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Strangeness P roduction at the SP S

C.Blume, for the NA 49 Collaboratior]
Fachkereich Physik, JW . G cetheU niversitat,
M ax-von-Laue-Str. 1, D 60438 Frankfurt am M ain, GERMANY
(R eceived)

System atic studies on the production of strange hyperonsand the m eson asa function of
beam energy and system size perform ed by the NA 49 collaboration are discussed. H adronic
transport m odels fail to descrbe the production of m ulti strange particles ( , ), whilke
statistical m odels are generally iIn good agream ent to the m easured particle yields at all
energies. T he systam size dependence is well reproduced by the core-corona approach. New
data on K (892) production are presented. T he yields of these short-lived resonances are
signi cantly below the statisticalm odel expectation. This is In line w ith the interpretation
that them easurable yields are reduced due to rescattering of their decay products inside the

reball.

PACS num bers: 25.75¢q

K eywords: H eavy ion reactions, quark-glion plasn a, strangeness production

I. NTRODUCTION

T he production of strange particles has al-
ways been a key observable in heavy—-ion reactions
and its enhancem ent was one of the st sug-
gested signatures for quark-gluon plasna (QGP)
form ation E|]. The predicted enhancem ent of
strangeness production in nucleus{nucleus colli-
sions relative to proton {proton reactions was es-
tablished experin entally som e tin e ago @,E]and
it was also found that this enhancem ent is in-
creasing w ith the strangeness content of the par-
ticle type @]. However, a clear interpretation of
these phenom ena requires a system atic investiga—
tion of the energy and system size dependence of
strangeness production. In the follow Ing we re—
port on som e aspects of such a study done by the
NA 49 experin ent.

II. ENERGY DEPENDENCE

Figure [l show s a com parison of the energy
dependence of m dwapdiy , , ,and ¢
production to several m odels and results from
other experin ents. W hile the transport m od—
els Ur QM D13 and HSD provide a reasonable
description of the / amd / ratios, they
are clearly below the data points In case of the

and . Thism ight indicate that an addi-
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FIG .1: The rapidity densities AN =dy at m drapidity
of (a), o), (c),and * (d) divided by the
pion rapdity densities ( = 1:5( & + )) In central
Pb+ Pb and Au+ Au collisions as a function ofp%
M]. The system atic errors are represented by the gray
boxes. A lso shown are NA 57 [3,[d1, a6 s [7,[8,[9,[1d3,
and REIC [11,014,013,[14,[15,016,[17) data, as well
as calculations w ith hadronic transportm odels (HSD ,
UrQMD13 ,,]) and a statistical hadron gas
model (SHM (B) [21]).

tional partonic contribution is necessary to reach
the production rates observed for m ultistrange
particles. Statistical m odels on the other hand
generally provide a better m atch to the data.
T hese m odels are based on the assum ption that
the particle yields correspond to their chem ical
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FIG . 2: The total yield of + ' divided by the
total number of pions h'i (hi = 15 (7 + ))
versus the center-ofm ass energy [24]. The dashed
curve show s the prediction from the hadronic trans-
portm odelUrQM D 1.3 [19]. A hadron gasm odelw ith-
out strangeness suppression [24] is shown by the full
curve. The open squares represent the ts from [23]
including a strangeness under-saturation factor s.

equilbrium value and can thus be described by
the param eters tem perature T , baryonic chem i-
calpotential ,,volumeV ,and, in som e In ple-
m entations, by an additional strangeness under-
saturation factor 4. The curves shown in Fig.[d
Ibbeled SHM (B ) are taken from [21 ]Jand arebased
on param etrizations ofthe™ s, dependence of T

and ;.

The di erence between the two m odel ap—
proaches discussed here is even m ore prom inent
for the ,asdem onstrated in Fig. [J. In this case
the deviation to the hadronic transport m odel is
ofthe orderofa factor of10,w hileboth the statis—
ticalm odel approaches shown in Fig.[J are quite
close to the data points.

W hile multistrange hyperons generally
seam to be close to the full equilibrium expecta—
tion at all energies, the -m eson exhibits signi —
cantdiscrepancies (see F ig.[3). W hile at loweren-
ergiesthe production isclose to both, the statis-
ticalm odel and the transportm odelUrQM D13,
at top SPS energies none of the m odels does
m atch the m easuram ents. P lease note that the
appearant discrepancy of UrQM D13 with the

/ ratios at low er energies, asvisble in Fig.[3, is
rather due to an overestin ate of the pion yields
and not an underestin ate of the vyieds 25].
Also shown in Fig.[d is a m easurem ent of the
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FIG . 3: The rapdity densities dN =dy at m d-rapidity
of divided by the pion rapidity densities ( =
150"+ 3) in centralnucleusnucleus collisionsasa
function of © 5 [25]. Also shown are NA45/CERES
26], and RHIC [27,[28]1data, as well as calculations
w ith hadronic transportm odels (UxQM D 1.3 [19]) and
a statistical hadron gasmodel (HGM [21]).

yields via the dielectron decay ! € + e per—
form ed by the NA 45 collaboration at 158A G &V
26]. This result agrees quite well with the
NA 49 result, which hasbeen m easured using the
hadronic decay branch ! K* + K

ITI. SYSTEM SIZE DEPENDENCE

T he systam size dependenceof , ,and
production close to m dxapidity, asm easured at
SPS energies, is summ arized in Fig.[d. For
and a relatively early saturation at N ,1 60
is observed by NA 49. However, a clear discrep—
ancy between thedata ofNA 49 and NA 57 is still
present. The transport models UrQM D 2.3 [30]
and HSD [l8]are close to the data points for ,
but are slightly below the m easurem ents. The

production is clearly underpredicted at all
system sizes. T he corecorona approach [31,134]
provides generally a much better description of
the systam size dependence of all strange particle
species. H ere the relevant quantity is the fraction
of nucleons that scatter m ore than once £ (N, 1)
which can becalculated in a G lauberm odel. T his
allow s for an interpolation between the yieds Y
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FIG. 4: The rapdity densities dN =dy divided by

the average num ber of wounded nuclkeons W i of ,

, and at m drapidity for Pb+ Pb collisions at
40A and 158A G eV, aswell as for nearcentral C+ C
and Sit+ Si reactions at 158A G &V, as a function of
W, i [29]. Also shown are data of the NA 57 collab-
oration [3,ld] (open stars) and calculations w ith the
HSD model [18] (dotted lines), the UrQM D 2.3 m odel
[19,130] (dashed lines), and the core-corona approach
(sold lines) 31,132].

measured In elem entary p+ P (= Yeorona) and in
central nucleusnucleus collisions (= Yeore):

Y (thi) = thj- [f(thi)Ycore
+ (1 £MNy 1)) Yeoronal

P lease note that the curves shown in Fig.[4 and
Fig.[H are based on a function f (i, i) that was
calculated for Pb+ Pb interactions. T herefore
their com parison to the sm aller system sC+ C and
Si+ Siis not directly possible, since their surface
to volum e ratio is di erent.

It is Interesting to observe that thisapproach
not only works for yields, but also for dynam ical
quantities such asm i m (see Fig.[H). This
suggests that the corecorona picture provides in
general a reasonable way for understanding the
evolution from elem entary p+ p to centralPb+ Pb
collisions.
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FIG.5: Themlmi mg values at m dxapidity for

Pb+ Pb collisibonsat 40A and 158A G &€V ,aswellas for
nearcentral C+ C and Si+ Sireactions at 158A G &V
29]. T he (anti-)proton data are taken from [33]. A Iso
shown are the results from a tfor and with the
core-corona approach (solid lines).

Iv. RESONANCES

Strange resonances are of particular interest
due to their short lifetin es that are In the same
order as the lifetin e of the reball. Because of
this their yields can stillbem odi ed after chem -
ical freezeout via destruction and regeneration
m echanism s. For Instance the particles resulting
from the decay of such a resonance can rescatter
In the reball such that the resonance cannot be
reconstructed any m ore. These e ects can thus
lead to deviations from the cheam ical equilibrium
expectation.

New data on the K (892) (K (892)) pro-
duction In central nucleusnucleus collisions at
158A Ge&V are summarized in Fig. [d. The
K (892) (K (892)) are reconstructed via the de—
cay K (892) ! K* + (K (892)! K + ™).
A's shown in the upper panel of F ig.ld, the sys-
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FIG. 6: Upper panel: The total yield of K (892)

(K (892)) divided by the totalyieds of K* (K ) in
p+ p and nucleusnucleus collisions at 158A G &V as
a function of the average num ber of wounded nucle-
ons N i. Lower panel: The total yield of K (892)
(K (892)), (1520),and in centralPb+ Pb collisions
at 158A G eV divided by the expectation from a sta-
tistical m odel t [34] as a function of the resonance
lifetim e ¢

tem size dependence of the totalK (892) yield is
clearly di erent than the one of charged kaons,
the ratios K (892)/K* (K (892)/K ) decrease
w ith increasing system size. This could be in-
dicative of a stronger reduction of the m easur-
ablkeK (892) yiedsin the arger reballofcentral
Pb+ Pb reactions com pared to the sm aller one
produced in C+C and Si+ Si collsions, because
here their decay products have a higher probabil-
ity of rescattering w ith them edum .

T he Jow er panel of F ig.[d com pares the total
yields of several resonances (K (892), (1520),
and ) to the expectations from a statistical
model t [34]. The t did not include the res-
onances them selves. T he deviation is largest for
the short lived K (892),while it is slighy less pro—
nounced for the (1520) and even less for the |,
which has a much longer lifetin e than the other
two resonances. Com paring the yields of reso—
nances w ith di erent lifetin es can thus provide a
m eans to study the tin e-like extension of the hot
and dense reball created in heavy jon reactions.
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