R2)(�Maxwell − m2
AdS,i)]

, i = 1, 2 ,

where �Maxwell stands for the Maxwell operator. Two allowed values are m2
AdS,1 = 16 and

m2
AdS,2 = 0. A standard spectral analysis then lead to a branch-cut at j

(−)
0 .
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It is also useful to explore the conformal invariance as the isometry of transverse AdS3.
Upon taking a two-dimensional Fourier transform with respect to q⊥, where t = −q2

⊥, one finds
that G(±) can be expressed simply as

G(±)(z, x⊥, z′, x′⊥; j) =
1

4πzz′
e(2−∆(±)(j))ξ

sinh ξ
, (1)

where cosh ξ = 1 + v, v = [(x⊥ − x′⊥)2 + (z − z′)2]/(2zz′) the AdS3 chordal distance, and

z = R2/r, and ∆(±)(j) = 2 +
√

2 λ1/4

√
(j − j

(±)
0 ) is a J-dependent effective AdS5 conformal

dimension [1, 3, 4]. The ∆ − j curve for ∆(±) is shown in Fig. 2c.

5 Unitarity, Absorption, Saturation and the Eikonal Sum

For simplicity, we will focus here on the C = +1 sector, assuming all crossing odd amplitudes
vanish. It has been shown in Refs. [3, 5] that, in the strong coupling limit, a 2-to-2 ampli-
tude, A(s, t), in the near-forward limit can be expressed in terms of a “generalized” eikonal
representation,

A2→2(s, t) =

∫
dzdz′P13(z)P24(z

′)
∫

d2b e−ib⊥q⊥Ã(s, b⊥, z, z′) , (2)

where Ã(s, b⊥, z, z′) = 2is
[
1 − eiχ(s,b⊥,z,z′)

]
, and b⊥ = x⊥ − x′⊥ due to translational invari-

ance. The probability distributions for left-moving, P13(z), and right moving, P14(z) particles
are products of initial (in) and final (out) particle wave functions. The eikonal, χ, can be re-
lated to the strong coupling Pomeron kernel [1, 3], and can be expressed as the inverse Mellin
transform of G(+)(j, x⊥ − x′⊥, z, z′).

We note the salient feature of eikonal scattering locally in transverse AdS3, and the near-
forward field-theoretic amplitude is obtained from a bulk eikonal amplitude after convolution.
It is useful to focus our attention on the properties of the bulk eikonal formula Ã(s, b⊥, z, z′)
itself. For χ real, it is elastic unitary. On the other hand, when χ is complex, (with Imχ > 0),
one has inelastic production. Absorption and saturation can now be addressed in this context.
It is also important to note that, for Froissart bound, confinement is crucial. Discussion on
these and related issues can be found in Ref. [3]. For applications of [1, 3, 4, 5] for DIS, see [14].
For a more proper treatment while taking into account of confinement effects, see [15].

6 Diffractive Production of Higgs at LHC

A promising production mechanism for Higgs meson at the LHC involves the forward proton-
proton scattering pp → pHp. Because of the exceptional signal to background discrimination,
this may even be a discovery channel depending of course on the production cross section. The
theoretical estimates generally involve the assumption of perturbative contribution of gluon
fusion in the central rapidity region [16]. In most estimates the Pomeron is effectively replaced
by two-gluon exchange, e.g., the Low-Nussinov Pomeron. In spite of the plausibility of this
approach, there are considerable uncontrolled uncertainties.

We have begun the analysis in strong coupling based on the AdS/CFT correspondence and
conformal strong coupling BPST Pomeron [1] This amounts to a generalization of our previous
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Figure 3: (a) kinematics for single-Regge limit for 2-to-2 amplitudes, (b) Double-Regge kine-
matics for 2-to-3 amplitudes. (c) Cylinder Diagram for large Nc Higgs Production.

AdS for 2-to-2 amplitudes to one for 2-to-3 amplitudes, e.g., from Fig. 3a to Fig. 3b. A more
refined analysis for Higgs production involves a careful treatment for that depicted in Fig. 3c.
While this also will have its uncertainties, a careful comparison between weak and strong
coupling Pomeron should give better bounds on these uncertainties. Ultimately the strong
coupling approach calibrated by comparison with experimental numbers for double diffraction
heavy quark production, can provide increasingly reliable estimates for Higgs production.

Focusing only on contributions from Pomeron exchange, a flat-space 2-to-2 amplitude in the
Regge limit can be expressed as (Fig. 3a)

A(s, t) ' β13(t)
1 + e−iα(t)

sin πα(t)
(α′s)α(t)β24(t) .

For a 5-point amplitude, there are five independent invariants, Fig. 3b. In the kinematic
region for diffractive scattering where transverse momenta of all produced particles are limited,
κ ≡ s1s2/s is fixed, with κ ' m2

H + q2
⊥, in the frame where incoming particles are longitudinal.

Using a double J-plane representation, in the double-Regge region, a 2-to-3 amplitude can be
expressed using a double-J-plane representation, as

T (s, s1, s2, t1, t2) '
∫ i∞

−i∞

dj1
2πi

∫ i∞

−i∞

dj2
2πi

ξ(j1) (α′s1)
j1 ξ(j2) (α′s2)

j2β13(t1)

· Gj1 (t1)V(t1, t2, κ)Gj2(t2)β24(t2)

where ξ is the signature factor and V is the Pomeron-Particle-Pomeron coupling.
To move on to AdS, we simply need to replace Gj(t) and V(t1, t2, κ) by corresponding

generalizations. The essential new feature is a new vertex, V , depicted in Fig. 3c, appropriate
for a diffractive central Higgs production [17]. From m0 � mH � mt, the Higgs vertex is
replaced by a source for F a

µνF a
µν at the boundary of AdS (z → 0). The standard AdS/CFT

dictionary leads to a bulk to boundary propagator ∆(x − x′, z) for the interior of AdS to this
point so that this vertex can be approximated by a factorized product. In a subsequent analysis
we will add corrections due to (i) conformal symmetry breaking, (ii) the proton impact factor
and (iii) eikonal “survival” probability to obtain phenomenological results for double Pomeron
Higgs production at the LHC. These will be reported in future publications [17].
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