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We retrieve the non-BPS extremal black hole superpotential of N ¼ 8, d ¼ 4 supergravity by using

the Maurer-Cartan equations of the symmetric space
E7ð7Þ
SUð8Þ . This superpotential was recently obtained with

different 3- and 4-dimensional techniques. The present derivation is independent on the reduction to d ¼
3.
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I. INTRODUCTION

Recently, much progress has been obtained in the de-
scription of BPS and non-BPS extremal black hole (BH)
flows in N � 2 supergravities in d ¼ 4 space-time di-
mensions [1–7] (see also Sec. 2 of [8]). In particular, for all
theories whose nonlinear scalar sigma model is a symmet-
ric space,1 superpotentials W’s exist for all BPS and non-
BPS branches, thus yielding that the corresponding radial
flow equations are of first order. Namely, the warp factorU
of the extremal BH metric and the scalar field trajectories,
respectively, read [1]

_U ¼ �eUW; (1.1)

_� i ¼ �2eUgij@jW; (1.2)

where W is related to the effective BH potential

VBH � 1
2ZAB

�ZAB þ ZI
�ZI; (1.3)

through

VBH ¼ W2 þ 2gij@iW@jW ¼ W2 þ 2gijriWrjW:

(1.4)

Here ZI denote the matter charges (absent e.g. in N ¼ 8
supergravity), and ZAB ¼ �ZBA is the central charge ma-
trix, entering the supersymmetry algebra as follows:

fQ�
A;Q

�
Bg ¼ ���ZABð�1; QÞ: (1.5)

Moreover, Eq. (1.2) implies that attractor points

_� i ¼ 0 (1.6)

correspond to critical points of W itself:

@iW ¼ 0: (1.7)

For BPS BHs,

Wð�;QÞ ¼ jzIjmaxð�;QÞ; (1.8)

where Q is the symplectic charge vector, and jzIjmax is the
highest absolute value of the skew eigenvalues zI’s of ZAB.
Furthermore, the ADM mass MADM [9] is related to W
through (r denotes the radial coordinate throughout)

M2
ADM ¼ lim

r!1W
2: (1.9)

The Bekenstein-Hawking entropy-area formula [10] ex-
ploits as follows:

SBHðQÞ
�

¼ AH

4�
¼ lim

r!rþH
W2 ¼ W2j@W¼0 ¼ W2ð�HðQÞ; QÞ;

(1.10)

where rH and AH respectively stand for the radius and the
area of the event horizon of the considered extremal BH,
and �HðQÞ denotes the set of scalar fields at the horizon,
stabilized in terms of the charges Q.
Explicit ways of constructing W have been given in [5–

7] by using different methods, e.g. based on theN ¼ 2 stu
model [5,7] or on three-dimensional techniques [6]. All
these exploit the fact, as generally proven in [4], that

W ¼ Wðinð�;QÞÞ; (1.11)

where inð�;QÞ’s (n ¼ 1; . . . ; 5) are duality invariant com-
binations of the scalars �i and of charges Q [5,11]. A
polynomial in in’s gives the unique scalar-independent
duality invariant IðQÞ [11–13]. In the N ¼ 2 case, it
reads [5,11]

I ¼ ði1 � i2Þ2 þ 4i4 � i5: (1.12)

It is worth remarking that in the considered framework the
symplectic vector of charges Q must belong to a non-
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1Note that this is always the case for N � 3, d ¼ 4 theories.
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degenerate (i.e. with I � 0) orbit of the U-duality group
[14–16].

In particular, I is quartic2 in chargesQ for all rank-three
N ¼ 2 symmetric spaces [19], as well as for N ¼ 8
supergravity [see Eqs. (2.8), (2.9), (2.10), (2.11), and
(2.12)]. Moreover, since N � 3, d ¼ 4 supergravities all
have symmetric scalar manifolds, they all admit W’s for
their various scalar flows, i.e. for each different orbit of the
charge vector [14–16].

For N ¼ 8 supergravity, it follows that

W ¼ Wð�0; �1; �2; �3; ’Þ; (1.13)

where �I’s (I ¼ 0, 1, 2, 3 throughout) are the absolute
values of the skew eigenvalues of ZAB, whose
SUð8Þ-invariant phase is ’ [see Eq. (2.1)]. In [20] the
explicit expressions of �I ’s and ’ were computed in terms
of the four roots of a quartic algebraic equation, involving
the quantities ðTrðZZyÞÞmþ1 (m ¼ 0, 1, 2, 3), as well as the
quartic invariant I4 [see e.g. Eqs. (2.10) and (2.11), and
also the treatment in [11]].

As shown in [21], two different branches of attractor
scalar flows exist, namely, the 1

8 -BPS and the non-BPS

branches. Note that W exhibits the same flat directions of
VBH at its critical points; such flat directions span the

moduli spaces
E6ð2Þ

SUð6Þ�SUð2Þ [I4 > 0, see Eq. (2.21)] and
E6ð6Þ

USpð8Þ [I4 < 0, see Eq. (2.26)] [22].

This paper is devoted to the derivation of the W’s for
both these branches. This is done by exploiting the (d ¼ 4)

Maurer-Cartan equations of the exceptional coset
E7ð7Þ
SUð8Þ (see

e.g. [23] and references therein). We will show that, while
WBPS is given by the highest absolute value of the skew
eigenvalues of ZAB [consistent with Eq. (1.8)], WnBPS is
given by the USpð8Þ singlet of the 28 of SUð8Þ. These
results extend to the whole attractor scalar flow the ex-
pression of W which was known for both BPS and non-
BPS attractor solutions after [21] (see also e.g. [24]). Our
investigation and derivation is complementary to [6],
where the expression of WnBPS was obtained by making
use of the nilpotent orbits of the d ¼ 3 geodesic flow
obtained through a timelike reduction (see e.g. [25–32],
and references therein).

The paper is organized as follows.
In Sec. II we recall the SUð6Þ � SUð2Þ-covariant normal

frame of N ¼ 8 supergravity, which we dub special nor-
mal frame, and we show that Maurer-Cartan equations
yield a partial differential equation (PDE) for W, whose
simplest solution is the BPS superpotential WBPS.

Section III is devoted to the analysis of the
USpð8Þ-covariant normal frame of N ¼ 8 supergravity
(see e.g. the analysis of [33,34], and references therein),
which we dub symplectic normal frame. We show that in

such a normal frame the Maurer-Cartan equations yield a
PDE forW, whose simplest solution is the non-BPS super-
potential WnBPS. W’s are nothing but the singlets in the
decomposition of the 28 of SUð8Þ into the maximal com-
pact subgroup of the stabilizer of the corresponding sup-
porting charge orbit, i.e. respectively into SUð6Þ � SUð2Þ
(BPS) and USpð8Þ (non-BPS).
Derivations of some relevant formulas are given in the

Appendix, which concludes the paper.

II. SPECIAL NORMAL FRAME

Following [35–37], through a suitable SUð8Þ transfor-
mation the complex skew-symmetric central charge matrix
ZAB [A, B ¼ 1; . . . ;N ¼ 8 in the 8 of R-symmetry
SUð8Þ] can be skew diagonalized, and thus recast in normal
form [see e.g. Eq. (87) of [2], adopting a different con-
vention on the 2� 2 symplectic metric �; a ¼ 1, 2, 3
throughout; unwritten matrix components do vanish
throughout]:

ZAB !SUð8Þ

z0

z1

z2

z3

0
BBBBB@

1
CCCCCA � �

¼ eið’=4Þ

�0

�1

�2

�3

0
BBBBB@

1
CCCCCA � �;

�0; �a 2 Rþ; ’ 2 ½0; 8�Þ; (2.1)

where

� � 0 1
�1 0

� �
: (2.2)

Notice that the second line of Eq. (2.1) can be obtained
from the first one by performing a suitable ðUð1ÞÞ3
transformation.
The general definition (1.3) of effective BH potential

VBH thus yields

VBH ¼ �2
0 þ �2

1 þ �2
2 þ �2

3: (2.3)

Therefore, in the normal frame defined by (2.1) the
nonvanishing components of ZAB reads as follows:

z0 � Z12 ¼ �0e
ið’=4Þ; (2.4)

z1 � Z34 ¼ �1e
ið’=4Þ; (2.5)

z2 � Z56 ¼ �2e
ið’=4Þ; (2.6)

z3 � Z78 ¼ �3e
ið’=4Þ: (2.7)

2The quartic invariant I4 of N ¼ 4 theories was derived in
[17,18].
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Within this parametrization, the unique quartic invariant
I4 of the 56 of the U-duality group E7ð7Þ (see e.g. [11,13],
and references therein)

I 4 � TrðZZyZZyÞ � 1

22
Tr2ðZZyÞ þ 23 Re½PfaffðZÞ�;

(2.8)

Pfaff ðZÞ � 1

244!
�ABCDEFGHZABZCDZEFZGH; (2.9)

reads as follows (see e.g. [38]):

I 4 ¼
X
I

�4
I � 2

X
I<J

�2
I�

2
J þ 8�0�1�2�3 cos’ (2.10)

¼ ð�0 þ �1 þ �2 þ �3Þð�0 þ �1 � �2 � �3Þ
� ð�0 � �1 þ �2 � �3Þð�0 � �1 � �2 þ �3Þ
þ 8�0�1�2�3ðcos’� 1Þ: (2.11)

The Pfaffian of ZAB, defined by Eq. (2.9), simply reads

Pfaff ðZÞ ¼ Z12Z34Z56Z78 ¼ ei’
Y
I

�I: (2.12)

It is worth remarking that the skew-diagonal form of ZAB

given by Eq. (2.1) is democratic, in the sense that it fixes
the phases of the four skew eigenvalues

zI � �Ie
i’I (2.13)

of ZAB to be all equal:

’0 ¼ ’1 ¼ ’2 ¼ ’3 � ’

4
: (2.14)

Actually, this implies some loss of generality, because
SUð8Þ only constrains the phases of zI ’s as follows:

’0 þ ’1 þ ’2 þ ’3 � ’: (2.15)

Up to renamings, without loss of generality, the jzIj’s can
be ordered as follows:

�0 � �1 � �2 � �3: (2.16)

Notice that �I’s are Uð8Þ invariant, whereas the overall
phase ’ is invariant under SUð8Þ, but not under Uð8Þ.

It turns out that the special skew diagonalization (2.1) is
particularly suitable for the treatment of the 1

8 -BPS attrac-

tor flow, as shown in the following section.

A. Attractor solutions

In the special normal frame (2.1), the two attractor
solutions of N ¼ 8, d ¼ 4 supergravity read as follows
(see e.g. [21,33], and references therein; see also the analy-
sis of [34] for further detail):

(i) 1
8 -BPS:

�0 � �BPS 2 Rþ
0 ; (2.17)

�1 ¼ �2 ¼ �3 ¼ 0; (2.18)

’ undetermined; (2.19)

thus yielding

ZAB;ð1=8Þ-BPS ¼ eið’=4Þ�BPS

1
0

0
0

0
BBB@

1
CCCA � �;

(2.20)

I 4ðQBPSÞ ¼ �4
BPSðQBPSÞ> 0; (2.21)

where [39]

QBPS 2 Oð1=8Þ-BPS;nondeg ¼
E7ð7Þ
E6ð2Þ

; (2.22)

with maximal compact symmetry SUð6Þ � SUð2Þ.
(ii) Non-BPS:

�0 ¼ �1 ¼ �2 ¼ �3 � �nBPS 2 Rþ
0 ; (2.23)

’ ¼ �; (2.24)

thus yielding

ZAB;nBPS ¼ eið�=4Þ�nBPS�AB; (2.25)

I 4ðQnBPSÞ ¼ �24�4
nBPSðQnBPSÞ< 0; (2.26)

where

�AB �
1

1
1

1

0
BBB@

1
CCCA � � (2.27)

is the 8� 8 metric of USpð8Þ, and [39]

QnBPS 2 OnBPS ¼ E7ð7Þ
E6ð6Þ

; (2.28)

with maximal compact symmetry USpð8Þ.

B. Maurer-Cartan equations and PDE for W

Let us now consider the Maurer-Cartan equations of
N ¼ 8, d ¼ 4 supergravity (see e.g. [23] and references
therein):

riZAB ¼ 1
2PABCD;i

�ZCD; (2.29)

where the vielbein 1-form PABCD ¼ PABCD;id�
i (i ¼

1; . . . ; 70) of the real homogeneous symmetric scalar mani-
fold

MN¼8;d¼4 ¼
E7ð7Þ
SUð8Þ (2.30)

sits in the 4-fold antisymmetric 70 of SUð8Þ, and it satisfies
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the self-dual reality condition (see e.g. [13])

PABCD ¼ P½ABCD� ¼ 1

4!
�ABCDEFGH

�PEFGH: (2.31)

In order to simplify forthcoming calculations, it is conve-
nient to group SUð8Þ indices as follows:
12 ! 0; 34 ! 1; 56 ! 2; 78 ! 3: (2.32)

Thus, for a generic skew-diagonal ZAB, Maurer-Cartan
equation (2.29) reads

riZ0 ¼ P01;i
�Z1 þ P02;i

�Z2 þ P03;i
�Z3; (2.33)

riZ1 ¼ P01;i
�Z0 þ P12;i

�Z2 þ P13;i
�Z3; (2.34)

riZ2 ¼ P02;i
�Z0 þ P12;i

�Z1 þ P23;i
�Z3; (2.35)

riZ3 ¼ P03;i
�Z0 þ P13;i

�Z1 þ P23;i
�Z2: (2.36)

By disregarding the reality condition (2.31) of the viel-
bein PABCD, within the considered special normal frame
(2.1) one can determine the PDE for W in an easy way.
Indeed, Eq. (2.29) yields

ri�I ¼ 1
2ðei’=4ri

�ZI þ e�i’=4riZJÞ; (2.37)

ri’ ¼ �2iriðlnZI � ln �ZIÞ

¼ 2

�I

ðiei’=4rI
i
�Z� ie�i’=4riZIÞ: (2.38)

Consequently, the total covariant differential of W gener-
ally reads [the sum is expanded in Eq. (A7)]

riW ¼ 1

2

X
I<J

fei’=2ðWI�J þWJ�IÞ

þ e�i’=2~�IJKLð �WK�L þ �WL�KÞgPIJ; (2.39)

where the quantity

WI � @W

@�I

þ i

�I

@W

@’
(2.40)

was introduced.
By performing various steps [detailed in the Appendix,

see Eqs. (A1)–(A6) therein] and recalling Eqs. (1.4) and
(2.3), the final PDE for the fake superpotential W reads

W2 þ X
I;J�I

�
jðWI�J þWJ�IÞj2

þ 1

2
½ei’~�IJKLðWI�J þWJ�IÞðWK�L þWL�KÞ

þ e�i’~�IJKLð �WI�J þ �WJ�IÞð �WK�L þ �WL�KÞ�
�

¼ �2
0 þ �2

1 þ �2
2 þ �2

3; (2.41)

where all terms of the sum can be found in Eq. (A9).

As a consequence ofN ¼ 8 supersymmetry, Eq. (2.41)
is fully symmetric in f�0; �1; �2; �3g, and it is straightfor-
ward to check that any �I’s are a solution. Following [2], a
natural Ansatz forN ¼ 8 solutions is a linear combination
of the skew eigenvalues (with constant coefficients):

W ¼ X3
I¼0

�I�I: (2.42)

Indeed, by plugging the Ansatz (2.42) into Eq. (2.41), the
following system is obtained [note it is invariant under
permutations of 0, 1, 2, 3; see Eq. (94) of [2]]:

�2
0 þ �2

1 þ �2
2 þ �2

3 ¼ 1; �0�1 þ �2�3 cos’ ¼ 0;

�0�1 cos’þ �2�3 ¼ 0; �0�2 þ �1�3 cos’ ¼ 0;

�0�2 cos’þ �1�3 ¼ 0; �1�2 þ �0�3 cos’ ¼ 0;

�1�2 cos’þ �0�3 ¼ 0: (2.43)

Clearly, a solution of this system reads (a ¼ 1, 2, 3)

�0 ¼ 1; �a ¼ 0: (2.44)

Because of the asymptotical meaning of W itself as an
ADM mass [see Eq. (1.9)], Eq. (2.44) entails a 1

8 -BPS

solution:

Wð1=8Þ-BPS ¼ �0; (2.45)

namely the highest of the absolute values of the skew
eigenvalues of ZAB as given by ordering (2.16).
A non-BPS solution to system (2.43) reads [2]

WnBPS ¼ 1
2ð�0 þ �1 þ �2 þ �3Þ; (2.46)

with ’ ¼ �. Thus, solution (2.46) does not describe the
most general non-BPS flow with five parameters, but rather
a particular case with a double-extremal phase (see
Sec. III).
Let us notice that the result (2.45) is an extension to the

whole attractor flow (i.e. for all range of the radial coor-
dinate � 2 ð�1; 0�) of the well-known fact that the solu-
tion of the 1

8 -BPS solution to the N ¼ 8 attractor

equations is obtained by retaining the singlet in the decom-
position of SUð8Þ with respect to the stabilizer of the
1
8 -BPS nondegenerate charge orbit, namely [13,21,24,40]:

E7ð7Þ ! SUð8Þ ! SUð6Þ � SUð2Þ �Uð1Þ;
56 ! 28þ 28 ! ð15; 1Þþ1 þ ð6; 2Þ�1 þ ð1; 1Þ�3

þ ð15; 1Þ�1 þ ð6; 2Þþ1 þ ð1; 1Þþ3; (2.47)

where the subscripts denote the charge with respect to
Uð1Þ. The corresponding extension to the whole 1

8 -BPS

attractor flow amounts to stating that the superpotential
governing the evolution is given by the singlet sector
ð1; 1Þþ3 þ ð1; 1Þþ3 in the decomposition (2.47). In the nor-
mal frame (2.1), by recalling Eqs. (2.4), (2.5), (2.6), and
(2.7) and splitting the index of the 8 of SUð8Þ as A ¼ â, ~a,
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with â ¼ 1, 2 and ~a ¼ 3; . . . ; 8 [consistently with (2.47)], it
then follows that

Wð1=8Þ-BPS ¼ jZ12j ¼ �0: (2.48)

III. SYMPLECTIC NORMAL FRAME: MAURER-
CARTAN EQUATIONS AND PDE FOR W

This section is devoted to the derivation of the non-BPS
fake superpotential uniquely from Maurer-Cartan equa-
tions, with suitable boundary horizon conditions.

We will obtainWnBPS as a solution of the Maurer-Cartan
equations in a suitably defined manifestly
USpð8Þ-covariant normal frame [6], in which maximal
compact symmetry USpð8Þ of the non-BPS charge orbit
E7ð7Þ
E6ð6Þ

[39] is fully manifest (see e.g. also the treatment of

[24,33,34]). As will be evident from subsequent treatment,
such a normal frame is generally and intrinsically not
democratic (in the meaning specified at the start of Sec. II).

In order to derive the non-BPS fake superpotential from
the geometric structure encoded in the Maurer-Cartan
equations, we extend to the whole attractor flow the well-
known fact that the non-BPS solution of the N ¼ 8
attractor equations is obtained by retaining the singlet in
the decomposition of SUð8Þwith respect to the stabilizer of
the non-BPS charge orbit, namely [21,24,40]:

E7ð7Þ ! SUð8Þ ! USpð8Þ;
56 ! 28þ 28 ! 27þ 1þ 270 þ 10;

(3.1)

where the priming distinguishes the various real irreducible
representations of USpð8Þ, namely, the rank-2 antisym-

metric skew-traceless 27ð0Þ and the related skew-trace 1ð0Þ.
The corresponding extension to the non-BPS attractor flow
amounts to stating that the superpotential governing the

evolution is given by the USpð8Þ singlets in the decom-
position (3.1) [6,24].
The branching (3.1) corresponds to decomposing the

skew-diagonal complex matrix ZAB [within the generic
normal frame given by the first line of Eq. (2.1)] into its
skew trace and its traceless part. This amounts to introduc-
ing the following quantities:

z0 � bþ c1 þ c2 þ c3;
za � b� ca;

,
b¼ 1

4 ðz0 þ
P
a
zaÞ;

ca ¼ 1
4 ðz0 þ

P
a
za � 4zaÞ;

(3.2)

thus yielding

ZAB ¼ b�AB þT 0;AB; (3.3)

with b and T 0 respectively being half of the skew-trace
and the skew-traceless part of the skew-diagonal complex
matrix ZAB [within the generic normal frame given by the
first line of Eq. (2.1)]:

b � 1
8ZAB�

AB; (3.4)

T 0;AB � ZAB � 1

8
ZCD�

CD�AB

¼
c1 þ c2 þ c3

�c1
�c2

�c3

0
BBB@

1
CCCA � �;

(3.5)

where�AB is the 8� 8metric ofUSpð8Þ defined in (2.27).
Following the same steps as in Sec. II, with details

explained in the Appendix [see Eqs. (A10)–(A14) therein],
after some straightforward algebra, one achieves the fol-
lowing result (recall a ¼ 1, 2, 3 throughout):

rWrW ¼ 1

8

���������4Re
��

b
@W

@ �b
�X

a

ca
@W

@ �ca

�
þ ðc2 þ c3Þ

�
�@W

@ �c1
þ @W

@ �c2
þ @W

@ �c3

��
þ�2i Im

�
ðc2 þ c3Þ

�
@W

@ �b
�X

a

@W

@ �ca

�

þ 2b

�
�@W

@ �c1
þ @W

@ �c2
þ @W

@ �c3

�
þ 2

�
�c1

@W

@ �c1
þ c2

@W

@ �c2
þ c3

@W

@ �c3

����������
2þ

��������4Re
��

b
@W

@ �b
�X

a

ca
@W

@ �ca

�

þ ðc1 þ c3Þ
�
@W

@ �c1
� @W

@ �c2
þ @W

@ �c3

��
þ�2i Im

�
ðc1 þ c3Þ

�
@W

@ �b
�X

a

@W

@ �ca

�
þ 2b

�
@W

@ �c1
� @W

@ �c2
þ @W

@ �c3

�

þ 2

�
c1

@W

@ �c1
� c2

@W

@ �c2
þ c3

@W

@ �c3

����������
2þ

��������4Re
��

b
@W

@ �b
�X

a

ca
@W

@ �ca

�
þ ðc1 þ c2Þ

�
@W

@ �c1
þ @W

@ �c2
� @W

@ �c3

��

þ�2i Im

�
ðc1 þ c2Þ

�
@W

@ �b
�X

a

@W

@ �ca

�
þ 2b

�
@W

@ �c1
þ @W

@ �c2
� @W

@ �c3

�
þ 2

�
c1

@W

@ �c1
þ c2

@W

@ �c2
� c3

@W

@ �c3

����������
2
�
: (3.6)

In order to proceed further, group theoretical arguments based on the reality of the 27 and 270 of USpð8Þ [see
Eq. (3.1)] allow for the following polar parametrization of the traceless part T 0;AB [%27;a 2 Rþ; see Eq. (3.3)]
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ca � %27;a expð�i�Þ )
@
@ca
@
@ �ca

 !

¼ ei� i
�a
ei�

e�i� � i
�a
e�i�

 !
@

@%27;a
@
@�

 !
; (3.7)

where, with a slight abuse of language, %27’s generally
denote the degrees of freedom pertaining to the traceless
part T 0;AB of ZAB [see Eq. (3.3), and the reasoning made
above]. Moreover we split the skew trace into its real and
imaginary parts

b � xþ iy; x; y 2 R: (3.8)

The reasoning made at the start of the present section [see
Eqs. (3.1) and (3.3)] implies the non-BPS fake superpoten-
tial WnBPS to be related to the skew-trace b.

We now proceed by formulating the Ansatz that b is
independent on all %27’s introduced in Eq. (3.7). As we will
see below, this corresponds to a natural decoupling Ansatz3

for the PDE (3.10) satisfied by W, which will yield to the
simplest solution. This yields the vanishing of all the
derivatives of W with respect to ca’s. Thus, Eq. (3.6)
reduces to

rWrW ¼ 1

8

�
12

�
x
@W

@x
� @W

@y

�
þ ½ð%27;1 þ %27;2Þ2

þ ð%27;1 þ %27;3Þ2 þ ð%27;2 þ %27;3Þ2�

�
�
cos�

@W

@y
� sin�

@W

@x

�
2
�
; (3.9)

so that the whole PDE for the W reads

W2 þ 1

4

�
12

�
x
@W

@x
� y

@W

@y

�
2 þ �27

�
cos�

@W

@y

� sin�
@W

@x

�
2
�

¼ 4ðx2 þ y2Þ þ�27; (3.10)

where the quantity (symmetric in f%27;1; %27;2; %27;3g)
�27 � ð%27;1 þ %27;2Þ2 þ ð%27;1 þ %27;3Þ2

þ ð%27;2 þ %27;3Þ2 (3.11)

was introduced.
Equation (3.10) is a nonlinear PDE in the real functional

variables x and y. The previous statement that b is inde-
pendent on all %27’s trivially implies that its real and
imaginary parts [x, respectively, y, as defined in Eq. (3.8)
] do not depend on �27. Thus, PDE (3.10) naturally decou-
ples in the following system of PDEs:

W2 þ 3

�
x
@W

@x
� y

@W

@y

�
2 ¼ 4ðx2 þ y2Þ; (3.12)

�
cos�

@W

@y
� sin�

@W

@x

�
2 ¼ 4: (3.13)

PDE (3.12) admits the solution (symmetric in x and y)

Wðx; yÞ ¼ ðx2=3 þ y2=3Þ3=2; (3.14)

which plugged into PDE (3.13) yields the following alge-
braic equation for x and y in terms of �:

ðx2=3 þ y2=3Þðx1=3 cos�� y1=3 sin�Þ2 ¼ x2=3y2=3: (3.15)

Equation (3.15) is in turn solved by (factor 2 introduced for
later convenience)

x ¼ �2%sin3�; y ¼ 2%cos3�; (3.16)

where % is a real strictly positive number:

% 2 Rþ: (3.17)

In solution (3.16) % is an arbitrary parameter whose in-
troduction is possible as a consequence of the homogeneity
of degree 0 of algebraic Eq. (3.15) in x and y. In other
words, % can be understood as an integration constant
whose meaning has to be clarified by imposing proper
boundary conditions. This is the case for the requirement
of positivity of % which is an asymptotical boundary
condition due to the physical meaning of W that defines
the ADM mass MADM at radial infinity [see Eqs. (1.9) and
(3.18)]. Thus, Eqs. (3.14) and (3.16) yield that the final
solution for W reads as follows:

Wðx; yÞ ¼ 2%: (3.18)

By recalling Eqs. (3.3), (3.4), (3.5), and (3.7), in the
resulting manifestly USpð8Þ-covariant normal frame the
central charge matrix ZAB can thus be written as

ZAB ¼ 2ðcos3�þ isin3�Þi%�ABþ expð�i�Þ

�

%27;1þ%27;2þ%27;3

�%27;1

�%27;2

�%27;3

0
BBBBB@

1
CCCCCA

��: (3.19)

Equation (3.19) determines a parametrization of the
symplectic normal frame (3.3), (3.4), and (3.5) which is
minimal, because it contains only five parameters (see e.g.
[21,38], and references therein) , namely f�; %; %27;1;
%27;2; %27;3g.
In order to consistently characterize solution (3.18) as

the non-BPS fake superpotential, one can use the boundary
condition at the horizon of non-BPS BH. To this end we
notice that (see reasoning at the start of the present section)
at non-BPS critical points of VBH;N¼8 we have

%27;1 ¼ %27;2 ¼ %27;3 ¼ 0 (3.20)

so that the parametrization (3.19) reduces to

3We should also note that this Ansatz holds for the particular
solution (2.46), with � ¼ � �

4 þ 2k� (k 2 Z) but @W � 0.
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ZAB;nBPS ¼ 2ðcos3�nBPS þ isin3�nBPSÞi%nBPS�AB:

(3.21)

This last equation has to be compared with Eq. (2.25), to
get

2ðcos3�nBPS þ isin3�nBPSÞi%nBPS ¼ eið�=4Þ�nBPS; (3.22)

whose splitting in real and imaginary parts, respectively,
yields:ffiffiffi

2
p ðsin3�nBPS � cos3�nBPSÞ%nBPS ¼ �nBPS; (3.23)

cos 3�nBPS þ sin3�nBPS ¼ 0: (3.24)

The unique solution of the system (3.23) and (3.24) [con-
sistent with Eq. (3.17)] is found to be

�nBPS ¼ ��

4
þ 2k�; k 2 Z; (3.25)

%nBPS ¼ �nBPS; (3.26)

in agreement with [6].
The non-BPS nature of the solution (3.18) implies the I4

of the 56 of E7ð7Þ [given by Eqs. (2.10) and (2.11) in the

special normal frame (2.1)] to be negative. To show this,
we rewrite I4 in the manifestly USpð8Þ-covariant parame-
trization (3.19), obtaining [6]

I4 ¼ �24sin22�ð% sin2�� %27;1 � %27;2 � %27;3Þ
�Y

a

ð% sin2�þ %27;aÞ; (3.27)

which evaluated at the horizon of non-BPS BH reads

I 4;nBPS ¼ �24%4
nBPSsin

6ð2�nBPSÞ: (3.28)

Using Eqs. (3.25) and (3.26), Eq. (3.28) implies

I 4;nBPS ¼ �24�4
nBPS ¼ �W4

nBPSjnBPS < 0; (3.29)

which confirms the function W given by Eq. (3.18) to be
the non-BPS fake superpotential of N ¼ 8, d ¼ 4 super-
gravity:

WnBPS ¼ 2%: (3.30)

Thus, WnBPS given by Eq. (3.30) has been proved to be
the simplest solution of the PDE (3.10), determining the
non-BPS fake superpotential ofN ¼ 8, d ¼ 4 supergrav-
ity. The proof given in the treatment performed above
relies completely on the geometric data encoded into
Maurer-Cartan equations (with suitable consistent bound-
ary horizon conditions), and it is alternative with respect to
the treatment given in [6].

As the special normal frame (2.1) has been proved in
Sec. II to be more suitable to derive 1

8 -BPS attractor flow,

so the symplectic normal frame (3.19) has been proved in
this section to be more suitable to derive non-BPS attractor
flow.

The expression of % in terms of the five parameters
f�0; �1; �2; �3; ’g of the special normal frame (2.1) is not
trivial, and it is thoroughly treated in Appendix B of [6]. In
general, %2 turns out to satisfy an algebraic equation of
order 6 with coefficients depending on f�0; �1; �2; �3; ’g
and their scalar-independent combination I4, as given by
Eq. (B.14) of [6] (see also the discussion in [7]).
Thus, in general %2 seems not to enjoy an analytical

expression. However, at least one of the solutions of
Eq. (B.14) of [6] is a solution of PDE (A9), yielding
WnBPS in the special normal frame (2.1). Analogously,
Wð1=8Þ-BPS given by Eq. (2.45), suitably translated in the

notation of the symplectic normal frame (3.19) (see treat-
ment of Appendix B of [6]), is a solution of PDE (3.10),
yielding Wð1=8Þ-BPS in the symplectic normal frame (3.19).

Furthermore, it is here worth mentioning that, through a
suitable rewriting inN ¼ 2 language, the results of [5–7]
are solutions of PDEs (A9) and/or (3.10), eventually
through additional reductions to st2 or t3 models [5–7].
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APPENDIX: COMPUTATIONAL DETAILS

In this Appendix we collect details of the computations
determining the various formulas of the present paper.
(i) Concerning Sec. II, the details are listed below.

Within the index reduction (2.32), the basic multi-
plication rules for the vielbein

PABCD
�PEFGH ¼ 	EFGH

ABCD ; (A1)

PABCDPEFGH ¼ �ABCDEFGH (A2)

recast as

PIJ
�PKL ¼ 	K

I 	
L
J ; (A3)

PIJPKL ¼ ~�IJKL � j�IJKLj: (A4)

Furthermore such rules and Eq. (2.29) yield
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rZIrZJ ¼ ~�IJKL
�ZK �ZL; (A5)

rZIr �ZJ ¼ 	I
JjZIj ¼ 	I

J�I: (A6)

Using (A4) and the fully explicited form of Eq. (2.39) which reads

riW ¼ 1
2f½ei’=2ðW0�1 þW1�0Þ þ e�i’=2ð �W2�3 þ �W3�2Þ�P23 þ ½ei’=2ðW0�2 þW2�0Þ
þ e�i’=2ð �W1�3 þ �W3�1Þ�P13 þ ½ei’=2ðW0�3 þW3�0Þ þ e�i’=2ð �W1�2 þ �W2�1Þ�P12

þ ½ei’=2ðW1�2 þW2�1Þ þ e�i’=2ð �W0�3 þ �W3�0Þ�P03 þ ½ei’=2ðW1�3 þW3�1Þ
þ e�i’=2ð �W0�2 þ �W2�0Þ�P02 þ ½ei’=2ðW2�3 þW3�2Þ þ e�i’=2ð �W0�1 þ �W1�0Þ�P01g; (A7)

it can be computed that

gijriWrjW ¼ 1
2fjðW0�1 þW1�0Þj2 þ jðW0�2 þW2�0Þj2 þ jðW0�3 þW3�0Þj2 þ jðW1�2 þW2�1Þj2
þ jðW1�3 þW3�1Þj2 þ jðW2�3 þW3�2Þj2 þ ½ei’ðW0�1 þW1�0ÞðW2�3 þW3�2Þ
þ e�i’ð �W0�1 þ �W1�0Þð �W2�3 þ �W3�2Þ� þ ½ei’ðW0�2 þW2�0ÞðW1�3 þW3�1Þ
þ e�i’ð �W0�2 þ �W2�0Þð �W1�3 þ �W3�1Þ� þ ½ei’ðW0�3 þW3�0ÞðW1�2 þW2�1Þ
þ e�i’ð �W0�3 þ �W3�0Þð �W1�2 þ �W2�1Þ�g; (A8)

that, in turns, gives the following expanded form of PDE (2.41):

W2 þ fjðW0�1 þW1�0Þj2 þ jðW0�2 þW2�0Þj2 þ jðW0�3 þW3�0Þj2 þ jðW1�2 þW2�1Þj2 þ jðW1�3 þW3�1Þj2
þ jðW2�3 þW3�2Þj2 þ ½ei’ðW0�1 þW1�0ÞðW2�3 þW3�2Þ þ e�i’ð �W0�1 þ �W1�0Þð �W2�3 þ �W3�2Þ�
þ ½ei’ðW0�2 þW2�0ÞðW1�3 þW3�1Þ þ e�i’ð �W0�2 þ �W2�0Þð �W1�3 þ �W3�1Þ�

þ ½ei’ðW0�3 þW3�0ÞðW1�2 þW2�1Þ þ e�i’ð �W0�3 þ �W3�0Þð �W1�2 þ �W2�1Þ�g ¼ �2
0 þ �2

1 þ �2
2 þ �2

3: (A9)

(ii) Concerning Sec. III, the details are as follows:
Within parametrization (3.2), (3.3), (3.4), and (3.5), the Maurer-Cartan equations (2.33), (2.34), (2.35), and (2.36)
read as follows:

rb ¼ 1
4½P01ð2 �bþ �c2 þ �c3Þ þ P02ð2 �bþ �c1 þ �c3Þ þ P03ð2 �bþ �c1 þ �c2Þ
þ P12ð2 �b� �c1 � �c2Þ þ P13ð2 �b� �c1 � �c3Þ þ P23ð2 �b� �c2 � �c3Þ�; (A10)

rc1 ¼ 1
4½P01ð�2 �b� 4�c1 � 3�c2 � 3�c3Þ þ P02ð2 �bþ �c1 þ �c3Þ þ P03ð2 �bþ �c1 þ �c2Þ
þ P12ð�2 �b� �c1 þ 3 �c2Þ þ P13ð�2 �b� �c1 þ 3�c3Þ þ P23ð2 �b� �c2 � �c3Þ�; (A11)

rc2 ¼ 1
4½P01ð2 �bþ �c2 þ �c3Þ þ P02ð�2 �b� 3�c1 � 4�c2 � 3�c3Þ þ P03ð2 �bþ �c1 þ �c2Þ
þ P12ð�2 �bþ 3�c1 � �c2Þ þ P13ð2 �b� �c1 � �c3Þ þ P23ð�2 �b� �c2 þ 3�c3Þ�; (A12)

rc3 ¼ 1
4½P01ð2 �bþ �c2 þ �c3Þ þ P02ð2 �bþ �c1 þ �c3Þ þ P03ð�2 �b� 3�c1 � 3�c2 � 4�c3Þ
þ P12ð2 �b� �c1 � �c2Þ þ P13ð�2 �bþ 3�c1 � �c3Þ þ P23ð�2 �bþ 3�c2 � �c3Þ�: (A13)

Then, by following the same steps as in Sec. II, after some algebra, one achieves the following result (recall a ¼ 1, 2, 3
throughout):
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rW ¼ 1

4

�
P01

�
ð2 �bþ �c2 þ �c3Þ

�
@W

@b
þX

a

@W

@ca

�
þ ð2b� c2 � c3Þ

�
@W

@ �b
þX

a

@W

@ �ca

�
þ�4

�
ðb� c2Þ @W@ �c3 þ ðb� c3Þ @W@ �c2

�

þ�4ð �bþ �c1 þ �c2 þ �c3Þ@W@c1
�
þ P02

�
ð2 �bþ �c1 þ �c3Þ

�
@W

@b
þX

a

@W

@ca

�
þ ð2b� c1 � c3Þ

�
@W

@ �b
þX

a

@W

@ �ca

�

þ�4

�
ðb� c1Þ@W@ �c3 þ ðb� c3Þ @W@ �c1

�
þ�4ð �bþ �c1 þ �c2 þ �c3Þ @W@c2

�
þ P03

�
ð2 �bþ �c1 þ �c2Þ

�
@W

@b
þX

a

@W

@ca

�

þ ð2b� c1 � c3Þ
�
@W

@ �b
þX

a

@W

@ �ca

�
þ�4

�
ðb� c1Þ@W@ �c2 þ ðb� c2Þ @W@ �c1

�
þ�4ð �bþ �c1 þ �c2 þ �c3Þ @W@c3

þ P12

�
ð2 �b� �c1 � �c2Þ

�
@W

@b
þX

a

@W

@ca

�
þ ð2bþ c1 þ c3Þ

�
@W

@ �b
þX

a

@W

@ �ca

�
þ�4

�
ð �b� �c1Þ@W@c2 þ ð �b� �c2Þ @W@c1

�

þ�4ðbþ c1 þ c2 þ c3Þ@W@ �c3
�
þ P13

�
ð2 �b� �c1 � �c3Þ

�
@W

@b
þX

a

@W

@ca

�
þ ð2bþ c1 þ c3Þ

�
@W

@ �b
þX

a

@W

@ �ca

�

þ�4

�
ð �b� �c1Þ@W@c3 þ ð �b� �c3Þ @W@c1

�
þ�4ðbþ c1 þ c2 þ c3Þ @W@ �c2

�
þ P23

�
ð2 �b� �c2 � �c3Þ

�
@W

@b
þX

a

@W

@ca

�

þ ð2bþ c2 þ c3Þ
�
@W

@ �b
þX

a

@W

@ �ca

�
þ�4

�
ð �b� �c2Þ@W@c3 þ ð �b� �c3Þ @W@c2

�
þ�4ðbþ c1 þ c2 þ c3Þ @W@ �c1

��
: (A14)

It is worth noticing that the coefficient of the vielbein PIJ (recall I ¼ 0, 1, 2, 3 throughout) is the complex conjugate of the
coefficient of PKL, with K, L � I, J. In other words, in order to compute the term rWrW one has just to sum up the
squares of the real and imaginary parts of each coefficient, thus obtaining Eq. (3.6).
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