
C
ER

N
-A

TS
-2

00
9-

12
1

01
/1

1/
20

09

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
CERN – ACCELERATORS AND TECHNOLOGY SECTOR

CERN‐ATS‐2009‐121

DIAGNOSTIC AND MONITORING CERN ACCELERATOR CONTROLS
INFRASTRUCTURE: THE DIAMON PROJECT

FIRST DEPLOYMENT IN OPERATION

Mark Buttner, Pierre Charrue, Joel Lauener, Maciej Sobczak
CERN, Geneva, Switzerland

Abstract

The CERN accelerator controls infrastructure spans over several machines and several
thousands of devices are used to collect and transmit piece of control data. Each of
these remote devices might fail and therefore prevent correct operation. A complete
diagnostic and monitoring infrastructure has been developed in order to provide
Operation crews with complete and easy to use graphical interface presenting the state
of the controls system. Simple agents running in each surveyed item periodically
report monitoring information to a central server. Graphical JAVA clients in the
operation centers subscribe to this monitoring data and display a view of the current
state of the machines. Mouse actions from these clients allows for diagnostic
commands to be sent to the agent to get additional details or to repair a faulty
situation. This presentation will describe the overall architecture of DIAMON, present
the different agents running in the controls system and a few views of the graphical
clients. The outcome of the first months in operation of the DIAMON tools will also
be presented. Finally, the future plans will be exposed.

Presented at the International Conference on Accelerator and Large Experimental

Physics Control System (ICALEPCS2009) – October 12-16, 2009, Kobe, Japan

Geneva, Switzerland, November 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/44234996?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DIAGNOSTIC AND MONITORING CERN ACCELERATOR CONTROLS
INFRASTRUCTURE: THE DIAMON PROJECT

FIRST DEPLOYMENT IN OPERATION

Mark Buttner, Pierre Charrue, Joel Lauener, Maciej Sobczak, CERN, Geneva, Switzerland

Abstract

The CERN accelerator controls infrastructure spans
over several machines and several thousands of devices
are used to collect and transmit piece of control data.
Each of these remote devices might fail and therefore
prevent correct operation. A complete diagnostic and
monitoring infrastructure has been developed in order to
provide Operation crews with complete and easy to use
graphical interface presenting the state of the controls
system. Simple agents running in each surveyed item
periodically report monitoring information to a central
server. Graphical JAVA clients in the operation centers
subscribe to this monitoring data and display a view of
the current state of the machines. Mouse actions from
these clients allows for diagnostic commands to be sent to
the agent to get additional details or to repair a faulty
situation. This presentation will describe the overall
architecture of DIAMON, present the different agents

running in the controls system and a few views of the
graphical clients. The outcome of the first months in
operation of the DIAMON tools will also be presented.
Finally, the future plans will be exposed.

OVERALL ARCHITECTURE OF DIAMON
DIAMON is a typical 3-tier application,

communicating over JMS (Java Messaging Service). The
“data acquisition tier” (agents) collects the data to be
monitored, sends it to a middle-tier based on SonicMQ
message brokers and a business logic implemented using
OC4J (the Oracle application server for J2EE). The
presentation tier is a Java Swing application receiving the
information from the middle-tier over JMS. Figure 1
gives an overview of all components of the DIAMON
application.

Figure 1: Overview of the DIAMON architecture. Agents (right side of the diagram) send JMS messages to the brokers,
which make the information available to the business logic (oc4j-diam) and various clients.

The central component of the DIAMON architecture is
the cluster of JMS brokers (center of Figure 1). Various
agents (see next paragraph) inform the brokers about the
state of the equipment they monitor. The business logic
(“oc4j-diam”) validates the messages against the
configuration data, and prepares the information for use
by the client applications, which are:

• The graphical user interface
• The “router”, which forwards certain problems to

the alarm system.
• The “notifier” in charge of sending mails and SMS

messages to subscribers
• The dynamic configuration server (“jdaemon”)

The agents, auxiliary clients (i.e. notifier, router, etc.) and
graphical user interface were developed especially for
DIAMON. The middle-tier (broker and business logic)
was provided by the LASER project [3].

DIAMON AGENTS
DIAMON agents are divided in two categories:
• Embedded agents
• Centralized agents

The embedded agents do run on the device they

monitor. They collect data about the general system health
state (mainly operating system parameters like memory
usage, CPU load, etc.) as well as data about connected
hardware (timing boards, World FIP bus). As it requires to
install software on the equipment to be monitored, this
kind of agent is installed on computers only. DIAMON
actually uses embedded agents for computers running
various flavours of Linux, as well as LynxOS 4.0.

Centralized agents run on a server and poll lists of

devices to obtain the information to be monitored. This
approach is used to monitor controls infrastructure
equipment, where software can not easily be installed,
like PLCs, video converters, power supplies etc.

Technically, all DIAMON agents use the same API (the

“DIAMON lib”) which encapsulates all communication
aspects. The library is available for Java (used for
centralized agents) and C++ (used the embedded agents
and the centralized agent for Schneider and Siemens
PLCs). Agent developers need to extend a framework by
calling a method for initialization (identify the equipment
monitored), for publishing the status of the monitored
equipment and provide on request additional details.
Certain agents are able to execute commands like
restarting a process. The usage of the API is documented
on our wiki pages [2].

GRAPHICAL CLIENTS
The data is provided to the end users (mainly the

operators in the CERN Control Center) through two
different GUIs (Graphical User Interfaces), both based on
Java Swing and therefore able to run on almost all
platforms (Linux and Windows at CERN).

The Standalone GUI
The main flavour of DIAMON GUI is the “standalone”

version, which is designed to cover all functionality and
make the use as simple as possible (Figure 1.)

Figure 2: Diamon GUI.

The application window contains three separate panels:
• The tree on the left-hand side provides a

hierarchical view on the monitored equipment, for
instance with 3 levels: the accelerator, the
controlling computer, the connected equipment.
Users can configure the levels and content of the
tree..

• The top right panel displays the full list of
equipment corresponding to the element selected in
the tree. The background color clearly displays the
status of each item (green: OK; yellow: warning,
red: error).

• The bottom right panel (the “Detail panel”)
displays all details for the element selected in the
left hand-side panel (if the selected element is a
leaf node) or in the top right panel.

A plugin architecture allows to develop dedicated
display components, providing an optimum
presentation of the data. For instance, a plugin for
WoldFIP monitoring is available (see Figure 3), which
displays individually the status of each device
connected to the bus.

Figure 3: WorldFIP plugin in the Diamon GUI.

The DIAMON Panel in the LASER Console
Certain operators, especially those having already lots

of open windows on their screen, prefer a single
application providing both alarms and monitoring
information. By configuration, a DIAMON panel can
appear in the LASER alarms console (Figure 4).

Figure 4: LASER alarms console with DIAMON panel.

In this configuration, the DIAMON panel inserted at

the bottom of the LASER is the same as the top right
panel of the standalone GUI, with a slightly modified
behaviour: As no separate details panel is available, the
user can not simply select an item: A double-click is
required, which displays the detail panel in the same
location.

OUTCOME OF EXPLOITATION
DIAMON is now used in the CERN Control Center for

more than 1 year. Approximately 1’500 computers, 300
PLCs, 300 fan trays and many other equipments are
actually monitored by DIAMON. Almost the whole
controls infrastructure of CERN is visible in the
application in a unified way. The tool provides rich
functionality: ranging from the display of equipment
status to the possibility to reboot frontend computers or
restart failing processes. Of course, possible
improvements were also reported by the operators:

• The start up time of the DIAMON GUI is
perceived as being too long.

• The software suffers from similar problems than
LASER [3], which is used by DIAMON as
communication infrastructure. For instance,
database and network failures can affect the
availability of DIAMON.

FUTURE PLANS
The future plans for DIAMON are based on the

weaknesses observed during exploitation: the application
must become more robust, faster in some areas and
should make a better use of CERN standard components.

To achieve this, we mainly plan to develop a new
middle-tier to replace LASER. Key elements to the new
development should be:

• completely isolate the middle-tier from the
database (no direct connection)

• the data-tier to middle-tier communication should
use JAPC [4] (Java API for parameter control)
instead of the pure JMS approach. JAPC is the
recommended API to collect data from devices in
CERN’s controls infrastructure

• implement the possibility to load/replace
definitions in the configuration without restarting
the server

• optimize the way configuration data is structured,
in order to reduce the start up time of the
DIAMON GUI.

REFERENCES
[1] http://wikis.cern.ch/display/alarms/home
[2] http://wikis.cern.ch/display/DIAMON/Home
[3] K. Sigerud, N. Stapley, M.. Misiowiec, T.Zygula,

“First operational experience with LASER”,
ICALEPCS 2005.

[4] http://wikis/display/JAPC/Home

