
C
ER

N
-A

TS
-2

00
9-

11
2

01
/1

1/
20

09

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
CERN – ACCELERATORS AND TECHNOLOGY SECTOR

CERN‐ATS‐2009‐112

NEW WAVE OF COMPONENT REUSE WITH

SPRING FRAMEWORK AP CASE STUDY*

J. Wozniak, G. Kruk, S. Deghaye

CERN, Geneva, Switzerland

Abstract

The myth of component reuse has always been the “holy grail” of software
engineering. The motivation var-ies from less time, effort and money expenditure to
higher system quality and reliability which is especially impor-tant in the domain of
high energy physics and accelerator controls. Identified as an issue by D. McIlroy in
1968 [1], it has been generally addressed in many ways with vari-ous success rates.
But only recently with the advent of fresh ideas like the Spring Framework with its
powerful yet simple “Inversion of Control” paradigm the solution to the problem has
started to be surprisingly uncompli-cated. Gathered over years of experience this
document explains best practices and lessons learned applied at CERN for the design
of the operational software used to control the accelerator complex and focuses on
features of the Spring Framework that render the component reuse achievable in
practice. It also provides real life use cases of mission-critical control systems
developed by the Ap-plication Section like the LHC Software Architecture (LSA), the
Injector Control Architecture (InCA) or the Software Interlock System (SIS) that have
built their own success mostly upon a stack of reusable software components.

Presented at the International Conference on Accelerator and Large Experimental

Physics Control System (ICALEPCS2009) – October 12-16, 2009, Kobe, Japan

Geneva, Switzerland, November 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/44234477?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NEW WAVE OF COMPONENT REUSE WITH SPRING FRAMEWORK

 AP CASE STUDY*

J. Wozniak, G. Kruk, S. Deghaye, CERN, Geneva, Switzerland

Abstract
The myth of component reuse has always been the

“holy grail” of software engineering. The motivation var-

ies from less time, effort and money expenditure to higher
system quality and reliability which is especially impor-

tant in the domain of high energy physics and accelerator

controls. Identified as an issue by D. McIlroy in 1968 [1],

it has been generally addressed in many ways with vari-

ous success rates. But only recently with the advent of

fresh ideas like the Spring Framework with its powerful

yet simple “Inversion of Control” paradigm the solution

to the problem has started to be surprisingly uncompli-

cated. Gathered over years of experience this document

explains best practices and lessons learned applied at

CERN for the design of the operational software used to
control the accelerator complex and focuses on features of

the Spring Framework that render the component reuse

achievable in practice. It also provides real life use cases

of mission-critical control systems developed by the Ap-

plication Section like the LHC Software Architecture

(LSA), the Injector Control Architecture (InCA) or the

Software Interlock System (SIS) that have built their own

success mostly upon a stack of reusable software compo-

nents.

SOFTWARE REUSE

As first proposed by Douglas McIlroy from Bell Labo-

ratories in 1968, the idea of software reuse has evolved

over time from simple subroutines and libraries through
the object oriented programming with reusable classes

into the modern software components based on architec-

tures, frameworks and design patterns.

EXISTING FRAMEWORKS

There are many existing software frameworks that ad-

dress to certain extend the reuse principle. One can easily

find those built on CORBA or Microsoft OLE DCOM

model. For Java systems the standards have been drawn

by SUN with its Java Platform Enterprise Edition (J2EE)

specification where the components are called Enterprise

Java Beans (EJB). Although based on solid grounds the

J2EE EJB framework was criticised for its heaviness and
complexity which opened door for development of more

lightweight solutions like the Spring Framework.

SPRING APPROACH

The original motivation for the new framework came

from problems with existing heavyweight J2EE solutions

where the EJB business components were increasingly

coupled with the surrounding environment making devel-

opers more focused on the „plumbing‟ code than on the

actual business functionality. The Spring‟s main aim is to

make enterprise Java easier to use and promote good pro-

gramming practice [2]. It addresses many areas which

seem forgotten by other frameworks. Its comprehensive

and modular architecture eases the use of any part in iso-

lation yet rendering the global picture internally consis-
tent. Finally it is designed to facilitate the use of plain old

java objects (POJOs) containing only business logic with

no or little reference to the surrounding framework [2].

Although the coverage of different architectural problems

is quite wide in scope this paper will focus on the key

points that make this particular framework successful at

CERN.

Dependency Injection and Inversion of Controls

As stated before the core of Spring is designed to work

with POJO objects which by convention are called beans

(but not necessarily Java Beans). The important higher

layer of abstraction is a bean factory. The Spring bean
factory enables configured objects to be stored in a con-

tainer and to be retrieved by name [2]. It also manages

relationships between them transparently with the para-

digm of Dependency Injection (DI) and Inversion of Con-

trol (IoC) with no specific API involved. The DI principle

itself refers to supplying an external dependency object to

a software component or object. This is typically realized

with a setter method or a constructor argument. Depend-

encies are either injected explicitly where one bean refers

to another or with automatic injection where the neces-

sary services are discovered either by name or by type.

The second case is particularly interesting when the de-
pendency is optional. The IoC principle is best explained

by a “Hollywood Principle” - “don‟t call us, we will call

you”. The IoC container injects all the dependencies and

the business objects do not have to worry about the in-

stantiation and origin of the dependent services they use.

Lightweight remoting support

The remoting support eases the development of remote-

enabled services, implemented by simple (Spring) POJOs.

The implemented protocols like RMI, HTTP, JAX-RPC

or JMS cover most of the needs of a typical 3-tier control

system used at CERN. Exposing a service via RMI now

takes no more than few lines of the XML code with no
need for tedious rmic compilation at all. The same applies

for other protocols.

*BE/CO/AP - Application Section, Beams Department, CERN, Geneva

Aspect Oriented Programming (AOP)

The framework comes with good support for this popu-

lar paradigm in an elegant way. It enables for a cross cut-

ting concerns like caching, security or transaction support

to be added with no time.

JDBC database support

The complex and low-level details of the JDBC pro-

gramming are hidden behind the different flavours of the

JdbcTemplate class. All error prone code like connection
or error handling is now addressed by the framework. The

declarative transactional support is offered with the AOP

primitives. This feature is a base for data access in many

CERN projects.

Integration of components by file inclusion

The modularity of the subsystems and particular com-

ponents is enforced with the inclusion mechanism where

parts of the system are declared in XML in different files.

They can be assembled together by including them in a

global application context file. This mechanism comple-

ments the automatic dependency injection and it very

important in a system integration process.

Testing

Spring provides a generic and extensible infrastructure

for integration and unit tests with support for mock

classes. Those are commonly used to replace parts of the

system with fake components to test certain functional-

ities in isolation.

PRINCIPLES OF GOOD DESIGN

Among popular methods that are considered as good

practices such as agile programming in a development

process or application of the design patterns, there are

others which are often forgotten. Those when applied

carefully also lead to good results and render software

reuse much simpler in nature. They specifically apply

well to the AP environment where the control system as a
whole is represented by a large number of individual

products sometimes forced to work together in a final

stage of their lifecycle.

Domain object base

Whereas many different projects coexist in the control

system it is very important to define a common layer of

domain specific classes that is used by all the projects as a

common language. If necessary the different systems can

now easily talk to each other and the subsystems can be

reused since they are based on the same common

grounds.

Programming to (narrow) interfaces

The abstraction should be represented with the use of
interfaces that specify what should be done without giv-

ing any details of the underlying implementation. Those

interfaces should be kept as narrow as possible. Such ap-

proach promotes testability and allows for eventual re-

placement or mocking certain parts of the subsystems

without the need to adapt the surrounding components. It

enables designing a system that is composed of a set of

pluggable components with customizable implementation.

Generic libraries and specific solutions

Care should be put to avoid mixing generic libraries

with specific solutions. The generic code should stay well

separated which guarantees portability among different
projects. The custom adaptations should be placed apart,

forming the extension libraries.

Similar problems similar solutions

Better portability of components is achieved when

similar problems are addressed in a common way be-

tween different projects. This rule seems to be pretty

obvious but it is surprisingly hard to apply in practice due

to knowledge transfer issues. It leads again to building a

common foundation of libraries that address different

aspects of the domain in a homogenous way.

HIGH LEVEL CONTROL SOFTWARE AT

CERN

The CERN control system as viewed by AP with its 10

million lines of Java code places itself among those which

are relatively complex. It is composed of multiple, indi-

vidual high level systems dealing with particular control

and monitoring sub-domains. The following sections will

focus on the reuse from the smallest components up to the

whole subsystems.

Base components and libraries

The accelerator devices are accessed with a stack of
middleware services and their properties are logically

represented in a structural device/property model. The

primitive types (domain objects) used for communication

are grouped in two libraries called accsoft-commons-

value and japc-value. Those are used by Java API for

Parameter Control (JAPC) [5] that is applied for device

access from the high level services. The JAPC library

follows the principle of programming to interfaces and

has multiple extensions for different flavours of equip-

ment being either real or virtual. This is also a good ex-

ample of generic library with many specific solutions as
described earlier. Additional services like device sub-

scription definition and management, parameter value

conversions and buffering or alarms handling are pro-

vided in a library called japc-monitoring which is used

in several high level projects. It introduces a concept of

high-level business modules (as Spring beans) that per-

form some accelerator domain operations being based on

values received from the equipment. The way the data is

obtained is completely hidden and transparent to the

module itself allowing for better separation of concerns.

The library constitutes a framework where different mod-

ules can be plugged in independently forming completely
different applications, yet preserving the common struc-

ture of the project. Commonly used solutions like XML

processing, process logging and monitoring, data base

access and many others are located in the set of libraries

called by convention accsoft-commons. Also all GUI ap-

plications are based on common frame components that

provide functionalities used by all user applications. This

set of components is used later to build high level services

and applications.

LHC Software Architecture (LSA)

The LSA system covers all of the most important as-

pects of accelerator controls: the optics, the parameters

space, the settings generation and management, the trim

and operational exploitation, hardware exploitation and

beam based measurements [3]. One of the main goals of

LSA is to provide a clean and generic API to all core

functionality, to be used by all operational applications. In

principle all LSA libraries are split between the core of

the system and the additional extensions plus the generic

applications. This project uses almost all foundation li-

braries mentioned in the previous subsection. The device

access is standardized with the JAPC and the GUI appli-
cations use the common frame components. Being inher-

ently a 3-tier system with well separated layers, it can also

be deployed in 2-tier mode where all the server code is

executed on the client side. This functionality is achieved

with Spring and interfaces where the GUI client is not

aware if it talks to the local or remote controller. The re-

moting is fully implemented with Spring using the RMI

and JMS calls. To avoid unnecessary round-trips to the

database the server side caching is introduced also with

the previously mentioned AOP Spring services in a fully

declarative way.
The LSA project also standardizes the way the database

is accessed with the concept of DB finder and persister

classes that is also used in other projects like SIS or

InCA.

Software Interlock System (SIS)

The SIS system protects the machine through

surveillance and by analyzing the state of various key

devices and dumping or inhibiting the beam if a

potentially dangerous situation occurs [4]. Being a part of

the machine protection it plays a vital role in the overall

control system. As designed with extensibility in mind the

core architecture is based on pluggable interfaces and the
main controller is simply a japc-monitoring module. Ex-

tension points allow developers to provide their own im-

plementation of components by leveraging the Spring

Framework. They cover the areas of system configura-

tion, data transformation, trigger events and exporters of

the machine state calculations. Again as in LSA, SIS uses

AOP to declare the security schemas or decouple itself

from the underlying database. The remote communication

to the operational GUIs is done with the RMI and JMS

protocols.

Injector Control Architecture (InCA)

The InCA project is an effort to renovate the existing

high level control software used in the Proton Synchro-

tron (PS) complex. Aiming at the homogenisation of the

control systems across CERN accelerators, InCA is based

on existing components and systems developed for the

LHC but also new components required to fulfil the spe-

cific operation needs of the PS [6]. The architecture of the

server is composed of three main parts: the Control Core,

the Acquisition Core and the Configuration Service. Hav-
ing the reuse principle in mind the control core is based

fully on the LSA project and all components that were

used previously for LHC or SPS are used here without

major changes. The Acquisition Core utilizes the japc-

monitoring framework for data acquisition with special-

ized customizations needed for advanced data calcula-

tions. Those will be again reused in the SIS project during

its next extension phase. A good example of conceptual

reuse is the application of the principle of the MakeRules

[3] taken from LSA to calculate high level virtual acquisi-

tion parameters. The LSA database infrastructure for pa-

rameter relationships as well as the LSA software compo-
nents that deal with it is completely reused. The Configu-

ration Service itself is also based on LSA components and

uses the LSA caching features to reduce the load on the

database.

CONCLUSIONS

The art of software development at CERN turned out to

be not an easy task given the complexity of the environ-

ment and its relative uniqueness. Some inevitable mis-

takes have been made at the very beginning such as lack

of clear domain object base or too much separation be-

tween different projects that lead to the code duplication.

Those were discovered over time and a unification proc-
ess has been started to extract the common functionalities

and nomenclature. Reuse of software is now a strongly

promoted approach that can bring only benefits improving

the overall robustness of software control systems used at

CERN. Spring as an enterprise Java framework proved

itself in practice, helped greatly in the unification and

became to be widely used in most of the projects.

REFERENCES

[1] M.D. Mcilroy, “Mass Produced Software Compo-

nents”, Garmisch, Germany, 7th to 11th October

1968", Scientific Affairs Division, NATO, Brussels,

1969, 138-155.
[2] Rod Johnson et al., Spring Framework 2.5 Documen-

tation, http://www.springsource.org

[3] G. Kruk et al., “LHC Software Architecture (LSA) –

Evolution toward LHC beam commissioning”,

ICALEPCS‟07, Knoxville, Tennessee, U.S.A.

[4] J. Wozniak et al., “Software Interlocks System”,

ICALEPCS‟07, Knoxville, Tennessee, U.S.A.

[5] V. Baggiolini et al., “JAPC - the Java API for Parame-

ter Control”, ICALEPCS‟2005, Geneva, Switzerland.

[6] S. Deghaye et al., “Cern Proton Synchrotron Complex

High-Level Controls Renovation” ICALEPCS‟10,

Kobe, Japan

