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We provide a calculation of N-body (N � 3) nucleon interactions at short distances in holographic

QCD. In the Sakai-Sugimoto model of large-Nc massless QCD, N baryons are described by N Yang-Mills

instantons in 5 spacetime dimensions. We compute a classical short-distance interaction Hamiltonian for

N ’t Hooft instantons. This corresponds to N baryons sharing identical classical spins and isospins. We

find that genuine N-body nuclear forces turn out to vanish for N � 3, at leading order. This suggests that

classical N-body forces are always suppressed compared with 2-body forces.
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I. INTRODUCTION

Recent developments in computational nuclear physics
reveal that the microscopic description of nucleus in terms
of nucleon degrees of freedom requires three-nucleon in-
teractions. In fact, although the nuclear three-body inter-
action is significantly weaker than the two-body
interaction, the binding energies of light nuclei [1] and
the saturation density of nuclear matter [2] cannot be
understood without taking into account the three-body
terms. This is due to a large cancellation of the kinetic
energy and two-body attraction. The main component of
the three-body interaction is associated with two-pion
exchange, such as the Fujita-Miyazawa force [3].
However, in addition to this, a repulsive three-body inter-
action of a short range is required for a quantitative de-
scription of nuclear systems [1,4]. In particular, the short-
range three-nucleon interaction, which is assumed to be
spin/isospin independent in many cases, is important for
determination of the nuclear equation of state at high
density [2,5].

The two-body interactions adopted in those many-body
calculations are determined by the phase-shift analysis of
nucleon-nucleon scattering data. However, much less in-
formation is available for the N-body forces (N � 3). Of
course, we know that, in principle, the nuclear properties
should be derived from QCD [6]. However, QCD is
strongly coupled at the nuclear energy scale, which leads
to a huge gap between QCD and nuclear many-body
problems.

Recent progress in string theory can bridge this gap,
analytically. It is called holographic QCD, an application
of gauge/string duality [7] to strongly coupled QCD.
We apply the holographic QCD to N-body nuclear force
(N � 3).

In holographic QCD, one of the most successful D-brane
models is the Sakai-Sugimoto model (SS model) [8,9]. The
theory, which is a UðNfÞ Yang-Mills-Chern-Simons (YM-

CS) theory in a warped 5-dimensional spacetime, was
conjectured to be dual to low energy massless QCD with
Nf flavors, in the large-Nc and large-� limits (� � Ncg

2
QCD

is a ’t Hooft coupling of QCD). Modes of the gauge fields
correspond to meson degrees of freedom and this model
reproduces surprisingly well various expected features of
hadrons, incorporating very nicely the nature of chiral
Lagrangians.
Baryons are identified with soliton solutions localized in

the spatial 4-dimensions [8]. This is quite analogous to that
in pion effective theory; baryons are identified with
Skyrmions [10]. Quantization of a single soliton in the
SS model [11,12] gives baryon spectra, and also chiral
properties such as charge radii and magnetic moments
[13] (for other approaches to baryons, see [14]). Meson-
baryon-baryon couplings [13] give a basis of a 2-body
nuclear force at long distances, à la the one-meson-
exchange picture. Short-distance nucleon-nucleon forces
were computed [15], which generates a repulsive core with
analytic formula for potentials in the large-Nc limit. A key
is that the warping can be absorbed into the rescaling of the
YM-CS theory and brings the string scale to QCD scale.
Furthermore, when two solitons are close to each other, the
warping factor is almost constant; therefore the effects of
the curved geometry can be ignored so that an exact two-
soliton solution is available.
In this paper, we compute N-body nuclear forces for

arbitrary N, with exact N-instanton solutions, generalizing
the method in Ref. [15]. The exact treatment is in contrast
to the Skyrmion and other chiral soliton models, in which
multisoliton solutions are quite difficult to obtain.

II. NUCLEAR FORCE AT SHORT RANGE

Baryons, including nucleons, are identified with soli-
tonic solutions in the SS model [8], and we provide a brief
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review of the construction of the soliton and the 2-body
nuclear force at short range for two flavors (Nf ¼ 2)

computed in [15].
The following rescaling of the coordinates [11] can

allow one to understand the system as a 1=� perturbation
around a flat space, which is suitable for studying the
instanton solution:

~x M ¼ �1=2xM ðM ¼ 1; 2; 3; 4Þ; ~x0 ¼ x0; (1)

and accordingly ~A0ðt; ~xÞ ¼ A0ðt; ~xÞ and ~AMðt; ~xÞ ¼
��1=2AMðt; ~xÞ. In the following we omit the tilde for sim-
plicity. In these new variables, there are essentially two
deviations from the YM theory in the flat space, at the
leading order in 1=� expansion: (i) the effect of the CS
term, and (ii) the effect of the space weakly curved along
the x4 direction. The additional Hamiltonians are

HUð1Þ
pot � �aNc

2

Z Y
M

dxMÂ0Â0; (2)

HSUð2Þ
pot � aNc

6

Z Y
M

dxMðx4Þ2 trðFMNÞ2; (3)

respectively, with a � 1=ð216�3Þ. Note that we work in
the unit MKK ¼ 1, where MKK is the unique scale parame-
ter appearing in the model, and it can be fixed by fitting the
� meson mass, giving MKK ¼ 949 ½MeV�.

In particular, for a single baryon, the leading order
solution is a single instanton in the flat 4-dimensional
space, that is BPST instanton [16]. The instanton has
moduli parameters: the instanton location XM, the size �,
and the orientation in SUð2Þ. These Hamiltonians induce
potentials in the moduli space of the instanton, and � and
X4 prefer particular values classically,

ð�clÞ2 ¼ 1

8�2a

ffiffiffi
6

5

s
; X4

cl ¼ 0:

For multi-instantons, there appears a potential for the
moduli representing the distance between the instantons,
which is in fact the nuclear force.

In Ref. [15], this 2-body nuclear force was evaluated
explicitly. Multi-instanton solutions are available in flat
space, while in this particular curved space it is difficult
to find them. However, when instantons are close enough to
each other, the effect of the curved space can be neglected,
and as a leading order solution we can use the multi-
instanton solutions in the flat space. Therefore, the distance
rij between the ith and the jth nucleons allowed in this

approximation is jrijj<M�1
KK (jrijj< �1=2M�1

KK) in the

original (rescaled) coordinates. Thus we probe only the
short range for the nuclear force.

The construction of the two-instanton solution owes to
the renowned ADHM (Atiyah-Drinfeld-Hitchin-Manin)
method [17,18]. The moduli parameters of generic N in-
stanton solutions are completely encoded in the realN � N

matrix function Lðx;X; . . .Þ. Osborn’s formula [19] tells us
the instanton density

tr ðFMNÞ2 ¼ h2 logdetL; (4)

where h � @M@M. Using this expression, the equation of
motion for theUð1Þ part of the gauge field which is sourced
by the instanton density is solved as [11]

Â 0 ¼ 1

32�2a
h logdetL: (5)

With this explicit dependence on the instanton moduli
parameters in L, one can compute the Hamiltonians (2) and
(3) as functions of them. Then, the expectation value of the
Hamiltonians for given baryon states (the wave functions
are written by the moduli parameters) gives the nuclear
force at short range [15].
There is the third contribution to the additional

Hamiltonians, Hkin, which is present only in the multi-
instanton case. This comes from the metric of the instanton
moduli space. In Ref. [15], it was shown that it is higher
order in 1=Nc compared to the other two Hamiltonians (2)
and (3), so we need not compute it in this paper.

III. 3-BODY NUCLEAR FORCE

The 2-body nuclear force computed in Ref. [15] is for
generic spin/isospin components. But since an explicit
generic N instanton solution is not available, we consider
a special solution called ’t Hooft instanton which has 5N �
3 moduli parameters (while a generic instanton solution
has 8N � 3 moduli parameters). It is important to notice
that once we restrict our moduli space by hand like this, we
cannot get the generic expression for the nuclear force for
given baryon states. Instead, what we will obtain is a
classical analog of the nuclear force.
The moduli parameters of the ’t Hooft instantons are

only the size �i and the location X
M
i of each instanton ði ¼

1; 2; . . . ; NÞ. The missing parameters, the orientations of
the instantons in SUð2Þ, are responsible for the spin/isospin
wave functions of the baryons. Thus our analysis with the
’t Hooft instantons is restricted to ‘‘classical’’ baryons,
where all the spin/isospins of the baryons are classically
identical.

First, let us show thatHSUð2Þ
pot given in Eq. (3) is irrelevant

to the three-body nuclear forces. We can use the generic
formula obtained in Appendix C of Ref. [15],

Z
d4xðx4Þ2 trðFMNÞ2 ¼ 8�2

XN
i¼1

ð2ðX4
i Þ2 þ �2

i Þ; (6)

for the N ’t Hooft instantons. The expression consists of
just a sum of each instanton sector, which means that there
is no term involving the internucleon distance, that is, no
contribution to the nuclear force. Therefore, we compute
the other Hamiltonian (2) in this paper. (The contribution
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from Hkin is suppressed as in the case of the 2 instantons [20].)
In this section, we concentrate on the case for N ¼ 3, i.e. the 3-body force.
For three ’t Hooft instantons, which correspond to nucleons sharing classically identical spins/isospins, we have

L ¼
ðx� X1Þ2 þ �2

1 �1�2 �1�3

�1�2 ðx� X2Þ2 þ �2
2 �2�3

�1�3 �2�3 ðx� X3Þ2 þ �2
3

0
B@

1
CA; (7)

where we omit the index M and denote ðxMÞ2 by x2. Then
Osborn’s formula becomes particularly simple,

logdetL ¼ X
i

logðx� XiÞ2 þ logf; (8)

with

f � 1þX
i

�2
i

ðx� XiÞ2
:

This gives the Uð1Þ gauge field

Â 0 ¼ 1

32�2a

�
h
X
i

logðx� XiÞ2 þhf

f
� ð@MfÞ2

f2

�
: (9)

The first term in Eq. (8) is a self-energy which was already
computed, and f is a harmonic function, i.e., hf ¼ 0.
Thus, all we need to evaluate is only the last term in
Eq. (9), ð@MfÞ2=f2.

For three instantons, we can expand the expression for
ðx� X1Þ2 � ðx� X2Þ2; ðx� X3Þ2. In particular, we can
approximate ðx� X2Þ2 � ðX1 � X2Þ2 � X2

12, and a similar
expression for X13. Furthermore, for simplicity we put
XM
1 ¼ 0. Then, the expansion is

Â0 ¼ 1

8�2a

�
1

x2

�
1� �4

1

ðx2 þ �2
1Þ2

�
þ 1

X2
12

þ 1

X2
13

þ 2�4
1

ðx2 þ �2
1Þ3

�
�2
2

X2
12

þ �2
3

X2
13

�

þ �3�4
1x

2

ðx2 þ �2
1Þ4

�
�2
2

X2
12

þ �2
3

X2
13

�
2

þ �2�2
1

ðx2 þ �2
1Þ2

�
�2
2x � X12

X4
12

þ �2
3x � X13

X4
13

�
þ higher

�
:

(10)

We like to compute the potential (2). As seen from the

expression for Â0, the leading term of the nontrivial three-
body force has the form 1

X2
12
X2
13

. This means that, we should

expect the nuclear force appearing proper to the 3-body, at
the leading order,

H ¼ O
�
Nc

�2

�
1

X2
12X

2
13

; (11)

in the original coordinates. Let us consider only terms of
this leading form (11). We obtain

HUð1Þ
pot j3-body ¼ �aNc

2ð8�2aÞ2
Z

d4x

�
1

x2

�
1� �4

1

ðx2 þ �2
1Þ2

�
h

�6�4
1x

2

ðx2 þ �2
1Þ4

�2
2�

2
3

X2
12X

2
13

þ �6�4
1x

2

ðx2 þ �2
1Þ4

�2
2�

2
3

X2
12X

2
13

h
1

x2

�
1� �4

1

ðx2 þ �2
1Þ2

�

þ 1

X2
12X

2
13

�
1þ 2�4

1�
2
2

ðx2 þ �2
1Þ3

�
h

�
1þ 2�4

1�
2
3

ðx2 þ �2
1Þ3

�
þ 1

X2
12X

2
13

�
1þ 2�4

1�
2
3

ðx2 þ �2
1Þ3

�
h

�
1þ 2�4

1�
2
2

ðx2 þ �2
1Þ3

��

þ ð1 ! 2 ! 3Þ þ ð1 ! 3 ! 2Þ: (12)

Performing the derivatives, and using the following inte-
gration formulas:

Z
d4x

x2ðN�jÞ

ðx2 þ �2
1ÞNþ5

¼ �2ðjþ 2Þ!ðN � jþ 1Þ!
�2jþ6
1 ðN þ 4Þ! ; (13)

we find that the right-hand side of Eq. (12) vanishes.
Therefore, the leading term of the order 1=ðX2

12X
2
13Þ van-

ishes. This means that the expansion starts from the next-
to-leading order,

HUð1Þ
pot j3-body ¼ �Nc

128�4a
O
� ð�Þ4
X2
12X

4
13

;
ð�Þ4

X3
12X

3
13

; . . .

�
; (14)

where . . . represents terms obtained by permutation for the

indices 1, 2, 3. Here the dependence on �i (i ¼ 1, 2, 3) is
fixed to be ð�Þ4 by a dimensional analysis. The expectation
value of this ð�Þ4 at the leading order in large-Nc is given
by the classical value given before. Then, rescaling the
coordinates back as X12 ! �1=2X12 and writing it as the 3-
dimensional internucleon distance r12 since we substitute
the classical value X4

i ¼ 0, we obtain, at the leading order
in 1=Nc,

HUð1Þ
pot j3-body ¼ Nc

�3
O
�

1

r212r
4
13

;
1

r312r
3
13

; . . .

�
; (15)

where again . . . represents the term obtained by permuta-
tion for the indices 1, 2, 3.
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Note that we are working in a regime ��1=2 � X12;13 �
1 in the unit MKK ¼ 1. The natural scale for the 2-body
force [15] is OðNc=�X

2
12Þ. So, if we consider a natural

separation of the nucleons as Xij � 1=MKK, the 3-body

force is suppressed compared to the 2-body force. We
conclude that the 3-body force at short range is small, for
baryons carrying classical and equal spin/isospins.

IV. N-BODY NUCLEAR FORCE

We can easily extend the analysis in the previous section
to N ’t Hooft instantons. The result for the leading term
vanishes again, as we explain briefly below.

The quantity necessary for computing Â0 is

ð@MfÞ2
f2

¼
�
4�4

1

x6
þXN

i¼2

4�2
1�

2
i x � X1i

x4X4
1i

þXN
i¼2

4�4
i

X6
1i

þX
i�j

4�2
i �

2
jX1i � X1j

X4
1iX

4
1j

��
1þ �2

1

x2
þXN

i¼2

�2
i

X2
1i

��2
:

(16)

The expansion analogous to the 3-body case is

�
1þ y21

x2
þXN

i¼2

y2i
X2
1i

��2 ¼ x4

ðx2 þ y21Þ2
�
1� 2

x2

x2 þ y21

X
i

y2i
X2
1i

þ 3

�
x2

x2 þ y21

X
i

y2i
X2
1i

�
2

� 4

�
x2

x2 þ y21

X
i

y2i
X2
1i

�
3 þ � � �

�
;

(17)

which implies that, apparently, the leading order of the
short-range nuclear force in proper to the N-body would be

HUð1Þ
pot jN-body ¼ Nc

�N�1
O
�YN
i¼2

1

X2
1i

; . . .

�
: (18)

Again, we have rescaled back the coordinates to the origi-
nal coordinates and . . . represents permutation terms. In the
previous section, we showed that for N ¼ 3 this leading
contribution vanishes, for the ’t Hooft instantons. In this
section, we prove that for any N this leading contribution
vanishes.

First, we consider

Z
d4x

ð@MfÞ2
f2

h
ð@PfÞ2
f2

(19)

in the integral (2). The only possibility to get the leading
expression (18) from this integral is to pick up a term (we
name it c1) having

Q
l
i¼2ð1=X2

1iÞ from the first ð@MfÞ2=f2
and also a term (we name it c2) having

QN
i¼lþ1ð1=X2

1iÞ from
the second ð@PfÞ2=f2. In view of the original expression
(16), we find

c1 ¼ ðl� 1Þ! 4�
4
1

x6
x4

ðx2 þ �2
1Þ2

ð�1Þll
�

x2

x2 þ �2
1

�
l�1 Yl

i¼2

1

X2
1i

;

c2 ¼ ðN � lþ 1Þ! 4�
4
1

x6
x4

ðx2 þ �2
1Þ2

ð�1ÞN�lðN � lþ 1Þ

�
�

x2

x2 þ �2
1

�
N�l YN

i¼lþ1

1

X2
1i

: (20)

A straightforward calculation shows

hc2 ¼ 16�4
1ð�1ÞN�lðN � l� 1ÞxN�l�2

� ðx� 2þ �2
1Þ�Nþl�4ððN � lÞðN � l� 1Þ�4

1

� 6ðN � lÞx2�2
1 þ 6x4Þ YN

i¼lþ1

1

X2
1i

: (21)

We compute the term c1hc2 included in the integrand of
(19) as

N � 1Cl�1

XN
l¼2

c1hc2

¼ ðN � 1Þ!64�8
1ð�1ÞN�1x2ðN�4Þðx2 þ �2

1Þ�N�5
YN
i¼2

1

X2
1i

�XN
l¼1

lðN � lþ 1Þ½ðN � lÞðN � l� 1Þ�4
1

� 6ðN � lÞx2�2
1 þ 6x4�: (22)

Here, the factor N � 1Cl�1 is for choosing a set of l� 1
elements among f2; . . . ; Ng, for c1 having l� 1 multiples
of 1=X2

1i. Using the formula (13), this can be easily inte-
grated with

R
d4x to give 0 as

Z
d4xN�1Cl�1

XN
l¼2

c1hc2 ¼ 0: (23)

In the Hamiltonian (18), there are additional terms

�
Z

d4x

�
4

x2
þXN

i¼2

4

X2
1i

�
h

ð@MfÞ2
f2

(24)

coming from the first term in Eq. (9). For the leading
contribution of the form (18), it is enough to pick up c2
with l ¼ 1 (for the integral with 1=x2) and l ¼ 2 (for the
integral with

P
N
i¼2 1=X

2
1i). Using (21), the integrals can be

evaluated, and they are found to vanish.
Therefore, we conclude that the leading order N-body

nuclear force (18) vanishes, for arbitrary N. Note that the
2-body nuclear force does not vanish at the leading order,
as the N ¼ 2 computation is exceptional.

V. SUMMARYAND DISCUSSIONS

Using the SS model of holographic QCD, we have found
that the N-body nuclear force at short range (N � 3) is of
the order of Ncð�r2Þ�N , for nucleons sharing identical
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classical spin/isospins. This is small compared to the 2-
body force which is OðNcð�r2Þ�1Þ in contrast, and it leads
to a hierarchy of the (N þ 1)-body/N-body ratio

VðNþ1Þ=VðNÞ � 1=ð�r2Þ � 1 for N � 3, in the unitMKK ¼
1. This suppression is consistent with our empirical
knowledge.

Effects of the short-range many-body interaction be-
come more prominent for higher-density nuclear matter.
Therefore, for physics of neutron stars and supernovae, for
instance, properties of N-body interactions such as what
are revealed in this paper are important, even if qualitative.

Our computation is not fully satisfactory since the quan-
tum spin/isospin states of each baryon have not been
incorporated. The wave function of the classical spin/iso-
spin is a delta function of the SUð2Þ orientational moduli of
the instantons; thus it is difficult to relate it with the
quantum spin/isospins. Nevertheless, it is quite remarkable
that the generic N-body nuclear force can be obtained by
analytic computations. The successful performance of this
computation owes, in particular, to the simplicity of the SS
model, in contrast to other chiral soliton models.

Furthermore, the theory on which our computations of
the nuclear force is based is not a phenomenological model
but obtained by a D-brane construction in string theory
with the gauge/string duality. Therefore, in principle, we
can try to address theoretically what is different from QCD
and what is inherited from it. The present computations go
beyond the limitations of arguments using universality of
chiral symmetry breaking.
Although the model at hand is for large-Nc QCD, these

two properties of baryons in holographic QCD would be
sufficiently strong motivations for studying holographic
QCD and its relation to nuclear physics further.

ACKNOWLEDGMENTS

K.H. is grateful to M. Oka for helpful discussions. K.H.
and N. I. would like to thank KITP, Santa Barbara, and
YITP at Kyoto University. N. I. also thanks the Aspen
Center for Physics and RIKEN. K.H. and T.N. are partly
supported by the Grant-in-Aid for Scientific Research
(No. 19740125, No. 21340073), of the Japan Ministry of
Education, Culture, Sports, Science and Technology.

[1] S. C. Pieper, V. R. Pandharipande, R. B. Wiringa, and J.
Carlson, Phys. Rev. C 64, 014001 (2001).

[2] A. Akmal, V. R. Pandharipande, and D.G. Ravenhall,
Phys. Rev. C 58, 1804 (1998).

[3] J. Fujita and H. Miyazawa, Prog. Theor. Phys. 17, 360
(1957); 17, 366 (1957).

[4] S. A. Coon, M. T. Pena, and D.O. Riska, Phys. Rev. C 52,
2925 (1995).

[5] S. Nishizaki, Y. Yamamoto, and T. Takatsuka, Prog. Theor.
Phys. 105, 607 (2001).

[6] For recent lattice QCD analyses, see N. Ishii, S. Aoki, and
T. Hatsuda, Phys. Rev. Lett. 99, 022001 (2007).

[7] J.M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998);
Int. J. Theor. Phys. 38, 1113 (1999).

[8] T. Sakai and S. Sugimoto, Prog. Theor. Phys. 113, 843
(2005).

[9] T. Sakai and S. Sugimoto, Prog. Theor. Phys. 114, 1083
(2005).

[10] T.H. R. Skyrme, Proc. R. Soc. A 260, 127 (1961); 262,
237 (1961); Nucl. Phys. 31, 556 (1962).

[11] H. Hata, T. Sakai, S. Sugimoto, and S. Yamato, Prog.
Theor. Phys. 117, 1157 (2007).

[12] H. Hata and M. Murata, Prog. Theor. Phys. 119, 461
(2008).

[13] K. Hashimoto, T. Sakai, and S. Sugimoto, Prog. Theor.
Phys. 120, 1093 (2008).

[14] D. K. Hong, M. Rho, H.U. Yee, and P. Yi, Phys. Rev. D 76,

061901 (2007).
[15] K. Hashimoto, T. Sakai, and S. Sugimoto, Prog. Theor.

Phys. 122, 427 (2009).
[16] A. A. Belavin, A.M. Polyakov, A. S. Shvarts, and Yu. S.

Tyupkin, Phys. Lett. 59B, 85 (1975).
[17] M. F. Atiyah, N. J. Hitchin, V.G. Drinfeld, and Yu. I.

Manin, Phys. Lett. 65A, 185 (1978).
[18] E. Corrigan and P. Goddard, Ann. Phys. (N.Y.) 154, 253

(1984).
[19] H. Osborn, Nucl. Phys. B159, 497 (1979).
[20] Let us explain briefly why Hkin � �r2=16�2aNc gives

smaller contributions compared to the other two
Hamiltonians. Herer2 is the metric on the multi-instanton
moduli space. We evaluate the expectation value of r2

with the baryon states. The dimension of r2 is ½length��2.
The leading 2-body forces are / 1=X2

12, so the remaining
factor should be dimensionless. Thus r2 originating in the
metric is written only by using a dimensionless operator
y � @=@y twice, where y is the moduli � and the SUð2Þ
orientations. Then it was found in Ref. [15] that hr2i ¼
OðNcÞ, so, in total, after rescaling back jXj2 ! �jXj2, one
obtains hHkini ¼ Oð��1Þ, which is smaller than
hHSUð2Þi � hHUð1Þi �OðNc=�Þ by the factor of 1=Nc.
This suppression by 1=Nc is expected to any instanton
number, that is, general N-body force, and so in this paper
we do not consider Hkin.

N-BODY NUCLEAR FORCES AT SHORT DISTANCES IN . . . PHYSICAL REVIEW D 81, 106003 (2010)

106003-5

http://dx.doi.org/10.1103/PhysRevC.64.014001
http://dx.doi.org/10.1103/PhysRevC.58.1804
http://dx.doi.org/10.1143/PTP.17.360
http://dx.doi.org/10.1143/PTP.17.360
http://dx.doi.org/10.1143/PTP.17.366
http://dx.doi.org/10.1103/PhysRevC.52.2925
http://dx.doi.org/10.1103/PhysRevC.52.2925
http://dx.doi.org/10.1143/PTP.105.607
http://dx.doi.org/10.1143/PTP.105.607
http://dx.doi.org/10.1103/PhysRevLett.99.022001
http://dx.doi.org/10.1023/A:1026654312961
http://dx.doi.org/10.1143/PTP.113.843
http://dx.doi.org/10.1143/PTP.113.843
http://dx.doi.org/10.1143/PTP.114.1083
http://dx.doi.org/10.1143/PTP.114.1083
http://dx.doi.org/10.1098/rspa.1961.0018
http://dx.doi.org/10.1098/rspa.1961.0115
http://dx.doi.org/10.1098/rspa.1961.0115
http://dx.doi.org/10.1016/0029-5582(62)90775-7
http://dx.doi.org/10.1143/PTP.117.1157
http://dx.doi.org/10.1143/PTP.117.1157
http://dx.doi.org/10.1143/PTP.119.461
http://dx.doi.org/10.1143/PTP.119.461
http://dx.doi.org/10.1143/PTP.120.1093
http://dx.doi.org/10.1143/PTP.120.1093
http://dx.doi.org/10.1103/PhysRevD.76.061901
http://dx.doi.org/10.1103/PhysRevD.76.061901
http://dx.doi.org/10.1143/PTP.122.427
http://dx.doi.org/10.1143/PTP.122.427
http://dx.doi.org/10.1016/0370-2693(75)90163-X
http://dx.doi.org/10.1016/0375-9601(78)90141-X
http://dx.doi.org/10.1016/0003-4916(84)90145-3
http://dx.doi.org/10.1016/0003-4916(84)90145-3
http://dx.doi.org/10.1016/0550-3213(79)90347-X

