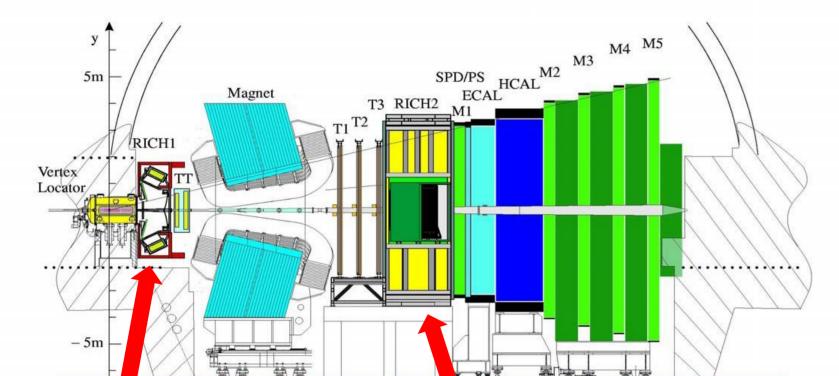
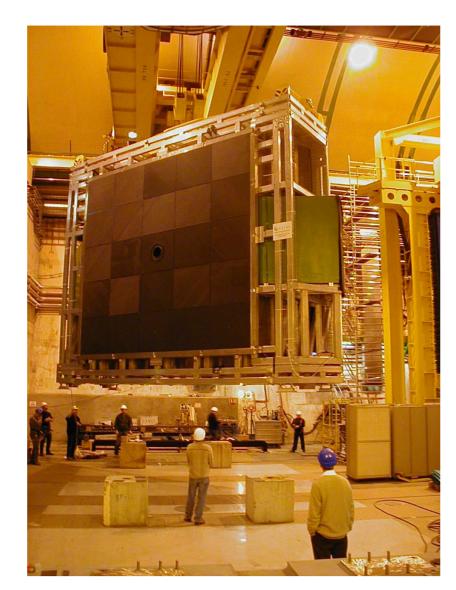
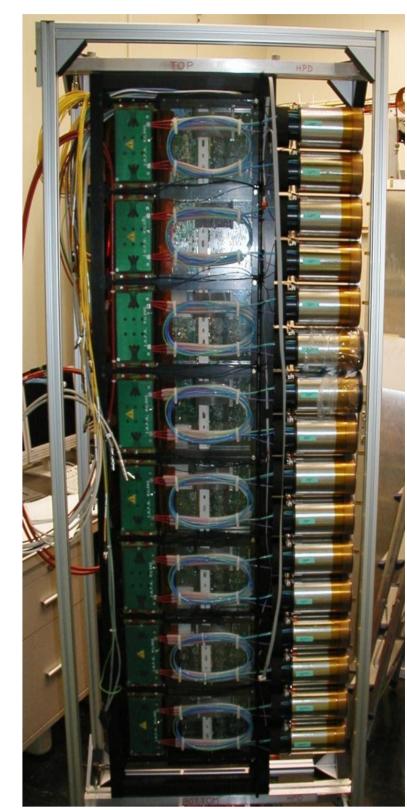


The LHCb RICH Detector Control System


Antonis Papanestis (RAL/STFC)


on behalf of the RICH collaboration

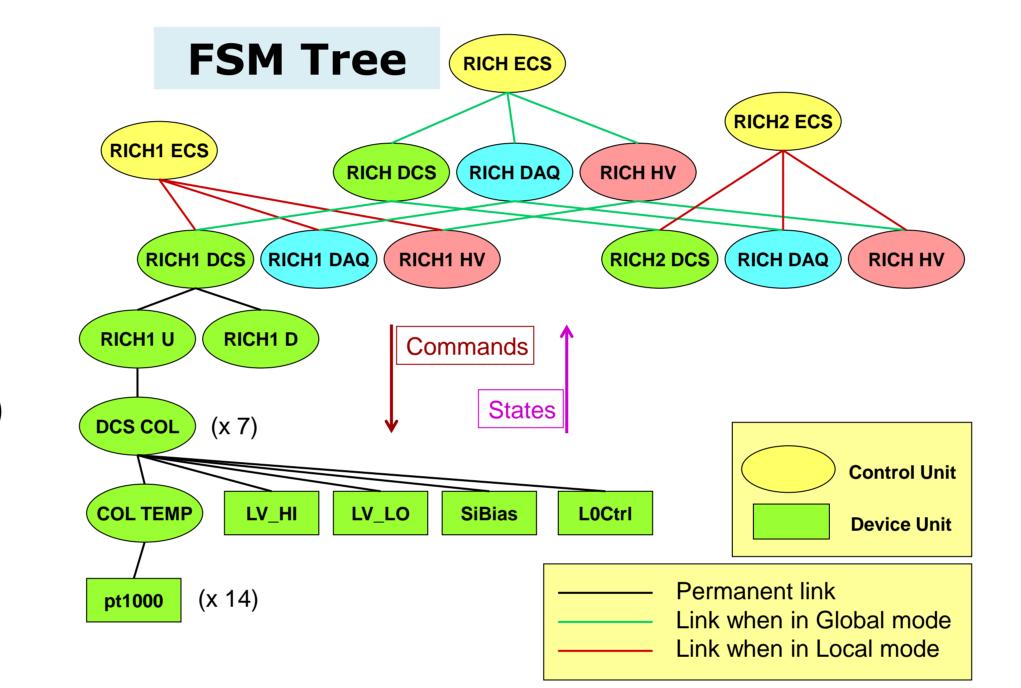

International Conference on Accelerator and Large Experimental Physics Control Systems (ICALEPCS 2009) October 12-16 2009, Kobe, Japan

The LHCb RICH detectors

The RICH system (two RICH detectors and three radiators) provides particle identification by measuring the angle of Cherenkov light as charged particles pass through different radiators. This information can be used to differentiate between the various decay modes of the B hadrons.

RICH-1 Sm 10m 15m 20m z

The LHCb experiment at the Large Hadron Collider (CERN) will study differences between matter and anti-matter by precise measurements of the decays of B particles. The RICH-2 vessel being installed in the LHCb experimental area.


The basic light sensitive detector unit is a Hybrid Photon Detector (HPD) column that accommodates 14 or 16 HPDs with all the required electronics for power, high voltage (18 kV) and Level0 trigger operation.

The Detector Control System

The RICH DCS has been built using:

SCADA System - PVSSII for:

- Device Description (Run-time Database)
 Device Access (OPC, Profibus, drivers)
 Alarm Handling (Generation, Filtering, Masking, etc)
 Archiving, Logging, Scripting, Trending
 User Interface Builder
- Alarm Display, Access Control, etc.
- □SMI++* providing:
 - Abstract behavior modeling (Finite State Machines)

FSM operation panel

LHCD	System	State	Fri 11-Sep-2009 15:33
<u>гнср</u>	DCS_COL_A0	READY -	root
Sub-System	State	Voltage Curr	
LV_LO	READY	✓ √ 4.13 16	B.63 Do not operate the LV channels manually. They
LV_HI	READY	✓ ✓ 5.60	2.13 MUST be switched on and
LOBoardCtrl	READY	- 1	off in the correct order. To switch ON, first the HI
SiBias	READY	✓ 79.90	0.00 and then the LO.
DCS_COL_A0_ConfDB	READY	• 🗸	To Switch OFF, first the LO and then the HI.
R2A_COL_TEMP_0	READY	Science & T Facilities Con	
Aessages			
nessayes			

An FSM panel that allows the operation of a single HPD column, displaying voltage and current information.

Units

Device

* B.Franek and C.Gaspar, "SMI++ Object-Oriented Framework for Designing and Implementing Distributed Control Systems", IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 52 (2005) 891

Hardware interacting with the RICH DCS:

□ Wiener Maraton power supplies.

- □ CAEN power supplies.
- □ Embedded Local Monitoring Boards (ELMB).
- □ Temperature, humidity and pressure sensors.

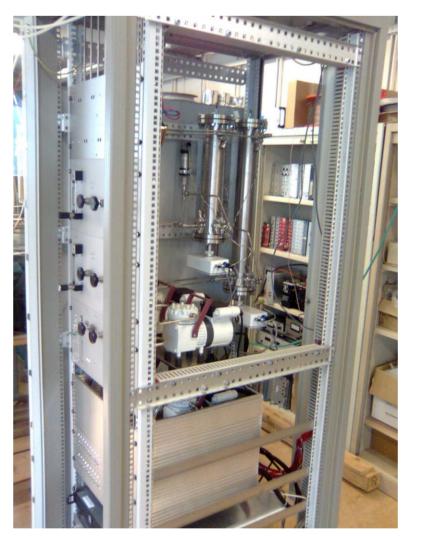
Laser.

□ Networked cameras.

□ Video cameras.

□ SPECS devices (Serial Protocol for the Experiment Control System)

□ A variety of custom devices.

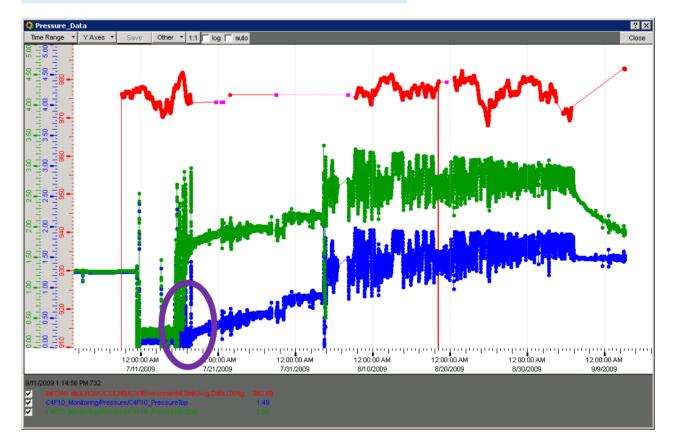

• Speed of sound measurement (opposite).

DCS responsibilities

Switch the detector ON or OFF safely.
Ensure the safety of the detector by:

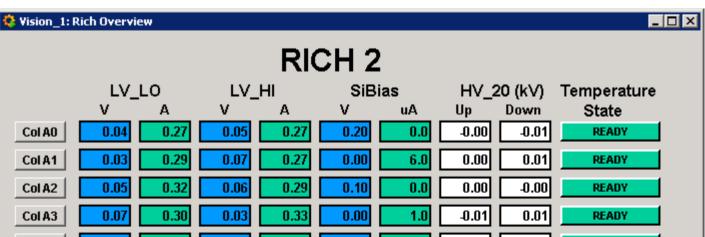
- Providing alerts to the operator
- Taking automatic actions

Gas quality monitor



sampled.

The quality of the radiator gases is monitored using a technique based on the speed of sound. The custom made devices used for the measurement of the speed of sound in the gases are shown in this picture. Both the input and the


output of the gas enclosures can be

PVSS archiving

Seventy five days of pressure data from RICH-1. The introduction of C_4F_{10} in the radiator area can be seen as the bottom sensor (green) registers higher pressure that the top sensor (blue). The atmospheric pressure data is in red.

PVSS monitoring panel

- □ Monitor the condition of the electronics:
 - Voltage/Current/Temperature
- Monitor the conditions inside the photon detector enclosure:
 - Temperature/Cooling/Humidity
- Provide feedback to the High Voltage system.
- □ Collect information about the Cherenkov radiators:
 - Pressure/Temperature/Gas quality
- Collect and analyse images to monitor mirror stability
 Monitor the communication with the hardware via the SPECS protocol.

Col A4	0.07	0.30	0.05	0.30	0.10	0.0	0.00	-0.00	READY	1
Col A5	0.06	0.31	0.08	0.32	0.10	0.0	0.00	-0.01	READY	1
Col A6	0.05	0.28	0.04	0.29	0.20	0.0	0.00	-0.00	READY	1
Col A7	0.07	0.31	0.03	0.30	0.00	0.0	-0.00	-0.01	READY	1
Col A8	0.05	0.29	0.02	0.29	0.30	0.0	0.00	0.00	READY	1
Col CO	4.12	18.19	5.60	2.17	80.00	5.6	18.04	18.01	READY	1
Col C1	4.13	18.47	5.59	2.33	80.00	6.8	18.15	18.07	READY	1
Col C2	4.13	18.48	5.61	2.30	80.00	52.3	17.95	18.02	READY	1
Col C3	4.11	19.21	5.58	2.27	79.90	11.3	17.74	17.77	READY_WARN	1
Col C4	4.11	18.43	5.58	2.11	80.10	23.2	17.89	17.88	READY	1
Col C5	4.12	18.30	5.59	2.02	79.90	7.0	17.90	17.94	READY	1
Col C6	4.12	17.95	5.58	2.00	79.90	17.1	17.98	17.94	READY	1
Col C7	4.13	18.49	5.57	2.48	79.90	<u>56.1</u>	17.90	17.92	READY	1
Col C8	4.11	18.25	5.57	2.32	79.80	32.0	17.92	18.05	READY	1
0	FF A-sid	de camera	15	OFF	C-side	cameras			Clos	e

The RICH-2 Overview PVSS panel displaying voltage, current and temperature information for the whole of RICH-2. Colour coding allows easy identification of the state of the detector and parameters outside predefined limits.